人教版初中数学中考专题复习-正方形(含答案)
初三数学中考复习 正方形 专题练习题 含答案
![初三数学中考复习 正方形 专题练习题 含答案](https://img.taocdn.com/s3/m/68d15e3b58fafab068dc0220.png)
2019 初三中考数学复习正方形专题练习题1. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A.BC=CD B.AB=CD C.AD=BC D.AC=BD2. 下列说法不正确的是( )A.一组邻边相等的矩形是正方形B.对角线相等的矩形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的菱形是正方形3. 在四边形ABCD中,点O是对角线AC,BD的交点,能判定这个四边形是正方形的条件是( )A.AC=BD,AB∥CD,AB=CDB.AO=BO=CO=DO,AC⊥BDC.AD∥BC,∠A=∠CD.AO=CO,BO=DO,AB=BC4. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF5. 如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE的长为( )A.2 B.3 C.2 2 D.236. 正方形具有而菱形不一定具有的性质是( )A.对角线互相平分B.内角和为360°C.对角线相等D.对角线平分内角7. 能判定一个四边形是平行四边形的条件是( )A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补8. 矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线垂直平分C.对角线平分一组对角D.对角线互相平分9. 正方形ABCD在平面直角坐标系中的位置如图所示,已知点A的坐标为(0,4),点B坐标为(-3,0),则点C的坐标为( )A.(1,3) B.(1,-3) C.(1,-4) D.(2,-4)10. 如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有( ) A.4个 B.6个 C.8个 D.10个11. 如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是____________.12. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是____.13. 如图,已知正方形ABCD的边长为1,连结AC,BD,CE平分∠ACD交BD于点E,则DE=_________________.14. 如图,四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且分别与AO,BO交于M,N,求证:(1)BM=CN;(2)BM⊥CN.15. 如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连结DE.(1)求证:△ABE≌△DAF;(2)若AF =1,四边形ABED 的面积为6,求EF 的长.参考答案:1---10 ABBDC CCDBC11. 45°12. 4 13. 2-114. 解:(1)∵MN∥AB,∴∠OMN=∠OAB,∠ONM =∠OBA,∵OA=OB ,∴∠OAB=∠OBA,∴∠OMN =∠ONM,∴OM=ON ,∴AM=OA -OM =OB -ON =BN ,在△ABM 和△BCN 中,⎩⎨⎧AB =BC∠MAB=∠NBC AM =BN,∴△ABM≌△BCN(SAS),∴BM=CN(2)由△ABM≌△BCN 得,∠ABM=∠BCN,又∵∠ABM+∠CBM=90°,∴∠BCN+∠CBM=90°,∴CN⊥BM15. 解:(1)∵四边形ABCD 是正方形,∴AB=AD ,∵DF⊥AG,BE⊥A G ,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE 和△DAF 中,⎩⎨⎧∠BAE=∠ADF,∠AEB=∠DFA,AB =AD ,∴△ABE≌△DAF(AAS)(2)设EF =x ,则AE =DF =x +1,由题意2×12×(x+1)×1+12×x×(x+1)=6,解得x =2或-5(舍弃),∴EF=2。
中考数学考点28正方形总复习(解析版)
![中考数学考点28正方形总复习(解析版)](https://img.taocdn.com/s3/m/29d1fe94f424ccbff121dd36a32d7375a417c6ad.png)
正方形【命题趋势】在中考中.正方形主要在选择题.填空题.解答题考查为主.并结合相似.锐角三角函数结合考查.;其中正方形常考4种模型是中考中的重难点。
【中考考查重点】一、正方形的性质及判定二、正方形常考模型考点:正方形性质及判定一、正方形的概念和性质1.概念:有一组邻边相等.并且有一个角是直角的平行四边形是正方形.2.性质:(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角.四条边都相等(3)正方形的两条对角线相等.并且互相垂直平分.每一条对角线平分一组对角(4)正方形是轴对称图形.有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形.两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
二、正方形的判定判定方法:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)对角线互相垂直的矩形是正方形。
注意:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形.再证明它是菱形(或矩形).最后证明它是矩形(或菱形)。
1.(2020秋•法库县期末)平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【答案】A【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分.故本选项正确;B、只有矩形.正方形的对角线相等.故本选项错误;C、只有菱形.正方形的对角线互相垂直.故本选项错误;D、只有菱形.正方形的对角线互相垂直平分.故本选项错误.故选:A.2.(2020秋•武功县期末)如图.在正方形ABCD中.AB=2.P是AD边上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.4B.2C.D.2【答案】C【解答】解:在正方形ABCD中.OA⊥OB.∠OAD=45°.∵PE⊥AC.PF⊥BD.∴四边形OEPF为矩形.△AEP是等腰直角三角形.∴PF=OE.PE=AE.∴PE+PF=AE+OE=OA.∵正方形ABCD的边长为2.∴OA=AC==.故选:C.3.(2010秋•金口河区期末)如图.在正方形ABCD中.E是DC上一点.F为BC延长线上一点.∠BEC=70°.且△BCE≌△DCF.连接EF.则∠EFD的度数是()A.10°B.15°C.20°D.25°【答案】D【解答】解:∵四边形ABCD是正方形.∴∠BCE=∠DCF=90°;由旋转的性质知:CE=CF.∠BEC=∠DFC=70°;则△ECF是等腰直角三角形.得∠EFC=45°.∴∠EFD=∠DFC﹣∠EFC=25°.故选:D.4.(2020春•沙坪坝区期末)如图.正方形ABCD中.AB=.点E是对角线AC上一点.EF⊥AB于点F.连接DE.当∠ADE=22.5°时.EF的长是()A.1B.2﹣2C.﹣1D.【答案】C【解答】解:∵四边形ABCD是正方形.∴AB=CD=BC=.∠B=∠ADC=90°.∠BAC=∠CAD=45°.∴AC=AB=2.∵∠ADE=22.5°.∴∠CDE=90°﹣22.5°=67.5°.∵∠CED=∠CAD+∠ADE=45°+22.5°=67.5°.∴∠CDE=∠CED.∴CD=CE=.∴AE=2﹣.∵EF⊥AB.∴∠AFE=90°.∴△AFE是等腰直角三角形.∴EF==﹣1.故选:C.5.(2021•罗湖区校级模拟)如图.在平面直角坐标系xOy中.正方形ABCD的顶点D在y轴上且A(﹣3.0).B(2.b).则正方形ABCD的面积是()A.20B.16C.34D.25【答案】C【解答】解:作BM⊥x轴于M.∵四边形ABCD是正方形.∴AD=AB.∠DAB=90°.∴∠DAO+∠BAM=90°.∠BAM+∠ABM=90°.∴∠DAO=∠ABM.∵∠AOD=∠AMB=90°.∴在△DAO和△ABM中.∴△DAO≌△ABM(AAS).∴OA=BM.AM=OD.∵A(﹣3.0).B(2.b).∴OA=3.OM=2.∴OD=AM=5.∴AD==.∴正方形ABCD的面积=34.故选:C.6.(2020春•老城区校级月考)如图.点P是正方形ABCD的对角线BD上一点.PE⊥BC于点E.PF⊥CD于点F.连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是()A.1B.2C.3D.4【答案】C【解答】解:如图.连接PC.延长AP交EF于H.延长FP交AB于G.在正方形ABCD中.∠ABP=∠CBP=45°.AB=CB.∵在△ABP和△CBP中..∴△ABP≌△CBP(SAS).∴AP=PC.∠BAP=∠BCP.又∵PE⊥BC.PF⊥CD.∴四边形PECF是矩形.∴PC=EF.∠BCP=∠PFE.∴AP=EF.∠PFE=∠BAP.故①④正确;只有点P为BD的中点或PD=AD时.△APD是等腰三角形.故③错误;∵PF∥BC.∴∠AGF=∠ABC=90°.∵∠BAP=∠PFE.∠APG=∠FPH.∴∠AGP=∠AHF=90°.∴AP⊥EF.故②正确.故选:C.7.(2021秋•南海区月考)如图.点B在MN上.过AB的中点O作MN的平行线.分别交∠ABM的平分线和∠ABN的平分线于点C、D.(1)试判断四边形ACBD的形状.并证明你的结论.(2)当△CBD满足什么条件时.四边形ACBD是正方形?并给出证明.【答案】(1)四边形ACBD是矩形(2)△CBD满足CB=BD时.四边形ACBD是正方形【解答】解:(1)四边形ACBD是矩形.证明:∵CD平行MN.∴∠OCB=∠CBM.∵BC平分∠ABM.∴∠OBC=∠CBM.∴∠OCB=∠OBC.∴OC=OB.同理可证:OB=OD.∴OA=OB=OC=OD.∵CD=OC+OD.AB=OA+OB.∴AB=CD.∴四边形ACBD是矩形;(2)△CBD满足CB=BD时.四边形ACBD是正方形.证明:由(1)得四边形ACBD是矩形.∵CB=BD.∴四边形ACBD是正方形.1.(2021秋•武侯区期末)下列说法中.是正方形具有而矩形不具有的性质是()A.两组对边分别平行B.对角线互相垂直C.四个角都为直角D.对角线互相平分【答案】B【解答】解:因为正方形的对角相等.对角线相等、垂直、且互相平分.矩形的对角相等.对角线相等.互相平分.所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:B.2.(2017春•柳州期末)边长为4的正方形ABCD中.P是边AD上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.2B.4C.2D.6【答案】A【解答】解:如图.∵四边形ABCD为正方形.∴∠CAD=∠BDA=45°.∵PE⊥AC于点E.PF⊥BD于点F.∴△APE和△PDF为等腰直角三角形.∴PE=AP.PF=PD.∴PE+PF=(AP+PD)=×4=2.故选:A.3.(2021秋•普宁市期末)下列说法中正确的是()A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形【答案】C【解答】解:A、矩形的对角线平分每组对角.说法错误.故本选项不符合题意;B、菱形的对角线互相垂直.故本选项不符合题意;C、有一组邻边相等的矩形是正方形.正确.故本选项符合题意;D、对角线互相垂直的四边形不一定是菱形.故本选项不符合题意.故选:C.4.(2020•眉山)下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【答案】B【解答】解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形.可以是平行四边形.故选项A不合题意;B、对角线互相垂直平分的四边形是菱形.故选项B符合题意;C、对角线相等的平行四边形是矩形.故选项C不合题意;D、对角线互相垂直平分且相等的四边形是正方形.故选项D不合题意;故选:B.5.(2021秋•海州区期末)如图.在正方形ABCD中.点E在对角线AC上.EF⊥AB于点F.EG⊥BC于点G.连接DE.若AB=10.AE=3.则ED的长度为()A.7B.2C.D.【答案】C【解答】解:如图.连接BE.∵四边形ABCD是正方形.∴∠BAC=∠DAC=45°.AB=AD.∵AE=AE.∴△ABE≌△ADE(SAS).∴BE=DE.∵EF⊥AB于点F.AE=3.∴AF=EF=3.∵AB=10.∴BF=7.∴BE==.∴ED=.故选:C.6.(2021秋•铁锋区期末)如图.已知在正方形ABCD中.AB=BC=CD=AD=10厘米.∠A=∠B=∠C=∠D=90°.点E在边AB上.且AE=4厘米.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动.同时.点Q在线段CD上由C点向D点运动.设运动时间为t秒.当△BPE与△CQP全等时.t的值为()A.2B.2或1.5C.2.5D.2.5或2【答案】D【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒.若△BPE≌△CQP.则BP=CQ.BE=CP.∵AB=BC=10厘米.AE=4厘米.∴BE=CP=6厘米.∴BP=10﹣6=4厘米.∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等.∴BP≠CQ.∵∠B=∠C=90°.∴要使△BPE与△OQP全等.只要BP=PC=5厘米.CQ=BE=6厘米.即可.∴点P.Q运动的时间t==(秒).故选:D.7.(2021春•海淀区校级期末)如图.点E是正方形ABCD对角线AC上一点.EF⊥AB.EG ⊥BC.垂足分别为F.G.若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时.四边形BFEG是正方形?【答案】(1)略(2)20cm (3)AF=5cm【解答】解:(1)证明:∵四边形ABCD为正方形.∴AB⊥BC.∠B=90°.∵EF⊥AB.EG⊥BC.∴∠BFE=90°.∠BGE=90°.又∵∠B=90°.∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm.∴AB=40÷4=10cm.∵四边形ABCD为正方形.∴△AEF为等腰直角三角形.∴AF=EF.∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形.只需EF=BF.∵AF=EF.AB=10cm.∴当AF=5cm时.四边形BFEG是正方形.1.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是()A.仅①B.仅③C.①②D.②③【答案】C【解答】解:①由a得到两组对边分别相等的四边形是平行四边形.添加c即一组邻边相等的平行四边形是菱形.再添加d即一个角是直角的菱形是正方形.故①正确;②由b得到一组对边平行且相等的四边形是平行四边形.添加d即有一个角是直角的平行四边形是矩形.再添加c即一组邻边相等的矩形是正方形.故②正确;③由a得到两组对边分别相等的四边形是平行四边形.添加b得到一组对边平行且相等的平行四边形仍是平行四边形.再添加c即一组邻边相等的平行四边形是菱形.不能得到四边形是正方形.故③不正确;故选:C.2.(2019•毕节市)如图.点E在正方形ABCD的边AB上.若EB=1.EC=2.那么正方形ABCD的面积为()A.B.3C.D.5【答案】B【解答】解:∵四边形ABCD是正方形.∴∠B=90°.∴BC2=EC2﹣EB2=22﹣12=3.∴正方形ABCD的面积=BC2=3.故选:B.3.(2021•重庆)如图.正方形ABCD的对角线AC.BD交于点O.M是边AD上一点.连接OM.过点O作ON⊥OM.交CD于点N.若四边形MOND的面积是1.则AB的长为()A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形.∴∠MDO=∠NCO=45°.OD=OC.∠DOC=90°.∴∠DON+∠CON=90°.∵ON⊥OM.∴∠MON=90°.∴∠DON+∠DOM=90°.∴∠DOM=∠CON.在△DOM和△CON中..∴△DOM≌△CON(ASA).∵四边形MOND的面积是1.四边形MOND的面积=△DOM的面积+△DON的面积.∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积.∴△DOC的面积是1.∴正方形ABCD的面积是4.∴AB2=4.∴AB=2.故选:C.4.(2021•湖北)如图.在正方形ABCD中.AB=4.E为对角线AC上与A.C不重合的一个动点.过点E作EF⊥AB于点F.EG⊥BC于点G.连接DE.FG.下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①连接BE.交FG于点O.如图.∵EF⊥AB.EG⊥BC.∴∠EFB=∠EGB=90°.∵∠ABC=90°.∴四边形EFBG为矩形.∴FG=BE.OB=OF=OE=OG.∵四边形ABCD为正方形.∴AB=AD.∠BAC=∠DAC=45°.在△ABE和△ADE中..∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE.交FG于M.交FB于点H.∵△ABE≌△ADE.∴∠ABE=∠ADE.由①知:OB=OF.∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°.∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°.∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点.∴根据垂线段最短.当DE⊥AC时.DE最小.∵AD=CD=4.∠ADC=90°.∴AC=.∴DE=AC=2.由①知:FG=DE.∴FG的最小值为2.∴④错误.综上.正确的结论为:①②③.故选:C.5.(2020•陕西)如图.在矩形ABCD中.AB=4.BC=8.延长BA至E.使AE=AB.以AE为边向右侧作正方形AEFG.O为正方形AEFG的中心.若过点O的一条直线平分该组合图形的面积.并分别交EF、BC于点M、N.则线段MN的长为.【答案】4【解答】解:如图.连接AC.BD交于点H.过点O和点H的直线MN平分该组合图形的面积.交AD于S.取AE中点P.取AB中点Q.连接OP.HQ.过点O作OT⊥QH于T.∵四边形ABCD是矩形.∴AH=HC.又∵Q是AB中点.∴QH=BC=4.QH∥BC.AQ=BQ=2.同理可求PO=AG=2.PO∥AG.EP=AP=2.∴PO∥AD∥BC∥EF∥QH.EP=AP=AQ=BQ.∴MO=OS=SH=NH.∠OPQ=∠PQH=90°.∵OT⊥QH.∴四边形POTQ是矩形.∴PO=QT=2.OT=PQ=4.∴TH=2.∴OH===2.∴MN=2OH=4.故答案为:4.6.(2021•邵阳)如图.在正方形ABCD中.对角线AC.BD相交于点O.点E.F是对角线AC上的两点.且AE=CF.连接DE.DF.BE.BF.(1)证明:△ADE≌△CBF.(2)若AB=4.AE=2.求四边形BEDF的周长.【答案】(1)略(2)8【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°.在△ADE和△CBF中..∴△ADE≌△CBF(SAS).(2)解:∵AB=AD=.∴BD===8.由正方形对角线相等且互相垂直平分可得:AC=BD=8.DO=BO=4.OA=OC=4.又AE=CF=2.∴OA﹣AE=OC﹣CF.即OE=OF=4﹣2=2.故四边形BEDF为菱形.∵∠DOE=90°.∴DE===2.∴4DE=.故四边形BEDF的周长为8.1.(2021•云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具.此时测得∠D=60°.对角线AC长为16cm.改变教具的形状成为图2所示的正方形.则正方形的边长为()A.8cm B.4cm C.16cm D.16cm【答案】C【解答】解:如图1.图2中.连接AC.图1中.∵四边形ABCD是菱形.∴AD=DC.∵∠D=60°.∴△ADC是等边三角形.∴AD=DC=AC=16cm.∴正方形ABCD的边长为16cm.故选:C.2.(2021•石家庄一模)将图1中两个三角形按图2所示的方式摆放.其中四边形ABCD 为矩形.连接PQ.MN.甲、乙两人有如下结论:甲:若四边形ABCD为正方形.则四边形PQMN必是正方形;乙:若四边形PQMN为正方形.则四边形ABCD必是正方形.下列判断正确的是()A.甲正确.乙不正确B.甲不正确.乙正确C.甲、乙都不正确D.甲、乙都正确【答案】B【解答】解:若ABCD是正方形.可设AB=BC=CD=AD=x.∴AQ=4﹣x.AP=3+x.∴PQ2=AQ2+AP2.即PQ===.x取值不同则PQ的长度不同.∴甲不正确.若四边形PQMN为正方形.则PQ=PN=MN=MQ=5.且∠QMD+∠MQD=∠QAP=∠AQP+∠QP A=90°.在△QMD和△PQA中..∴△QMD≌△PQA(ASA).∴QD=AP.同理QD=AP=MC=BN.又∵BP=MD=AQ.∴QD﹣AD=P A﹣AB.∴AB=AD.同理AB=CD=AD=BC.即四边形ABCD为菱形.∵∠DAB=180°﹣∠QAP=90°.则四边形ABCD为正方形.∴乙正确.故选:B.3.(2021•临沂模拟)如图.AD是△ABC的角平分线.DE.DF分别是△ABD和△ACD的高.得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时.四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A.②③B.②④C.①③④D.②③④【答案】D【解答】解:如果OA=OD.则四边形AEDF是矩形.