基于FPGA的QPSK调制解调的系统仿真

合集下载

基于FPGA的SOQPSK调制方式的设计与仿真

基于FPGA的SOQPSK调制方式的设计与仿真

D e s i g n a n d s i eu r l a t i o n o f S OQ P S K mo d u l a t i o n s c h e me s b a s e d o n F P GA
DAI Y a n — c u n.L I Y u.F U Z e - c h u a n
b e s t c h o i c e f o r t h e n e x t g e n e r a t i o n t e l e me t y r s y s t e ms . T h e p r i n c i p l e s o f d i f e r e n t t y p e s o f S O Q P S K mo d u l a t i o n a r e s t u d i e d w i t h
( C h i n a Ai r b o r n e Mi s s i l e A c a d e m y , L u o y a n g 4 7 1 0 0 9 , C h i n a )
Ab s t r a c t : S h a p e d O f f s e t Q u a d r a t u r e P h a s e S h i t f K e y i n g( S O Q P S K) mo d u l a t i o n t e c h n o l o g y h a s p r o p e r t i e s o f c o n s t a n t e n v e l o p e
在 遥 测 系统 发 展 的 早期 阶段 。 由于 数 据 传输 速 率 低 . 需 要
s ( ) :  ̄ v / - Y E b c 。 s ( 2 竹 t ( )

基于FPGA的北斗QPSK调制实现与解调验证

基于FPGA的北斗QPSK调制实现与解调验证
t i o n na a l o g s i na g l s o u r c e .T h i s p a p e r na a ly z e s t h e B e i d o u s a t e l l i t e n a v i g a t i o n s y s t e m B1 b a n d s i na g l q u a d r a t u r e p h a s e
摘 要
2 1 0 0 1 6 )
为研 制北斗卫星导航模拟信号 源,设计 实现 了北斗 Q P S K信号调 制器。文 中在 分析 了北斗卫星导航 系统
B 1频段 信 号 的正 交相 移 键 控 调 制信 号ห้องสมุดไป่ตู้的 基 础 上 ,基 于软 件 无 线 电 的 思 想 ,在 F P G A硬件 平台上实现 了 Q P S K 信 号 调 制
北 斗 卫 星 导航 系统 ( B e i D o u N a v i g a t i o n S a t e l l i t e S y s t e m) 是 我 国正在 实施 的 自主 研发 、 完全 独 立 运行 的
号模 拟源 的算 法 进 行 研 究 , 并 通过 F P G A 实 现模 拟 源
Q P S K d e m o d u l a t i o n a n d s i m p l e s e i r l a i n f o ma r t i o n t r a n s m i s s i o n .
Ke y w o r d s B e i d o u ;Q P S K;m o d u l a t i o n a n d d e m o d u l a t i o n ;F P G A;S t r a t i x I I

基于FPGA的QPSK OFDM调制解调器设计与实现

基于FPGA的QPSK OFDM调制解调器设计与实现

基于FPGA的QPSK OFDM调制解调器设计与实现OFDM(正交频分多路复用)是一种高效的调制解调技术,常用于无线通信系统中。

本文将介绍基于FPGA的QPSK(四相移键控)OFDM调制解调器的设计与实现。

一、引言OFDM技术在无线通信领域有着广泛的应用,其通过将高速数据流分成多个低速子载波进行传输,有效提高了系统的传输效率和频谱利用率。

而QPSK调制方式在OFDM系统中常被使用,能够传输两个比特的信息。

二、系统设计1. 系统框架基于FPGA的QPSK OFDM调制解调器主要包括信号生成、调制、多载波复用、通道传输、接收、解调等模块。

其中,信号生成模块负责产生待发送的信息信号;调制模块将信息信号进行QPSK调制;多载波复用模块将调制后的信号进行串行-并行转换;通道传输模块将并行数据通过多个子载波进行传输;接收模块接收并处理接收到的信号;解调模块将接收到的信号进行QPSK解调,得到原始信息信号。

2. 信号生成在信号生成模块中,我们可以使用伪随机序列发生器生成随机的数字信号作为待发送的信息源。

这里我们选择使用16位的二进制数字信号。

3. QPSK调制QPSK调制模块将二进制信号映射到复平面上的四个相位,即正弦信号与余弦信号共同构成的星座图。

通过将两个比特的输入分别映射到正弦信号与余弦信号的相位上,得到QPSK调制信号。

4. 多载波复用多载波复用模块将QPSK调制信号进行串行-并行转换,将多个并行的调制信号通过并行数据总线发送到通道传输模块。

5. 通道传输通道传输模块将并行的调制信号通过多个子载波进行传输。

在传输过程中,可能会出现信道衰落、噪声等问题,需要引入信道估计和均衡技术进行处理。

6. 接收与解调接收模块接收到经过信道传输后的信号,并进行信道估计和均衡处理,将接收到的信号进行QPSK解调,得到原始的二进制信息。

三、系统实现本文使用基于FPGA的开发板进行系统的实现。

通过使用硬件描述语言进行电路的设计,将各个模块进行逻辑连接,实现QPSK OFDM 调制解调器的功能。

如何实现一种基于FPGA全数字高码率QPSK调制设计?

