高中数学数列知识点精华总结
高三数学数列知识点归纳总结
高三数学数列知识点归纳总结数列是数学中重要的概念,广泛应用于各个领域。
高三学习阶段,数列的理解和应用变得尤为重要。
本文将对高三数学数列的知识点进行归纳总结,帮助同学们更好地掌握数列的相关内容。
一、数列的定义和性质数列是按照一定规律排列的一系列数的集合。
一般表示为{a₁, a₂, a₃, ... , aₙ},其中a₁, a₂, a₃, ... 分别表示数列的第1项、第2项、第3项、... 第n项。
1. 等差数列等差数列是一种常见的数列,其特点是每一项与前一项之间的差值是一个常数,称为公差,一般表示为d。
常用性质:(1) 第n项公式:aₙ = a₁ + (n-1)d(2) 前n项和公式:Sₙ = (a₁ + aₙ) * n / 22. 等比数列等比数列是一种常见的数列,其特点是每一项与前一项之间的比值是一个常数,称为公比,一般表示为r。
常用性质:(1) 第n项公式:aₙ = a₁ * r^(n-1)(2) 前n项和公式(当r ≠ 1时):Sₙ = a₁ * (1 - rⁿ) / (1 - r)3. 通项公式通项公式可以根据数列的规律,直接给出第n项的表达式。
通过通项公式,可以快速计算数列的任意一项。
二、数列的应用1. 等差数列的应用等差数列在实际问题中的应用非常广泛,常用于描述一些增减规律明显的情况。
(1) 速度、距离和时间的关系:当速度恒定时,可以利用等差数列来描述物体在某段时间内的位置变化。
(2) 等差数列求和:可以利用等差数列的前n项和公式,求解一段时间内某物体的总距离或总位移。
2. 等比数列的应用等比数列在实际问题中也有广泛的应用,常用于描述一些指数型的增长或衰减规律。
(1) 复利问题:利用等比数列可以解决一些复利问题,比如定期存款、投资基金等。
(2) 指数增长和衰减:利用等比数列可以描述一些指数增长或衰减的情况,比如病菌的增殖、放射性物质的衰变等。
三、常见数列的特殊性质1. 斐波那契数列斐波那契数列是一种特殊的数列,每一项是前两项之和。
高中数列知识点归纳总结
高中数列知识点归纳总结在高中数学学习中,数列是一个重要的知识点。
数列是按照一定规律排列的一组数,常常出现在各种数学问题中。
本文将对高中数列知识点进行归纳总结。
一、数列的概念和表示方法数列是按照一定规律排列的一组数,可以用一般的表示方法或者递推公式表示。
一般形式为{a1, a2, a3, ...}或者{an},其中a1, a2, a3, ...为数列的项。
二、等差数列等差数列是指数列中相邻两项之差都相等的数列。
公差是指相邻两项的差值。
常用表示形式为{a, a+d, a+2d, ...}或者{an},其中a为首项,d为公差。
等差数列有以下重要性质:1. 第n项公式:an = a + (n-1)d2. 前n项和公式:Sn = (2a + (n-1)d)n/23. 若数列的首项、末项和项数之一确定,则数列可以唯一确定。
三、等比数列等比数列是指数列中相邻两项之比都相等的数列。
公比是指相邻两项的比值。
常用表示形式为{a, ar, ar^2, ...}或者{an},其中a为首项,r为公比。
等比数列有以下重要性质:1. 第n项公式:an = ar^(n-1)2. 前n项和公式(当r≠1):Sn = a(1-r^n)/(1-r)3. 若数列的首项、末项和项数之一确定,则数列可以唯一确定。
四、斐波那契数列斐波那契数列是指数列中每一项都是前两项之和的数列。
常用表示形式为{0, 1, 1, 2, 3, 5, ...}或者{Fn},其中F0 = 0, F1 = 1,Fn = F(n-1) + F(n-2)(n≥2)。
斐波那契数列是一种特殊的等差数列,具有很多有趣的性质,例如黄金分割比。
五、数列的递推关系和通项公式数列的递推关系是指数列中的每一项与前一项之间的关系。
通项公式是指数列中第n项与n的关系。
对于等差数列和等比数列,一般可以根据递推关系或者通项公式进行求解。
六、数列的求和问题求和问题是数列的一个常见应用,求和公式是指前n项和与n的关系。
高中数学数列知识点归纳
高中数学数列知识点归纳一、数列的概念数列是按照一定顺序排列的一列数。
例如,1,2,3,4,5……就是一个自然数列。
数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……以此类推。
数列的一般形式可以写成 a₁,a₂,a₃,…,aₙ,…,其中 aₙ 是数列的第 n 项。
我们用{aₙ} 来表示一个数列。
二、数列的分类1、按项数分类(1)有穷数列:项数有限的数列。
例如,数列 1,2,3,4,5 就是一个有穷数列。
(2)无穷数列:项数无限的数列。
比如自然数列 1,2,3,4,……就是一个无穷数列。
2、按项的大小变化分类(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。
例如,数列 1,2,4,8,16,……就是一个递增数列。
(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。
比如数列 10,8,6,4,2 就是一个递减数列。
(3)常数列:各项都相等的数列。