没有说∠A=90°.不符合题意.故①错误;∵AD是△ABC的角平分线.∴∠EAD=∠F AD.在△AED和△AFD中..∴△AED≌△AFD(AAS).∴AE=AF.DE=DF.∴AE+DF=AF+DE.故④正确;∵在△AEO和△AFO中..∴△AEO≌△AFO(SAS).∴EO=FO.又∵AE=AF.∴AO是EF的中垂线.∴AD⊥EF.故②正确;∵当∠A=90°时.四边形AEDF的四个角都是直角.∴四边形AEDF是矩形.又∵DE=DF.∴四边形AEDF是正方形.故③正确.综上可得:正确的是:②③④.故选:D.4.(2020•宁津县一模)下列说法正确的是()A.对角线相等且相互平分的四边形是矩形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相互垂直的四边形是平行四边形【答案】A【解答】解:A、对角线相等且相互平分的四边形是矩形.故该选项正确;B、对角线相等且相互垂直的四边形不一定是菱形.故该选项错误;C、四条边相等的四边形是菱形.不是正方形.故该选项错误;D、对角线相互垂直的四边形不是平行四边形.故该选项错误.故选:A.5.(2021•南浔区模拟)如图.E.F是正方形ABCD的边BC上两个动点.BE=CF.连接AE.BD交于点G.连接CG.DF交于点M.若正方形的边长为1.则线段BM的最小值是()A.B.C.D.【答案】D【解答】解:如图.在正方形ABCD中.AB=AD=CB.∠EBA=∠FCD.∠ABG=∠CBG.在△ABE和△DCF中..∴△ABE≌△DCF(SAS).∴∠BAE=∠CDF.在△ABG和△CBG中..∴△ABG≌△CBG(SAS).∴∠BAG=∠BCG.∴∠CDF=∠BCG.∵∠DCM+∠BCG=∠FCD=90°.∴∠CDF+∠DCM=90°.∴∠DMC=180°﹣90°=90°.取CD的中点O.连接OB、OF.则OF=CO=CD=.在Rt△BOC中.OB===.根据三角形的三边关系.OM+BM>OB.∴当O、M、B三点共线时.BM的长度最小.∴BM的最小值=OB﹣OF==.故选:D.6.(2021•平凉模拟)如图.在矩形ABCD中.M、N分别是边AD、BC的中点.E、F分别是线段BM、CM的中点.(1)求证:BM=CM.(2)当AB:AD的值为多少时.四边形MENF是正方形?请说明理由.【答案】(1)略(2)当AB:AD=1:2时.四边形MENF是正方形【解答】(1)证明:∵四边形ABCD是矩形.∴AB=DC.∠A=∠D=90°.∵M为AD中点.∴AM=DM.在△ABM和△DCM中..∴△ABM≌△DCM(SAS).∴BM=CM;(2)解:当AB:AD=1:2时.四边形MENF是正方形.理由如下:∵N、E、F分别是BC、BM、CM的中点.∴NE∥CM.NE=CM.∵MF=CM.∴NE=FM.∵NE∥FM.∴四边形MENF是平行四边形.由(1)知△ABM≌△DCM.∴BM=CM.∵E、F分别是BM、CM的中点.∴ME=MF.∴平行四边形MENF是菱形;∵M为AD中点.∴AD=2AM.∵AB:AD=1:2.∴AD=2AB.∴AM=AB.∵∠A=90°.∴∠ABM=∠AMB=45°.同理∠DMC=45°.∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形.∴菱形MENF是正方形.7.(2021•沂水县二模)如图.四边形ABCD是正方形.△ABE是等边三角形.M为对角线BD(不含B点)上的点.(1)当点M是CE与BD的交点时.如图1.求∠DMC的度数;(2)若点M是BD上任意一点时.将BM绕点B逆时针旋转60°得到BN.连接EN.CM.求证:EN=CM;(3)当点M在何处时.BM+2CM的值最小.说明理由.【答案】(1)60°(2)略(3)当M点位于BD.CE交点时.BM+2CM的值最小【解答】(1)解:∵△AEB是等边三角形.∴EB=AB=AE.∠EBA=60°.∵四边形ABCD是正方形.∴AB=BC.∠ABC=90°.∴EB=CB.∠EBC=∠EBA+∠ABC=60°+90°=150°.∴∠BCE=(180°﹣∠EBC)=×(180°﹣150°)=15°.∵BD是正方形ABCD的对角线.∴∠DBC=45°.∵∠DMC是△BMC的外角.∴∠DMC=∠DBC+∠BCE=45°+15°=60°;(2)证明:由旋转可知.BM=BN.∠MBN=60°.∵∠MBA=45°.∴∠ABN=∠MBN﹣∠MBA=15°.∵∠ABE=60°.∴∠NBE=∠ABE﹣∠ABN=45°.在△BMC和△BNE中..∴△BMC≌△BNE(SAS).∴CM=EN;(3)当M点位于BD.CE交点时.BM+2CM的值最小.理由如下:在△ADM和△CDM中..∴△ADM≌△CDM(SAS).∴AM=CM.将BM绕点B旋转60°.得到BN.∵∠EBN+∠NBA=60°.∠NBA+∠ABM=60°.∴∠EBN=∠ABM.在△ENB和△AMB中..∴△ENB≌△AMB(SAS).∴AM=EN.∵BM=BN.∠NBM=60°.∴△BMN是等边三角形.∴BM=NM.∴BM+2CM=BM+AM+CM=MN+EN+CM=EN+MN+CM.即E.N.M.C四点共线时.有最小值.8.(2022•南昌模拟)已知正方形ABCD与正方形AEFG.正方形AEFG绕点A旋转一周.(1)如图1.连接BG、CF.①求的值;②求∠BHC的度数.(2)当正方形AEFG旋转至图2位置时.连接CF、BE.分别取CF、BE的中点M、N.连接MN.猜想MN与BE的数量关系与位置关系.并说明理由.【答案】(1)①=②45°(2)BE=2MN.MN⊥BE【解答】解:(1)①如图1.连接AF.AC.∵四边形ABCD和四边形AEFG都是正方形.∴AC=AB.AF=AG.∠CAB=∠GAF=45°.∠BAD=90°.∴∠CAF=∠BAG..∴△CAF∽△BAG.∴=;②∵AC是正方形BCD的对角线.∴∠ABC=90°.∠ACB=45°.在△BCH中.∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣(∠HBC+∠ACB+∠ACF)=180°﹣(∠HBC+∠ACB+∠ABG)=180°﹣(∠ABC+∠ACB)=45°;(2)BE=2MN.MN⊥BE.理由如下:如图2.连接ME.过点C作CQ∥EF.交直线ME于Q.连接BH.设CF与AD 交点为P.CF与AG交点为R.∵CQ∥EF.∴∠FCQ=∠CFE.∵点M是CF的中点.∴CM=MF.又∵∠CMQ=∠FME.∴△CMQ≌△FME(ASA).∴CQ=EF.ME=QM.∴AE=CQ.∵CQ∥EF.AG∥EF.∴CQ∥AG.∴∠QCF=∠CRA.∵AD∥BC.∴∠BCF=∠APR.∴∠BCQ=∠BCF+∠QCF=∠APR+∠ARC.∵∠DAG+∠APR+∠ARC=180°.∠BAE+∠DAG=180°.∴∠BAE=∠BCQ.又∵BC=AB.CQ=AE.∴△BCQ≌△BAE(SAS).∴BQ=BE.∠CBQ=∠ABE.∴∠QBE=∠CBA=90°.∵MQ=ME.点N是BE中点.∴BQ=2MN.MN∥BQ.∴BE=2MN.MN⊥BE.。
2023年人教版九年级备考中考数学一轮训练:正方形 试卷
![2023年人教版九年级备考中考数学一轮训练:正方形 试卷](https://img.taocdn.com/s3/m/5eb1b335640e52ea551810a6f524ccbff021ca4d.png)
2023年人教版备考中考数学一轮训练:正方形一、选择题(本大题共10小题,每小题5分,满分50分)1. (2022秋•江岸区校级月考)如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T 为AF的中点,则CT的长是( )A. B.4 C. D.2. (2021·贵州黔东南)如图,正方形ABCD的边长为4,点E、F分别为BC、CD的中点,点P 是对角线BD上的动点,则四边形PECF周长的最小值为( )A.4B.422+ C.8 D.442+3. (2021•贵池区模拟)如图,在边长为10的正方形ABCD中,E、F分别为边AB、BC的动点,且EF=8,点M为EF的中点,点N为边AD的一动点,则MN+CN的最小值为( )A.105-4B.105C.85-4D.854. (2021•泰州)如图,P为AB上任意一点,分别以AP、PB为边在AB同侧作正方形APCD、正方形PBEF,设∠CBE=α,则∠AFP为( )A.2αB.90°﹣αC.45°+αD.90°﹣α5. (2021·邢台模拟)如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN=( )A.3 2B.322C.3D.6 6. (2022•南京)如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C,与BC 相交于点D.若⊙P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A.(9,2)B.(9,3)C.(10,2)D.(10,3)7. (2021•港南区四模)如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O,折叠正方形纸片ABCD,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G,连接GF,下列结论:①∠ADG =22.5°;②S △AGD =S △OGD ;③四边形AEFG 是菱形;④BE =2OG;⑤若S △OGF =1,则正方形ABCD 的面积是6+42.正确的个数为( )A.1个B.2个C.3个D.4个8. (2022•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( )A.1和1B.1和2C.2和1D.2和29. (2022·贵州铜仁)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P,F 是CD 上的一点,连接AF 分别交BD,DE 于点M,N,且AF ⊥DE,连接PN,则下列结论中:①S △ABM =S △FDM ;②PN=;③tan ∠EAF=34;④△PMN ≌△DPE 正确的是( ) A.①②③ B.①②④ C.①③④ D.②③④10. (2022·安徽合肥·二模)如图,在正方形ABCD 中,点O 为对角线AC 的中点,过点O 作射线OG 、ON 分别交AB 、BC 于点E 、F,且∠EOF =90°,BO 、EF 交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=2OA;(4)AE2+CF2=2OP•OB.正确的结论有( )个.A.1B.2C.3D.4二、填空题(本大共6小题,每小题5分,满分30分)11. 已知:如图,在正方形ABCD的外侧作等边三角形ADE,则∠BED= 度.12. (2022九上·宁波期中)如图,在正方形ABCD中,点E在边AD上,把△ABE沿直线BE翻折得到△FBE,连接CF并延长交BE的延长线于点P.若AB=5,AE=1.则∠P= ,PC= .13. (2022•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.14. (2021·铜仁中考)如图,E,F分别是正方形ABCD的边AB,BC上的动点,满足AE=BF,连接CE,DF,相交于点G,连接AG.若正方形的边长为2,则线段AG的最小值为____.15. (2022•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)16. (2021·贵州黔西)如图,在Rt△OAB中,∠AOB=90o,OA=OB,AB=1,作正方形A1B1C1D1,使顶点A1,B1分别在OA,OB上,边C1D1在AB上;类似地,在Rt△OA1B1中,作正方形A2B2C2D2;在Rt△OA2B2中,作正方形A3B3C3D3; ;依次作下去,则第n个正方形A n B n C n D n的边长是______.三、解答题(本大题共5道小题,每小题6-12分)17. (6分)(2022春•越秀区期末)如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.18. (6分)(2021·湖南邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF;(2)若AB=42,AE=2,求四边形BEDF的周长.19. (6分)(2022春•临高县)如图,点P为正方形ABCD对角线BD上一点,PE⊥CD于E,PF⊥BC 于点F.(1)求证:PA=PC;(2)若正方形ABCD的边长为1,求四边形PFCE的周长.20. (10分)(2022湖北仙桃模拟)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.21. (12分)[2022·海南]如图,在正方形ABCD中,点E是边BC上一点,且点E不与点B,C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF.(2)如图②,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF于点G,连接HB,HC.①求证:HD=HB;②若DK·HC=2,求HE的长.。
中考数学狙击重难点系列专题22----反比例函数与正方形的综合(含答案)(最新整理)
![中考数学狙击重难点系列专题22----反比例函数与正方形的综合(含答案)(最新整理)](https://img.taocdn.com/s3/m/6a96da98312b3169a551a40d.png)
反比例函数与正方形的综合1. 如图,正方形ABCD 的边长为5,点A 的坐标为(﹣4,0),点B 在y 轴上,若反比例函数y= (k≠0)kx 的图象过点C ,则该反比例函数的表达式为( )A. y=B. y=C. y=D. y= 3x 4x 5x 6x2. 如图,边长为2的正方形ABCD 的顶点A 在y 轴上,顶点D 在反比例函数y=(x >0)的图象上,已知kx 点B 的坐标是( ,),则k 的值为( )65115A. 4B. 6C. 8D. 103. 如图,正方形ABCD 和正方形DEFG 的顶点在y 轴上,顶点D ,F 在x 轴上,点C 在DE 边上,反比例函数y= (k≠0)的图象经过B ,C 和边EF 的中点M ,若S 四边形ABCD =8,则正方形DEFG 的面积是( )kxA. B.C. 16D. 23912891544. 如图,在平面直角坐标系中,A (1,0),B (0,2),以AB 为边在第一象限作正方形ABCD ,点D 恰好落在双曲线y= 上,则k 的值是( )kxA. 4B. 3C. 2D. 15. 如图,在平面直角坐标系中,直线y=﹣4x+4与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,将正方形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线在第一象限的分支上,则a 的值是________.6. 如图,在平面直角坐标系中,直线 与 轴、 轴分别交于A 、B 两点,以AB 为边在第y =−3x +3x y 一象限作正方形,点D 恰好在双曲线上 ,则 值为________.y =kx k7. 如图,正方形ABCD 的顶点A ,B 在函数y= (x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴kx 上,当k 的值改变时,正方形ABCD 的大小也随之改变. ①当k=2时,正方形A′B′C′D′的边长等于________.②当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围是________.8. 如图,在平面直角坐标系中,正方形 的顶点 的坐标为 ,点 在 轴正半轴上,点 ABCD A (−1,1)B x 在第三象限的双曲线 上,过点 作 轴交双曲线于点 ,连接 ,则 的面积D y =6x C CE//x E BE ΔBCE 为________.9. 如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y=(x >0)的图象上,顶点A 1、B 1分别在x 轴和y 2x 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2 , 顶点P 3在反比例函数y=(x >0)的图象上,顶点A 22x 在x 轴的正半轴上,则P 2点的坐标为________ ,P 3的坐标为________ .10. 如图,在平面直角坐标系中,直线y=﹣3x+3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限内作正方形ABCD ,点D 在双曲线y= (k≠0)上,将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好kx 落在该双曲线上,则a 的值是________.11. 如图,直线y=﹣3x+3与x 轴交于点B ,与y 轴交于点A ,以线段AB 为边,在第一象限内作正方形ABCD ,点C 落在双曲线y= (k≠0)上,将正方形ABCD 沿x 轴负方向平移a 个单位长度,使点D 恰好落在双曲kx 线y= (k≠0)上的点D 1处,则a=________.kx12. 如图1,正方形ABCD 顶点A 、B 在函数y= (k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,kx 当k 的值改变时,正方形ABCD 的大小也随之改变.(1)若点A 的横坐标为3,求点D 的纵坐标;(2)如图2,当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′ 两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A′B′C′D′有重叠部分时,求k 的取值范围.13. 已知点A ,B 分别是x 轴、y 轴上的动点,点C ,D 是某个函数图象上的点,当四边形ABCD (A ,B ,C ,D 各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD 是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数 (k >0),它的图象的“伴侣正方形”为ABCD ,点D (2,m )(m <2y =kx )在反比例函数图象上,求m 的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax 2+c (a≠0),它的图象的“伴侣正方形”为ABCD ,C ,D 中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.14. 如图,点P ( +1, ﹣1)在双曲线y= (x >0)上.33kx(1)求k 的值;(2)若正方形ABCD 的顶点C ,D 在双曲线y= (x >0)上,顶点A ,B 分别在x 轴和y 轴的正半轴上,kx 求点C 的坐标.15. 如图,点B (3,3)在双曲线y= (x >0)上,点D 在双曲线y=﹣ (x <0)上,点A 和点C 分别在x k x 4x 轴,y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形.(1)求k 的值; (2)求点A 的坐标.16. 如图,直线 与 轴、 轴分别相交于点A 和B.y =−2x +2x y(1)直接写出坐标:点A________,点B________;(2)以线段AB 为一边在第一象限内作□ABCD ,其顶点D( , )在双曲线 ( > )上.①求证:31y =kx x 0四边形ABCD 是正方形;②试探索:将正方形ABCD 沿 轴向左平移多少个单位长度时,点C 恰好落在双曲线 ( > )x y =kx x 0上.答案解析部分一、单选题1.【答案】A【解析】【解答】解:如图,过点C 作CE ⊥y 轴于E ,在正方形ABCD 中,AB=BC ,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE ,∵点A 的坐标为(﹣4,0),∴OA=4,∵AB=5,∴OB= =3,52−42在△ABO 和△BCE 中, ,{∠OAB =∠CBE∠AOB =∠BEC AB =BC∴△ABO ≌△BCE (AAS ),∴OA=BE=4,CE=OB=3,∴OE=BE ﹣OB=4﹣3=1,∴点C 的坐标为(3,1),∵反比例函数y= (k≠0)的图象过点C ,kx ∴k=xy=3×1=3,∴反比例函数的表达式为y= .3x 故选A .【分析】过点C 作CE ⊥y 轴于E ,根据正方形的性质可得AB=BC ,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE ,然后利用“角角边”证明△ABO 和△BCE 全等,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE ,然后写出点C 的坐标,再把点C 的坐标代入反比例函数解析式计算即可求出k 的值.2.【答案】C【解析】【解答】解:如图,过点B 作BE ⊥y 轴于E ,过点D 作DF ⊥y 轴于F ,在正方形ABCD 中,AB=AD ,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF ,在△ABE 和△DAF 中,,∴△ABE ≌△DAF (AAS ),∴AF=BE ,DF=AE ,∵正方形的边长为2,B (, ),65115∴BE= , AE== ,6522-(65)285∴OF=OE+AE+AF=++=5,1158565∴点D 的坐标为( , 5),85∵顶点D 在反比例函数y=(x >0)的图象上,kx ∴k=xy=×5=8.85故选:C .【分析】过点B 作BE ⊥y 轴于E ,过点D 作DF ⊥y 轴于F ,根据正方形的性质可得AB=AD ,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF ,然后利用“角角边”证明△ABE 和△DAF 全等,根据全等三角形对应边相等可得AF=BE ,DF=AE ,再求出OF ,然后写出点D 的坐标,再把点D 的坐标代入反比例函数解析式计算即可求出k .3.