如何实现一种基于FPGA全数字高码率QPSK调制设计?

如何实现一种基于FPGA全数字高码率QPSK调制设计?1 ** 全数字高码率QPSK调制解调软件设计**1.1 QPSK调制1.1.1 QPSK调制原理1.1.2 QPSK并行调制实现调制(信号)的符号速率达到500Mbps,根据奈奎斯特采样定理,DA的采样频率采用2Gbps。

由于数据速率比较的高,对(FPGA)运算要求太高,因此在设计过程中,采用并行处理的方式,来减轻对FPGA运算的压力。

图1-1为高码率500M QPSK调制实现框图。

其实现的原理为将二进制数据流经过QPSK映射后形成I、Q两路基带信号,在经过8倍成型(滤波器)后,分别与两路正交的数字本振混频后相加输出至(DAC)即可。

图1-1 并行QPSK调制实现框图1.1.2.1 QPSK符号映射QPSK信号的每个码元包含两个比特(信息),可用ab表示。

ab 序列有四种排列,即00,01,10,11。

每种排列对应4种不同的调制相位。

通常各种排列的相位关系按照格雷码进行编码,其符号映射关系如图1-2所示。

图1-2 QPSK映射星座图在实现过程中,将每个符号所包含的两比特二进制信息,分别对应为I、Q两路,先到的信息比特映射为I路,后到的信息比特映射为Q路。

其中二进制0对应正值(逻辑高+1),二进制1对应负值(逻辑低-1)。

图1-3为500Mbps QPSK调制(MATLAB)(仿真)映射星座图,从图中可以看出基带数据严格聚集在[-1,-1],[-1,1],[1,-1],[1,1]四个相位点上。

图1-3 500MbpsQPSK调制MATLAB仿真映射星座图1.1.2.2数字基带成型滤波由于现代无线电(通信)及卫星通信中,频带和功率一般均受限。

一方面,为了有效利用信道,节约频谱资源,需要对发射信号进行带限;另一方面,当矩形脉冲通过带限信道时,脉冲会在时间上扩展,每个符号的脉冲将扩展到相邻符号的码元内,这会造成码间串扰(ISI),并导致接收机在(检测)码元时发生错误的概率增大。

基于FPGA的软件无线电的宽带中频QPSK调制实现

基于FPGA的软件无线电的宽带中频QPSK调制实现

图1 总体方案图
图2 FPGA内部模块图期
图3 SRRC滤波器具体实现结构图图4 移位寄存器组的结构Z-1
图5 查表和加法模块结构图
图6 FPGA实现DDS的程序结构图
三路,其中两路被作为地址送往两个
ROM,一路反馈到累加器的输入端。

在本系统中累加器必然会发生数
据溢出,当溢出发生后,累加器能否
回到正确的状态重新开始计数,对于
DDS的正常工作是非常重要的。

假设
一个累加器的位数是3,在取步长为
(011)2的情况下,时序图如图7所示。

图8 分频器的内部结构
图10 调制后信号的波形图
由40MHz晶振的二次谐波引起的,
这主要是因为用30MHz和40MHz混
70MHz的混频方案不太合理,两个频图9 FPGA中各功能模块连接图。

基于FPGA的QPSK解调技术的设计与实现的开题报告

基于FPGA的QPSK解调技术的设计与实现的开题报告

基于FPGA的QPSK解调技术的设计与实现的开题报告一、选题背景及意义随着现代通信技术的发展,频谱资源越来越紧张,为提高频谱利用效率,射频通信系统中使用数字调制技术是一种可有效降低带宽能量占用和提高信道容量的方式。