例如,数列 3,3,3,3,……就是一个常数列。
(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。
比如数列 1,-1,1,-1,1,……就是一个摆动数列。
三、数列的通项公式如果数列{aₙ} 的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。
例如,数列 1,3,5,7,9,……的通项公式为 aₙ = 2n 1 。
通项公式可以帮助我们快速求出数列中的任意一项,也能让我们更深入地了解数列的性质。
四、数列的递推公式如果已知数列{aₙ} 的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。
例如,已知数列{aₙ} 的首项 a₁= 1 ,且 aₙ = aₙ₋₁+ 2 (n ≥2 ),则可以依次求出 a₂= a₁+ 2 =3 ,a₃= a₂+ 2 = 5 ,……五、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
高一数学必修一 - 数列知识点总结
高一数学必修一 - 数列知识点总结1. 数列的概念数列是由一组按照一定规律排列的数所组成的序列。
数列可以分为等差数列和等比数列两种。
a. 等差数列等差数列是指数列中相邻两项之间的差值都相等的数列。
如果数列的公差为d,则数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$为第n项,$a_1$为首项,n为项数。
b. 等比数列等比数列是指数列中相邻两项之间的比值都相等的数列。
如果数列的公比为r,则数列的通项公式为:$a_n = a_1 \cdot r^{n-1}$,其中$a_n$为第n项,$a_1$为首项,n为项数。
2. 数列的性质a. 通项公式通项公式是数列中任意一项与项数之间的关系式。
根据数列的类型,可以通过公式求解任意项。
b. 公差和公比对于等差数列,公差是指相邻两项之间的差值。
公差可以用于确定数列的特征和性质。
对于等比数列,公比是指相邻两项之间的比值。
公比可以用于确定数列的特征和性质。
c. 首项和末项首项是数列中的第一项,通常用$a_1$表示。
末项是数列中的最后一项,通常用$a_n$表示。
d. 项数项数是数列中项的个数,通常用n表示。
e. 等差数列的和等差数列的前n项和可以通过公式求解:$S_n =\frac{n}{2}(2a_1 + (n-1)d)$,其中$S_n$表示前n项和。
f. 等比数列的和等比数列的前n项和可以通过公式求解:$S_n = \frac{a_1(1-r^n)}{1-r}$,其中$S_n$表示前n项和。
3. 数列的应用数列在数学中有着广泛的应用,其中一些常见的应用包括:a. 金融计算数列可以应用于金融中的利息计算、贷款计算等,帮助人们进行财务规划和计算。
b. 物理学数列可以应用于物理学中的运动学问题,如运动物体所经过的位置、速度等的计算。
c. 统计学数列可以应用于统计学中的数据分析和预测,帮助人们了解和预测事物的发展趋势。
总结数列是数学中非常重要的概念,常见的数列包括等差数列和等比数列。
高中数学数列知识点总结5篇
高中数学数列知识点总结5篇篇1一、数列的基本概念数列是一种特殊的函数,其定义域为自然数集或其自然数子集。
数列分为等差数列和等比数列两种基本形式,此外还有更为复杂的数列形式。
数列的通项公式是描述数列的一般规律的重要工具,对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1×q^(n-1)。
掌握数列的基本概念对于后续的学习至关重要。
二、等差数列等差数列是一种常见且重要的数列形式,其任意两项之差都相等。
在等差数列中,需要掌握的主要知识点包括等差数列的通项公式、求和公式、中项公式等。
等差数列的求和公式为Sn=n(a1+an)/2或Sn=na1+[n(n-1)/2]d,这些公式在处理与等差数列相关的问题时非常实用。
等比数列的特点是任意两项之比都相等。
在等比数列中,需要掌握的知识点包括等比数列的通项公式、求和公式以及公比的概念。
等比数列的求和公式为Sn=a1(1-q^n)/(1-q),掌握这个公式对于解决涉及等比数列的问题非常关键。
四、数列的极限数列的极限是描述数列变化趋势的重要概念。
当n趋近于无穷大时,数列的项会趋近于一个固定的值,这个值就是数列的极限。
掌握数列极限的概念和计算方法是分析数列性质的重要工具。
五、数列的应用数列在实际生活中有着广泛的应用,如金融、物理、工程等领域。
例如,在金融领域,复利计算就涉及等比数列的应用;在物理领域,许多物理量的变化可以看作是等差或等比数列的形式。
掌握数列的应用对于解决实际问题具有重要意义。
除了等差数列和等比数列外,还有一些特殊数列需要了解,如斐波那契数列、三角数列等。
这些数列具有独特的性质和应用场景,了解这些数列有助于拓宽数学视野,提高数学素养。
七、数列的证明在数列的学习中,还需要掌握一些证明方法,如数学归纳法、反证法等。
这些证明方法在证明数列的性质和解决问题时非常有用。
掌握这些证明方法有助于提升数学思维和逻辑推理能力。