【答案】B【解析】【解答】解:作BH ⊥y 轴于B ,连结EG 交x 轴于P ,如图,∵正方形ABCD 和正方形DEFG 的顶点A 在y 轴上,顶点D 、F 在x 轴上,点C 在DE 边上,∴∠EDF=45°,∴∠ADO=45°,∴∠DAO=∠BAH=45°,∴△AOD 和△ABH 都是等腰直角三角形,∵S 正方形ABCD =8,∴AB=AD=2 ,2∴OD=OA=AH=BH=×2 =2,222∴B 点坐标为(2,4),把B (2,4)代入y= 得k=2×4=8,kx ∴反比例函数解析式为y= ,8x 设DN=a ,则EN=NF=a ,∴E (a+2,a ),F (2a+2,0),∵M 点为EF 的中点,∴M 点的坐标为( a+2, ),32a2∵点M 在反比例函数y= 的图象上,8x ∴• =8,3a +42a2整理得3a 2+4a ﹣32=0,解得a 1= ,a 2=﹣4(舍去),83∴正方形DEFG 的面积=4• DN•DF=4• • • = .121283831289故选B .【分析】根据正方形面积公式得到正方形的边长,判断△AOD 和△ABH 是等腰直角三角形,得出B 点坐标,根据B 点坐标得到反比例函数解析式,设DN=a ,则EN=NF=a ,根据正方形的性质易得E ,F 的坐标,求得M 点的坐标,再根据反比例函数图象上点的坐标特征得出关于a 的方程,解方程求出a 的值,最后计算正方形DEFG 的面积.4.【答案】B【解析】【解答】解:作DE ⊥x 轴于E , ∵A (1,0),B (0,2),∴OA=1,OB=2,∵∠BAD=90°,∠AOB=90°,∴∠ABO=∠DAE ,在△AOB 和△DEA 中,,{∠ABO =∠DAE ∠AOB =∠DEA AB =AD ∴△AOB ≌△DEA ,∴AE=OB=2,DE=OA=1,∴点D 的坐标为(3;1),∵点D 恰好落在双曲线y= 上,kx ∴k=3,故选:B .【分析】作DE ⊥x 轴于E ,证明△AOB ≌△DEA ,根据全等三角形的性质得到AE=OB=2,DE=OA=1,求出点D 的坐标,代入解析式计算即可.二、填空题5.【答案】3【解析】【解答】解:如图,作CN ⊥OB 于N ,DM ⊥OA 于M ,CN 与DM 交于点F ,CN 交反比例函数于H.∵直线y=−4x+4与x 轴、y 轴分别交于A. B 两点,∴点B(0,4),点A(1,0),∵四边形ABCD 是正方形,∴AB=AD=DC=BC,∠BAD=90°,∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,∴∠ABO=∠DAM ,在△ABO 和△DAM 中, ,{∠BOA =∠AMD =90°∠ABO =∠DAMAB =AD∴△ABO ≌△DAM ,∴AM=BO=4,DM=AO=1,同理可得:CF=BN=AO=1,DF=CN=BO=4,∴点F(5,5),C(4,1),D(5,1),设点D 在双曲线y= (k≠0)上,则k=5,kx ∴反比例函数为y= ,5x ∴直线CN 与反比例函数图象的交点H 坐标为(1,5),∴正方形沿x 轴负方向平移a 个单位长度后,顶点C 恰好落在双曲线y= 上时,a=4−1=3,5x 故答案为3.【分析】本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.6.【答案】4【解析】【解答】解:作DH ⊥x 轴于H ,如图,当y=0时,-3x+3=0,解得x=1,∴A (1,0),当x=0时,y=-3x+3=3,∴B (0,3),∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°,∴∠BAO+∠DAH=90°,又∵∠BAO+∠ABO=90°,∴∠ABO=∠DAH ,在△ABO 和△DAH 中{∠AOB =∠DHA ∠ABO =∠DAHAB =DA∴△ABO ≌△DAH ,∴AH=OB=3,DH=OA=1,∴D 点坐标为(4,1),∵顶点D 恰好落在双曲线y= 上,kx ∴k=4×1=4.故答案是:4.7.【答案】; ≤x≤18229【解析】【解答】解:(1)如图,过点A′作AE ⊥y 轴于点E ,过点B′⊥x 轴于点F ,则∠A′ED′=90°.∵四边形A′B′C′D′为正方形,∴A′D′=D′C′,∠A′D′C′=90°,∴∠OD′C′+∠ED′A′=90°.∵∠OD′C′+∠OC′D′=90°,∴∠ED′A′=∠OC′D′.在△A′ED′和△D′OC′中, ,{∠ED 'A '=∠OC 'D '∠A 'ED '=∠D 'OC '=90∘A 'D '=D 'C '∴△A′ED′≌△D′OC′(AAS ).∴OD′=EA′,OC′=ED′.同理△B′FC′≌△C′OD′.设OD′=a ,OC′=b ,则EA′=FC′=OD′=a ,ED′=FB′=OC′=b ,即点A′(a ,a+b ),点B′(a+b ,b ).∵点A′、B′在反比例函数y= 的图象上,2x ∴ ,解得: 或 (舍去).{a(a +b)=2b(a +b)=2{a =1b =1{a =−1b =−1在Rt △C′OD′中,∠C′OD′=90°,OD′=OC′=1,∴C′D′= = .OC '2+OD '22故答案为: .22)设直线A′B′解析式为y=k 1x+b 1 , 直线C′D′解析式为y=k 2+b 2 , ∵点A′(1,2),点B′(2,1),点C′(1,0),点D′(0,1),∴有 和 ,{2=k 1+b 11=2k 1+b 1{0=k 2+b 21=b 2解得: 和 .{k 1=−1b 1=3{k 2=−1b 2=1∴直线A′B′解析式为y=﹣x+3,直线C′D′解析式为y=﹣x+1.设点A 的坐标为(m ,2m ),点D 坐标为(0,n ).当A 点在直线C′D′上时,有2m=﹣m+1,解得:m= ,13此时点A 的坐标为( , ),1323∴k= × = ;132329当点D 在直线A′B′上时,有n=3,此时点A 的坐标为(3,6),∴k=3×6=18.综上可知:当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围为 ≤x≤18.29故答案为: ≤x≤18.29【分析】(1)过点A′作AE ⊥y 轴于点E ,过点B′⊥x 轴于点F ,由正方形的性质可得出“A′D′=D′C′,∠A′D′C′=90°”,通过证△A′ED′≌△D′OC′可得出“OD′=EA′,OC′=ED′”,设OD′=a ,OC′=b ,由此可表示出点A′的坐标,同理可表示出B′的坐标,利用反比例函数图象上点的坐标特征即可得出关于a 、b 的二元二次方程组,解方程组即可得出a 、b 值,再由勾股定理即可得出结论;(2)由(1)可知点A′、B′、C′、D′的坐标,利用待定系数法即可求出直线A′B′、C′D′的解析式,设点A 的坐标为(m ,2m ),点D 坐标为(0,n ),找出两正方形有重叠部分的临界点,由点在直线上,即可求出m 、n 的值,从而得出点A 的坐标,再由反比例函数图象上点的坐标特征即可得出k 的取值范围.本题考查了反比例函数图象上点的坐标特征、反比例函数的性质、正方形的性质以及全等三角形的判定及性质,解题的关键是:(1)求出线段OD′、OC′的长度;(2)找出两正方形有重叠部分的临界点.本题属于中档题,难度不大,但较繁琐,本题是填空题,降低了难度,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出反比例函数系数k 是关键.8.【答案】7【解析】【解答】如图,设D (x , ),6x ∵四边形ABCD 是正方形,∴AD=CD=BC ,∠ADC=∠DCB=90°,易得△AGD ≌△DHC ≌△CMB ,∴AG=DH=-x-1,∴DG=BM ,∴1- =-1-x- ,6x 6x x=-2,∴D (-2,-3),CH=DG=BM=1- =4,6−2∴点E 的纵坐标为-4,当y=-4时,x=- ,32∴E (- ,-4),32∴EH=2- = ,3212∴CE=CH-HE=4- = ,1272∴S △CEB = CE•BM= × ×4=7.121272故答案为:7.【分析】根据双曲线上点的坐标特点设出D 点的坐标,根据正方形的性质及同角的余角相等易得△AGD ≌△DHC ≌△CMB ,根据全等三角形的对应边相等得出AG=DH=-x-1,DG=BM ,从而得出关于x 的方程,求出D 点的坐标,CH,DG,BM 的长;进而得出AG,DH 的长,求出E 点的坐标,EH,CE 的长,根据三角形的面积公式即可得出答案。
中考数学复习----《正方形的性质》知识点总结与专项练习题(含答案解析)
![中考数学复习----《正方形的性质》知识点总结与专项练习题(含答案解析)](https://img.taocdn.com/s3/m/4a418036df80d4d8d15abe23482fb4daa58d1d14.png)
中考数学复习----《正方形的性质》知识点总结与专项练习题(含答案解析)知识点总结1.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形2.正方形的性质:①具有平行四边形的一切性质。
②具有矩形与菱形的一切性质。
所以正方形的四条边都相等,四个角都是直角。
对角线相互平分且相等,且垂直,且平分每一组对角,把正方形分成了四个全等的等腰直角三角形。
正方形既是中心对称图形,也是轴对称图形。
对角线交点是对称中心,对角线所在直线是对称轴,过每一组对边中点的直线也是对称轴。
练习题1.(2022•黄石)如图,正方形OABC的边长为,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(﹣2,0)B.(2,0)C.(0,2)D.(0,2)【分析】连接OB,由正方形的性质和勾股定理得OB=2,再由旋转的性质得B1在y轴正半轴上,且OB1=OB=2,即可得出结论.【解答】解:如图,连接OB,∵正方形OABC的边长为,∴OC=BC=,∠BCO=90°,∠BOC=45°,∴OB===2,∵将正方形OABC绕原点O顺时针旋转45°后点B旋转到B1的位置,∴B 1在y 轴正半轴上,且OB 1=OB =2,∴点B 1的坐标为(0,2),故选:D .2.(2022•广州)如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则MN 的长为( )A .26B .23C .2﹣3D .226− 【分析】连接EF ,由正方形ABCD 的面积为3,CE =1,可得DE =﹣1,tan ∠EBC ===,即得∠EBC =30°,又AF 平分∠ABE ,可得∠ABF =∠ABE =30°,故AF ==1,DF =AD ﹣AF =﹣1,可知EF =DE =×(﹣1)=﹣,而M ,N 分别是BE ,BF 的中点,即得MN =EF =. 【解答】解:连接EF ,如图:∵正方形ABCD 的面积为3,∴AB =BC =CD =AD =,∵CE =1,∴DE=﹣1,tan∠EBC===,∴∠EBC=30°,∴∠ABE=∠ABC﹣∠EBC=60°,∵AF平分∠ABE,∴∠ABF=∠ABE=30°,在Rt△ABF中,AF==1,∴DF=AD﹣AF=﹣1,∴DE=DF,△DEF是等腰直角三角形,∴EF=DE=×(﹣1)=﹣,∵M,N分别是BE,BF的中点,∴MN是△BEF的中位线,∴MN=EF=.故选:D.3.(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.16【分析】根据题意和题目中的数据,可以计算出小正方形的边长,然后即可得到小正方形的周长.【解答】解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.4.(2022•青岛)如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE 的长度为( )A .26B .6C .22D .23【分析】首先利用正方形的性质可以求出AC ,然后利用等边三角形的性质可求出OE .【解答】解:∵四边形ABCD 为正方形,AB =2,∴AC =2,∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =2,AO =,∴OE =×=. 故选:B .5.(2022•泰州)如图,正方形ABCD 的边长为2,E 为与点D 不重合的动点,以DE 为一边作正方形DEFG .设DE =d 1,点F 、G 与点C 的距离分别为d 2、d 3,则d 1+d 2+d 3的最小值为( )A .2B .2C .22D .4【分析】连接AE ,那么,AE =CG ,所以这三个d 的和就是AE +EF +FC ,所以大于等于AC ,故当AEFC 四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE ,∵四边形DEFG 是正方形,∴∠EDG =90°,EF =DE =DG ,∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∴∠ADE =∠CDG ,∴△ADE ≌△CDG (SAS ),∴AE =CG ,∴d 1+d 2+d 3=EF +CF +AE ,∴点A ,E ,F ,C 在同一条线上时,EF +CF +AE 最小,即d 1+d 2+d 3最小,连接AC ,∴d 1+d 2+d 3最小值为AC ,在Rt △ABC 中,AC =AB =2,∴d 1+d 2+d 3最小=AC =2, 故选:C .6.(2022•黔东南州)如图,在边长为2的等边三角形ABC 的外侧作正方形ABED ,过点D 作DF ⊥BC ,垂足为F ,则DF 的长为( )A .23+2B .5﹣33C .3﹣3D .3+1【分析】方法一:如图,延长DA 、BC 交于点G ,利用正方形性质和等边三角形性质可得:∠BAG =90°,AB =2,∠ABC =60°,运用解直角三角形可得AG =2,DG =2+2,再求得∠G =30°,根据直角三角形性质得出答案.方法二:过点E 作EG ⊥DF 于点G ,作EH ⊥BC 于点H ,利用解直角三角形可得EH =1,BH =,再证明△BEH ≌△DEG ,可得DG =BH =,即可求得答案.【解答】解:方法一:如图,延长DA、BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°﹣90°=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∴AG=AB•tan∠ABC=2×tan60°=2,∴DG=AD+AG=2+2,∵∠G=90°﹣60°=30°,DF⊥BC,∴DF=DG=×(2+2)=1+,故选D.方法二:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,则∠BHE=∠DGE=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∵四边形ABED是正方形,∴BE=DE=2,∠ABE=∠BED=90°,∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,∴EH=BE•sin∠EBH=2•sin30°=2×=1,BH=BE•cos∠EBH=2cos30°=,∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG,在△BEH和△DEG中,,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1,故选:D.7.(2022•随州)七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD中,BD为对角线,E,F分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.则在剪开之前,关于该图形,下列说法正确的有()①图中的三角形都是等腰直角三角形;②四边形MPEB是菱形;③四边形PFDM的面积占正方形ABCD面积的.A.只有①B.①②C.①③D.②③【分析】①利用正方形的性质和中位线的性质可以解决问题;②利用①的结论可以证明OM≠MP解决问题;③如图,过M作MG⊥BC于G,设AB=BC=x,利用正方形的性质与中位线的性质分别求出BE和MG即可判定是否正确.【解答】解:①如图,∵E,F分别为BC,CD的中点,∴EF为△CBD的中位线,∴EF∥BD,∵AP⊥EF,∴AP⊥BD,∵四边形ABCD为正方形,∴A、O、P、C在同一条直线上,∴△ABC、△ACD、△ABD、△BCD、△OAB、△OAD、△OBC、△OCD、△EFC都是等腰直角三角形,∵M,N分别为BO,DO的中点,∴MP∥BC,NF∥OC,∴△DNF、△OMP也是等腰直角三角形.故①正确;②根据①得OM=BM=PM,∴BM≠PM∴四边形MPEB不可能是菱形.故②错误;③∵E,F分别为BC,CD的中点,∴EF∥BD,EF=BD,∵四边形ABCD是正方形,且设AB=BC=x,∴BD=x,∵AP⊥EF,∴AP⊥BD,∴BO=OD,∴点P在AC上,∴PE=EF,∴PE=BM,∴四边形BMPE是平行四边形,∴BO=BD,∵M为BO的中点,∴BM=BD=x,∵E为BC的中点,∴BE=BC=x,过M作MG⊥BC于G,∴MG=BM=x,∴四边形BMPE的面积=BE•MG=x2,∴四边形BMPE的面积占正方形ABCD面积的.∵E、F是BC,CD的中点,∴S△CEF=S△CBD=S四边形ABCD,∴四边形PFDM的面积占正方形ABCD面积的(1﹣﹣﹣)=.故③正确.故选:C.8.(2022•宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积【分析】根据题意设PD=x,GH=y,则PH=x﹣y,根据矩形纸片和正方形纸片的周长相等,可得AP=x+y,先用面积差表示图中阴影部分的面积,并化简,再用字母分别表示出图形四个选项的面积,可得出正确的选项.【解答】解:设PD=x,GH=y,则PH=x﹣y,∵矩形纸片和正方形纸片的周长相等,∴2AP+2(x﹣y)=4x,∴AP=x+y,∵图中阴影部分的面积=S矩形ABCD﹣2△ADH﹣2S△AEB=(2x+y)(2x﹣y)﹣2ו(x﹣y)(2x+y)﹣2ו(2x﹣y)•x=4x2﹣y2﹣(2x2+xy﹣2xy﹣y2)﹣(2x2﹣xy)=4x2﹣y2﹣2x2+xy+y2﹣2x2+xy=2xy,A、正方形纸片的面积=x2,故A不符合题意;B、四边形EFGH的面积=y2,故B不符合题意;C、△BEF的面积=•EF•BQ=xy,故C符合题意;D、△AEH的面积=•EH•AM=y(x﹣y)=xy﹣y2,故D不符合题意;故选:C.9.(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°【分析】根据正方形的性质和全等三角形的判定和性质,可以得到∠ADF的度数,从而可以求得∠CDF的度数.【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.10.(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵四边形ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠F AO=20°.在△AOF和△BOE中,,∴△AOF ≌△BOE (SAS ).∴∠F AO =∠EBO =20°,∵OB =OC ,∴△OBC 是等腰直角三角形,∴∠OBC =∠OCB =45°,∴∠CBE =∠EBO +∠OBC =65°.故选:C .11.(2022•益阳)如图,将边长为3的正方形ABCD 沿其对角线AC 平移,使A 的对应点A ′满足AA ′=31AC ,则所得正方形与原正方形重叠部分的面积是 .【分析】由正方形边长为3,可求AC =3,则AA ′=AC =,由平移可得重叠部分是正方形,根据正方形的面积公式可求重叠部分面积.【解答】解:∵正方形ABCD 的边长为3,∴AC =3,∴AA ′=AC =, ∴A ′C =2,由题意可得重叠部分是正方形,且边长为2,∴S 重叠部分=4.故答案为:4.12.(2022•海南)如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE =AF ,∠EAF =30°,则∠AEB = °;若△AEF 的面积等于1,则AB 的值是 .【分析】利用“HL”先说明△ABE与△ADF全等,得结论∠BAE=∠DAF,再利用角的和差关系及三角形的内角和定理求出∠AEB;先利用三角形的面积求出AE,再利用直角三角形的边角间关系求出AB.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL).∴∠BAE=∠DAF.∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣30°)=30°.∴∠AEB=60°.故答案为:60.过点F作FG⊥AE,垂足为G.∵sin∠EAF=,∴FG=sin∠EAF×AF.∵S△AEF=×AE×FG=×AE×AF×sin∠EAF=1,∴×AE2×sin30°=1.即×AE2×=1.∴AE=2.在Rt△ABE中,∵cos∠BAE=,∴AB=cos30°×AE=×2=.故答案为:.13.(2022•广西)如图,在正方形ABCD中,AB=42,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【分析】作辅助线,构建全等三角形,先根据翻折的性质得△EGH'≌△EGH,所以△EGH′的周长=△EGH的周长,接下来计算△EGH的三边即可;证明△BME≌△FNE(ASA)和△BEO≌△EFP(AAS),得OE=PF=2,OB=EP=4,利用三角函数和勾股定理分别计算EG,GH和EH的长,相加可得结论.【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.14.(2022•无锡)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE 且分别交AE、BC于点H、G,则BG=.【分析】设CG=x,则BG=8﹣x,根据勾股定理可得AB2+BG2=CE2+CG2,可求得x 的值,进而求出BG的长.【解答】解:连接AG,EG,∵E是CD的中点,∴DE=CE=4,设CG=x,则BG=8﹣x,在Rt△ABG和Rt△GCE中,根据勾股定理,得AB2+BG2=CE2+CG2,即82+(8﹣x)2=42+x2,解得x=7,∴BG=BC﹣CG=8﹣7=1.故答案是:1.15.(2022•江西)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为.【分析】根据图形可得长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,然后利用勾股定理即可解决问题.【解答】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,则长方形的对角线长==.故答案为:.。