其中一种常用的数字调制技术是QPSK调制,它可以将两路单极性NRZ数据分别调制在正弦波和余弦波载波上,实现带宽利用率的提高。

在接收端,解调器需要对QPSK调制信号进行还原,提取出原始的信息数据。

因此,本课题选取了基于FPGA的QPSK解调技术的设计与实现作为研究方向,旨在探索一种高效实现数字信号解调的方法,为提高现代通信技术的发展水平做出贡献。

二、研究内容1. 系统总体设计本课题设计的QPSK解调系统包括射频前端的载频同步、时序同步、均衡、解调等模块,还包括数字信号处理相关的滤波器、采样率变换等模块。

通过这些模块的协同作用,将接收到的QPSK调制信号解调还原成原始的数字信号数据流。

2. 载频同步模块该模块负责完成载频的同步,用于去除接收端的时移影响和相位偏差。

常用的载频同步算法有Costas算法、DDS算法、ZT算法等。

3. 时序同步模块该模块用于解决接收数据中时序抖动的问题,采用软判决算法实现。

4. 均衡模块该模块用于抑制信道传输时产生的干扰,提高系统的抗干扰性能。

常用的均衡算法有线性均衡算法、决策反馈均衡算法等。

5. 解调模块该模块用于将QPSK调制信号还原成原始数字信号。

该模块通常包括滤波器、采样率变换器等子模块。

三、研究计划第一年:我们将完成系统的总体设计,并完成载频同步模块和时序同步模块的算法研究和验证。

同时进行硬件平台的搭建和仿真测试。

第二年:我们计划完成均衡模块和解调模块的算法研究和验证,并将这些模块集成到硬件平台上。

在验证完成后,完善系统的功能和性能,并进行实际场景测试。

第三年:在系统的测试和实际应用中不断完善和优化,提高系统的性能和稳定性,并探索将该技术应用到更广泛领域的可能性,为现代通信技术的发展做出更大的贡献。

基于VHDL的QPSK调制解调系统设计与仿真

基于VHDL的QPSK调制解调系统设计与仿真

基于VHDL的QPSK调制解调系统设计与仿真摘要:文中详细介绍了QPSK 技术的工作原理和QPSK 调制、解调的系统设计方案,并通过VHDL 语言编写调制解调程序和QuaitusII 软件建模对程序进行仿真,通过引脚锁定,下载程序到FPGA 芯片EP1K30TC144-3 中验证。

软件仿真和硬件验证结果表明了该设计的正确性和可行性,由于采用FPGA 芯片,减小了硬件设计的复杂性,该设计具有便于移植维护和升级的特点。

关键词:VHDL;QPSK;FPGA;QuartusII QPSK 调制技术在数字通信调制技术中占有非常重要的地位,将通信技术与FPGA 结合是现代通信技术发展的一个必然趋势。

QPSK 技术具有抗干扰性能强、误码性能好、频谱利用率高等优点,目前广泛应用于数字通信、数字视频广播、数字卫星广播等领域。

文中详细介绍了QPSK 技术的工作原理,完成QPSK 调制、解调的系统设计方案,并通过VHDL 语言编写调制解调程序,通过QuartusⅡ软件对模块和程序进行仿真,并通过引脚锁定,下载到FPGA 芯片EP1K30TC144-3 中,软件仿真和硬件验证结果表明了该设计的正确性和可行性。

1 基于FPGA 的QPSK 调制解调系统设计四进制绝对移相键控(QPSK 或4PSK)利用载波的四种不同相位来表示数字信息。

由于每一种载波相位代表两个比特信息,因此每个四进制码元可用两个二进制码元的组合来表示(常被称为双比特码元),一般用格雷码排列。

调制解调的实现原理框图如图1 所示。

由图1 可知,电路主要由分频器和四选一开关等组成,分频器对外部时钟信号进行分频和计数,并输出4 路频率相同而相位不同的相干数字载波信号;晶振及分频、移相电路分别送出调相所需的4 种不同相位的载波,按照串/并变换器输出双比特码元的不同,逻辑选相电路输出相应相位的载波。

