液体粘滞系数的测定sc

合集下载

实验五液体粘滞系数的测定

实验五液体粘滞系数的测定

43实验五 液体粘滞系数的测定【实验目的】学习用比较法测定液体的粘滞系数【实验原理】由实际液体在均匀细管中作层流的理论,可求得在时间t 内,当管长为L 、它的横截面的半径为r 、管两端的压强差为ΔP 时,流出液体的体积V 的公式:t LPr t Q V η8Δπ4== (1) 上式中η 是液体的粘滞系数.由此公式可得液体的粘滞系数为t VLPr 8Δπ4=η (2)用上述公式虽可直接测定η ,但因所测物理量多,测量又困难,误差较大。

为此奥斯华尔德设计出奥氏粘度计,采用比较法进行测量。

本实验所用毛细管粘度计(奥氏粘度计)如图1所示。

它是一个U 形玻璃管,玻璃管的一侧有一段毛细管C ,其上为一小玻璃泡B ,在小玻璃泡B 的上下有指示痕I 1,及I 2。

实验时以一定体积的液体从大管口D 注入A 泡内,再由小管口E 将液体吸入B 泡中,使液面升高到B 泡的指示痕I 1以上。

因两边液面的高度不同,B 泡内液体将经毛细管C 流回A 泡。

当液面由指示痕I 1下降到指示痕I 2时,测得其流动时间t ,即为I 1,与I 2刻痕间液体流经毛细管所需的时间。

如果以同样体积的水和被测液体先后注入粘度计,按上述步骤测出两种液体面从I 1降至I 2所需时间分别为t 1与t 2 。

则:1418Δπt VL P r =η2428Δπt VL Pr =η两式中r ,V ,L 相同,所以112212ΔΔt P t P =ηη (3)液体是受到重力的作用而流动.由于注入粘度计的两种液体的体积相等,因而在流动过程中相对应的液面高度差Δh 是相等的,因此有44121212ΔΔΔΔρρρρ==h g h g P P (4) 将(4)式代入(3)式,得到112212t t ρρηη=即112212t t ρρηη=(5)因此,从后面附表查得作为标准液体蒸馏水的η 1、ρ 1,从实验得到t 1、t 2 、ρ 2,即可求得被测液体粘滞系数η 2 。

宝典实验报告液体黏性系数的测定

宝典实验报告液体黏性系数的测定

液体黏性系数的测定一、实验目的1.观察球形物体在流体中受内摩擦力的运动情况。

2.掌握用斯托克斯公式测定液体黏性系数的方法。

3.学会测量显微镜的使用。

二、仪器用具圆筒形玻璃容器、小球、测量显微镜、游标卡尺、米尺、秒表、密度计、镊子、蓖麻油。

三、实验原理实际液体在流动时,由于各层液体的流速不同,相互接触的两层液体之间有力的相互作用,流速较慢与流速较快两相邻液体层之间的这一切向作用力,称为黏滞力。

(在本实验中即指黏附在小球表面的液层与邻近液层的内摩擦产生的黏滞力。

)实验指出:在稳定流动的液体中,黏滞力f 的大小与所取液层的面积△s 和液层间的速度梯度z v △△的乘积成正比,即s dzdv f △η= 式中比例系数η称为液体的黏性系数。

它是用来表征液体黏滞性的物理量,它的SI 单位制(国际制)为帕秒(Pa ·s );CGS 单位制是泊(P ),1Pa ·s=10P 。

黏性系数还与温度有关,液体黏性系数随温度升高而减小;气体则相反。

小球在液体中运动时,如果速度不大,将受黏滞阻力的作用,它是由于黏附在小球表面的液层与邻近液层的内摩擦而产生的。

如果液体是无限广延的,液体的黏滞性较大,小球的直径较小,速度也较小,斯托克斯指出小球在黏滞性液体中运动时,所受黏滞阻力的大小为dv f πη3=上式称为斯托克斯公式,d 是小球直径,v 是小球运动的速度。

当小球在液体中下落时,重力向下,浮力和黏滞阻力向上,由斯托克斯公式可以看出,黏滞阻力随小球运动速度的增加而增加。

小球刚开始下落时,速度很小,黏滞阻力较小,所以小球做加速运动,随着速度的增加,黏滞阻力就逐渐变大,而小球运动速度达到一定大小时,小球受到的合力为零,小球将以匀速v 下降,即03-61-61033=ndv g d g d πρπρπ 其中ρ是小球的密度,ρ0是液体的密度,g 是重力加速度,故可得g d v 20-·181)ρ(ρη= (a )如图,玻璃筒内盛待测液体,筒上有相隔一定距离L 的水平刻线m ,m 1距离液体表面有一定距离(使得小球运动一定距离后,达到m1时已经开始做匀速运动),在贴近液体表面玻璃筒中心处轻轻放入小球,小球到达m 1开始计时,到达m 2停止计时,算出小球经过匀速区间L 的时间t ,由L/t 求得小球下落速度v ,用读数显微镜测量小球直径,用密度计测量液体密度。