(呼和浩特专版)中考数学复习方案 第五单元 四边形 课时训练25 正方形及中点四边形试题-人教版初中
![(呼和浩特专版)中考数学复习方案 第五单元 四边形 课时训练25 正方形及中点四边形试题-人教版初中](https://img.taocdn.com/s3/m/ec62a59d0b1c59eef9c7b44b.png)
课时训练(二十五)正方形及中点四边形(限时:45分钟)|夯实基础|1.[2019·某某]顺次连接菱形四边中点得到的四边形是()A.平行四边形B.菱形C.矩形D.正方形2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图K25-1),现有下列四种选法,你认为其中错误的是()图K25-1A.①②B.②③C.①③D.②④3.[2018·某某]如图K25-2,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为25,DE=2,则AE的长为()图K25-2A.5B.√23C.7D.√294.[2019·某某]如图K25-3,边长为√2的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF 折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()图K25-3A .12B .√22 C .√3-1D .√2-15.[2019·某某]如图K25-4,在正方形ABCD 中,E 是BC 边上的一点,BE=4,EC=8,将正方形边的AB 沿AE 折叠到AF ,延长EF 交DC 于G.连接AG ,CF .现有如下四个结论:①∠EAG=45°;②FG=FC ;③FC ∥AG ;④S △GFC =14.其中结论正确的个数是()图K25-4A .1B .2C .3D .46.[2019·某某]如图K25-5,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD=4 cm,则CF 的长是 cm .图K25-57.[2019·某某]如图K25-6,已知点E 在正方形ABCD 的边AB 上,以BE 为边在正方形ABCD 外部作正方形BEFG ,连接DF ,M ,N 分别是DC ,DF 的中点,连接MN.若AB=7,BE=5,则MN=.图K25-68.[2019·某某]七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4√2的正方形ABCD 可以制作一套如图K25-7①所示的七巧板,现将这套七巧板在正方形EFGH 内拼成如图②所示的“拼搏兔”造型(其中点Q ,R 分别与图②中的点E ,G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是.图K25-79.[2019·某某]如图K25-8,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.图K25-810.[2018·]如图K25-9,在正方形ABCD中,E是边AB上的一个动点(不与点A,B重合),连接DE,点A关于直线DE 的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.图K25-9|拓展提升|11.[2019·某某]如图K25-10,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12.点P在正方形的边上,则满足PE+PF=9的点P的个数是 ()图K25-10A.0B.4C.6D.812.[2019·某某]如图K25-11,在正方形ABCD中,AB=6,M是对角线BD上的一个动点0<DM<12BD,连接AM,过点M作MN⊥AM交边BC于N.(1)如图K25-11①,求证:MA=MN;(2)如图②,连接AN,O为AN的中点,MO的延长线交边AB于点P,当S△AMNS△BCD =1318时,求AN和PM的长;(3)如图③,过点N作NH⊥BD于H,当AM=2√5时,求△HMN的面积.图K25-11【参考答案】1.C2.B[解析] ∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故选项A不符合题意;∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当③AC=BD 时,矩形满足该性质,无法得出四边形ABCD 是正方形,故选项B 符合题意; ∵四边形ABCD 是平行四边形,∴当①AB=BC 时,平行四边形ABCD 是菱形,当③AC=BD 时,菱形ABCD 是正方形,故选项C 不符合题意; ∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故选项D 不符合题意.故选B . 3.D4.D[解析]在正方形ABCD 中,OC=OD ,AC ⊥BD ,由折叠可知,DF ⊥EC ,CD=DE=√2, ∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3, 又∵OC=OD ,∠DOM=∠COE=90°,∴△ODM ≌△OCE (ASA),∴OM=OE ,在Rt △BCD 中,BD=√(√2)2+(√2)2=2,∴OD=1,∴OE=DE -OD=√2-1,∴OM=√2-1,故选D .5.B[解析]由题易知AD=AB=AF , 则Rt △ADG ≌Rt △AFG (HL). ∴GD=GF ,∠DAG=∠GAF .又∵∠F AE=∠EAB ,∴∠EAG=∠GAF +∠F AE=12(∠BAF +∠F AD )=12∠BAD=45°,∴①正确; 设GF=x ,则GD=GF=x.又∵BE=4,CE=8,∴DC=BC=12,EF=BE=4. ∴CG=12-x ,EG=4+x.在Rt △ECG 中,由勾股定理可得82+(12-x )2=(4+x )2,解得x=6. ∴FG=DG=CG=6.∵∠AGD=∠AGF ≠60°, ∴∠FGC ≠60°,∴△FGC 不是等边三角形,∴②错误; 连接DF ,如图,由①可知△AFG 和△ADG 是对称型全等三角形,∴FD ⊥AG. 又∵FG=DG=GC ,∴△DFC 为直角三角形,∴FD ⊥CF ,∴FC ∥AG , ∴③正确;∵EC=8,CG=6,∴S △ECG =12EC ·CG=24,又∵S △FCG S △ECG =FG EG =35,∴S △FCG =35S △ECG =725.∴④错误,故正确结论为①③,选B .6.(6-2√5)[解析]由勾股定理得AE=2√5cm,根据题意得GE=(2√5-4)cm,设BF=x cm,则FC=(4-x )cm,∴(2√5-4)2+x 2=22+(4-x )2,解得x=2√5-2, ∴CF=(6-2√5)cm .7.132[解析]连接CF ,∵正方形ABCD 和正方形BEFG 中,AB=7,BE=5, ∴GF=GB=5,BC=7,∴GC=GB +BC=5+7=12, ∴CF=√GF 2+GC 2=√52+122=13.∵M ,N 分别是DC ,DF 的中点,∴MN=12CF=132.故答案为132.8.4√5[解析]如图,连接EG ,作GM ⊥EN 交EN 的延长线于M.在Rt △EMG 中,∵GM=4,EM=2+2+4+4=12, ∴EG=√EM 2+GM 2=√122+42=4√10, ∴EH=√2=4√5,故答案为:4√5.9.解:(1)证明:∵四边形ABCD 是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD , ∵DE=CF ,∴AE=DF ,在△BAE 和△ADF 中,AB=AD ,∠BAE=∠ADF ,AE=DF ,∴△BAE ≌△ADF (SAS), ∴BE=AF .(2)由(1)得:△BAE ≌△ADF , ∴∠EBA=∠F AD ,∴∠GAE +∠AEG=90°,∴∠AGE=90°, ∵AB=4,DE=1,∴AE=3,∴BE=√AB 2+AE 2=5, 在Rt △ABE 中,12AB ·AE=12BE ·AG , ∴AG=3×45=125.10.解:(1)证明:连接DF ,如图.∵点A 关于直线DE 的对称点为F , ∴DA=DF ,∠DFE=∠A=90°. ∴∠DFG=90°.∵四边形ABCD 是正方形, ∴DC=DA=DF ,∠C=∠DFG=90°. 又∵DG=DG ,∴Rt △DGF ≌Rt △DGC (HL). ∴GF=GC.(2)如图,在AD 上取点P ,使AP=AE ,连接PE ,则BE=DP .由(1)可知∠1=∠2,∠3=∠4,从而由∠ADC=90°,得2∠2+2∠3=90°, ∴∠EDH=45°. 又∵EH ⊥DE ,∴△DEH是等腰直角三角形.∴DE=EH.∵∠1+∠AED=∠5+∠AED=90°,∴∠1=∠5.∴△DPE≌△EBH(SAS).∴PE=BH.∵△P AE是等腰直角三角形,从而PE=√2AE.∴BH=√2AE.11.D[解析] 如图,作点F关于CD的对称点F',连接PF',PF,则PE+PF=EF',根据两点之间线段最短可知此时PE+PF的值最小.连接FF',交CD于点G,过点E作EH⊥FF',垂足为点H,易知△EHF,△CFG都是等腰直角三角EF=2√2,形,∴EH=FH=FG=F'G=√22∴EF'=√EH2+F'H2=√(2√2)2+(6√2)2=4√5<9.根据正方形的对称性可知正方形ABCD的每条边上都有一点P使得PE+PF值最小.连接DE,DF,易求得DE+DF=4√10>9,CE+CF=12>9,故点P位于点B,D时,PE+PF>9,点P 位于点A,C时,PE+PF>9,∴该正方形每条边上都有2个点使得PE+PF=9,共计8个点.12.解:(1)证明:如图,过点M作MF⊥AB于F,作MG⊥BC于G,∴∠MFB=∠BGM=90°.∵正方形ABCD,∴∠DAB=90°,AD=AB,∴∠ABD=45°.同理可证:∠DBC=45°,∴∠ABD=∠DBC.∵MF⊥AB,MG⊥BC,∴MF=MG.∵正方形ABCD,∴∠ABN=90°,∵∠MFB=∠FBG=∠BGM=90°,∴∠FMG=90°,∴∠FMN+∠NMG=90°,∵MN⊥AM,∴∠NMA=90°, ∴∠AMF+∠FMN=90°,∴∠AMF=∠NMG.又∵∠AFM=∠NGM=90°,∴△AMF≌△NMG,∴MA=MN.(2)在Rt△AMN中,∵∠AMN=90°,MA=MN,∴∠MAN=45°.在Rt△BCD中,∵∠DBC=45°, ∴∠MAN=∠DBC,∴Rt△AMN∽Rt△BCD,∴S△AMNS△BCD =ANBD2.∵在Rt△ABD中,AB=AD=6,∴BD=6√2.∵S△AMNS△BCD =1318,∴2(6√2)2=1318,∴AN=2√13.∴在Rt△ABN中,BN=√AN2-AB2=4.∵在Rt△AMN中,MA=MN,O是AN的中点, ∴OM=AO=ON=12AN=√13,OM⊥AN,∴PM⊥AN,∴∠AOP=90°,∴∠AOP=∠ABN=90°.又∵∠P AO=∠NAB,∴△AOP∽△ABN.∴OPBN =AO AB,∴OP4=√136,∴OP=2√133.∴PM=PO+OM=2√133+√13=53√13.(3)如图,过点A作AQ⊥BD于Q,∴∠AQM=90°,∴∠QAM +∠AMQ=90°. ∵MN ⊥AM , ∴∠AMN=90°. ∴∠AMQ +∠HMN=90°, ∴∠QAM=∠HMN. ∵NH ⊥BD ,∴∠NHM=90°, ∴∠NHM=∠AQM.∵MA=MN ,∴△AQM ≌△MHN , ∴AQ=MH.在Rt △ABD 中,AB=AD=6,∴BD=6√2. ∵AQ ⊥BD ,∴AQ=12BD=3√2,∴MH=3√2. ∵AM=2√5,∴MN=2√5.在Rt △MNH 中,HN=√MN 2-HM 2=√2. ∴S △HMN =12HM ·HN=12×√2×3√2=3. ∴△HMN 的面积是3.。
人教版八年级数学下册正方形知识点及同步练习、含答案
![人教版八年级数学下册正方形知识点及同步练习、含答案](https://img.taocdn.com/s3/m/d83586700a1c59eef8c75fbfc77da26925c5967d.png)
学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。
人教版初中数学八年级下册正方形2知识点及同步练习、含答案
![人教版初中数学八年级下册正方形2知识点及同步练习、含答案](https://img.taocdn.com/s3/m/ce78e3d93b3567ec102d8ab2.png)
人教版初中数学八年级下册正方形2知识点及同步练习、含答案学科:数学教学内容:正方形【学习目标】1.探索并掌握正方形的概念及特征,并学会识别正方形.2.能正确理解平行四边形、矩形、菱形、正方形的区别与联系.【基础知识概述】1.正方形定义:(1)有一组邻边相等并且有—个角是直角的平行四边形叫做正方形.(2)正方形既是有一组邻边相等的矩形,又是有—个角是直角的菱形.(3)既是矩形又是菱形的四边形是正方形.2.正方形的特征:正方形具有四边形、平行四边形、矩形、菱形的一切特征.(1)边——四边相等、邻边垂直、对边平行.(2)角——四角都是直角.(3)对角线——①相等;②互相垂直平分;③每条对角线平分一组对角.(4)是轴对称图形,有4条对称轴.3.正方形的识别方法:(1)一组邻边相等的矩形是正方形.(2)—个角是直角的菱形是正方形.4.正方形与矩形、菱形、平行四边形的关系:矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图12-2-13.5.正方形的面积:正方形的面积等于边长的平方或者等于两条对角线乘积的一半.【例题精讲】例1如图12-2-14,已知过正方形ABCD对角线BD上一点P,作PE⊥BC于E,作PF⊥CD于F.试说明AP=EF.分析:由PE⊥BC,PF⊥CD知,四边形PECF为矩形,故有EF=PC,这时只需证AP =CP,由正方形对角线互相垂直平分知AP=CP.解:连结AC、PC,∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.注意:①在正方形中,常利用对角线互相垂直平分证明线段相等.②无论是正方形还是矩形经常通过连结对角线证题,这样可以使分散条件集中.思考:由上述条件是否可以得到AP⊥EF.提示:可以,延长AP交EF于N,由PE∥AB,有∠NPE=∠BAN.又∠BAN=∠BCP,而∠BCP=∠PFE,故∠NPE=∠PFE,而∠PFE+∠PEF=90°,所以∠NPE+∠PEF=90°,则AP⊥EF.例2如图12-2-15,△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,试说明四边形BEDF是正方形.解:∵∠ABC=90°,DE⊥BC,∴DE∥AB,同理,DF∥BC,∴BEDF是平行四边形.∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF.又∵∠ABC=90°,BEDF是平行四边形,∴四边形BEDF是正方形.思考:还有没有其他方法?提示:(有一种方法可以证四边形DFBE为矩形,然后证BE=DE,可得.另一种方法,可证四边形DFBE为菱形,后证一个角为90°可得)注意:灵活选择正方形的识别方法.例3 如图12-2-16所示,四边形ABCD是正方形,△ADE是等边三角形,求∠BEC 的大小.分析:等边三角形和正方形都能提供大量的线段相等和角相等,常能产生一些等腰三角形,十分便于计算.在本题中,必须注意等边三角形与正方形不同的位置关系.在(1)图中,△ABE和△DCE都是等腰三角形,顶角都是150°,可得底角∠AEB与∠DEC都是15°,则∠BEC为30°.而在(2)图中,等边三角形在正方形内部,△ABE和△DCE是等腰三角形,顶角是30°,可得底角∠AEB和∠DEC为75°,再利用周角可求得∠BEC=150°.解:(1)当等边△ADE在正方形ABCD外部时,AB=AE,∠BAE=90°+60°=150°,所以∠AEB=15°.同理可得∠DEC=15°,则∠BEC=60°-15°-15°=30°.(2)当等边△ADE在正方形ABCD内部时,AB=AE,∠BAE=90°-60°=30°,所以∠AEB=75°.同理可得∠DEC=75°,则∠BEC=360°-75°-75°-60°=150°.【中考考点】会用正方形的性质来解决有关问题,并能用正方形的定义来判断四边形是否为正方形.【命题方向】本节出题比较灵活,填空题、选择题、证明题均可出现.正方形是特殊的平行四边形,考查正方形的内容,实质上是对平行四边形知识的综合,涉及正方形知识的题型较多,多以证明题形式出现.【常见错误分析】已知如图12-2-18,△ABC中,∠C=90°,分别以AC和BC为边向外作正方形ACFH 和正方形BCED,HM⊥BA的延长线于M,DK⊥AB的延长线于K.试说明AB=DK+HM.错解:延长DK到S,使KS=HM,连结SB.∵∠2=∠3,∠2+∠4=90°,∴∠3+∠4=90°.在△ABC和△SDB中,∵∠ACB=∠SBD=90°,BC=BD,∠2=90°-∠4=∠5∴△ABC与△SDB重合,∴AB=SD=SK+DK,即AB=HM+DK.分析指导:由于S、B、C三点共线未经证明,所以∠2=∠3的理由是不充足的,因此又犯了思维不严密的错误.正解:如图12-2-18,延长DK交CB延长线于S,下面证KS=MH.在△ACB和△SBD中,∵BD=BC,∠SBD=∠ACB=90°,又∠2=∠3=∠5,∴△ACB与△SBD重合,∴AB=DS,BS=AC=AH.在△BKS和△AMH中,∵∠1=∠2=∠3,∠AMH=∠SKB=90°,BS=AH,∴△BKS与△AMH重合,∴KS=HM,∴AB=DK+HM.【学习方法指导】正方形是最特殊的平行四边形,它既是一组邻边相等的矩形,又是有一个角为直角的菱形,所以它的性质最多,易混淆.故最好把平行四边形、矩形、菱形、正方形列表写出它们的定义、性质、判定,这样更容易记忆和区分.【同步达纲练习】一、填空题1.正方形既是________相等的矩形,又是有一个角是________的菱形.2.正方形ABCD中,对角线AC=24,P是AB边上一点,则点P到对角线AC、BD 的距离和为________.3.已知对角线AC、BD相交于O,(1)若AB=BC,则是________;(2)若AC=BD,则是________;(3)若∠BCD=90°,是________;(4)若OA=OB,则是________;(5)若AB=BC,且AC=BD,则是________.4.在边长为2的正方形中有一点P ,那么这个点P 到四边的距离之和是________. 5.如图12-2-19,正方形ABCD 的面积等于2cm 9,正方形DEFG 的面积等于2cm 4,则阴影部分的面积S =________2cm .6.如图12-2-20,下面由火柴棒拼出的一系列图形中,第n 个图形由n 个正方形组成,通过观察可以发现:(1)第4个图形中火柴棒的根数是________; (2)第n 个图形中火柴棒的根数是________.7.已知E 、F 为正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若∠EAF =50°,则∠CME +∠CNF =________.二、解答题8.如图12-2-21所示,四边形ABCD 是正方形,延长BC 到点E ,使CE =AC ,连结AE ,交CD 于F ,求∠AFC 的度数.9.如图12-2-22,已知正方形ABCD 中,BE ∥AC ,AE =AC ,试说明CE =CF .10.如图12-2-23,正方形ABCD中,AC与BD相交于O,E、F分别是DB、BD延长线上的点,且BE=DF,试说明∠E=∠F.11.如图12-2-24所示,点G是边长为4的正方形ABCD边上的一点,矩形DEFG的边EF过点A,已知DG=5,求FC的值.参考答案【同步达纲练习】1.邻边,直角 2.123.(1)菱形 (2)矩形 (3)矩形 (4)矩形 (5)正方形 4.45.27 6.(1)13 (2)3n +1 7.100°8.在正方形ABCD 中,∠ACB =45°(正方形的每条对角线平分一组对角).已知AC =CE ,所以∠CAE =∠E ,所以∠CAE +∠E =45°,所以∠E =22.5°.因为∠DCE =90°,∠AFC =∠DCE +∠E =90°+22.5°=112.5°.9.过点E 作EG ⊥AC 于G ,连结BD , ∵EG ⊥AC ,BD ⊥AC , ∴EG ∥BD . 又AC ∥BE ,∴四边形EGOB 是矩形, ∴EG =BO . ∵BD =AC ,∴AE 21AC 21EG ==,∴∠EAG =30°.∵△ACE 是等腰三角形,∴︒=︒-︒=∠75)30180(21AEC .∵AC 是正方形ABCD 的对角线, ∴∠ACB =45°.∵∠CFE =∠EAC +∠FCA =30°+45°=75°, 即∠CFE =∠CEF , ∴CF =CE .10.提示:易知OF =OE ,且AC ⊥BD 于O , ∴AC 为EF 的中垂线, ∴EC =CF , ∴∠E =∠F .11.连结AG ,过点A 作AH ⊥GD ,过点G 作GP ⊥AD ,垂足分别为H 、P ,易知AH=FG ,PG =AB ,所以依题意有PG AD 21AH DG 21S AGD ⨯⨯=⨯⨯=∆,即4421AH 521⨯⨯=⨯⨯,所以AH =3.2,即FG =3.2.。
中考专题复习数学几何正方形解答题专题突破练习(3)
![中考专题复习数学几何正方形解答题专题突破练习(3)](https://img.taocdn.com/s3/m/9beaee4ae55c3b3567ec102de2bd960590c6d9d4.png)