四选一开关是在基带信号的控制下,对4 路载波信号进行选通,输出数字QPSK 信号。

基于FPGA的QPSK高速数字调制系统的研究与实现

基于FPGA的QPSK高速数字调制系统的研究与实现

基于FPGA的QPSK高速数字调制系统的研究与实现摘要:介绍了一种基于FPGA的QPSK的高速数字调制系统的实现方案。

先从调制系统的基本框图入手,简要介绍其实现原理及流程;然后着重介绍FPGA功能模块的软件编程、优化及整个系统的性能。

关键词:FPGA QPSK 直接序列扩频高速调制1 系统实现原理及流程本调制系统的设计目的是实现高速数字图像传输。

系统的硬件部分主要包括FPGA、A/D转换器、D/A转换器、正交调制器、输出电路等。

根据数字图像传输的特点,采用扩频调制技术。

这是因为扩频方式的抗干扰、抗衰落及抗阻塞能力强,而且扩频信号的功率谱密度很低,有利于隐蔽。

同时,为了提高数据传输的可靠性和有效性,降低信号失真度,减少码间干扰,在调制系统中还加入编码、交比例中项及匹配滤波。

这些处理都在FPGA中实现,使整个调制系统具有可编程的特点,易于根据实际要求进行功能上的扩展和缩减。

系统的原理框图如图1所示。

电路的具体工作过程为:图像信号经过A/D转换器AD9214完成模/数转换,输出信号送入FPGA。

由FPGA对信号进行编码、交织、串/并变换、扩频调制及匹配滤波。

FPGA输出两路数字信号,经过双D/A转换器AD9763实现数/模转换,输出两路模拟信号。

这两路信号经过正交调制器AD8346正交调制输出,实现QPSK调制。

因为正交调制器输出的信号功率较小,所以将其经过模拟放大器放大和带通滤波,之后再送到输出。

在整个调制系统中,FPGA模块的软件设计是最为重要的,也是进行系统优化的主要部分,它的优劣会直接影响整个系统的性能。

下面对这部分进行详细的介绍。

2 软件部分实现原理FPGA模块的软件设计部分包括以下几个方面:编码、交织、串并变换、扩频、匹配滤波以及复位和时钟。

2.1 编码和交织数字通信中经常使用信道编码加交织模块来提高数据传输的可靠性和有效性。

为了达到一定的增益要求,选择卷积码中纯编码增益为3.01的(1,1,6)码(在大信噪比下),并对其进行增信删余。

QPSK调制解调技术的设计与仿真

QPSK调制解调技术的设计与仿真

摘要本文主要阐述的是QPSK调制与解调电路的设计。

数字调制解调技术在数字通信中占有非常重要的地位。

为了使数字信号在带通信道中传输,必须用数字信号对载波进行调制。

根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制)。

多进制数字调制与二进制相比,其频谱利用率更高,在有限的信道频带内,能够传输高速数据。

数字通信技术与FPGA的结合是现代通信系统发展的一个必然趋势。

多进制数字调制技术与FPGA的结合使得通信系统的性能得到了迅速的提高。

文中介绍了QPSK调制解调的原理,并基于FPGA实现了QPSK调制解调电路。

MUXPLUSⅡ环境下进行编译、综合仿真,验证了设计的正确性。

此外,本方案采用了相位选择法,与常用的调相解调法相比,设计更简单,更适合于FPGA实现,系统的可靠性也更高。

通过对仿真波形的分析可知,该方案很好的实现了QPSK调制与解调功能。

关键词:PSK FPGA QPSK调制解调AbstractThis article mainly deals with the design of QPSK modulation and demodulation circuit. Technology of digital modulation and demodulation plays an important role in digital communication system.In order to transmit digital signal in band-pass channel,digital signal must be used on the carrier modulation..According to the different bands of digital signal that is handled,there are binary and multi-band pared with binary modulation ,multi-band modulation has higher specrum utilization rate,and it could transmit high-speed data in limited-band channel.The combination of digital communication technology and FPGA is a certainly trend of the development of modern communication system.The combination of multi-band modulation and FPGA makes the performance of communication system a rapid increase.The paper introduces the principle of QPSK modulation and demodulation, the circuits are also be realized based on FPGA. The complier and simulation under MAX+PLUSII environment provides the correction of the design..In addition, this design employs phase selection ,compared with the PM demodulation method,phase selection is simpler,more suitable for FPGA implementation,the reliability of the system is higher.The analysis of simulation waveform indicates that the programme achieves QPSK modulation and demodulation functions well.Keywords:PSK FPGA QPSK modulation demodulation目录摘要 (I)ABSTRACT.................................................... I I 前言 (1)1.绪论 (2)1.1QPSK的简介 (2)1.2FPGA和CPLD简介 (2)1.3VHDL简介 (3)1.4MAX+PLUS II简介 (3)2.调制与解调电路的基本设计原理 (4)2.1QPSK调制的电路原理图 (5)2.2QPSK解调的电路原理图 (5)3.QPSK调制与解调电路的设计 (6)3.1调制电路的设计 (6)3.1.1 设计思路 (6)3.1.2 调制电路的程序 (7)3.1.3 调制电路仿真结果 (8)3.2解调电路的设计 (9)3.2.1 设计思路 (9)3.2.2 解调电路的程序 (10)3.2.3 解调电路的仿真结果 (10)3.3仿真分析 (11)3.3.1 BPSK调制解调的实现及其仿真波形 (11)3.3.2 BPSK和QPSK的区别 (16)3.3.3 QPSK仿真波形的分析 (18)4.总结 (20)参考文献 (21)附录 (22)前言现代通信系统要求通信距离远、通信容量大、传输质量好。

基于FPGA的QPSK调制解调电路设计与实现

基于FPGA的QPSK调制解调电路设计与实现

基于FPGA的QPSK调制解调电路设计与实现数字调制信号又称为键控信号,调制过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM)、频移键控(FSK)、相移键控(PSK).根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制).多进制数字调制与二进制相比,其频谱利用率更高.其中QPSK(即4PSK)是MPSK(多进制相移键控)中应用最广泛的一种调制方式。

1 QPSK简介QPSK信号有00、01、10、11四种状态.所以,对输入的二进制序列,首先必须分组,每两位码元一组。

然后根据组合情况,用载波的四种相位表征它们。

QPSK信号实际上是两路正交双边带信号, 可由图1所示方法产生。

QPSK信号是两个正交的2PSK信号的合成,所以可仿照2PSK信号的相平解调法,用两个正交的相干载波分别检测A和B两个分量,然后还原成串行二进制数字信号,即可完成QPSK信号的解调,解调过程如图2所示。

图1 QPSK信号调制原理图图2 QPSK 信号解调原理图2 QPSK 调制电路的FPGA 实现及仿真 2。

1基于FPGA 的QPSK 调制电路方框图基带信号通过串/并转换器得到2位并行信号,,四选一开关根据该数据,选择载波对应的相位进行输出,即得到调制信号,调制框图如图3所示。

基带信号clkstart串/并转换四选一开关分 频0°90°180°270°调制信号FPGA3 QPSK 调制电路框图系统顶层框图如下图中输入信号clk为调制模块时钟,start为调制模块的使能信号,x为基带信号,y是qpsk调制信号的输出端,carrier【3。

