核安全 论文 最终版剖析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核能发展历史及中国核电发展历程

1、第一代核能发电机组

20世纪50年代初开始,利用已有的军用核电技术建造以发电为目的的反应堆,由建造试验堆转入示范阶段

例如,美国西屋电气公司开发的民用压水堆核电厂,希平港(shippingport)核电厂在美国建成;以及通用电气公司(GE)开发的民用沸水堆核电厂,第一个建在美国加利福尼亚湾洪保德湾,以及随后1960年7月建成德累斯顿(Dresden-I)。前苏联1954年在莫斯科附近奥布宁斯克建成第一座ASP-1压力管式石墨水冷核电厂,英国1956年建成第一座产钚、发电两用的石墨气冷核电厂——卡德霍尔核电厂。

这一时期核电的安全性和经济性得到了验证,相对于常规发电系统的优越性明显的显现出来。此时,又是世界各国经济快速发展的时期,电力需求也以十年翻一翻的速度增长,给核电发展提供了一个广阔的市场。核电迅速实现了标准化、批量化的建设和发展。

2、第二代核能发电机组

(1)概况

第二代核能发电是商用核电厂大发展的时期,从上世纪60年代中期到90年代末,即使目前在兴建的核电厂,还大多属于第二代的核能发电机组。前后形成两次核电厂建设高潮,一次是在美国轻水堆核电厂的经济性得到验证之后,另一次是在1973年世界第一次石油危机后,使得各国将核电作为解决能源问题的有力措施。

第二代核电厂的建设形成了几个主要的核电厂类型,他们是压水堆核电厂,沸水堆核电厂,重水堆(CANDU)核电厂,气冷堆核电厂,以及压力管式石墨水冷堆核电厂。建成441座核电厂,最大的单机组功率做到150万千瓦,总的运行业绩达到上万个堆年。期间仅出现过两次较大的事故,即三里岛核电厂事故和切尔诺贝利核电厂事故。

气冷堆核电厂由于其建造费用和发电成本竞争不过轻水堆核电厂,上世纪70年代末已停止兴建。石墨水冷堆核电厂由于其安全性能存在较大缺陷,切尔诺贝利核电厂事故以后,不再兴建。

从上世纪80年代开始,世界核电进入一个缓慢的发展时期。造成这种局面的原因主要有:①1979年世界发生了第二次石油危机,各国经济发展的速度迅速减缓;同时大规模的节能措施和产业结构调整,使得电力需求的增长率大幅度降低,1980年仅增长1.7%,1982年为负增长-2.3%,1983年以前美国共取消了108台核电机组及几十台火电机组的合同。②两次核电厂事故对世界核电的发展产生重大影响,公众接受问题成为核电发展的主要关注点,一些欧洲国家如瑞士、意大利、奥地利、瑞典、德国等相继暂停发展核电;同时严格的审批程序,以及为预防事故所采取的提高安全的措施,使核电厂的建设工期拖长,投资增加,导致核电的经济竞争力下降,特别是投资风险的不确定性,阻碍了核电的进一步发展。

3、第三代核能发电机组

(1)背景

从九十年代开始人们逐渐加大了对化学燃料发电引起的环境污

染,特别是对温室效应引起的全球变暖的关注,使得核能发电重新提上仪事日程。同时,各核工业发达国家从80年代末到90年代初陆续开始积极为核电的复苏而努力,着手制订以更安全、更经济为目标的设计标准规范,理顺核电厂的安全审批程序。其中,美国率先制订了先进轻水堆核电厂的电力公司要求文件(URD),西欧国家相继制订了欧洲电力公司要求文件(EUR)。

为了进一步提高核电厂的安全性,严重事故的预防和缓解,就成为新一代核电技术开发的核心。如果计算到1986年切尔诺贝利事故时为止,世界商用核电厂累计约4000堆·年的运行历史,其间发生过两次严重事故,发生概率达到5×10-4/堆·年。这说明,严重事故发生概率虽然低,但并不是不可能发生的;同时亦说明,单纯考虑设计基准事故,不考虑严重事故的预防和缓解,不足以确保工作人员、公众和环境的安全。

美国最早开展严重事故的研究,1975年WASH-1400报告首次将概率安全分析技术应用到核电厂,提出了以事件发生频率为依据的事故分类方法。WASH-1400报告首次指出,核电厂风险主要并非来自设计基准事故,而是导致堆芯熔化的严重事故。WASH-1400还首次建立了安全壳失效模式和放射性物质释放模式。

在这种背景下,一些发达国家的核电设备供应商利用自己的技术储备和经验积累,开始开发符合《电力公司要求文件》要求的,具备严重事故预防和缓解措施的先进轻水堆核电厂。同时在提高核电厂的经济性方面亦采取了一系列措施,主要有提高单堆容量,降低单位造

价;加深燃耗,延长换料周期,缩短停堆换料时间,提高核电厂的可利用率;延长核电厂的寿命至60年;以及采用模块化设计,缩短建造周期等。

(2)第三代核电机组的设计原则和特点

第三代核电机组的设计原则,是在采用第二代核电机组已积累的技术储备和运行经验的基础上,针对其不足之处,进一步采用经过开发验证是可行的新技术,以显著改善其安全性和经济性,满足URD文件或EUR文件和IAEA新建议法规的要求;同时,应能在2010年前进行商用核电站的建造。

统观各国已提出的设计方案,有下列特点:

①在安全性上,满足URD文件的要求,主要是:

堆芯熔化事故概率≤1.0 X 10-5堆·年;

大量放射性释放到环境的事故概率≤1.0 X 10-6堆·年;

应有预防和缓解严重事故的设施。

核燃料热工安全余量≥15%。

②在经济性上,要求能与联合循环的天然气电厂相竞争;

机组可利用率≥87%;

设计寿命为60年;

建设周期不大于54个月。

③采用非能动安全系统

即利用物质的重力,流体的对流,扩散等天然原理,设计不需要专设动力源驱动的安全系统,以适应在应急情况下冷却和带走堆芯余

热的需要。这样,既使系统简化,设备减少,又提高了安全度和经济性。这是革新型的重大改进,是代表核安全发展方向的。

④单机容量进一步大型化

研究和工程建造经验表明,轻水堆核电站的单位千瓦比投资是随单机容量(千瓦数)的加大而减少的(在单机容量为150万-170万千瓦前均如此)。因此,欧洲法马通、德国电站联盟联合设计的EPR机组的电功率为160万-170万千瓦,日本三菱提出的NP-21型压水堆核电机组的电功率为170万千瓦,俄罗斯也正在设计单机电功率为150万千瓦的VVER型第三代核电机组,美国西屋公司和燃烧公司也在原单机容量为65万千瓦的AP-600型的基础上改进,设计出单机电功率为110-120万千瓦的AP-1000型机组。

⑤采用整体数字化控制系统

国外近年来新建成投产的核电机组,如法国的N4、英国的Sizewell、捷克的Temelin、日本的ABWR均采用了数字化仪控系统。经验证明,采用数字化仪表控制系统可显著提高可靠性,改善人因工程,避免误操作。世界各国核电设计和机组供应商提出的第三代核电机组无一例外地均采用整体数字化仪表控制系统。

⑥施工建设模块化以缩短工期

核电建设工期的长短对其经济性有显著影响。因此,新的核电机组从设计开始就考虑如何缩短工期。有效办法之一就是改变传统的把单项设备逐一运往工地安装方式,向模块化方向发展:以设计标准化和设备制造模块化的方式尽可能在制造厂内(条件较工地好)组装好,

相关文档
最新文档