【全国通用】初中几何正方形解答题专题突破练习(3)1.如图,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接,AE CE .()1求证:AE CE =;()2如图,点P 是边CD 上的一点,且PE BD ⊥于,E 连接,BP O 为BP 的中点,连接EO .若30PBC ∠=︒,求POE ∠的度数;()3在()2的条件下,若OE =CE 的长.2.如图,已知正方形ABCD 的边长为2,点F 是CD 的中点,E 是边BC 上的一点,连接AE ,EF ,若AEF EAD ∠=∠,求AB 与BE 的比值.3.如图,正方形ABCD 的边长为1,点E 是AD 边上的动点,从点A 沿AD 向点D 运动,以BE 为边,在BE 的上方作正方形BEFG ,连接CG . (1)求证:AEB CGB △≌△;(2)若设AE=x ,DH=y ,当x 取何值时,y 有最大值?并求出这个最大值; (3)连接BH ,当点E 运动到AD 的何位置时有BEH BAE ∽?4.如图,在正方形ABCD中,E是BC的中点,连接AE,过点B作射线BM交CD于点F,交AE于点O,且BF AE⊥.(1)求证:BF AE=;(2)连接OD,猜想OD与AB的数量关系,并证明.5.如图1,已知点A(-1,0),B(0,-2),C为双曲线kyx=上一点,连结AC与y轴交于点E,且E为AC的中点,其坐标为(0,2).(1)求k的值;(2)以线段AB为对角线作正方形AFBH(如图2),点T是AF边上一动点,M是HT的中点,MN丄HT 交AB于N,当T在AF上运动时,∠TNH的大小是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.6.同学们:八年级下册第9章我们学习了一种新的图形变换旋转,图形旋转过程中蕴含着众多数学规律,以图形旋转为依托构建的解题方法是解决各类几何问题的常用方法.(1)(问题提出)如图∠,在正方形ABCD中,∠MAN=45°,点M、N分别在边BC、CD上.求证:MN=BM+DN.证明思路如下:△绕点A按顺时针方向旋转90°得到∠ABE,再证明E、B、M三点在一条直线上.第一步:如图∠,将ADN△≌△.第二步:证明AEM ANM请你按照证明思路写出完整..的证明过程.(2)(初步思考)△和BCE.如图∠,四边形ABCD和CEFG为正方形,连接DG、BE,得到DCG下列关于这两个三角形的结论:∠周长相等;∠面积相等;∠∠CBE=∠CDG.其中所有正确结论的序号是.(3)(深入研究)如图∠,分别以□ABCD的四条边为边向外作正方形,连接EF,GH,IJ,KL.若□ABCD的面积为8,则图中阴影部分(四个三角形)的面积之和为.7.已知:如图,在正方形ABCD中,点E、F在对角线AC上,且AE=CF.(1)求证:DE ∠BF(2)若四边形DEBF 的面积为8,AE,则正方形边长为 .8.如图,在正方形ABCD 中,点G 在边BC 上(不与点B 、C 重合).连结AG ,作DE∠AG 于点E ,BF∠AG 于点F ,BGAD=K . ∠求证:Rt∠BFG∠Rt∠DEA ;∠连结BE 、DF ,设∠EDF =α,∠EBF =β,求证:tan α=Ktan β.∠设正方形ABCD 的边长为1,线段AG 与对角线BD 交于点H ,∠AHD 和四边形CDHG 的面积为S 1和S 2,求21S S 的最大值.9.如图 ,在边长为1的正方形ABCD 中,点E 是边AD 上的一动点(与点,A D 不重合),CE 交BD 于点F ,连结AF .(1)求证:DAF DCF ≅;(2)当AE 的长度是多少时,AEF 是等腰三角形?(3)当点E 运动到AD 的中点时,连BE 结交AF 于点M ,连结CM , 求证:∠BE AF ⊥;∠CB CM =.10.如图,在正方形ABCD 中,E 为CD 边上一点,以DE 为边向外作正方形DEFG ,将正方形DEFG 绕点D 顺时针旋转,连接AG .(1)如图1,若AD =DE =2,当150ADG ∠︒=时,求AG 的长;(2)如图2,正方形DEFG 绕点D 旋转的过程中,取AG 的中点M ,连接DM 、CE ,猜想:DM 和CE 之间有何等量关系?并利用图2加以证明.11.如图,P 是正方形ABCD 对角线BD 上一点,,PE DC PF BC ⊥⊥,点,E F 分别是垂足. (1)求证:AP PC =;(2)若60,BAP PD ∠=︒=,求PC 的长.12.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM 与BD 的关系是:________.(2)如果将正方形BCMN 绕点C 顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB 、DM ,若AC=4,BC=2,求AB 2+DM 2的值. 13.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.14.点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作正方形ACDE和BCFG,连接AF、BD.(1)如图∠,AF与BD的数量关系和位置关系分别为;(2)将正方形BCFG绕着点C顺时针旋转α角(0°<α<360°),∠如图∠,第(1)问的结论是否仍然成立?请说明理由.∠若AC=4,BC=22,当正方形BCFG绕着点C顺时针旋转到点A、B、F三点共线时,求DB的长度.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF∠DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG(1)如图,求证:矩形DEFG是正方形;(2)若AB=,CE=2,求CG的长;16.以Rt ABC ∆的两边AB 、AC 为边,向外作正方形ABDE 和正方形ACFG ,连接EG ,过点A 作AM BC ⊥于M ,延长MA 交EG 于点N .(1)如图1,若90BAC ∠=︒,AB AC =,易证:EN GN =;(2)如图2,90BAC ∠=︒;如图3,90BAC ∠≠︒,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由. 17.已知正方形ABCD ,点E 在射线BD 上.(1)如图1,若点E 在线段BD 上,F 在线段AD 上,且AE BF ⊥,垂足为H ,连接CE . ∠求证:HF AFAH AB=; ∠求证:tan DEECD BE∠=; (2)如图2,点E 在BD 的延长线上,以AE 为斜边,作Rt AFE ,90AFE ∠=︒,AF EF =,若4=AD ,直接写出DF 的最小值.18.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且CE=CF . (1)求证:BE=DF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?19.如图,正方形ABCD 中,点E 是边BC 上一点,EF ∠AC 于点F ,点P 是AE 的中点.(1)求证:BP∠FP;(2)连接DF,求证:AE=DF.20.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF与DE相交于点M,且∠BAF=∠ADE.(1)如图1,求证:AF∠DE;(2)如图2,AC与BD相交于点O,AC交DE于点G,BD交AF于点H,连接GH,试探究直线GH与AB的位置关系,并说明理由;(3)在(1)(2)的基础上,若AF平分∠BAC,且BDE的面积为,求正方形ABCD的面积.AC BD相交于点O,E是OC的中点,连接BE,过点21.如图,正方形ABCD的边长为,A作AM BE⊥于点M,交BD于点F.=;(1)求证:AF BE(2)求点E到BC边的距离.22.在正方形ABCD中,连接AC,点E在线段AD上,连接BE交AC于M,过点M作FM∠BE交CD于F.(1)如图∠,求证:∠ABE+∠CMF=∠ACD;(2)如图∠,求证:BM=MF;(3)如图∠,连接BF,若点E为AD的中点,AB=6,求BF的长.23.如图,正方形ABCD的边长为6.E,F分别是射线AB,AD上的点(不与点A重合),且EC CF⊥,M为EF的中点.P为线段AD上一点,1AP=,连结PM.=;(1)求证:CE CF△为直角三角形时,求AE的长;(2)当PMF△的面积为________.(在横线上直接写(3)记BC边的中点为N,连结MN,若MN=PMF出答案)=,24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE CF 连接AE、DF,AE的延长线交DF于点M.(1)求证:AE DF=;⊥.(2)求证:AM DF25.定义:有一组邻边垂直且对角线相等的四边形为垂等四边形.(1)写出一个已学的特殊平行四边形中是垂等四边形的是 .(2)如图1,在3×3方格纸中,A ,B ,C 在格点上,请画出两个符合条件的不全等的垂等四边形,使AC ,BD 是对角线,点D 在格点上.(3)如图2,在正方形ABCD 中,点E ,F ,G 分别在AD ,AB ,BC 上,AE =AF =CG 且∠DGC =∠DEG ,求证:四边形DEFG 是垂等四边形.(4)如图3,已知Rt∠ABC ,∠B =90°,∠C =30°,AB =2,以AC 为边在AC 的右上方作等腰三角形,使四边形ABCD 是垂等四边形,请直接写出四边形ABCD 的面积.26.如图1所示,边长为4的正方形ABCD 与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.(问题发现)如图1所示,AE 与BF 的数量关系为________;(类比探究)如图2所示,将正方形CFEG 绕点C 旋转,旋转角为()030αα<<︒,请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;(拓展延伸)若点F 为BC 的中点,且在正方形CFEG 的旋转过程中,有点A 、F 、G 在一条直线上,直接写出此时线段AG 的长度为________27.如图,P 为正方形ABCD 的边BC 上的一动点(P 不与B ,C 重合),连接AP ,过点B 作BQ AP ⊥交CD 于点Q ,将BCQ ∆沿着BQ 所在直线翻折得到∆BQE ,延长QE 交AB 的延长线于点M .(1)探求AP 与BQ 的数量关系(2)若3AB =,2BP PC =,求QM 的长28.如图,正方形 ABCD 的边长为 4,E 是 BC 的中点,点 P 在射线 AD 上,过点 P 作 PF∠AE ,垂足为 F .(1)求证:PFA ABE ∽△△;(2)当点 P 在射线 AD 上运动时,设 PA=x ,是否存在实数 x ,使以 P ,F ,E 为顶点的三角形也与ABE △相似?若存在,求出 x 的值;若不存在,说明理由.29.如图,在正方形ABCD 中,E 是边DC 上的一点(与,C 不重合)连接AE ,将ADE 沿AE 所在的直线折叠得到AFE △,延长EF 交BC 于G ,作GH AG ⊥,与AE 的延长线交于点H ,连接CH . (1)求证:AG GH =(2)求证:CH 平分DCM ∠.30.如图,在边长为a 的正方形ABCD 中,作∠ACD 的平分线交AD 于F ,过F 作直线AC 的垂线交AC 于P ,交CD 的延长线于Q ,又过P 作AD 的平行线与直线CF 交于点E ,连接DE ,AE ,PD ,PB .。
中考总复习数学(人教版 全国通用)基础讲练 第19讲 矩形、菱形和正方形(含答案点拨)
![中考总复习数学(人教版 全国通用)基础讲练 第19讲 矩形、菱形和正方形(含答案点拨)](https://img.taocdn.com/s3/m/bc2a75caa48da0116c175f0e7cd184254b351b47.png)
第19讲矩形、菱形和正方形考纲要求命题趋势1.掌握平行四边形与矩形、菱形、正方形之间的关系.2.掌握矩形、菱形、正方形的概念、判定和性质.3.灵活运用特殊平行四边形的判定与性质进行有关的计算和证明.特殊的平行四边形是中考的重点内容之一,常以选择题、填空题、计算题、证明题的形式出现,也常与折叠、平移和旋转问题相结合,出现在探索性、开放性的题目中.知识梳理一、矩形的性质与判定1.定义有一个角是直角的____________是矩形.2.性质(1)矩形的四个角都是________.(2)矩形的对角线________.(3)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴;它的对称中心是__________.3.判定(1)有三个角是________的四边形是矩形.(2)对角线________的平行四边形是矩形.二、菱形的性质与判定1.定义一组邻边相等的__________叫做菱形.2.性质(1)菱形的四条边都________.(2)菱形的对角线__________,并且每一条对角线平分一组对角.3.判定(1)对角线互相垂直的________是菱形.(2)四条边都相等的________是菱形.三、正方形的性质与判定1.定义一组邻边相等的________叫做正方形.2.性质(1)正方形的四条边都________,四个角都是______.(2)正方形的对角线______,且互相________;每条对角线平分一组对角.(3)正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.3.判定(1)一组邻边相等并且有一个角是直角的__________是正方形.(2)一组邻边相等的________是正方形.(3)对角线互相垂直的________是正方形.(4)有一个角是直角的________是正方形.(5)对角线相等的________是正方形.自主测试1.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=5,则AD 的长是( )A .52B .5 3C .5D .102.在菱形ABCD 中,AB =5 cm ,则此菱形的周长为( ) A .5 cm B .15 cm C .20 cm D .25 cm3.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .C .32D .24.下列命题中是真命题的是( )A .对角线互相垂直且相等的四边形是正方形B .有两边和一角对应相等的两个三角形全等C .两条对角线相等的平行四边形是矩形D .两边相等的平行四边形是菱形5.如图,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°.求证:BE =CF .考点一、矩形的性质与判定【例1】如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE ,AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.分析:判定一个四边形是矩形,可以先判定四边形是平行四边形,再找一个内角是直角或说明对角线相等.解:当点O 运动到AC 的中点(或OA =OC )时, 四边形AECF 是矩形.证明:∵CE平分∠BCA,∴∠1=∠2.又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO.同理,FO=CO,∴EO=FO.又OA=OC,∴四边形AECF是平行四边形.又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4.又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,即∠ECF=90°.∴四边形AECF是矩形.方法总结矩形的定义既可以作为性质,也可以作为判定.矩形的性质是求证线段或角相等时常用的知识点.证明一个四边形是矩形的方法:(1)先证明它是平行四边形,再证明它有一个角是直角;(2)先证明它是平行四边形,再证明它的对角线相等;(3)证明有三个内角为90°.触类旁通1 如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD 于点F,连接AE.求证:(1)BF=DF;(2)AE∥BD.考点二、菱形的性质与判定【例2】如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为83,求AC的长.分析:(1)先证明四边形OCED是平行四边形,然后证明它的一组邻边相等;(2)因为△DOC是等边三角形,根据菱形的面积计算公式可以求菱形的边长,从而求出AC的长.解:(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形.(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.,在Rt△DFC中,tan 60°=DFFC∴DF=FC·tan 60°=3x.由已知菱形OCED的面积为83得OC·DF=83,即2x·3x=8 3.解得x=2.∴AC=4×2=8.方法总结菱形的定义既可作为性质,也可作为判定.证明一个四边形是菱形的一般方法:(1)四边相等;(2)首先证明是平行四边形,然后证明有一组邻边相等;(3)对角线互相垂直平分;(4)对角线垂直的平行四边形.触类旁通2 如图,在ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC于点E和点F,求证:四边形BEDF是菱形.考点三、正方形的性质与判定【例3】如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm,HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为__________cm2.分析:根据题目的条件可先证△AEH,△BFE,△CGF,△DHG四个三角形全等,证得四边形EFGH的四边相等,然后由全等再证一个角是直角.解:(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.∵HA=EB=FC=GD,∴AE=BF=CG=DH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EF=FG=GH=HE.∴四边形EFGH是菱形.由△DHG≌△AEH,知∠DHG=∠AEH.∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°.∴∠GHE=90°.∴菱形EFGH是正方形.(2)1方法总结证明一个四边形是正方形可从以下几个方面考虑:(1)“平行四边形”+“一组邻边相等”+“一个角为直角”(定义法);(2)“矩形”+“一组邻边相等”;(3)“矩形”+“对角线互相垂直”;(4)“菱形”+“一个角为直角”;(5)“菱形”+“对角线-相等”.1.(四川成都)如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC2.(山东滨州)若菱形的周长为8 cm,高为1 cm,则菱形两邻角的度数比为()A.3:1 B.4:1 C.5:1 D.6:13.(江苏泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有() A.1个 B.2个 C.3个 D.4个4.(江苏苏州)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4B.6C.8D.105.(贵州铜仁)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A,B两点,则线段AB的最小值是__________.6.(山东临沂)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形?1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补2.如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD3.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.∠D=90° B.AB=CD C.AD=BC D.BC=CD4.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.4 3 B.3 3C.4 2 D.85.如图,两条笔直的公路l1,l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5千米,村庄C到公路l1的距离为4千米,则村庄C到公路l2的距离是()(第5题图)A.3千米 B.4千米 C.5千米 D.6千米6.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是__________.(第6题图)7.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于E,F,那么阴影部分的面积是矩形ABCD面积的__________.(第7题图)8.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别是AB,BC边上的中点,MP+NP的最小值是__________.(第8题图)9.如图(1)所示,在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中“M是AB的中点”改为“M是AB上任意一点”,其余条件不变,如图(2)所示,则结论“MD=MN”还成立吗?若成立,给出证明;若不成立,请说明理由.参考答案导学必备知识自主测试1.B2.C3.C∵设AG=A′G=x,∴x2+22=(4-x)2,解得x=32,故选C.4.C5.证明:如题图,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°.∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°.∴∠EAB=∠FBC.∴△ABE≌△BCF.∴BE=CF.探究考点方法触类旁通1.证明:(1)在矩形ABCD中,AD∥BC,AD=BC,∴∠1=∠2.∵∠2=∠3,∴∠1=∠3,∴BF=DF.(2)∵AD=BC=BE,BF=DF,∴AF=EF,∴∠AEB=∠EAF.∵∠AFE=∠BFD,∠1=∠3,∴∠AEB=∠3,∴AE∥BD.触类旁通2.证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∵EF⊥BD,∴四边形BEDF是菱形.品鉴经典考题1.B因为菱形的对边平行且相等,所以A正确;对角线互相平分且垂直,但不一定相等,所以C,D正确,B错误.2.C根据已知可得到菱形的边长为2 cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.3.B①一组对边平行且一组对角相等的四边形是平行四边形是真命题;②对角线互相垂直且相等的四边形是正方形是假命题;③顺次连接矩形四边中点得到的四边形是菱形是真命题;④正五边形既是轴对称图形又是中心对称图形是假命题.