0】为4种不同相位的载波,其相位非别为0、90、180、270度,锁相环模块用来进行相位调节,用来模拟通信系统中发送时钟与接收时钟的不同步start1为解调模块的使能信号。

y2为解调信号的输出端。

基于FPGA的QPSK系统设计

基于FPGA的QPSK系统设计

基于FPGA的QPSK系统设计QPSK一、实验目的1、利用FPGA实现QPSK调制解调电路设计与实现,加深对QPSK的理性认识,通过实践提高动手能力以及理论联系实际的能力 2、通过对电路模块的组合使用构成通信系统,加深对通信系统的认识和理解,进一步体会《通信原理》课程中的理论知识 3、通过本次试验进一步掌握对Quartus II软件以及VHDL编程语言的使用4、通过本次课程设计的实践提高我们的实践操作能力、提高分析问题和解决问题的能力二、设计任务及要求利用FPGA实现QPSK调制解调电路设计与实现,用FPGA进行数据处理。

实验中给定FPGA模块,D/A转换、A/D转换以及乘法器模块三、实验原理1、FPGA简介目前以硬件描述语言(Verilog 或 VHDL)所完成的电路设计,可以经过简单的综合与布局,快速的烧录至 FPGA 上进行测试,是现代 IC 设计验证的技术主流。

这些可编辑元件可以被用来实现一些基本的逻辑门电路(比如AND、OR、XOR、NOT)或者更复杂一些的组合功能比如解码器或数学方程式。

在大多数的FPGA里面,这些可编辑的元件里也包含记忆元件例如触发器(Flip-flop)或者其他更加完1QPSK整的记忆块。

系统设计师可以根据需要通过可编辑的连接把FPGA内部的逻辑块连接起来,就好像一个电路试验板被放在了一个芯片里。

一个出厂后的成品FPGA的逻辑块和连接可以按照设计者而改变,所以FPGA可以完成所需要的逻辑功能。

FPGA一般来说比ASIC(专用集成芯片)的速度要慢,无法完成复杂的设计,而且消耗更多的电能。

但是他们也有很多的优点比如可以快速成品,可以被修改来改正程序中的错误和更便宜的造价。

厂商也可能会提供便宜的但是编辑能力差的FPGA。

因为这些芯片有比较差的可编辑能力,所以这些设计的开发是在普通的FPGA上完成的,然后将设计转移到一个类似于ASIC的芯片上。

另外一种方法是用CPLD(复杂可编程逻辑器件备)。

基于FPGA的QPSK与BPSK调制系统仿真

基于FPGA的QPSK与BPSK调制系统仿真
( m进制) 。多进制数字调制与二进制相 比, 其频谱利用率更高 。其中 Q S ( 4 S 是 MP K( P K 即 P K) S 多进制 相移键 控 ) 中应用 最广 泛 的一种调 制方 式 。现研究 了基 于 F GA 的 QP K 和 B S P S P K调制 解调 电路 的实 现 方法 , 并给出了 Q ats1 u r 环境下的仿真结果 , 比分析得出 Q S u I 对 P K调制方式的优越性[ 。 1 ]
SUN De g a n g o,SH I a Zh n
( h o fOp ia— e tia n mp t rEn i e ig,U nv r iyo ha g a o Sc o l tc lElcrc la d Co u e gne rn o iest fS n h ifr S in ea d Te h oo y,Sh n a 0 0 3,Chia ce c n c n lg a gh i2 0 9 n)
o PGA.I r v dt a nF t sp o e h t i QPS h sahg e rq e c p cr m tl a inc mp r t h K a i h rfe u n ys e tu u i z t o aewi t e i o h BP K h o g o a ig t emo ua in cr ute lt n o cl g a o S a d B K n S t r u h c mp rn h d lto ic i mu ai s io r m fQP K n PS i o l t eQu ru 1. h at s 1 Ke r s ywo d :QP K;BP K;F GA;mo ua in S S P d lto
孙登 高, 施 展
20 9 ) 0 0 3 ( 上海理工大学 光电信息 与计算机工程学院 , 上海

论文 基于FPGA的QPSK解调器的设计与实现

论文 基于FPGA的QPSK解调器的设计与实现

基于FPGA 的QPSK 解调器的设计与实现Design and Realization of QPSK DemodulationBased on FPGA Technique赵海潮(Zhao ,Haichao ) 周荣花(Zhou ,Ronghua ) 沈业兵(Shen ,Yebing ) 北京理工大学 (北京 100081)摘要:根据软件无线电的思想,用可编程器件FPGA 实现了QPSK 解调,采用带通采样技术对中频为70MHz 的调制信号采样,通过对采样后的频谱进行分析,用相干解调方案实现了全数字解调。

整个设计基于XILINX 公司的ISE 开发平台,并用Virtex-II 系列FPGA 实现。

用FPGA 实现调制解调器具有体积小、功耗低、集成度高、可软件升级、扰干扰能力强的特点,符合未来通信技术发展的方向。

关键词:QPSK ;FPGA ;软件无线电;带通采样中图分类号:TN91 文献标识码:AAbstract : This paper describes the design of QPSK demodulator based on the Xilinx's FPGA device. It is in accord with software radio, bandpass sampling and coherent demodulation techniques are used in the demodulation, and also make analysis with the spectrum.key words : QPSK ;FPGA ;software radio ;bandpass sampling1、引言四相相移键控信号简称“QPSK ”。