综上所述,高中数学中的数列知识点丰富且重要,需要掌握基本概念、等差数列和等比数列的性质、数列的极限、应用、特殊数列以及证明方法等方面的知识。
高中数列知识点归纳总结大全
高中数列知识点归纳总结大全数列是数学中一个基础而重要的概念,广泛应用于各个领域。
在高中数学学习中,数列的概念与应用也是不可或缺的内容。
本篇文章将对高中数列的知识点进行归纳总结,旨在帮助读者系统理解和掌握数列的相关概念和性质。
一、数列的基本概念和性质1. 数列的定义:数列是按照一定顺序排列的数,用字母a、b、c…表示。
2. 公式与通项公式:数列的通项公式是指数列中的第n个数与n的关系式,通常用an表示。
3. 数列的项和:数列的项和是指数列中前n项的和,常用Sn表示。
4. 等差数列:等差数列是指一个数列中的相邻两项之差等于同一个常数d。
5. 等差数列的通项公式与项和公式:对于等差数列an,它的通项公式为an = a1 + (n - 1)d,项和公式为Sn = (a1 + an)n/2。
6. 等比数列:等比数列是指一个数列中的相邻两项之比等于同一个常数q。
7. 等比数列的通项公式与项和公式:对于等比数列an,它的通项公式为an = a1 * q^(n - 1),项和公式为Sn = a1 * (q^n - 1)/(q - 1)。
二、数列的应用1. 等差数列的应用:等差数列可以描述各种线性变化的情况,例如描述自然数序列、等差数列求和、等差数列的推广等。
2. 等比数列的应用:等比数列常用于表示指数增长或指数衰减的情况,例如人口增长、物种繁殖、金融利率等方面。
3. 斐波那契数列:斐波那契数列是一个特殊的数列,其前两项为1,从第三项开始,每一项均为前两项之和。
斐波那契数列在自然界中普遍存在,如植物的叶子排列、蜂窝的排列等。
4. 数列与函数关系:数列与函数有着密切的联系,可以将数列看作离散的函数,通过数列的性质与函数的性质相互转化。
三、常见数列的特殊性质1. 等差数列的前n项和的性质:对于等差数列an,其前n项和为Sn = (n/2)(a1 + an)。
2. 等差数列的中项:对于等差数列an,当n为奇数时,中项为am= a((n+1)/2),当n为偶数时,不存在中项。
高中数学数列知识点精华总结
数列专题◆ 考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p ≠1,q ≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p ≠1,q ≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3) ◆ 倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决.(2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎨⎧ a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎨⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.**数k 的取值*围.考点二:等差数列和等比数列(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3)若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q ≠-1). S n =n a 1+a n 2=na 1+n n -12d (1)q ≠1,S n =a 11-qn1-q =a 1-a n q1-q(2)q =1,S n =na 11.在等差(比)数列中,a 1,d(q),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d ≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值; 当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q ∈R ).当p =0时,{a n }为常数列;当p ≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列; 当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n},{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d. 5) 5.易错提醒(1)应用关系式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k(k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -12d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q ≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,则求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!)