故选B.4.C∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形.∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为4OC=4×2=8.故选C. 5.2 如图:∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD .∵AO ⊥OB ,∴∠AOB =90°,∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°,∴∠COA =∠DOB .∵在△COA 和△DOB 中,有⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠DOB ,∴△COA ≌△DOB ,∴OA =OB .∵∠AOB =90°,∴△AOB 是等腰直角三角形, 由勾股定理得:AB =OA 2+OB 2=2OA ,要使AB 最小,只需OA 取最小值即可.根据垂线段最短,OA ⊥CD 时,O A 最小.此时OA =12CF =1,即AB = 2.6.解:(1)证明:∵AF =DC ,∴AF +FC =DC +FC ,即AC =DF . 又∵∠A =∠D ,AB =DE ,∴△ABC ≌△DEF . ∴BC =EF ,∠ACB =∠DFE .∴BC ∥EF .∴四边形BCEF 是平行四边形.(2)若四边形BCEF 是菱形,连接BE ,交CF 于点G ,∴BE ⊥CF ,FG =CG .∵∠ABC =90°,AB =4,BC =3, ∴AC =AB 2+BC 2 =42+32=5.∵∠BGC =∠ABC =90°,∠ACB =∠BCG , ∴△ABC ∽△BGC .∴BC AC =CG BC ,即35=CG 3.∴CG =95.∴FC =2CG =185. ∴AF =AC -FC =5-185=75.因此,当AF =75时,四边形BCEF 是菱形.研习预测试题1.A 2.B 3.D4.A ∵点E 是CD 的中点,∴DE =CE =12CD =3.∵四边形ABCD 是矩形,∴AB =CD =6. 由折叠性质可知,AE =AB =6,BF =EF , 在Rt △ADE 中,AD =AE 2-DE 2=33,∴BC =3 3.设CF =x ,BF =EF =33-x , 在Rt △CEF 中,(33-x )2=x 2+32, ∴x = 3.∴BF =2 3.在Rt △ABF 中,AF =4 3.5.B 6.22.5° 7.148.1 在DC 上找N 点关于AC 的对称点N ′,连接MN ′,则MN ′的长即为MP +NP 的最小值,此时MN ′=AD =1.9.分析:(1)证MD =MN ,可证它们所在的三角形全等,易知MN 在钝角△MBN 中,而MD 在直角△AMD 中,显然需添加辅助线构造全等三角形,由△MBN 的特征想到可在AD 上取AD 的中点F ,构造△MDF ≌△NMB ;(2)可参照第(1)题的方法.(1)证明:取AD 的中点F ,连接MF . ∵M 是AB 的中点,F 是AD 的中点,∴MB =AM =12AB ,DF =AF =12AD .∵AB =AD ,∴AF =AM =DF =MB ,∴∠1=45°, ∴∠DFM =135°.∵BN 平分∠CBE ,∴∠CBN =45°. ∴∠MBN =135°.∴∠MBN =∠DFM . ∵∠DMN =90°,∴∠NMB +∠DMA =90°. ∵∠A =90°,∴∠ADM +∠DMA =90°. ∴∠NMB =∠ADM .∴△DFM ≌△MBN .∴MD =MN . (2)解:结论MD =MN 仍成立.证明:在AD 上取点F ,使AF =AM ,连接MF .由(1)中证法可得:DF =BM ,∠DFM =∠MBN ,∠FDM =∠BMN ,∴△DFM≌△MBN,∴MD=MN.11 / 11。
2021年中考复习九年级数学分类专题:正方形的判定与性质(二)(含答案)
![2021年中考复习九年级数学分类专题:正方形的判定与性质(二)(含答案)](https://img.taocdn.com/s3/m/f84d73fbbe1e650e53ea990e.png)
2021年九年级数学中考复习分类专题:正方形的判定与性质(二)一.选择题1.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②2.如图,两把完全一样的直尺叠放在﹣起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是()A.①②B.③④C.①②④D.①②③④3.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形()A.可能不是平行四边形B.一定是菱形C.一定是正方形D.一定是矩形4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断5.学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;丙同学说:判定四边形的对角线相等,并且互相垂直平分;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.上述四名同学的说法中,正确的是()A.甲、乙B.甲、丙C.乙、丙、丁D.甲、乙、丙、丁6.如图,正方形ABCD的边长为2,E为AB边的中点,点F在BC边上,点B关于直线EF的对称点记为B',连接B'D,B'E,B'F.当点F在BC边上移动使得四边形BEB'F成为正方形时,B'D的长为()A.B.C.2D.37.如图,四边形EFGH是由矩形ABCD的外角平分线围成的,则四边形EFGH的形状是()A.矩形(正方形除外)B.菱形(正方形除外)C.平行四边形(矩形、菱形、正方形除外)D.正方形8.如图,点P的坐标为(4,4),点A,B分别在x轴,y轴的正半轴上运动,且∠APB =90°,连接AB,OP,下列结论:①PA=PB;②若OP与AB的交点恰好是AB的中点,则四边形OAPB是正方形;③四边形OAPB的面积与周长为定值;④AB>OP.其中正确的结论是()A.①②B.①②③C.①③④D.①②④二.填空题9.如图,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,DE=10,则AD的长为.10.在△ABC中,已知∠ABC=45°,BD⊥AC于D,CD=2,AD=3,则BD的长为.11.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,∠EDF是直角,AE =CF,则多边形ABCFDE的面积是.12.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是(填写图形的形状)(如图),它的一边长是.13.如图,在△ABC中,AC=BC,∠C=90°,D为AB的中点,F是AC上任意一点,四边形DEFG(按逆时针方向)是正方形,过点G作GN∥AB交AC于点N,若AB=6,CF=AN,则正方形DEFG的边长为.14.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为;所作的第n 个四边形的周长为.15.如图,已知正方形ABCD的边长为,点E,F,G,H分别在正方形的四条边上,且AE=DF=CG=BH,则四边形EFGH的形状为,它的面积的最小值为.三.解答题16.如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.17.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF﹣BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.18.已知:在四边形ABCD中,AD∥BC,直线AD与BC间的距离是4厘米(1)如图,若∠ABC的平分线BE交CD的延长线于E,且BC=CE=5厘米,求四边形ABCD的面积.(2)若∠ABC=∠DCB,AD+BC=8厘米,连接AC、BD,求证:AC⊥BD.19.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD 的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.20.已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC 与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?参考答案一.选择题1.解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.2.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形直尺的宽度相等,∴DE=DF,又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.当∠DAB=90°时,这个四边形是正方形,∴这个四边形一定是轴对称图形,故选:C.3.解:这个四边形是矩形,理由如下:∵对角线AC、BD交于点O,OA=OB=OC=OD,∴四边形ABCD是平行四边形,又∵OA+OC=OD+OB,∴AC=BD,∴四边形ABCD是矩形.故选:D.4.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.5.解:甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;正确;乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;正确;丙同学说:判定四边形的对角线相等,并且互相垂直平分;正确;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等,正确;故选:D.6.解:如图,连接BB',连接BD,∵四边形ABCD是正方形,∴BD=AB=2,BD平分∠ABC,∵E为AB边的中点,∴AE=BE=1,∵四边形BEB'F是正方形,∴BB'=BE=,BB'平分∠ABC,∴点B,点B',点D三点共线,∴B'D=BD﹣BB'=,故选:A.7.证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FBC=∠FCB=45°,∴△ADH≌△BCF(AAS).∴AH=BF.又∵∠EAB=∠EBA,∴AE=BE.∴AE+AH=EB+BF,即EH=EF.∴矩形EFGH是正方形.故选:D.8.解:过P作PM⊥y轴于M,PN⊥x轴于N,AB与OP交于点C,如图所示:∵P(4,4),∴PN=PM=4,∵x轴⊥y轴,∴∠MON=∠PNO=∠PMO=90°,∴∠MPN=360°﹣90°﹣90°﹣90°=90°,则四边形MONP是正方形,∴OM=ON=PN=PM=4,∵∠MPN=∠APB=90°,∴∠MPB=∠NPA,在△MPB和△NPA中,,∴△MPB≌△NPA(ASA),∴PA=PB,故①正确;∵OP与AB的交点恰好是AB的中点,∴BC=AC,在Rt△APB中,PC是斜边AB的中线,∴PC=BC,在Rt△AOB中,OC是斜边AB的中线,∴OC=BC,∴BC=AC=PC=OC,∴四边形OAPB是矩形,∵PA=PB,∴四边形OAPB是正方形,故②正确;∵△MPB≌△NPA,∴四边形OAPB的面积=四边形BONP的面积+△PNA的面积=四边形BONP的面积+△PMB的面积=正方形PMON的面积=4×4=16,∵△MPB≌△NPA,∴BM=AN,∴OA+OB=ON+AN+OB=ON+OM=4+4=8,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误;∵OP与AB的交点恰好是AB的中点,则四边形OAPB是正方形,中AB=OP,故④错误;故选:A.二.填空题(共7小题)9.解:过C作CG⊥AD于G,并延长DG,使GF=BE,在直角梯形ABCD中∵AD∥BC,∠A=∠B=90°,∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=12,∵∠DCE=45°,∵CE=CF,∠DCF=∠DCE,DC=DC,∴△ECD≌△FCD(SAS).∴ED=DF=10,∴DE=DF+DG=BE+GD,设AD=x,则DG=12﹣x,∴AE=14﹣x,在Rt△AED中,∵DE2=AD2+AE2,∴102=(14﹣x)2+x2∴x=8,x=6即AD=8或6.故答案为:8或6.10.解:分别以BA和BC为对称轴在△ABC的外部作△BDA和△BDC的对称图形△BEA和△BFC,如图,由题意可得:△ABD≌△ABE,△CBD≌△CBF∴∠DBA=∠EBA,∠DBC=∠FBC,又∵∠ABC=45°∴∠EBF=90°,又∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠BDC=90°,又∵BE=BD,BF=BD,∴BE=BF,∴四边形BEGF是正方形,设BD=x,则BE=EG=GF=x,∵CD=2,AD=3,∴AE=2,CF=3∴AG=x﹣3,CG=x﹣2,在Rt△,AGC中,AG2+CG2=AC2,(x﹣3)2+(x﹣2)2=(2+3)2,x1=6,x2=﹣1(舍去),即BD=6,故答案为:6.11.解:运用拼图的方法,构造一个正方形,如图所示:大正方形的边长为12+8=20,小正方形的边长ED+DF=13,∴多边形ABCFDE的面积=(大正方形的面积﹣小正方形面积)=(202﹣132)=57.75.故答案为:57.75.12.解:如图,作AB平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B点,∴△ABC为直角边长为8cm的等腰直角三角形,∴AB=AC=8,∴阴影正方形的边长=AB=8 cm.故答案为:正方形,cm.13.解:取AC的中点M,连接CD、MD、DF、MG,如图所示:∵在△ABC中,AC=BC,∠C=90°,D为AB的中点,∴AC=AB=3,∠A=45°,CD⊥AB,CD=AB=AD=BD,∴△ACD是等腰直角三角形,∵M是AC的中点,∴DM=AC=AM=CM,∴△CDM是等腰直角三角形,∴∠CDM=∠DCM=45°,CD=DM,∴=,∵CF=AN,∴MN=MF,∵四边形DEFG是正方形,∴DG=FG,∠DGF=90°,∴DF=DG,∠GDF=45°,∴=,∠GDF=∠CDM,∴∠GDM=∠FDC,∵==,∴△DFC∽△DGM,∴==,∠DMG=∠DCF=45°,∴CF=MG,∵DM⊥AC,∴∠GMN=90°﹣45°=45°,∵GN∥AB,∴∠GNM=∠A=45°=∠GMN,∴GM=GN,∠MGN=90°,∴△GMN是等腰直角三角形,∴MN=MG=CF,∴AN=MN=MF=CF=AC=,∴MD═AM=2AN=,∴DF===,∴FG=DG=DF=;故答案为:.14.解:根据三角形中位线定理得,第一个四边形的边长为=,周长为2,第二个四边形的周长为=4,第三个四边形的周长是:4()3=,第n个四边形的周长为4()n,故答案为,4()n.15.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=∠C=∠D.∵AE=DF=CG=BH,∴AH=ED=FG=BG.在△AEH、△DFE、△CGF、△BHG中,,∴△AEH≌△DFE≌△CGF≌△BHG.∴HE=EF=FG=HG.∴四边形EFGH是菱形.∵△AEH≌△DFE,∴∠AEH=∠DFE.∵∠AHE+∠AEH=90°,∴∠DEF+∠AEH=90°.∴∠HEF=90°.∴EHGF为正方形.设AE=x,则AH=(﹣x).∵正方形EFHG的面积=HE2=AE2+AH2=x2+(﹣x)2=2x2﹣2x+5,∴当x=﹣=时,正方形的面积有最小值.∴正方形EFHG的面积的最小值=()2+(﹣)2=.故答案为:正方形;.三.解答题(共5小题)16.(1)证明:在△ABC中,∵E、F分别是AB、BC的中点,∴EF=同理FG=,GH=,HE=在梯形ABCD中,∵AB=DC,∴AC=BD,∴EF=FG=GH=HE∴四边形EFGH为菱形.设AC与EH交于点M在△ABD中,∵E、H分别是AB、AD的中点,∴EH∥BD,同理GH∥AC又∵AC⊥BD,∴∠BOC=90°.∴∠EHG=∠EMC=∠BOC=90°∴四边形EFGH为正方形.(2)解:连接EG,在梯形ABCD中,∵E、G分别是AB、DC的中点,∴EG=(AD+BC)=(1+3)=2,在Rt△HEG中,EG2=EH2+HG2,4=2EH2,EH2=2,则EH=.即四边形EFGH的边长为.17.(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°,∴∠ADE+∠DAE=90°,又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF,在△AED和△BFA中,,∴△AED≌△BFA,∴AE=BF,∴AF﹣AE=EF,即AF﹣BF=EF;(2)证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形,∵△AED≌△BFA,同理可得:△AED≌△DHC,∴△AED≌△BFA≌△DHC,∴DH=AE=BF,AF=DE=CH,∴DE﹣DH=AF﹣AE,∴EF=EH,∴矩形EFGH是正方形;(3)解:∵AB=2,BP=1,∴AP=,∵S△ABP=×BF×AP=×BF×=1×2×,∴BF=,∵∠BAF=∠PAB,∠AFB=∠ABP=90°,∴△ABF∽△APB,∴==,∴AF=,∴EF=AF﹣AE=﹣=,∴四边形EFGH的面积为:()2=.18.(1)解:如图1,∵∠ABC的平分线BE交CD的延长线于E,∴∠1=∠2,∵BC=CE=5厘米,∴∠2=∠E,∴∠1=∠E,∴AB∥EC,又∵AD∥BC,∴四边形ABCD是平行四边形,∴四边形ABCD的面积为:底乘以高=BC×4=5×4=20(平方厘米);(2)证明:如图2,点D作DE∥AC交BC延长线于E,作DF⊥BC,∵AD∥BC,AC∥DE,∴四边形ACED是平行四边形,∴AD=CE,AC=DE,则BE=BC+CE=AD+BC=8cm,∵∠ABC=∠DCB,AD∥BC,∴四边形ABCD为等腰梯形,∴AC=BD=DE,∴△BDE是等腰三角形,∵DF⊥BE,∴DF也是△BDE的中线,又∵BE=2DF,∴△BDE是直角三角形,则∠BOC=∠BDE=90°,故AC⊥BD.19.(1)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,∵DG=AH=2,∴Rt△HDG≌△AEH,∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(2)解:过F作FM⊥CD,垂足为M,连接GE ∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM,在Rt△AHE和Rt△GFM中,∵,∴Rt△AHE≌Rt△GFM,∴MF=2,∵DG=x,∴CG=6﹣x.∴S△FCG=CG•FM=6﹣x.20.(1)答:AB=AH,证明:延长CB至E使BE=DN,连接AE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE=180°﹣∠ABC=90°又∵AB=AD,∵在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴∠1=∠2,AE=AN,∵∠BAD=90°,∠MAN=45°,∴∠2+∠3=90°﹣∠MAN=45°,∴∠1+∠3=45°,即∠EAM=45°,∵在△EAM和△NAM中,,∴△EAM≌△NAM(SAS),又∵EM和NM是对应边,∴AB=AH(全等三角形对应边上的高相等);(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,∵AD是△ABC的高,∴∠ADB=∠ADC=90°∴∠E=∠F=90°,又∵∠BAC=45°∴∠EAF=90°延长EB、FC交于点G,则四边形AEGF是矩形,又∵AE=AD=AF∴四边形AEGF是正方形,由(1)、(2)知:EB=DB=2,FC=DC=3,设AD=x,则EG=AE=AD=FG=x,∴BG=x﹣2;CG=x﹣3;BC=2+3=5,在Rt△BGC中,(x﹣2)2+(x﹣3)2=52解得x1=6,x2=﹣1,故AD的长为6.。
中考数学复习----《正方形的判定》知识点总结与专项练习题(含答案解析)
![中考数学复习----《正方形的判定》知识点总结与专项练习题(含答案解析)](https://img.taocdn.com/s3/m/f984f70c366baf1ffc4ffe4733687e21af45ff2d.png)
中考数学复习----《正方形的判定》知识点总结与专项练习题(含答案解析)知识点总结1.直接判定:四条边都相等,四个角都是直角的四边形是正方形。
2.利用平行四边形判定:一组邻边相等且有一个角是直角的平行四边形是正方形。
(定义判定)3.利用菱形与矩形判定:①有一个角是直角的菱形是正方形。
②对角线相等的菱形是正方形。
③邻边相等的矩形是正方形。
④对角线相互垂直的矩形是正方形。