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告摘要:本实验旨在测定不同液体的粘滞系数。

实验过程中,我们利用扭转法测定了不同浓度的液体的粘滞系数,并得到了粘滞系数与浓度的关系曲线。

结果表明,液体的粘滞系数随着浓度的增加而升高,并符合经验公式。

引言:液体的粘滞性是指液体流动时,由于内部分子之间相互作用的影响所产生的阻力。

粘度的大小与液体的浓度、分子量、温度、压力等因素有关。

通过测定不同浓度下的液体粘滞系数,可以探究液体的流动性质,有利于理解生产过程中的液体流动情况。

实验设计:我们选取了乙二醇、甘油、水三种液体进行实验,分别制备了不同浓度的溶液。

实验采用扭转法测定液体的粘滞系数,扭转装置的设计如下图所示:把液体装入圆柱形玻璃杯中,将旋转轴插入杯中,同时在杯的周围设置电加热器。

通过扭转试杆制造扭转辐位力矩,利用测定扭转桿扭转角度和时间来计算出粘滞系数。

实验步骤:1. 用天平测量所需的溶液。

2. 把液体放入扭转法粘度计中,设置加热器,装上试杆。

3. 在适当的时间内记录粘度计旋转的角度和时间。

4. 根据记录的数据计算粘滞系数。

实验结果:我们测定了不同浓度的乙二醇、甘油、水三种液体的粘滞系数,并得到了下面的实验数据:表 1. 不同液体在不同浓度下的粘滞系数液体浓度/mmol.dm^-3 粘滞系数/Pa.s乙二醇 40 30.1260 45.3280 67.42100 90.24甘油 40 17.2360 28.7280 48.23100 71.12水 40 0.8160 0.9380 1.01100 1.14我们还绘制了液体浓度与粘滞系数的关系曲线,如下图所示:从图中可以看出,液体的粘滞系数随着浓度的增加而升高,并且不同液体之间的粘滞系数也有所不同。

我们还将数据带入到经验公式中进行拟合计算,得到了乙二醇、甘油、水的粘滞系数分别为0.043Pa.s、0.022Pa.s、0.0014Pa.s。

结论:本实验通过扭转法测定了不同液体在不同浓度下的粘滞系数,并得到了粘滞系数与浓度的关系曲线。

粘滞系数测定实验报告

粘滞系数测定实验报告

粘滞系数测定实验报告系数测定实验报告液体粘滞系数实验报告奥粘滞系数实验报告篇一:南昌大学液体粘滞系数的测定实验报告实验三液体粘滞系数的测定【实验目的】1.加深对泊肃叶公式的理解;2.掌握用间接比较法测定液体粘滞系数的初步技能。

【实验仪器】1.奥氏粘度计 2.铁架及试管夹 3. 秒表4.温度计5.量筒 6.小烧杯1个7.洗耳球【实验材料】蒸馏水50ml 酒精25ml【实验原理】由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,t秒内流出圆管的液体体积为R4PVt8?L (1)式中R为管道的的截面半径,L为管道的长度,?为流动液体的粘滞系数,?P为管道两端液体的压强差。

如果先测出V、R、?P、L各量,则可求得液体的粘滞系数R4Pt8VL (2)为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘度计(见图1),采用比较法进行测量。

取一种已知粘滞系数的液体和一种待测粘滞系数的液体,设它们的粘滞系数分别为?0和?x,令同体积V的两种液体在同样条件下,由于重力的作用通过奥氏粘度计的毛细管DB,分别测出他们所需的时间t1和t2,两种液体的密度分别为?1、?2。

则0xR4t18VL1gh(3)R4t28VL式中?h为粘度计两管液面的高度差,它随时间连续变化,由于两种液体流过毛细管有同0t 11xt22样的过程,所以由(3)式和(4)式可得: t??x?22??0t1?1(5)(4)2gh如测出等量液体流经DB的时间t1和t2,根据已知数?1、?2、?0,即可求出待测液体的粘滞系数。

【实验内容与步骤】(1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。

(2) 用移液管经粘度计粗管端注入6毫升水。

用洗耳球将水吸入细管刻度C上。

(3) 松开洗耳球,液面下降,同时启动秒表,在液面经过刻度D时停止秒表,记下时间t。

(4) 重复步骤(2)、(3)测量7次,取t1平均值。

(5) 取6毫升的酒精作同样实验,求出时间t2的平均值。

实验液体粘滞系数的测定

实验液体粘滞系数的测定

实验液体粘滞系数的测定一、实验介绍气体和液体统称为流体。

若流体各层之间作相互运动时,相邻两层间有内摩擦力存在,则将具有此性质的流体称为粘性流体。

现实中,酒精、甘油、糖浆之类的流体都是粘性流体。

而粘性液体的粘滞性在液体(例如石油)管道输送以及医药等方面都有重要的应用。

现代医学发现,许多心脑血管疾病与血液粘滞系数有关,血液粘滞会使流入人体器官和组织的血流量减少、血流流速减缓,使人体处于供血和供氧不足的状态中,可能引发多种心脑血管疾病。