利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1. 利用裂项相消法求和时应注意哪些问题?(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ;(2)1(2n -1)(2n +1)=12⎝ ⎛12n -1-12n +1; (3)1n (n +1)=1n -1n +1;(4)1n +n +1=n +1-n; (5)1n +n +k =1k(n +k-n). 5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于*项,则放大,是大于*个项,则缩小。
高中数列知识点大全
高中数列知识点大全ps:整理不易,点赞支持已完结的地方:一、等差数列二、斐波那契数列三、数列的通项公式四、数列的放缩尚未完结的地方:一、等比数列的部分例题二、拓展:提丢斯数列(全国卷考到了)三、周期数列的部分例题四、求和可能要个目录一、等差数列1、等差数列的基本概念和基本公式如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列。
(1)递推关系:a_{n+1}-a_{n}=d(常数),或 a_{n}-a_{n-1}=d(n\inN^\ast且n\geq2)。
(2)通项公式:a_{n}=a_1+(n-1)d 。
推广形式: a_{n}=a_m+(n-m)d (当 d\ne0 时, a_n 是关于 n 的一次函数)(3)求和公式:S_{n}=\dfrac{n\left( a_{1}+a_{n}\right) }{2}=na_{1}+\d frac{n\left( n-1\right) }{2}d (当 d\ne0 时, S_n 是关于 n 的二次函数,且常数项为零)例题:2011 湖北文 92、等差数列的主要性质等差数列的性质主要包括以下12个方面。
(1)若 n+m=p+q ,则 a_n+a_m=a_p+a_q 。
(反之不一定成立,如常数数列)(2)等差中项:若三个数 a,b,c 成等差数列,则称 b 为 a 和 c 的等差中项,即 2b=a+c ,可将这三个数记为:b-d , b ,b+d 。
例题一:例题二(3) a_k,a_{k+m},a_{k+2m},…构成以 md 为公差的等差数列。
(4)在等差数列中依次取出若干个n项,其和也构成等差数列,即S _ { n } , S _{ 2 n } - S _ { n } , S _ { 3 n } - S _ { 2n } , \dots \ldots 也为等差数列,公差为n^2d ;图示理解:\underbrace { a _ { 1 } , a _{ 2 } , \cdots , a _ { m } } _ { s _{ m } },\underbrace { a _ { m + 1 } , a _ { m+ 2 } , \cdots , a _ { 2 m } } _ { s _ { 2 m }- s _ { m } },\underbrace { a _ { 2m + 1 } , a _ { 2m + 2 } , \cdots , a _ { 3 m } } _ { s _ { 3 m } - s _ { 2m } },(5)两个等差数列\left\{ a _ { n } \right\}与\left\{ b _ { n } \right\}的和差的数列 \left\{ a _ { n } \pm b _ { n } \right\} ,\left\{ pa _ { n } \pm qb _{ n } \right\} 仍为等差数列。
数列高考知识点大全总结
数列高考知识点大全总结一、数列的概念1. 数列的定义数列是由一系列有限或无限个数按照一定的顺序排列组成的。
用数学语言描述就是一个由实数构成的序列。
一般用字母或符号表示,如{an}、{bn}等。
2. 数列中的相关概念(1)通项公式:数列中的第n个数的一般表达式,通常用an表示。
(2)前n项和:数列前n项的和,通常用Sn表示。
3. 数列的分类(1)等差数列:若数列中相邻两项的差恒定,称其为等差数列。
其通项公式为an=a1+(n-1)d。
(2)等比数列:若数列中相邻两项的比恒定,称其为等比数列。
其通项公式为an=a1*q^(n-1)。
(3)常数数列:数列中的每一项都相等的数列称为常数数列。
二、数列的性质1. 数列的有界性(1)有界数列:当数列中的数有上界和下界时,称其为有界数列。
(2)无界数列:当数列中的数没有上界和下界时,称其为无界数列。
2. 数列的单调性若数列中的每一项都满足an≤an+1或者an≥an+1时,称其为单调递增数列或者单调递减数列。
3. 数列的性质(1)数列的线性组合:若an和bn是两个数列,k和m是任意常数,那么k*an+m*bn 也是一个数列。
(2)数列的绝对值:若an是一个数列,那么|an|也是一个数列。
三、常见数列1. 等差数列(1)性质:等差数列的前n项和Sn=a1*n+n(n-1)d/2。