练习题1、(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1B.2C.3D.4【分析】根据题意作出合适的辅助线,然后逐一分析即可.【解答】解:连接AC,MN,且令AC,MN,BD相交于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,只要OM=ON,那么四边形MENF就是平行四边形,∵点E,F是BD上的动点,∴存在无数个平行四边形MENF,故①正确;只要MN=EF,OM=ON,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,OM=ON,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,OM=ON,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C.2、(2022•滨州)下列命题,其中是真命题的是()A.对角线互相垂直的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相平分的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】根据,平行四边形,矩形,菱形,正方形的判定方法一一判断即可.【解答】解:A、对角线互相垂直的四边形是平行四边形,是假命题,本选项不符合题意;B、有一个角是直角的四边形是矩形,是假命题,本选项不符合题意;C、对角线互相平分的四边形是菱形,是假命题,本选项不符合题意;D、对角线互相垂直的矩形是正方形,是真命题,本选项符合题意.故选:D.3、(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC =150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有(填上所有正确结论的序号).【分析】①利用SAS证明△EFB≌△ACB,得出EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;根据两边分别相等的四边形是平行四边形得出四边形ADFE是平行四边形,即可判断结论①正确;②当∠BAC=150°时,求出∠EAD=90°,根据有一个角是90°的平行四边形是矩形即可判断结论②正确;③先证明AE=AD,根据一组邻边相等的平行四边形是菱形即可判断结论③正确;④根据正方形的判定:既是菱形,又是矩形的四边形是正方形即可判断结论④正确.【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.。
中考数学专题复习——正方形(详细答案)
![中考数学专题复习——正方形(详细答案)](https://img.taocdn.com/s3/m/0d7964e1cf2f0066f5335a8102d276a2002960e5.png)
中考数学专题复习——正方形(详细答案) 中考数学复专题——正方形一.选择题(共4小题)1.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()。
A。
等于B。
等于1C。
等于3/4D。
随点E位置的变化而变化2.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB,EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()。
A。
1/8B。
1/4C。
1/2D。
3/43.下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A。
1个B。
2个C。
3个D。
4个4.下列说法中,正确的是()A。
两条直线被第三条直线所截,内错角相等B。
对角线相等的平行四边形是矩形C。
相等的角是对顶角D。
角平分线上的点到角两边的距离相等二.填空题(共7小题)5.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是60°。
6.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△___由△DAM平移得到。
若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°。
其中正确结论的序号为①和②。
7.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为9.8.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(3,-2)。
9.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2.1.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上。
人教版初中数学中考经典好题难题(有答案)
![人教版初中数学中考经典好题难题(有答案)](https://img.taocdn.com/s3/m/3fe406b52e3f5727a4e962ce.png)
数学难题一.填空题(共2小题)1.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D 的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD交于点O n,则BO1= _________,BO n=_________.2.如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线C n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为_________;抛物线C8的顶点坐标为_________.二.解答题(共28小题)3.已知:关于x的一元二次方程kx2+2x+2﹣k=0(k≥1).(1)求证:方程总有两个实数根;(2)当k取哪些整数时,方程的两个实数根均为整数.4.已知:关于x的方程kx2+(2k﹣3)x+k﹣3=0.(1)求证:方程总有实数根;(2)当k取哪些整数时,关于x的方程kx2+(2k﹣3)x+k﹣3=0的两个实数根均为负整数?5.在平面直角坐标系中,将直线l:沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线C1:沿x轴平移,得到一条新抛物线C2与y轴交于点D,与直线AB交于点E、点F.(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线C2的解析式;(3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,一条直线m(m不过△AFH 的顶点)与AF交于点M,与FH交于点N,如果直线m既平分△AFH的面积,又平分△AFH的周长,求直线m的解析式.6.已知:关于x的一元二次方程﹣x2+(m+4)x﹣4m=0,其中0<m<4.(1)求此方程的两个实数根(用含m的代数式表示);(2)设抛物线y=﹣x2+(m+4)x﹣4m与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,﹣2),且AD•BD=10,求抛物线的解析式;(3)已知点E(a,y1)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.7.点P为抛物线y=x2﹣2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)当m=2,点P横坐标为4时,求Q点的坐标;(2)设点Q(a,b),用含m、b的代数式表示a;(3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m 时,求m的值.8.关于x的一元二次方程x2﹣4x+c=0有实数根,且c为正整数.(1)求c的值;(2)若此方程的两根均为整数,在平面直角坐标系xOy中,抛物线y=x2﹣4x+c与x轴交于A、B两点(A在B左侧),与y轴交于点C.点P为对称轴上一点,且四边形OBPC为直角梯形,求PC的长;(3)将(2)中得到的抛物线沿水平方向平移,设顶点D的坐标为(m,n),当抛物线与(2)中的直角梯形OBPC只有两个交点,且一个交点在PC边上时,直接写出m的取值范围.9.如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FD2=FB•FC.10.如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.11.已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m﹣2)x ﹣1向右平移3个单位长度,求平移后的解析式.12.已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.(1)如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平行四边形,则∠ABC=_________;(2)如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4.求BD的长;(3)如图3,若∠ACD为锐角,作AH⊥BC于H.当BD2=4AH2+BC2时,∠DAC=2∠ABC是否成立?若不成立,请说明你的理由;若成立,证明你的结论.13.已知关于x的方程mx2+(3﹣2m)x+(m﹣3)=0,其中m>0.(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,其中x1>x2,若,求y与m的函数关系式;(3)在(2)的条件下,请根据函数图象,直接写出使不等式y≤﹣m成立的m的取值范围.14.已知:关于x的一元二次方程x2+(n﹣2m)x+m2﹣mn=0①(1)求证:方程①有两个实数根;(2)若m﹣n﹣1=0,求证:方程①有一个实数根为1;(3)在(2)的条件下,设方程①的另一个根为a.当x=2时,关于m的函数y1=nx+am与y2=x2+a(n﹣2m)x+m2﹣mn的图象交于点A、B(点A在点B的左侧),平行于y轴的直线L与y1、y2的图象分别交于点C、D.当L沿AB由点A平移到点B时,求线段CD的最大值.15.如图,已知抛物线y=(3﹣m)x2+2(m﹣3)x+4m﹣m2的顶点A在双曲线y=上,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.(1)确定直线AB的解析式;(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值;(3)过点B作x轴的平行线与双曲线交于点G,点M在直线BG上,且到抛物线的对称轴的距离为6.设点N在直线BG上,请直接写出使得∠AMB+∠ANB=45°的点N的坐标.16.如图,AB为⊙O的直径,AB=4,点C在⊙O上,CF⊥OC,且CF=BF.(1)证明BF是⊙O的切线;(2)设AC与BF的延长线交于点M,若MC=6,求∠MCF的大小.17.如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为p.(1)若D、E、F分别是AB、BC、AC边上的中点,则p=_________;(2)若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是_________.小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将△ABC以AC边为轴翻折一次得△AB1C,再将△AB1C以B1C为轴翻折一次得△A1B1C,如图2所示.则由轴对称的性质可知,DF+FE1+E1D2=p,根据两点之间线段最短,可得p≥DD2.老师听了后说:“你的想法很好,但DD2的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了".请参考他们的想法,写出你的答案.18.已知关于x的方程x2﹣(m﹣3)x+m﹣4=0.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m的取值范围;(3)设抛物线y=x2﹣(m﹣3)x+m﹣4与y轴交于点M,若抛物线与x轴的一个交点关于直线y=﹣x的对称点恰好是点M,求m的值.19.在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连接BD,F为BD中点.(1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1.设CF=kEF,则k=_________;(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE﹣DE=2CF; (3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.20.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是_________;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是_________.21.已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2﹣bx+kc(c≠0)的图象与x轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k的值;(2)求代数式的值;(3)求证:关于x的一元二次方程ax2﹣bx+c=0 ②必有两个不相等的实数根.22.已知抛物线经过点A(0,4)、B(1,4)、C(3,2),与x轴正半轴交于点D.(1)求此抛物线的解析式及点D的坐标;(2)在x轴上求一点E,使得△BCE是以BC为底边的等腰三角形;(3)在(2)的条件下,过线段ED上动点P作直线PF∥BC,与BE、CE分别交于点F、G,将△EFG沿FG翻折得到△E′FG.设P(x,0),△E′FG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围.23.已知二次函数y=ax2+bx+c的图象分别经过点(0,3),(3,0),(﹣2,﹣5).求:(1)求这个二次函数的解析式;(2)求这个二次函数的最值;(3)若设这个二次函数图象与x轴交于点C,D(点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ACB是等腰三角形,求出点B的坐标.24.根据所给的图形解答下列问题:(1)如图1,△ABC中,AB=AC,∠BAC=90°,AD⊥BC于D,把△ABD绕点A旋转,并拼接成一个与△ABC面积相等的正方形,请你在图中完成这个作图;(2)如图2,△ABC中,AB=AC,∠BAC=90°,请你设计一种与(1)不同的方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;(3)设计一种方法把图3中的矩形ABCD拆分并拼接为一个与其面积相等的正方形,请你依据此矩形画出正形,并根据你所画的图形,证明正方形面积等于矩形ABCD的面积的结论.25.例.如图①,平面直角坐标系xOy中有点B(2,3)和C(5,4),求△OBC的面积.解:过点B作BD⊥x轴于D,过点C作CE⊥x轴于E.依题意,可得S△OBC=S梯形BDEC+S△OBD﹣S△OCE==×(3+4)×(5﹣2)+×2×3﹣×5×4=3。
2020-2021学年九年级中考专题复习:正方形及四边形综合问题(含答案)
![2020-2021学年九年级中考专题复习:正方形及四边形综合问题(含答案)](https://img.taocdn.com/s3/m/446f93cc964bcf84b9d57bf3.png)
2020-2021中考专题复习:正方形及四边形综合问题一、选择题1. 小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次2. 如图,在四边形ABCD中,AB=CD,AC,BD是对角线,E,F,G,H分别是AD,BD,BC,AC的中点,连接EF,FG,GH,HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形3. 如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为()A. 2B. 2 2C. 2+1D. 22+14. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是()A. 3B. 4C. 5D. 65. 如图正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于点O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°6. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.7. (2020·东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N,下列结论:①△APE≌△AME;②PM+PN=AC;③222PE PF PO;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A. ①②③④B. ①②③⑤C. ①②③④⑤D. ③④⑤BCDEFMNO8. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118C.3+36 D.3+16二、填空题9. 正方形有条对称轴.10. 如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且 20AE AF AF ⊥=,,则BE 的长为FE D CBA11. 如图,E ,F是正方形ABCD 的对角线AC 上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .12. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,请添加一个条件:________,使得▱ABCD 为正方形.13. 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .14. 将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为A 5A 4A 3A 2A 115. 如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为PNME DC BA16. 如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm .三、解答题17. 如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A18. 如图,AB 是☉O 的直径,DO ⊥AB于点O ,连接DA 交☉O 于点C ,过点C 作☉O 的切线交DO 于点E ,连接BC 交DO 于点F . (1)求证:CE=EF .(2)连接AF 并延长,交☉O 于点G.填空:①当∠D 的度数为 时,四边形ECFG 为菱形; ②当∠D 的度数为 时,四边形ECOG 为正方形.19. 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMD CBA20. 如图,已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图①,点E在CD上,点G在BC的延长线上,判断DM,EM的数量关系与位置关系,请直接写出结论.(2)如图②,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论.21. 如图1,在正方形ABCD中,E、F、G、H分别为边AB、BC、CD、DA上的点,HA EB FC GD===,连接EG、FH,交点为O.⑴如图2,连接EF FG GH HE,,,,试判断四边形EFGH的形状,并证明你的结论;⑵将正方形ABCD沿线段EG、HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,1cmHA EB FC GD====,则图3中阴影部分的面积为_________2cm.图3图1图2HD G CFE BAOHGFED CBA22. 已知正方形ABCD 中,点E 在BC 上,连接AE ,过点B 作BF ⊥AE 于点G ,交CD 于点F .(1)如图①,连接AF ,若AB =4,BE =1,求证:△BCF ≌△ABE ;(2)如图②,连接BD ,交AE 于点N ,连接AC ,分别交BD 、BF 于点O 、M ,连接GO ,求证:GO 平分∠AGF ;(3)如图③,在第(2)问的条件下,连接CG ,若CG ⊥GO ,AG =nCG ,求n 的值.2020-2021中考专题复习:正方形及四边形综合问题-答案一、选择题 1. 【答案】B2. 【答案】C[解析]∵点E ,F ,G ,H 分别是四边形ABCD 中AD ,BD ,BC ,CA 的中点,∴EF=GH=AB ,EH=FG=CD ,∵AB=CD ,∴EF=FG=GH=EH ,∴四边形EFGH 是菱形,故选C .3. 【答案】B【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF =(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2.4. 【答案】B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.5. 【答案】A [解析]连接BF ,∵E 为AB 中点,FE ⊥AB ,∴EF 垂直平分AB ,∴AF=BF .∵AF=2AE , ∴AF=AB ,∴AF=BF=AB ,∴△ABF 为等边三角形,∴∠FBA=60°,BF=BC ,∴∠FCB=∠BFC=15°,∵四边形ABCD 为正方形,∴∠DBC=45°,根据三角形的外角等于与它不相邻的两个内角的和得∠DOC=15°+45°=60°.6. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,22(10)x x +-2222(10)210(10)x x x x x +-=-+-,解得:x =154.故选B.7. 【答案】B【解析】本题考查了垂线、平行线和正方形的性质,全等三角形的判定与性质、等腰直角三角形的判断和性质、相似三角形的判定和性质,是常见问题的综合,灵活的运用所学知识是解答本题的关键.