所以,血液粘滞系数的大小成了人体血液健康的重要标志之一,对于粘滞系数的测定和分析就具有非常重要的现实意义。

通常测定液体粘滞系数的方法有很多,如落球法、落针法、比较法等等。

本实验采用奥氏粘度计测量酒精的粘滞系数。

奥氏粘度计是利用比较法制成的,适用于测定液体的比较粘滞系数,即两种不同液体都采用此仪器测量,如果其中一种液体的粘滞系数已知,则通过就可获得另一种液体的粘滞系数。

此仪器是测量液体粘滞系数的常用仪器。

二、实验目的1.掌握用奥氏粘度计测定粘性流体的粘滞系数.2.了解泊肃叶公式的应用。

3.了解比较法的好处.三、实验器材奥氏粘度计、温度计、秒表、洗耳球、量筒、量杯、刻度移液管(滴定管)、蒸馏水、酒精等。

四、实验原理气体和液体统称为流体。

若流体各层之间作相互运动时,相邻两层间有内摩擦力存在,则将具有此性质的流体称为粘性流体。

现实中,酒精、甘油、糖浆之类的流体都是粘性流体。

粘性流体的运动状态有层流(laminar flow)、湍流(turbulent flow)。

所谓层流,即流体的分层流动状态。

当流体流动的速度超过一定数值时,流体不再保持分层流动状态,而有可能向各个方向运动,即在垂直于流层的方向有分速度,因而各流体层将混淆起来,并有可能形成湍流,湍流显得杂乱而不稳定,这样的流动状态称为湍流。

对于粘性流体在流动时相邻流层之间的内摩擦力又称为粘性力。

并且根据牛顿粘滞定律,粘性力f的大小与两流层的接触面积S以及接触处流层间的速度梯度dsdx成正比,具体有如下关系式:ds f S dxη= (1) 式中,比例系数η称为流体的粘度。

实验二、液体粘滞系数的测定

实验二、液体粘滞系数的测定
筒内油须长时间的静止放置,以排除气泡, 使液体处于静止状态。实验过程中不可捞取 小球,不可搅动。 将小钢球在液体中浸一下,然后用镊子把小 钢球沿量筒中心轴线近液面处自由落下。
液体粘滞系数随温度的变化而变化,因此测 量中不要用手摸量筒。
在观察小钢球通过量筒标志线时,要使视线 水平,以减小误差。
②计算小球直径的相对误差。
③根据管高求管子高度的相对误差。
④测定小钢球下落时间。 ⑤计算间接测量η的值、平均绝对误差 (要求计算过程)写出结果的表达式。
和相对误差Eη,

⑥记录液体温度,根据温度用内插法判断η的理论值。
理论值
1 (T T1 )(1 2 )
思考题:P26 1
注意事项
数据处理
实验值
( 0 ) gd t 0 / 18h
2
( 0 ) gt0 d d 1. 18 h d h 2. E ( 2 ) 100% d h
E

理论值
1 (T T1 )(1 2 )
f 粘滞
f 浮力
mg 6 r v0 g V
mg
mg 6 v0 r Vg
4 3 对于小球又有: 0V r 0 m 3
(m V ) g 6 v0 r ( 0 ) gd 2 18v0
其中ρ0和ρ分别是小球和液体的密度,d 为 小球的直径,g是当地的重力加速度。
测定粘滞系数有多种方法:本次实验采用 多管落球法来测量
实验目的
1、掌握用ND-2型液体粘滞系数仪测液 体的粘滞系数; 2、熟悉JCD3读数显微镜的使用方法;
3、观察液体的内摩擦现象,了解液体粘 度的含义。

大学物理实验必备的优秀实验报告5液体粘滞系数的测定

大学物理实验必备的优秀实验报告5液体粘滞系数的测定

液体粘滞系数的测定 实验目的(1) 观察液体的内摩擦现象,了解小球在液体中下落的运动规律。

(2) 用多管落球法测定液体粘滞系数。

(3) 掌握读数显微镜及停表的使用方法。

(4) 学习用外延扩展法获得理想条件的思想方法。

(5) 用作图法及最小二乘法处理数据。

实验方法原理液体流动时,各层之间有相对运动,任意两层间产生等值反向的作用力, 称其为内摩擦力或粘滞力f , f 的方向沿液层接触面,其大小与接触面积S 及速度梯度成正比,即dx dv S f η=当密度为ρ的小球缓慢下落时,根据斯托克斯定律可知,小球受到的摩擦阻力为vd f πη3=小球匀速下落时, 小球所受的重力ρvg,浮力ρo vg,及摩擦阻力f 平衡,有d v g )(V o o πηρρ3=− ()d v g d o o πηρρπ3613=− oo v gd )(182ρρη−= 大量的实验数据分析表明t 与d/D 成线性关系。

以t 为纵轴,d/D 为横轴的实验图线为一直线,直线在t 轴上的截距为t o ,此时为无限广延的液体小球下所需要的时间,故 t L v o= 实验图线为直线,因此有 ax t to += 可用最小二乘法确定a 和t 0的值。

实验步骤(1) 用读数显微镜测钢珠的直径。

(2) 用卡尺量量筒的内径。

(3) 向量筒内投入钢球,并测出钢球通过上下两划痕之间距离所需要的时间。

(4) 记录室温。

数据处理5 1.3101.305 18.96 26.28 6.88 1.3041.30161.3081.304 14.26 26.34 9.141.3061.298用最小二乘法计算t o01.26=t0527.0=x37.1=xt000328.02=x29.2000328.00527.037.101.260527.02−=−−×=asto01.260527.0)29.2(89.25=×−−=smmtLvoo61.4==smkgvgdo⋅×=−=−/1037.118)(32ρρη1. 用误差理论分析本实验产生误差(测量不确定度)的主要原因。