(2)求通项公式:an=a1+(n−1)d。
(3)常用公式:Sn=n/2(a1+an)。
2. 等比数列(1)性质:等比数列的前n项和Sn=a1*(q^n-1)/(q-1),|q|>1。
(2)求通项公式:an=a1*q^(n-1)。
(3)常用公式:Sn=a1*(q^n-1)/(q-1)。
3. 斐波那契数列(1)定义:斐波那契数列是一个典型的递推数列,前两项都为1,从第三项开始,每一项都等于前两项之和。
(2)通项公式:an=f(n)=f(n-1)+f(n-2)。
(3)性质:斐波那契数列是一个无界数列。
高中数学数列知识点归纳
高中数学数列知识点归纳一、数列的概念与性质1.数列的定义:数列是一组按照一定规律排列的实数,通常用{a1, a2,a3,...}表示。
2.数列的分类:根据项的性质,数列可分为整数数列、有理数数列、实数数列等;根据项之间的关系,数列可分为等差数列、等比数列、几何数列等。
3.数列的性质:数列具有交换性、结合律、分配律等基本运算性质。
二、等差数列1.等差数列的定义与性质:等差数列是相邻两项之差为一个常数的数列。
2.等差数列的通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
3.等差数列的前n项和公式:Sn = n/2 * (a1 + an) = n/2 * [2a1 + (n-1)d]。
4.等差数列的求和公式应用:求解等差数列前n项和的最值、求解等差数列中的未知量等问题。
三、等比数列1.等比数列的定义与性质:等比数列是相邻两项之比为一个常数的数列。
2.等比数列的通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。
3.等比数列的前n项和公式:Sn = a1 * (1 - q^n) / (1 - q)。
4.等比数列的求和公式应用:求解等比数列前n项和的最值、求解等比数列中的未知量等问题。
四、其他数列1.几何数列:几何数列是相邻两项之比为一个常数的数列,通项公式为an = a1 * r^(n-1)。
2.调和数列:调和数列是相邻两项之比为根号下n的数列,通项公式为an = a1 * (n^(1/2))^(n-1)。
3.Fibonacci数列:Fibonacci数列是满足递推关系F(n) = F(n-1) + F(n-2)的数列,具有递归关系。
五、数列的递推关系与迭代1.递推关系的定义与性质:递推关系是利用数列的前几项求解后续项的关系。
2.迭代的方法与应用:迭代是求解递推关系的一种方法,可用于求解数列中的未知量、求解数列的极限等。
六、数列的极限与连续1.数列极限的定义与性质:数列极限是数列趋于某个值的过程,具有唯一性、无穷小性等性质。
高中数学数列知识点总结
高中数学数列知识点总结在高中数学中,我们学习了很多关于数列的基本概念、性质和应用。
本文将对高中数学中涉及的数列知识点进行总结,包括等差数列、等比数列、通项公式、求和公式、数列的性质和应用等内容,希望能对学习数学的同学有所帮助。
一、等差数列等差数列是数列中最基本的一种,它的特点是任意相邻两项的差都相等。
数列$\{a_n\}$如果满足$a_{n+1}-a_n=d$,其中$d$为常数,那么数列$\{a_n\}$就是等差数列。
等差数列的通项公式为$a_n=a_1+(n-1)d$,而等差数列的前n项和公式为$S_n=\frac{n}{2}(a_1+a_n)$。
等差数列在高中数学中有很多应用,比如在求解等差数列的前n项和时,就需要应用等差数列的性质和公式。
另外,在数学建模和实际问题中,等差数列也经常出现,比如在算术题、几何题以及生活中的一些数学问题中,等差数列都有着重要的应用。
二、等比数列等比数列是数列中另一种重要的数列类型,它的特点是任意相邻两项的比值都相等。
数列$\{a_n\}$如果满足$\frac{a_{n+1}}{a_n}=q$,其中$q$为常数且$q\neq0$,那么数列$\{a_n\}$就是等比数列。
等比数列的通项公式为$a_n=a_1 \cdot q^{(n-1)}$,而等比数列的前n项和公式为$S_n=\frac{a_1(q^n-1)}{q-1}$。
等比数列在高中数学中也有着重要的地位,它在数学中的应用非常广泛。
比如在利息、增长、衰减等实际问题中,等比数列就经常出现。
同时,在数学建模和实际问题中,等比数列也有很多的应用场景,所以学习等比数列是非常重要的。
三、通项公式通项公式是数列中非常重要的概念,它可以将数列中的任意一项用数学表达式来表示。
对于等差数列而言,通项公式就是$a_n=a_1+(n-1)d$,而对于等比数列来说,通项公式就是$a_n=a_1 \cdot q^{(n-1)}$。
通项公式是数列中非常重要的一个概念,它能够让我们通过数学表达式来表示数列中的任意一项,从而方便我们在实际问题中的应用和求解。
高中数学数列知识点.总结(精华版)