它分为绝对相移和相对相移两种。

由于绝对移相方式存在相位模糊问题,所以在实际中主要采用相对移相方式QDPSK 。

它具有一系列独特的优点,目前已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。

QPSK调制解调器的设计及FPGA实现

QPSK调制解调器的设计及FPGA实现

QPSK调制解调器的设计及FPGA实现一、本文概述随着无线通信技术的飞速发展,调制解调器作为信息传输的关键部分,其性能对整个通信系统的稳定性和可靠性有着至关重要的影响。

四相相移键控(Quadrature Phase Shift Keying,QPSK)作为一种高效且稳定的调制方式,在无线通信中得到了广泛应用。

本文旨在深入研究QPSK调制解调器的设计,并探讨其在现场可编程门阵列(Field Programmable Gate Array,FPGA)上的实现方法。

本文首先将对QPSK调制解调的基本原理进行详细阐述,包括其信号处理方式、调制解调流程以及关键性能指标。

在此基础上,我们将探讨QPSK调制解调器的设计方法,包括调制器与解调器的结构选择、参数优化等。

同时,我们还将分析影响QPSK调制解调器性能的关键因素,如噪声、失真等,并提出相应的优化策略。

为了实现QPSK调制解调器的硬件化,本文将重点研究其在FPGA 上的实现方法。

我们将首先分析FPGA在数字信号处理方面的优势,然后详细介绍如何在FPGA上设计并实现QPSK调制解调器,包括硬件架构的选择、关键模块的设计与实现、以及资源优化等方面的内容。

我们还将讨论如何在实际应用中测试和优化FPGA实现的QPSK调制解调器,以确保其性能达到最佳状态。

本文旨在深入研究QPSK调制解调器的设计及其在FPGA上的实现方法,为无线通信系统的优化和升级提供理论支持和技术指导。

通过本文的研究,我们期望能够为相关领域的工程师和研究人员提供有益的参考和启示,推动QPSK调制解调技术的发展和应用。

二、QPSK调制原理QPSK,即四相相移键控(Quadrature Phase Shift Keying),是一种数字调制方式,它在每一符号周期内通过改变载波信号的相位来传递信息。

QPSK调制利用四个不同的相位状态来表示两个不同的比特组合,从而实现了更高的数据传输效率。

在QPSK调制中,每个符号通常代表两个比特的信息。

基于fpga的qpsk调制解调原理及实现方法

基于fpga的qpsk调制解调原理及实现方法

基于fpga的qpsk调制解调原理及实现方法QPSK(Quadrature Phase Shift Keying)是一种常见的调制解调技术,在许多无线通信系统中广泛应用。

本文将介绍基于FPGA的QPSK调制解调的原理,并给出实现方法。

一、QPSK调制原理QPSK调制是一种相位调制技术,通过调整信号的相位来实现多个比特的传输。

在QPSK调制中,将数字比特流分为两组,每组两位比特,分别称为I和Q。

QPSK调制原理如下:1. 将两位比特I和Q转换为相应的相位值:- 00:相位0°- 01:相位90°- 10:相位180°- 11:相位270°2. 将相位调制的信号进行合并,得到QPSK调制信号。

具体操作是将两路调制信号分别乘以正弦函数和余弦函数,然后相加。

二、QPSK解调原理QPSK解调是将接收到的QPSK调制信号还原为原始的数字比特流。

解调的过程可以分为两步:信号的采样和相位恢复。

1. 信号的采样:使用FPGA时钟信号对收到的QPSK调制信号进行采样,采样频率应与信号的带宽相匹配。

2. 相位恢复:通过采样得到的信号,利用相位锁定环(PLL,Phase-Locked Loop)等技术,恢复原始信号的相位。

三、基于FPGA的QPSK调制解调实现方法基于FPGA的QPSK调制解调可以通过硬件描述语言(如Verilog 或VHDL)实现。

下面给出一种基本的实现方法。

1. QPSK调制实现:a. 采用FPGA的GPIO(通用输入输出)接口输入数字比特流。

b. 将输入的比特流转换为相应的相位值,可以使用查找表(Look-Up Table)实现。

c. 将相位值转换为正弦和余弦函数的乘积,并相加得到调制信号。

d. 输出调制后的信号。

2. QPSK解调实现:a. 使用FPGA的ADC(模数转换器)接口采样接收到的QPSK 调制信号。

b. 对采样信号进行滤波,去除噪声和多径干扰。

QPSK调制解调的系统仿真实验

QPSK调制解调的系统仿真实验

第26卷第5期杭州电子科技大学学报Vol.26,No.5 2006年10月Jo urnal of Ha ngzhou Dianzi Uni versi ty Oct.2006QPSK 调制解调的系统仿真实验高雪平1,官伯然1,汪海勇2(1.杭州电子科技大学电子信息学院,浙江杭州310018;2.电子工业部第五十研究所,上海200063)收稿日期:2006-09-30作者简介:高雪平(1981-),女,浙江温州人,在读研究生,电磁场与微波技术.摘要:该文介绍了各种信息技术中信息的传输及通信起着支撑作用,而对于信息的传输,数字通信已成为重要手段。