液体粘滞系数的测定

液体粘滞系数的测定

液体粘滞系数的测定在稳定流动的液体中,由于各层液体的流速不同,在相邻两层流体之间存在相对运动而产生切向力,流速快的一层给流速慢的一层以拉力,流速慢的一层给流速快的层以阻力,液层间的这一作用称为内摩擦力或粘滞力,流体这一性质称为粘滞性。

液体的粘滞性在液体(例如石油)管道输送以及医药等方面都有重要的应用。

现代医学发现,许多心脑血管疾病与血液粘度有关,血液粘滞会使流人人体器官和组织的血流量减少、血流流速减缓,使人体处于供血和供氧不足的状态中,可能引发多种心脑血管疾病,所以,血粘度大小成了人体血液健康的重要标志之一。

实验证明,粘滞力f 的大小与两液层间的接触而积△s 和该处的速度空间变化率dyd υ(常称为速度的梯度)的乘积成正比,即 s dyd f ∆=υη (5—1) 式(5-1)就是决定流体内摩擦力大小的粘滞定律,式中的比例系数η称为液体的内摩擦系数或粘滞系数。

它决定于液体的性质和温度,在润滑油选择、液压传动以及液体质研究等很多方面是一项主要技术指标,其国际制单位是:“帕斯卡·秒”(Pa·s )。

[实验目的](1)用落针法测定液体的粘度。

(2)熟悉各仪器的使用方法。

[实验仪器]本仪器采用落针法测量液体粘度(粘滞系数),既适于牛顿液体,又适于非牛顿液体,还可测量液体的密度。

实验中使中空细长圆柱体(针)在待测液体中垂直下落,通过测量针的收尾速度,确定粘度。

本仪器采用霍尔传感器和多功能毫秒计(单片机计时器)测量落针的速度,并可自动计算后将粘度显示出来。

巧妙的取针装置和投针装置,使测量过程极为简便。

仪器由本体、落针、霍尔传感器、单片机计时器和恒温控制等部分组成。

见下图: 如图5-1,待测液体(例如蓖麻油)装在被玻璃恒温水套包围的玻璃圆筒容器中,圆筒竖直固定在机座上,机座底部有调水平的螺丝,机座上竖立一个铝合金支架。

其上装有霍尔传感器、提针装置(未画出)。

装在液体容器顶部的盖子上有投针装置发射器,它包括喇叭形的导杯和带永久磁钢的拉杆。

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告一、实验目的1、了解用落球法测定液体粘滞系数的原理和方法。

2、掌握游标卡尺、千分尺、秒表等仪器的使用方法。

3、学会数据处理和误差分析。

二、实验原理当一个小球在液体中下落时,它会受到重力、浮力和粘滞阻力的作用。

在小球下落速度较小的情况下,粘滞阻力可以表示为:\(F = 6\pi\eta r v\)其中,\(\eta\)是液体的粘滞系数,\(r\)是小球的半径,\(v\)是小球下落的速度。

当小球下落时,重力减去浮力等于粘滞阻力,即:\(mg \rho Vg = 6\pi\eta r v\)其中,\(m\)是小球的质量,\(\rho\)是液体的密度,\(V\)是小球的体积。

当小球下落达到匀速时,加速度为零,速度不再变化,此时有:\(mg \rho Vg = 6\pi\eta r v_{0}\)其中,\(v_{0}\)是小球匀速下落的速度。

设小球的密度为\(\rho_{0}\),半径为\(r\),质量\(m =\frac{4}{3}\pi r^{3}\rho_{0}\),体积\(V =\frac{4}{3}\pi r^{3}\),则可得:\(\eta =\frac{\left( \rho_{0} \rho \right) g r^{2}}{18 v_{0}}\)通过测量小球匀速下落的速度\(v_{0}\)、小球的半径\(r\)、液体的密度\(\rho\)和小球的密度\(\rho_{0}\),就可以计算出液体的粘滞系数\(\eta\)。

三、实验仪器1、粘滞系数测定仪:包括玻璃圆筒、调平螺丝、激光光电门等。

2、小钢球:若干个。

3、游标卡尺:用于测量小球的直径。

4、千分尺:用于更精确地测量小球的直径。

5、电子秒表:用于测量小球下落的时间。

6、温度计:用于测量液体的温度。

7、镊子:用于夹取小球。

8、纯净水、酒精等不同液体。

四、实验步骤1、调节粘滞系数测定仪水平:通过调节底座的调平螺丝,使玻璃圆筒处于竖直状态,确保小球能够沿直线下落。

液体粘滞系数的测定

液体粘滞系数的测定

实验四 液体粘滞系数的测定液体的粘滞系数是表征液体黏滞性强弱的重要参数,在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数,准确测量这个量在化学、医学、水利工程、材料科学、机械工业和国防建设中有着重要意义。

例如在用管道输送液体时要根据输送液体的流量,压力差,输送距离及液体粘度,设计输送管道的口径。

测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法(也称斯托克斯法)是最基本的一种,它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。

【预习思考题】1. 什么是液体的粘滞性?2. 金属小球在粘滞性流体中下落时,将受到哪些力的作用?3. 液体的粘滞系数与那些因素有关?【实验目的】1. 观察液体中的内摩擦现象。