. .一、数列1. 数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集( 或它的有限子集) 的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列a n 的第n 项与序号之间可以用一个式子表示, 那么这个公式叫做这个数列的通项公式,即 a f (n)n .3. 递推公式:如果已知数列a n 的第一项(或前几项),且任何一项a n 与它的前一项a (或前几项)间的关系可以用一个式子来表示,即a n f (a n 1 ) 或a n f (a n 1,a n 2) ,n 1那么这个式子叫做数列a的递推公式. 如数列a n 中,a1 1, a n 2a n 1 ,其中na n 2a n 1是数列a n 的递推公式.4. 数列的前n 项和与通项的公式①S n a1 a2 a ;②nS (n 1)1a n .S S (n 2)n n 15. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列: 对于任何n N , 均有a n 1 a n .②递减数列: 对于任何n N , 均有a n 1 a n .③摆动数列: 例如: 1,1 ,1, 1, 1, .④常数数列: 例如:6,6,6,6, ⋯⋯.⑤有界数列: 存在正数M 使a n M ,n N .⑥无界数列: 对于任何正数M , 总有项a 使得a n M .n1、已知n*a 2 (n N )nn 156,则在数列{ }a 的最大项为__(答:n125);2、数列{ }a 的通项为nana n ,其中a,b 均为正数,则a n 与a n 1 的大小关系为___(答:bn 1a a n 1);n23、已知数列{ a } 中, a 是递增数列,求实数的取值范围(答:3);a n n ,且{ } nn n4、一给定函数y f (x)的图象在下列图中,并且对任意a( 0,1) ,由关系式a n 1 f (a n )1* 得到的数列{ }a 满足a n 1 a n (n N ) ,则该函数的图象是()(答:A)neord 完美格式. .二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
数列高考知识点大全
数列高考知识点大全数列是高中数学中的一个重要内容,也是高考中经常出现的考点之一。
掌握好数列的相关知识点,对于解题和提高数学分数都十分关键。
本文将对数列在高考中的各个知识点进行全面总结和归纳,以帮助考生快速复习和掌握相关内容。
一、等差数列等差数列是指数列中相邻两项之差都相等的数列。
在高考中,涉及到等差数列的考点有:1. 等差数列的通项公式及性质;2. 等差数列的前n项和公式及性质;3. 等差数列的性质和应用,如等差数列的中项、公差等。
二、等比数列等比数列是指数列中相邻两项之比都相等的数列。
在高考中,涉及到等比数列的考点有:1. 等比数列的通项公式及性质;2. 等比数列的前n项和公式及性质;3. 等比数列的性质和应用,如等比数列的求和、常用等比数列问题的解题方法等。
三、斐波那契数列斐波那契数列是指数列中从第三项开始,每一项都是前两项之和的数列。
在高考中,涉及到斐波那契数列的考点有:1. 斐波那契数列的定义和性质;2. 斐波那契数列的求解和应用,如斐波那契数列的递推公式、斐波那契数列与黄金分割、应用题等。
四、等差数列与等比数列的联立等差数列与等比数列的联立是指在题目中同时涉及到等差数列和等比数列的解题方法。
在高考中,涉及到等差数列与等比数列的联立的考点有:1. 根据已知条件建立等差数列或等比数列的方程;2. 利用等差数列和等比数列的性质求解方程组;3. 应用等差数列与等比数列的性质解答应用题。
五、数列的极限数列的极限是指随着项数趋于无穷大,数列的值趋于稳定的一个值。
在高考中,涉及到数列的极限的考点有:1. 数列极限的定义和性质;2. 数列极限的判敛方法,如夹逼定理、单调有界原理等;3. 应用数列极限解答极限计算题。
六、数列的应用数列的应用是指将数列的相关知识点应用于实际问题中。
在高考中,涉及到数列的应用的考点有:1. 利用数列解决经典问题,如数列求和问题、数列递推问题等;2. 利用数列建立模型,解决实际问题;3. 数列应用题的解题思路和方法。
高中数学数列知识点总结精华版
/ 9 三、等比数列 1、等比数列的有关概念:如果数列an从第二项起每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫等比数列的公比。即)2,(*1nnqNaann (或)(*1Naanqnn 2、等比数列的判断方法:定义法1(nnaqqa为常数),其中0,0nqa或11nnnnaaaa (2)n。 如1、一个等比数列{na}共有21n项,奇数项之积为100,偶数项之积为120,则1na为____(答:56); 2、数列{}na中,nS=41na+1 (2n)且1a=1,若nnnaab21 ,求证:数列{nb}是等比数列。 3、等比数列的通项:11nnaaq或nmnmaaq。 如 设等比数列{}na中,166naa,21128naa,前n项和nS=126,求n和公比q. (答:6n,12q或2) 4、等比数列的前n和:当1q时,1nSna;当1q时,1(1)1nnaqSq11naaqq。如 等比数列中,q=2,S99=77,求9963aaa(答:44) 提醒:等比数列前n项和公式有两种形式,为此在求等比数列前n项和时,首先要判断公比q是否为1,再由q的情况选择求和公式的形式,当不能判断公比q是否为1时,要对q分1q和1q两种情形讨论求解。 5、等比中项:如果a、G、b三个数成等比数列,那么G叫做a与b的等比中项,即G=ab.提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个ab。如已知两个正数,()abab的等差中项为A,等比中项为B,则A与B的大小关系为______(答:A>B)