该文根据当今现代通信技术的发展,对QPSK 信号的调制解调问题进行了分析,并给出了用美国E LANIX 公司的动态系统设计、仿真和分析软件System View 进行系统仿真的具体设置,分析了仿真结果,并提出了用FPGA 技术实现这种系统的详细方法。

关键词:四相相移键控信号;调制解调;现场可编程门阵列中图分类号:TN401 文献标识码:A 文章编号:1001-9146(2006)05-0052-040 引 言近年来,软件无线电作为解决通信体制兼容性问题的重要方法受到各方面的注意。

它的中心思想是在通用的硬件平台上,用软件来实现各种功能,包括调制解调类型、数据格式、通信协议等。

通过软件的增加、修改或升级就可以实现新的功能,充分体现了体制的灵活性、可扩展性等。

其中高性能、高频谱效率的调制解调模块是移动通信系统的关键技术,它的软件化也是实现软件无线电的重要环节。

四相相移键控信号(Quardrature Phase-Shift Keying,QPSK)。

它具有一系列独特的优点,比如抗干扰能力强,在恒参信道下,QPSK 调制技术与FSK 、2PSK 、ASK 调制技术相比较,不但抗干扰能力强,而且能更经济有效地利用频带,适合回传通道的技术要求,因此被广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。

基于FPGA的QPSK调制解调的仿真及相关软件设计毕业设计

基于FPGA的QPSK调制解调的仿真及相关软件设计毕业设计

1 引言1.1 研究背景自1897年意大利科学家G.Marconi首次使用无线电波进行信息传输并获得成功后,在一个多世纪的时间中,在飞速发展的计算机和半导体技术的推动下,无线通信的理论和技术不断取得进步,今天,无线移动通信已经发展到大规模商用并逐渐成为人们日常生活不可缺少的重要通信方式之一。

随着数字技术的飞速发展与应用数字信号处理在通信系统中的应用越来越重要。

数字信号传输系统分为基带传输系统和频带传输系统。

频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合信道传输的频带上数字调制信号有称为键控信号。

在调制的过程中可用键控[1]的方法由基带信号对载频信号的振幅,频率及相位进行调制最基本的方法有三种:正交幅度调制(QAM)、频移键控(FSK)和相移键控(PSK)。

作为数字通信技术中重要组成部分的调制解调技术一直是通信领域的热点课题。

随着当代通信的飞速发展,通信体制的变化也日新月异,新的数字调制方式不断涌现并且得到实际应用[2]。

目前的模拟调制方式有很多种,主要有AM、FM、SSB、DSB、CW等,而数字调制方式的种类更加繁多,如ASK、FSK、MSK、GMSK、PSK、DPSK、 QPSK、QAM等。

如果产生每一种信号需要一个硬件电路甚至一个模块,那么能产生几种、十几种通信信号的通信机的电路将相当复杂,体积重量将会很大,而且要增加新的调制方式也是十分困难的。

在众多调制方式中,四相相移键控(Quadrature Phase Shift Keying,QPSK)信号由于抗干扰能力强而得到了广泛的应用[3], [4],具有较高的频谱利用率和较好的误码性能,并且实现复杂度小,解调理论成熟,广泛应用于数字微波、卫星数字通信系统、有线电视的上行传输、宽带接入与移动通信等领域中[5],并已成为新一代无线接入网物理层和B3G通信中使用的基本调制方式[6]。

现场可编程门阵列(Field Programmable Gate Array,FPGA)是20世纪9年代发展起来的大规模可编程逻辑器件,随着电子设计自动化(ElectronDesign Automation EDA)技术和微电子技术的进步,FPGA的时钟延迟可达到ns级,结合其并行工作方式,在超高速、实时测控方面都有着非常广阔的应用前景[7]。

基于FPGA的QPSK的定点设计及仿真

基于FPGA的QPSK的定点设计及仿真

基于FPGA的QPSK的定点设计及仿真
肖九思;梁长松;钱慧
【期刊名称】《计算机仿真》
【年(卷),期】2009(026)005
【摘要】数字基带信号有时无法直接传输,需经过载波调制转换成适合的频带信号.而QPSK(Quatemary Phase Shift Keying)是一种线性窄带数字调制技术,被广泛应用于移动通信和卫星通信中,其突出特点是频带利用率高、频谱特性好、抗衰落性能强、可进行非相干解调.采用FPGA器件可以将原来的电路板级产品集成为芯片级产品,从而降低了功耗、提高了可靠性,同时还可以很方便地对设计进行在线修改.通过对QPSK的调制技术进行研究,利用自上而下的模块化设计方法把整个QPSK调制系统分解成串并转换、差分编码、译码、CIC滤波和正交载波调制5个小模块,并用Verilog硬件描述语言在FPGA上设计实现各个模块,实现了数字信号的传输,最后用testbench验证仿真结果.
【总页数】4页(P154-157)
【作者】肖九思;梁长松;钱慧
【作者单位】福州大学物理与信息学院,福建,福州,350002;福州大学物理与信息学院,福建,福州,350002;福州大学物理与信息学院,福建,福州,350002
【正文语种】中文
【中图分类】TN
【相关文献】
1.基于FPGA的QPSK与BPSK调制系统仿真 [J], 孙登高;施展
2.基于 FPGA 的 QPSK 调制器的设计 [J], 熊力维;余波
3.基于FPGA实现的QPSK调制器的设计 [J], 刘宝军;王中训;娄阳;张珉;钟强
4.基于FPGA的QPSK调制解调的系统仿真 [J], 曹姣;周萧
5.基于FPGA的QPSK调制器的设计与实现 [J], 虞亚君; 赵参
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于FPGA的QPSK调制解调的系统仿真
摘要:本文针对传统的四相移键控(QPSK)的调制解调方式提出一种基于高速硬件描述语言(VHDL)的数字式QPSK调制解调模型。