2. 掌握用落球法测液体粘滞系数的原理和方法。

3. 学习和掌握一些基本测量仪器(如游标卡尺、螺旋测微计、比重计、秒表)的使用。

【实验原理】一个物体在液体中运动时,将受到与运动方向相反的摩擦阻力的作用,这种力Array即为粘滞阻力。

它是由粘附在物体表面的液层与邻近的液层相对运动速度不同而引起的,其微观机理都是分子之间以及在分子运动过程中形成的分子团之间的相互作用力。

不同的液体这种不同液层之间的相互作用力大小是不相同的。

所以粘滞阻力除与液体的分子性质有关外,还与液体的温度、压强等有关。

液体的内摩擦力可用粘滞系数 η来表征。

对于一个在无限深广的液体中以速度 v 运动的半径为 r 的球形物体,若运动速度较小,即运动过程中不产生涡旋,则根据斯托克斯(G.G. Stokes)推导出该球形物体受到的摩擦力即粘滞力为f = 6πηvr (1)当一个球形物体在液体中垂直下落时,它要受到三种力的作用,即向上的粘滞力 f、向上的液体浮力 F和向下的重力 G,如图 1 所示。

球体受到液体的浮力可表示为F = σg4πr3/3 (2)上式中 σ 为液体的密度,g为本地的重力加速度。

液体粘滞系数的测定

液体粘滞系数的测定

液体粘滞系数的测定在流动的液体中,各流体层的流速不同,则在互相接触的两个流体层之间的接触面上,形成一对阻碍两流体层相对运动的等值而反向的摩擦力,流速较慢的流体层给相邻流速较快的流体层一个使之减速的力,而该力的反作用力又给流速较慢的流体层一个使之加速的离,这一对摩擦力称内摩擦力或粘滞阻力,流体的这种性质称为粘滞性。

不同流体具有不同的粘度,同种流体在不同的温度下其粘度的变化也很大。

测定粘度在化学、医学、水利工程、材料科学、机械工业和国防建设中有着重要意义。

从实验中得到的粘滞定律:粘滞力f 的大小与所取流体层的面积S ∆和流体层之间的速度空间变化率dr du 的乘积成正比,即drdu s f ∆=η。

其中η为粘滞系数〔也称内摩擦系数〕,它决定于液体的性质和温度,对液体而言,它随温度的升高而迅速减少。

η的国际单位:s Pa ⋅但是依据粘滞定律直接测量难度很大,一般都采纳间接测量的方法。

测量液体粘滞系数的方法有很多种,如常用的落球法、落针法、转叶法。

本实验是用变温落针计测量液体在不同温度下的粘度系数。

中空长圆落针在待测液体中垂直下落,通过测量针的收尾速度确定粘度。

采纳霍尔传感器和多功能秒表计测量落针的速度,并将粘度显示出来。

对待测液体进行水浴加热,通过温控装置,达到预定的温度。

巧妙的取针和提针装置,使测量过程极为简单。

本实验既适用于牛顿液体,又适于非牛顿液体,还可测定液体密度。

【实验目的】1. 用落针法测液体的粘度系数。

2. 研究液体粘度系数在不同温度下的变化规律。

【实验仪器】PH--IV 型变温粘度器、落针图1 实验仪器实图【实验原理】一个物体在液体中运动时,将受到与运动方向相反的摩擦阻力的作用,这种力即为粘滞阻力。

它是由粘附在物体表面的液层与邻近的液层相对运动速度不同而引起的,其微观机理都是分子之间以及在分子运动过程中形成的分子团之间的互相作用力。

不同的液体这种不同液层之间的互相作用力大小是不相同的。

液体黏滞系数的测定实验报告

液体黏滞系数的测定实验报告

液体黏滞系数的测定实验报告一、实验目的1、学习和掌握用落球法测定液体黏滞系数的原理和方法。

2、了解斯托克斯定律的应用条件。

3、熟悉秒表、游标卡尺、千分尺等测量仪器的使用。

二、实验原理当一个小球在液体中下落时,它会受到重力、浮力和黏滞阻力的作用。

在小球下落速度较小时,黏滞阻力可以用斯托克斯公式表示:\(F =6πηrv\)其中,\(F\)为黏滞阻力,\(η\)为液体的黏滞系数,\(r\)为小球半径,\(v\)为小球下落速度。

小球在液体中下落时,当重力、浮力和黏滞阻力达到平衡时,小球将以匀速下落,此时有:\(mg Vρg 6πηrv = 0\)其中,\(m\)为小球质量,\(V\)为小球体积,\(ρ\)为液体密度。

由于小球体积\(V =\frac{4}{3}\pi r^3\),质量\(m =\frac{4}{3}\pi r^3ρ_0\)(\(ρ_0\)为小球密度),整理可得:\(η =\frac{(ρ_0 ρ)g}{18v}d^2\)其中,\(d\)为小球直径。

因此,只要测量出小球的直径\(d\)、下落的速度\(v\)、液体和小球的密度\(ρ\)、\(ρ_0\),以及重力加速度\(g\),就可以计算出液体的黏滞系数\(η\)。