高中数学数列知识点归纳
高中数学数列知识点归纳摘要:一、数列的定义与性质1.等差数列的定义与性质2.等比数列的定义与性质二、数列的求和公式1.等差数列的前n 项和公式2.等比数列的前n 项和公式三、数列的应用1.高考数学中数列的知识点考察2.数列在实际问题中的应用正文:高中数学数列知识点归纳数列是高中数学中的一个重要知识点,它在历年的高考中都占有重要的地位。
本文将对数列的定义、性质、求和公式以及应用进行归纳总结。
一、数列的定义与性质1.等差数列的定义与性质等差数列是指一个数列,它的相邻两项之差是一个常数,这个常数称为公差。
等差数列的通项公式为:an = a1 + (n-1)d,其中a1 是首项,d 是公差,n 是项数。
等差数列的前n 项和公式为:sn = n/2 * (a1 + an) = n/2 * (2a1 + (n-1)d)。
2.等比数列的定义与性质等比数列是指一个数列,它的相邻两项之比是一个常数,这个常数称为公比。
等比数列的通项公式为:an = a1 * q^(n-1),其中a1 是首项,q 是公比,n 是项数。
等比数列的前n 项和公式为:sn = a1 * (1 - q^n) / (1 - q),当q = 1 时,等比数列变为等差数列。
二、数列的求和公式1.等差数列的前n 项和公式等差数列的前n 项和公式为:sn = n/2 * (a1 + an) = n/2 * (2a1 + (n-1)d)。
2.等比数列的前n 项和公式等比数列的前n 项和公式为:sn = a1 * (1 - q^n) / (1 - q),当q = 1 时,等比数列变为等差数列。
三、数列的应用1.高考数学中数列的知识点考察高考数学中,数列是一个重要的考点,主要考察等差数列和等比数列的性质、通项公式、前n 项和公式,以及数列的求和、递推关系、极限等。
2.数列在实际问题中的应用数列在实际问题中有很多应用,如在金融领域,等比数列可以用来计算复利的未来值;在生物领域,等差数列可以用来描述种群数量的增长;在物理领域,等差数列可以用来描述匀速运动的速度等。
高中数学《数列》知识点归纳
高中数学《数列》知识点归纳
一、数列的概念
1. 数列的定义与表示
2. 数列的分类:等差数列、等比数列、等差几何数列、斐波那契数列、调和数列等
3. 数列的通项公式、前n项和公式及其应用
五、斐波那契数列
1. 斐波那契数列的定义和性质
2. 斐波那契数列的通项公式及其应用
3. 斐波那契数列的递推公式及其推导方法
4. 斐波那契数列的特殊应用:黄金分割
六、调和数列
1. 调和数列的定义和特征:调和平均数、算术平均数、宾汉姆不等式
2. 调和数列的通项公式及应用
3. 调和数列和几何平均数的关系
4. 调和数列的应用:调和平均数与平均速度等
七、数列极限
1. 数列的极限及其定义
2. 数列极限的性质:唯一性、有界性、保号性、代数运算性等
3. 数列极限的判定法:夹逼定理、单调有界原理等
4. 数列极限的应用:数学归纳法、发散数列的研究等
八、数列的应用领域
1. 数列在经济方面的应用:摆脱“复利”套路等
2. 数列在自然科学中的应用:波动方程、元素周期表等
3. 数列在计算机科学中的应用:搜索算法、排序算法等
4. 数列在生命科学和社会实践中的应用:基因序列分析、大学分配问题等。
数列知识点归纳总结高考
数列知识点归纳总结高考一、数列的概念与性质1.1 数列的概念数列是指由一组有规律的数按照一定的顺序排列而成的序列。
数列中的每一个数称为这个数列的项,第一个数称为首项,最后一个数称为末项。
1.2 数列的表示方法常用的表示数列的方法有两种:一种是用通项公式表示数列中的每一项,另一种是用递推公式表示数列中的每一项。
例如,等差数列的通项公式为an=a1+(n-1)d,递推公式为an=an-1+d。
1.3 数列的性质数列的性质包括有限数列和无限数列两种情况。
有限数列是指数列中的项数是有限个,无限数列是指数列中的项数是无限个。
同时,数列中的项有时也会按照一定的规律进行排列。
二、常见的数列类型2.1 等差数列等差数列是指数列中相邻两项之间的差是一个常数的数列。
等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
例如,1, 3, 5, 7, 9就是一个公差为2的等差数列。
等差数列的性质包括求和公式、前n项和等。
2.2 等比数列等比数列是指数列中相邻两项之间的比是一个常数的数列。
等比数列的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比。
例如,2, 6, 18, 54就是一个公比为3的等比数列。