这种新模型便于在目标芯片FPGA/CPLD上实现QPSK调制解调功能。

文中介绍了QPSK调制解调的原理,并基于FPGA实现了QPSK 调制解调电路。

并给出了可编程逻辑器件FPGA的最新一代集成设计环境QuartusⅡ进行系统仿真的仿真结果。

关键词:QPSK FPGA 调制解调仿真
无线通信在现代社会中起着举足轻重的作用。

作为数字通信技术中重要组成部分的调制解调技术一直是通信领域的热点课题。

在众多调制方式中,四相相移键控(QPSK)信号由于抗干扰能力强而得到了广泛的应用,具有较高的频谱利用率和较好的误码性能,并且实现复杂度小,解调理论成熟。

现场可编程门阵列(FPGA)具有功能强大,开发过程投资小、周期短,可反复编程修改,保密性能好,开发工具智能化等特点,用FPGA实现调制解调电路,不仅降低了产品成本,减小了设备体积,满足了系统的需要,而且比专用芯片具有更大的灵活性和可控性。

本课题主要研究了基于FPGA的QPSK调制解调的系统仿真,并给出了QuartusII环境下的仿真结果[1]。

1 QPSK调制的原理
四相绝对移相键控QPSK是MPSK的一种特殊情况,它利用载波
的四种不同相位来表征数字信息。

由于每一种载波相位代表两个比特信息,故每个四进制码元又被称为双比特码元。

我们把组成双比特码元的前一信息比特用a表示,后一比特信息用b表示。

双比特码元中两个信息比特ab通常是按格雷码(即反射码)排列的,当ab为00时,载波相位为0°,当ab为01时,载波相位为90°,当ab为11时,载波相位为180°,当ab为10时,载波相位为270°。

2 QPSK信号的产生与解调
2.1 QPSK信号的产生
QPSK信号的产生分为调相法和相位选择法。

由于调相法比较常用,且实际操作性更强,故在本文中,选择调相法。

用调相法产生QPSK 信号的组成方框图如图1所示。

图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。

设两个序列中的二进制数字分别为a和b,每一对ab称为一个双比特码元。

双极性的a和b脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制。

将ab两路输出叠加,得到四相移相信号,其相位编码逻辑关系为:当双比特码元ab为11时,输出相位为315°的载波;ab为01时,输出相位为225°的载波;ab为00时,输出相位为135°的载波;ab为10时,输出相位为45°的载波。

2.2 QPSK信号的解调
由于四相绝对移相信号可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成。

用两路正交的相干载波去解调,可以很容易地分离这两路正交的2PSK信号。

相干解调后的两路并行码元a和b,经过并/串变换后,成为串行数据输出。

3 基于FPGA的QPSK调制解调电路设计及仿真
在QPSK解调中,对于频率与相位的要求比较高,在解调中由于手动的输入基带信号,造成频率和相位的偏差,而频率与相位的偏差会引起误码率的增加。

为了更好的观察输入输出波形,在quartusII中创建调制功能模块和解调功能模块,再新建一个波形文件,插入生成的调制模块和解调模块,创建一个系统模块后进行功能仿真。

调制解调输出波形。

系统输出有一定的延迟,与输入信号相比还有一点偏差,但误码率明显减少,还是取得出了预期的效果。

多进制数字调制技术与FPGA 的结合使得通信系统的性能得到了迅速的提高。

文中基于FPGA方式实现了QPSK数字调制解调电路的设计,它比传统的模拟调制方式有着显著的优越性,通信链路中的任何不足均可以借助于软件根除,不仅可以实现信息加密,而且还可通过相应的误差校准技术,使接收到数据准确性更高。

为了设计更简单采用了调相法进行QPSK解调设计,更适合于FPGA实现,系统的可靠性也更高。

4 结语
多进制数字调制技术与FPGA的结合使得通信系统的性能得到了迅速的提高。

本文完成了基于FPGA的数字QPSK调制解调器的系统仿真。

由于QPSK优越的性能,随着EDA技术的进一步发展,该设计有着一定的技术价值。

参考文献
[1] 刘连青.数字通信技术[M].北京:机械工业出版社,2003.
[2] 樊昌信,张甫翊,徐丙祥,等.通信原理[M].北京:国防工业出版社,2001.。

相关文档
最新文档