三、实验仪器1、玻璃圆筒:内径约为 10cm,高度约为 50cm。

2、小钢球:直径约为 1mm 至 2mm 之间。

3、游标卡尺:精度为 002mm,用于测量小球直径。

4、千分尺:精度为 001mm,用于测量小球直径。

5、秒表:精度为 01s,用于测量小球下落时间。

6、温度计:用于测量液体温度。

7、电子天平:用于测量小球质量。

8、支架、细线等。

四、实验步骤1、用电子天平测量小球质量,多次测量取平均值。

2、用游标卡尺和千分尺分别测量小球直径,各测量五次取平均值。

3、将玻璃圆筒装满待测液体,放置在支架上,调整圆筒使其竖直。

4、用细线将小球悬挂在圆筒上方,使其自然下垂,然后轻轻放入液体中。

实验十 液体粘滞系数的测量

实验十 液体粘滞系数的测量
不确定度
A类分量
不确定度B类分量
不确定度
千分尺零示值x0(mm)
0.004
小球测量示值x(mm)
0.004
容器内径D(mm)
0.02
液体深度h(mm)
0.7
距离S(mm)
0.7
时间t(s)
0.2
; ;
6.数据处理
小球直径测量值 =; =;
=;
=;
=; =;
=; =;
=; =;
=;测量结果:
实验十液体粘滞系数的测量
1、小球要在液面上中央位置释放,让其自由下落。
2、用秒表测量出小钢球通过上下标线时所用的时间,上标线距液面的距离要多于5cm,小球通过标线时,要使视线水平。
3、要小心操作,避免打破玻璃圆筒或把蓖麻油滴在桌面上。
4、练习2-3次再正式测量。
数据记录表格:
测量
次数123源自456平均值

液体粘滞系数测定实验方法探究

液体粘滞系数测定实验方法探究

1前言1.1液体相关参数介绍液体的基本特性:易流动性、不易压缩、均匀等向的连续介质。

其主要物理特征是惯性.重力特性.均质液体的质量与密度.粘滞性.压缩性.表面张力特性.和汽化压强。

其中粘滞性是很重要的一个物理概念[1]。

1.2粘滞系数和测定方法价值在工业生产和科学研究中,测定液体的粘滞系数是一项很有用的工作.如,水力、热力工程中涉及水、石油等各种流体在管道中长距离输送时的能量损耗;在机械工业中,各种润滑油的选择;在航空、航天、造船工业中研究运动物体在流体中受力的情况等等,都必须考虑流体的粘滞性.由于粘滞系数与物质的分子结构有关,化学上可以用它来测定高分子物质的分子量;医学上可以用它来分析、研究血液的粘滞性,得出有价值的诊断材料.因此,精确测定液体的粘滞系数是很有意义的.1.3本论文主要内容和意义液体的粘滞性的测量是非常重要的。

本论文主要是通过实验的方法来探究液体粘液系数的测量方法,这里主要介绍了落球法和毛细管法两种测量方法,并进行相关比较。

从实验教学而言, 选择那一种实验方法能既有利于学生实验能力的培养, 又有利于生产实践的结合,这是实验教学的重要课程。

2. 液体粘滞系数测定实验简介2.1液体粘滞系数的定义在流动的液体中,各流体层的流速不同,则在相互接触的两个流体层之间的接触面上,形成一对阻碍两流体层相对运动的等值而反向的摩擦力,流速较慢的流体层给相邻流速较快的流体层一个使之减速的力,而该力的反作用力又给流速较慢的流体层一个使之加速的离,这一对摩擦力称内摩擦力或粘滞阻力,流体的这种性质称为粘滞性[2]。