等比数列的性质包括求和公式、前n项和等。
2.3 负数与零的数列负数与零的数列是指数列中的项是负数或者零的数列。
这种数列作为一种特殊类型,在实际问题中也有其应用。
2.4 斐波那契数列斐波那契数列是指数列中的每一项是前两项之和的数列。
其通项公式为an=an-1+an-2,其中a1=1,a2=1。
斐波那契数列在自然界中有着广泛的应用,如植物的生长规律、金融交易中的波动规律等都可以用斐波那契数列来进行描述。
2.5 等差-等比数列等差-等比数列是指数列中相邻两项之间的差是一个常数,而相邻两项之间的比也是一个常数的数列。
这种数列既包含了等差数列的性质,也包含了等比数列的性质。
2.6 其他特殊数列还有一些特殊的数列形式,如等差等比混合数列、递推数列等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 列 专 题◆ 考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3) ◆ 倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.考点二:等差数列和等比数列等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a na n -1=常数(n≥2) 通项公式a n =a 1+(n -1)da n =a 1qn -1(q≠0)判定方法(1)定义法(2)中项公式法:2a n +1=a n +a n +2(n≥1)⇔{a n }为等差数列(3)通项公式法:a n =pn +q(p 、q 为常数)⇔{a n }为等差数列(4)前n 项和公式法:S n =An 2+Bn(A 、B 为常数)⇔{a n }为等差数列(5){a n }为等比数列,a n >0⇔{log a a n }为等差数列 (1)定义法(2)中项公式法:a 2n +1=a n ·a n +2(n≥1)(a n ≠0)⇔{a n }为等比数列(3)通项公式法:a n =c·q n(c 、q 均是不为0的常数,n∈N *)⇔{a n }为等比数列(4){a n }为等差数列⇔{a an}为等比数列(a>0且a≠1)性质(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m +a n =a p +a q特别:若m +n =2p ,则a m +a n =2a p .(2)a n =a m +(n -m)d(3) 数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列, 即2(S 2m -S m )=S m +(S 3m -S 2m )(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3) 若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q≠-1). 前n 项和S n =n a 1+a n 2=na 1+n n -12d (1)q≠1,S n =a 11-qn1-q =a 1-a n q1-q(2)q =1,S n =na 11n n 个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值; 当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q∈R ).当p =0时,{a n }为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列; 当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d. 5) 5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2时,一定要注意分n =1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k·q n-k(k 为常数且k≠0,q≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =na 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉).4.裂项相消法(注重积累!!!)利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.利用裂项相消法求和时应注意哪些问题?(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2) 1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; (3) 1n (n +1)=1n -1n +1; (4) 1n +n +1=n +1-n ;(5)n +n +k =1k(n +k -n).5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。