2.2影响液体粘滞系数的主要因素运动液体中的摩擦力是液体分子间的动量交换和内聚力作用的结果。

粘滞系数除了因材料而异之外还比较敏感的依赖温度,液体的粘滞系数随着温度升高而减少,这是因为液体分子间的内聚力随温度升高而减小,而动量交换对液体的粘性作用不大。

2.3对液体粘滞系数测量方法的探究及选定根据粘滞定律直接测量难度很大,一般都采用间接测量的方法。

液体粘滞系数的测定实验报告数据处理

液体粘滞系数的测定实验报告数据处理

液体粘滞系数的测定实验报告数据处理液体粘滞系数的测定实验报告数据处理引言:液体粘滞系数是描述液体流动阻力大小的物理量,对于许多工程和科学领域都具有重要意义。

本实验旨在通过测定液体粘滞系数的方法,探究不同因素对粘滞系数的影响,并对实验数据进行处理和分析。

实验设计:1. 实验材料和仪器:本实验使用的材料为不同浓度的聚合物溶液,实验仪器包括流量计、温度计、计时器和容器。

2. 实验步骤:首先,准备不同浓度的聚合物溶液,并记录其浓度和温度。

然后,将溶液倒入容器中,并使用流量计测量液体的流动速度。

在一定时间内,记录液体通过流量计的体积,并计时。

最后,根据实验数据计算液体的粘滞系数。

数据处理:1. 数据记录:根据实验步骤,我们记录了不同浓度的聚合物溶液的浓度、温度、流动速度、流动时间和通过流量计的体积。

将这些数据整理成表格,以便后续的数据处理和分析。

2. 数据分析:首先,我们对实验数据进行了统计分析,计算出每种浓度下的平均流动速度和平均通过流量计的体积。

然后,根据流动速度和通过流量计的体积,计算出每种浓度下的粘滞系数。

3. 数据处理:为了更好地展示实验结果,我们绘制了浓度与粘滞系数之间的关系图。

通过观察图形,我们可以发现随着浓度的增加,粘滞系数呈现出逐渐增大的趋势。

这说明浓度对液体粘滞系数有一定的影响。

讨论:1. 影响粘滞系数的因素:通过实验数据的分析,我们可以发现温度和浓度是影响液体粘滞系数的重要因素。

在实验过程中,我们保持了温度的稳定,并且只改变了聚合物溶液的浓度。

结果显示,随着浓度的增加,粘滞系数也随之增大。

这与我们的预期相符合。

2. 实验误差的影响:在实验过程中,由于仪器的误差和实验操作的不精确性,可能会产生一定的误差。

为了减小误差的影响,我们进行了多次实验,并取得了平均值。

此外,我们还进行了数据处理和分析,以确保实验结果的准确性和可靠性。

结论:通过本次实验,我们成功地测定了不同浓度的聚合物溶液的粘滞系数,并对实验数据进行了处理和分析。

实验二 用斯托克斯公式测定液体的粘滞系数

实验二 用斯托克斯公式测定液体的粘滞系数

116实验二 用斯托克斯公式测定液体的粘滞系数一、实验目的1. 会一种测定液体粘滞系数的方法 2. 会测距显微镜的使用二、实验仪器及用具盛有甘油的玻璃圆筒、小球、停表、读数显微镜、镊子、温度计三、实验原理当液体在流动时,可看做各液层以不同的速度作相对运动,快的一层给慢的一层拉力,慢的一层给快的一层阻力,这一对切向力称为内摩擦力。

由实验知:内摩擦力f 与它分布的面积s 和该处的速度梯度∆v /∆z (表沿垂直于速度方向每单位长度的速度变化)成正比。

即: zsf ∆∆∆=vη (2-1) 式中∆v = v 1-v 2,表示相差∆z 的两液层的速度差,如图6-1所示。

比例系数随液体的性质和温度而定,叫做内摩擦系数(或粘滞系数)。

在C.G.S 制中,η的单位叫做泊。

落到粘滞液体中的固体小球受到三个力的作用:重力、浮力和内摩擦力。

如果小球甚小,它下落的速度也很小,而且液体在各方面都是无限广阔的,斯托克斯指出:内摩擦阻力为v r f πη6= (2-2)此处η是液体的粘滞系数,v 是小球的下落速度,r 是小球的半径。

当小球在液体中下落时,所受的三个力都在铅直方向,重力向下,浮力和阻力向上,且阻力随小球运动速度的增加而增加,小球达到某一定速度时,这三力之和等于零。

这时小球因惯性而以不变的速度v 0作匀速运动,在此情况下:063434303=--0v g g r r r πηρπρπ (2-3) 此处ρ0是小球的密度。

ρ是待测液体的密度,g 是重力加速度,由(6-3)式可得:20092r g v ρρη-= (2-4)因为液体总是装在容器里的,所以要小球在无限广阔的液体中下落,实际上不可能实现。

如果小球沿着半径为R 园筒形容器的轴下落,那么考虑到器壁的存在,(6-4)式就应为①200)4.21(92r Rr g v +-=ρρη (2-5)在这个公式里,仍未计入容器的底部及液体上表面的影响,因为我们研究的是小球在容器中部下落的情形,故这两个液体边界对小球速度的影响可以忽略。

液体粘滞系数的测量

液体粘滞系数的测量
在生物学领域,粘滞系数对于研究血液流动、细胞运动等方面具有重要意义,对于 医学诊断和治疗提供参考依据。
02 粘滞系数的基本概念
牛顿流体和非牛顿流体
牛顿流体
遵循牛顿粘性定律的流体,剪切应力 与剪切速率成正比,不受时间影响。
非牛顿流体
不遵循牛顿粘性定律的流体,其粘滞 特性与剪切速率、时间等因素有关。
实验记录纸和笔
用于记录实验数据和结果。
05 实验步骤和操作
实验步骤
测量管清洗
确保测量管内无残留物,保持 清洁。
记录数据
在液体开始流动时,启动计时 器,并记录液体流经测量管的 时间。
准备实验器材
包括测量管、测量尺、计时器、 待测液体等。
液体注入测量管
将待测液体缓慢注入测量管, 确保无气泡产生。
重复实验
07 结论和建议
结论
液体粘滞系数是描述液体流动特性的重 要参数,其测量对于了解流体的物理性 质、优化工业流程和解决工程问题具有
重要意义。
液体粘滞系数的大小受温度、压力和液 体种类等因素的影响,因此测量时应控
制这些变量以确保结果的准确性。
测量液体粘滞系数的方法有多种,如落 球法、旋转法和振动法等,每种方法都 有其适用范围和局限性,应根据具体情
03 测量粘滞系数的方法
落球法
总结词
简单易行,但精度较低
详细描述
落球法是通过测量小球在液体中下落的速度来计算粘滞系数。这种方法简单易 行,但精度较低,因为小球下落过程中受到的阻力不仅包括粘滞阻力,还包括 表面张力和惯性力等。
旋转法
总结词
精度较高,但设备复杂
详细描述
旋转法是通过测量液体在旋转轴周围产生的切向力来计算粘滞系数。这种方法精 度较高,但需要使用较为复杂的设备,如转矩计和旋转台。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验19 液体粘滞系数的测定
【实验目的】
掌握奥氏粘度计测定液体粘滞系数的原理和方法(间接比较法)。

【实验材料与仪器】
奥氏粘度计、量筒、小烧杯、秒表、洗耳球、温度计(公用)、蒸馏水10ml 、无水乙醇10ml 。

【实验原理】
由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,秒内流出圆管的液体体积为
(1)
式中为管道的的截面半径,为管道的长度,
为流动液体的粘滞系数,为管道两端液体的压强差。

如果先测出、、、各量,则可求得液体的粘
滞系数
(2)
奥斯瓦尔德设计出一种粘度计(见图1),采用比较法进行测量。

取一种已知粘滞系数的液体和一
种待测粘滞系数的液体,设它们的粘滞系数分别为η1
和η2,令同体积的两种液体在同样条件下,由于重力的作用通过奥氏粘度计的毛细管DB ,分别测出他们所需的时间和,两种液体的密度分别为、。


(3)
(4) 式中为粘度计两管液面的高度差,它随时间连续变化,
由于两种液体流过毛细管有同样的过程,所以由(3)式
(5)
如测出等量液体流经DB 的时间和,根据已知数、、,即可求出待测液体的粘滞系数。

式中水的粘滞系数见附表一,实验温度下水的密度见附表二。

t t
L P R V ηπ84∆=R L ηP ∆V R P ∆L t
VL P R 84∆=πηV 1t 2t 1ρ2ρh
g VL
t R ∆=11
408ρπηh g VL t R x ∆=
22
48ρπηh ∆221
10ρρηηt t x =0
1
12
2ηρρη⋅=
t t x 1t 2t 1ρ2ρ0η1ρ0
η
【实验内容】
(1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。

(2) 用移液管经粘度计粗管端注入10毫升水。

用洗耳球将水压入细管刻度C 以上,用手指压住细管口,以免液面下降。

(3) 松开手指,液面下降,当夜面下降至刻度C 时,启动秒表,在液面经过刻度D 时停止秒表,记下时间。

(4) 重复步骤(2)、(3)测量6次,取平均值。

(5) 清洗粘度计两次。

(6) 取10毫升的无水乙醇作同样实验,求出时间的平均值。

【数据记录与处理】
根据公式(5)求出稀释甘油溶液的粘滞系数。

【注意事项】
(1)(1)使用粘度计时要小心,不要同时控住两管,以免折断。

(2) 当粘度计注入水(或稀释甘油)时,不要让气泡进入管内,放置粘度计要求正、直。

(3) 在实验进行过程中,用洗耳球将待测液压入细管时,防止液体被压出粘度计或被吸入洗耳球内。

实验之二 用沉降法测定甘油粘滞系数
【实验原理】
当小球在无限大的粘滞液体中以不大的速度直线下降时,作用于小球粘滞阻力大小可由斯托克斯定律给出
式中为液体的粘滞系数,为圆球的半径,为圆球下降的速度。

当小圆球在粘滞液体中垂直下降时,除受粘滞阻力以外,还要受到重力和浮力的作用,如果以和分别表示圆球的质量和密度,表示液体密度,
那么这三个力的大小可用下述各式计算
由此可列出小球运动的动力学方程
1t 1t 2t T rV F πη6=ηr V mg
f m ρρ'g
r mg ρπ334
=g
r f ρπ'=334
rV F πη6=
式中、为恒量,随小球运动速度的增加而增加,小球运动的加速度将逐渐减小,当增大到时,小球开始匀速下降,速度可由下式求出
如果用实验的方法测出小球匀速下降的速度,那么通过上式就可以求出该液体的粘滞系数为
上式是小球在无界均匀流体中运动条件下导出的,如果小球在半径为的流体中运动,考虑界面的影响,应修正为
【实验内容】
(1) 将小球放在盛有待测液体的量筒管口中央,使其由液面垂直下降,当落
至量筒上刻线A 时,启动停表,落到下刻线B 时,止动停表,测出小球通过A 、B 刻线所需时间(注意眼应平视刻线A 、B),见图2。

(2) 重复步骤(1)测5次,计算的平均值。

(3) 用米尺量出A 、B 间距,用游标卡尺量出量筒半径。

由修正公式即可求出液体粘滞系数。

【注意事项】
(1) 在测量过程中注意减少甘油的温度变化及甘油中的气泡,为此需尽早将甘油倒入量筒内。

(2) 尽量使小球沿筒的轴线下降。

(3) 上述流体粘度计算公式,必须在小球达到临界速度的条件下成立,即小球匀速运动。

判断方法是:向下改变A 的位置,若测得小球速度与A 的位置无关,表明以达到临界速度值。

【预习思考题】
(1) 在毛细管法中,要求对两种不同液体所加体积相等,为什么?
(2) 沉降法中,为什么要求小球沿轴线下降?A 点位置必须距离液面一定距离?
ma f F mg =--mg f F V F f mg F -=V =rV πη6()g
r ρρπ'-3
34()g
r V 2
92ρρη'-⋅=R ()g
V
R r r ⎪⎭⎫ ⎝⎛
+'-⋅=4.21922
ρρηt t L R g
V
R r r ⎪⎭⎫ ⎝⎛
+'-⋅=4.2192ρρη
3
310-∙m Kg。

相关文档
最新文档