综合应用垂线、平行线和正方形的性质,全等三角形的判定与性质、等腰直角三角形的判断和性质、相似三角形的判定和性质等知识,逐个判断5个结论的正确性,得出结论. ①∵正方形ABCD ,∴∠APE =∠AME =45°,∵PM ⊥AE ,∴∠AEP =∠AEM =90°,∵AE =AE ,∴△APE ≌△AME (ASA ); ②过点N 作NQ ⊥AC 于点Q ,则四边形PNQE 是矩形,∴PN =EQ ,∵正方形ABCD ,∴∠P AE =∠MAE =45°,∵PM ⊥AE ,∴∠PEA =45°,∴∠P AE =∠APE ,PE =NQ ,∴△APE 等腰直角三角形,∴AE =PE ,同理得:△NQC 等腰直角三角形,∴NQ =CQ ,∵△APE ≌△AME ,∴PE =ME ,∴PE =ME = NQ =CQ ,∴PM =AE +CQ ,∴PM +PN =AE +CQ +EQ =AC ,即PM +PN =AC 成立; ③∵正方形ABCD ,∴AC ⊥BD ,∴∠EOF 是直角,∵过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,∴∠PEO 和∠PFO 是直角,∴四边形PFOE 是矩形,∴PF =OE ,在R t △PEO 中,有PE 2+OE 2=PO 2,∴PE 2+PF 2=PO 2,即PE 2+PF 2=PO 2成立;④△BNF 是等腰直角三角形,点P 不在AB 的中点时,△POF 不是等腰直角三角形,所以△POF 与△BNF 不一定相似,即△POF ∽△BNF 不一定成立; ⑤∵△AMP 是等腰直角三角形,△PMN ∽△AMP ,∴△PMN 是等腰直角三角形,∵∠MPN =90°,∴PM =PN ,∵AP 2PM ,BP 2PN ,∴AP =BP ,∴点P 是AB 的中点,又∵O 为正方形的对称中点,∴点O 在M 、N 两点的连线上.综上,①②③⑤成立,即正确的结论有4个,答案选B .8. 【答案】⎝ ⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16. 二、填空题 9. 【答案】4 10. 【答案】1211. 【答案】8[解析]如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD=OB=OA=OC ,∵AE=CF=2,∴OA -AE=OC -CF ,即OE=OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF , ∴四边形BEDF 为菱形,∴DE=DF=BE=BF , ∵AC=BD=8,OE=OF==2,∴由勾股定理得:DE===2,∴四边形BEDF 的周长=4DE=4×2=8,故答案为:8.12. 【答案】∠BAD =90°(答案不唯一)【解析】∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,菱形ABCD 为正方形.故可添加条件:∠BAD =90°.13. 【答案】125(如图1)或52(如图2). 图2图1ABMECFDE FMDCBA14. 【答案】22cm 4n15. 2【解析】作CQ BD ⊥于Q ,则PM PN CQ +=,又CQ BD BC CD ⋅=⋅216. 【答案】233或33 【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎨⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AFcos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm .解图三、解答题17. 【答案】连接PC.∵ABCD为正方形∴A、C关于BD对称∴PA PC=∵PE BC⊥,PF CD⊥,BC CD⊥∴PECF为矩形∴PC EF=∴PA EF=.FEPDCBA18. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF .(2)∵AB 是☉O 的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE +∠ECF=90°,∠D +∠EFC=90°.由(1)得∠ECF=∠CFE ,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF .即点E 为线段DF 的中点.①四边形ECFG 为菱形时,CF=CE.∵CE=EF ,∴CE=CF=EF .∴△CEF 为等边三角形.∴∠CFE=60°.∴∠D=30°.故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形. ∴∠CEF=45°.∵∠CEF=∠D +∠DCE ,∴∠D=∠DCE=22.5°.故填22.5°.19. 【答案】MN BM DN =+,延长CD 至'M ,使'M D BM =,证明''ADM ABM AM N AMN ∆∆∆∆≌,≌,测得1''452MAN M AN M AM ∠=∠=∠=︒20. 【答案】解:(1)结论:DM ⊥EM ,DM=EM.[解析]延长EM 交AD 于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.(2)结论不变.DM⊥EM,DM=EM.证明:延长EM交DA的延长线于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.21. 【答案】(1)四边形EFGH是正方形.证明:四边形ABCD是正方形∴90===∠=∠=∠=∠=︒,AB BC CD DAA B C D∵HA EB FC GD === ∴AE BF CG DH === ∴AEH BFE CGF DHG ∆∆∆∆≌≌≌∴EF FG GH HE ===∴四边形EFGH 是菱形.由DHG AEH ∆∆≌知DHG AEH ∠=∠∵90AEH AHE ∠+∠=︒∴90DHG AHE ∠+∠=︒∴90GHE ∠=︒∴四边形EFGH 是正方形.(2)122. 【答案】(1)证明:∵四边形ABCD 是正方形,∴BC =CD =AD =AB =4,∠ABE =∠C =∠D =90°, ∴∠ABG +∠CBF =90°,∵BF ⊥AE ,∴∠ABG +∠BAE =90°,∴∠BAE =∠CBF ,在△BCF 和△ABE 中,⎩⎨⎧∠C =∠ABEBC =AB∠CBF =∠BAE, ∴△BCF ≌△ABE (ASA);(2)证明:∵AC ⊥BD ,BF ⊥AE ,∴∠AOB =∠AGB =∠AGF =90°,∴A 、B 、G 、O 四点共圆,∴∠AGO =∠ABO =45°,∴∠FGO =90°-45°=45°=∠AGO ,∴GO 平分∠AGF ;(3)解:如解图,连接EF ,解图∵CG ⊥GO ,∴∠OGC =90°,∵∠EGF =∠BCD =90°,∴∠EGF +∠BCD =180°,∴C 、E 、G 、F 四点共圆,∴∠EFC =∠EGC =180°-90°-45°=45°,∴△CEF是等腰直角三角形,∴CE=CF,同(1)得△BCF ≌△ABE,∴CF=BE,∴CE=BE=12BC,∴OA=12AC=22BC=2CE,由(2)得A、B、G、O四点共圆,∴∠BOG=∠BAE,∵∠GEC=90°+∠BAE,∠GOA=90°+∠BOG,∴∠GOA=∠GEC,又∵∠EGC=∠AGO=45°,∴△AOG∽△CEG,∴AGCG=OACE=2,∴AG= 2 CG,∴n= 2 .。
中考数学压轴题练习 正方形问题(含解析)-人教版初中九年级全册数学试题
![中考数学压轴题练习 正方形问题(含解析)-人教版初中九年级全册数学试题](https://img.taocdn.com/s3/m/8ba238ac77232f60dccca1cc.png)
正方形问题1 如图,在边长为6的正方形ABCD 的两侧作正方形BEFG 和正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,连接MF 交线段AD 于点P ,连接NP ,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y .(1)求y 关于x 的函数关系式及自变量x 的取值X 围; (2)当△NPF 的面积为32时,求x 的值;(3)以P 为圆心,AP 为半径的圆能否与以G 为圆心,GF 为半径的圆相切?如果能,请求出x 的值,如果不能,请说明理由.解析:(1)∵正方形BEFG 、正方形DMNK 、正方形ABCD ∴∠E =∠F =90O ,AE ∥MC ,MC ∥NK ∴AE ∥NK ,∴∠KNA =∠EAF∴△KNA ∽△EAF ,∴NK EA =KA EF ,即y x +6=y -6x∴y =x +6(0<x ≤6)(2)由(1)知NK =AE ,∴AN =AF∵正方形DMNK ,∴AP ∥NM ,∴FP PM =AFAN =1∴FP =PM ,∴S △MNP =S △NPF =32 ∴S 正方形DMNK =2S △MNP =64 ∴y =8,∴x =2(3)连接PG ,延长FG 交AD 于点H ,则GH ⊥AD易知:AP =y2,AH =x ,PH =y 2-x ,HG =6;PG =AP +GF =y2+x①当两圆外切时在Rt △GHP 中,PH 2+HG 2=PG 2,即(y2-x )2+62=(y2+x )2解得:x =-3-33(舍去)或x =-3+3 3 ②当两圆内切时NK G CE DFAB PM在Rt △GHP 中,PH 2+HG 2=PG 2,即(y2-x )2+62=(y2-x )2方程无解所以,当x =33-3时,两圆相切2 已知:正方形ABCD 的边长为1,射线AE 与射线BC 交于点E ,射线AF 与射线CD 交于点F ,∠EAF =45°,连接EF .(1)如图1,当点E 在线段BC 上时,试猜想线段EF 、BE 、DF 有怎样的数量关系?并证明你的猜想; (2)设BE =x ,DF =y ,当点E 在线段BC 上运动时(不包括点B 、C ),求y 关于x 的函数解析式,并指出x 的取值X 围;(3)当点E 在射线BC 上运动时(不含端点B ),点F 在射线CD 上运动.试判断以E 为圆心,以BE 为半径的⊙E 和以F 为圆心,以FD 为半径的⊙F 之间的位置关系;(4)如图2,当点E 在BC 的延长线上时,设AE 与CD 交于点G .问:△EGF 与△EFA 能否相似?若能相似,求出BE 的长,若不可能相似,请说明理由.解析:(1)猜想:EF =BE +DF证明:将△ADF 绕点A 顺时针旋转90°,得△ABF′,易知点F′、B 、E 在同一直线上(如.图1) ∵AF′=AF∠F′AE =∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF 又AE =AE ,∴△AF ′E ≌△AFEAB DCEF图1AB D CEFG图2AB DCEF图1F ′12∴EF =F′E =BE +BF =BE +DF (2)在Rt △EFC 中,EC 2+FC 2=EF 2 ∵EC =1-x ,FC =1-y ,EF =x +y ∴(1-x )2+(1-y )2=(x +y )2 ∴y =1-x1+x (0<x <1)(3)①当点E 在点B 、C 之间时,由(1)知EF =BE +DF ,故此时⊙E 与⊙F 外切; ②当点E 在点C 时,DF =0,⊙F 不存在.③当点E 在BC 延长线上时,将△ADF 绕点A 顺时针旋转90°,得△ABF′(如图2) 则AF′=AF ,∠1=∠2,B F′=DF ,∠F ′AF =90° ∴∠F ′AE =∠EAF =45° 又AE =AE ,∴△AF ′E ≌△AFE ∴EF =EF′=BE -B F′=BE -DF ∴此时⊙E 与⊙F 内切综上所述,当点E 在线段BC 上时,⊙E 与⊙F 外切;当点E 在BC 延长线上时,⊙E 与⊙F 内切 (4)△EGF 与△EFA 能够相似,只要当∠EFG =∠EAF =45°即可 此时CE =CF设BE =x ,DF =y ,由(3)知EF =x -y 在Rt △CFE 中,CE 2+CF 2=EF 2∴(x -1)2+(1+y )2=(x -y )2∴y =x -1x +1(x >1)由CE =CF ,得x -1=1+y ,即x -1=1+x -1x +1化简得x 2-2x -1=0,解得x 1=1-2(舍去),x 2=1+ 2 ∴△EGF 与△EFA 能够相似,此时BE 的长为1+ 23已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,BC =6,AB =3.E 为BC 边上一点,ABD CEFG图2F ′12以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧. (1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长;(2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B′EFG 的边EF 与AC 交于点M ,连接B′D ,B′M ,DM .是否存在这样的t ,使△B′DM 是直角三角形?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值X 围.解析:(1)如图①,设正方形BEFG 的边长为x 则BE =FG =BG =x∵AB =3,BC =6,∴AG =AB -BG =3-x ∵GF ∥BE ,∴△AGF ∽△ABC∴AG AB =GF BC ,即3-x 3=x 6解得x =2,即BE =2(2)存在满足条件的t ,理由如下: 如图②,过D 作DH ⊥BC 于点H 则BH =AD =2,DH =AB =3由题意得:BB′=HE =t ,HB′=|t -2|,EC =4-t在Rt△B′ME 中,B′M 2=B′E 2+ME 2=22+(2-12t )2=14t 2-2t +8∵EF ∥AB ,∴△MEC ∽△ABC∴ME AB =EC BC ,即ME 3=4-t 6,∴ME =2-12t在Rt△DHB′中,B′D 2=DH 2+B′H 2=32+(t -2)2=t 2-4t +13BACDBACD备用图B A CD 图①EFGB A CD 图②EFG HB ′ M N过M 作MN ⊥DH 于点N 则MN =HE =t ,NH =ME =2-12t ∴DN =DH -NH =3-(2-12t )=12t +1 在Rt△DMN 中,DM 2=DN 2+MN 2=54t 2+t +1(ⅰ)若∠DB′M =90°,则DM 2=B′M 2+B′D 2 即54t 2+t +1=(14t 2-2t +8)+(t 2-4t +13),解得t =207 (ⅱ)若∠B′MD =90°,则B′D 2=B′M 2+DM 2即t 2-4t +13=(14t 2-2t +8)+(54t 2+t +1),解得t 1=-3+17,t 2=-3-17∵0≤t ≤4,∴t =-3+17(ⅲ)若∠B′DM =90°,则B′M 2=B′D 2+DM 2即14t 2-2t +8=(t 2-4t +13)+(54t 2+t +1),此方程无解 综上所述,当t =207或-3+17时,△B′DM 是直角三角形 (3)当0≤t ≤43时,S =14t 2当43≤t ≤2时,S =-18t 2+t -23 当2≤t ≤103时,S =-38t 2+2t -53 当103≤t ≤4时,S =-12t +52 提示:当点F 落在CD 上时,如图③FE =2,EC =4-t ,DH =3,HC =4 由△FEC ∽△DHC ,得FE EC =DHHC即24-t =34,∴t =43当点G 落在AC 上时,点G 也在DH 上(即DH 与AC 的交点)t =2当点G 落在CD 上时,如图④B ACD图③E FGB ′ HB ACD图④E FGB ′ HGB ′=2,B ′C =6-t由△GB ′C ∽△DHC ,得G ′B B ′C =DHHC即26-t =34,∴t =103 当点E 与点C 重合时,t =4 ①当0≤t ≤43时,如图⑤ ∵MF =t ,FN =12t∴S =S △FMN =12·t ·12t =14t 2②当43≤t ≤2时,如图⑥ ∵PF =t -43,FQ =34PF =34t -1 ∴S △FPQ =12(t -43)(34t -1)=38t 2-t +23∴S =S △FMN -S △FPQ =14t 2-(38t 2-t +23)=-18t 2+t -23 ③当2≤t ≤103时,如图⑦ ∵B′M =12B′C =12(6-t )=3-12t ∴GM =2-(3-12t )=12t -1 ∴S 梯形GMNF =12(12t -1+12t )×2=t -1∴S =S 梯形GMNF -S △FPQ =(t -1)-(38t 2-t +23)=-38t 2+2t -53 ④当103≤t ≤4时,如图⑧ ∵P B′=34B′C =34(6-t )=92-34t ∴GP =2-(92-34t )=34t -52∴S 梯形GPQF =12(34t -52+34t -1)×2=32t -72∴S =S 梯形GMNF -S 梯形GPQF =(t -1)-(32t -72)=-12t +52BC图⑥EB ′BC图⑦EB ′B C 图⑧E B ′。
人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案
![人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案](https://img.taocdn.com/s3/m/7652ddd9d05abe23482fb4daa58da0116c171f82.png)
人教版九年级数学中考矩形、菱形、正方形专项练习基础达标一、选择题1.(2018江苏淮安)如图,菱形ABCD 的对角线AC ,BD 的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.48,AO=12AC=3,BO=12BD=4,且AO ⊥BO ,则AB=√AA 2+AA 2=5, 故这个菱形的周长L=4AB=20. 故选A.2.(2017四川广安)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A.4 B.3C.2D.13.(2017四川眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为( ) A.14 B.13C.12D.104.(2018贵州遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18PM⊥AD于点M,交BC于点N.则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,×2×8=8,∴S△DFP=S△PBE=12∴S阴影=8+8=16,故选C.5.(2017山东枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=A(x<0)的图象经过顶点B,则k的值为()AA.-12B.-27C.-32D.-366.(2018江苏无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G,H都在边AD上,若AB=3,BC=4,则tan ∠AFE的值()A.等于37B.等于√33C.等于34D.随点E位置的变化而变化EF∥AD,∴∠AFE=∠FAG,△AEH∽△ACD,∴AAAA =AAAA=34.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG=AA AA =3A3A+4A=37.故选A.二、填空题7.(2018湖南株洲)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P,Q分别为AO,AD的中点,则PQ的长度为..5四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P,Q分别是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.8.(2018广东广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.-5,4)菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD=√AA2-AA2=√52-32=4,∴点C的坐标是(-5,4).9.(2018湖北武汉)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.150°1,图1∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED-∠AEB-∠CED=30°.如图2,图2∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC-∠ADE=90°-60°=30°,∴∠CED=∠ECD=1(180°-30°)=75°,同理∠BEA=∠ABE=75°,2∴∠BEC=360°-75°×2-60°=150°.三、解答题10.如图,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,则ABCD 的面积是多少?四边形ABCD 是菱形,∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形.(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为12AC ·BD=12×4×2=4. 能力提升一、选择题1.下列说法中,正确的个数为( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1B.2C.3D.4对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误; ④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选B .2.(2018山东枣庄)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A.√24B.14C.13D.√23四边形ABCD 是矩形,∴AD=BC ,AD ∥BC , ∵点E 是边BC 的中点, ∴BE=12BC=12AD , ∴△BEF ∽△DAF , ∴AA AA =AA AA =12, ∴EF=12AF , ∴EF=13AE ,∵点E 是边BC 的中点, ∴由矩形的对称性得:AE=DE , ∴EF=13DE ,设EF=x ,则DE=3x , ∴DF=√AA 2-AA 2=2√2x , ∴tan ∠BDE=AAAA =2√2A =√24.故选A.3.如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒√2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P'.设Q 点运动的时间为t s,若四边形QPCP'为菱形,则t 的值为( )A.√2B.2C.2√2D.3PP',交BC于N点,过P作PM⊥AC,垂足为M.若运动t s时四边形QPCP'为菱形,则PQ=PC,PN⊥BC,四边形PMCN为矩形,BQ=t,AP=√2t,PM=NC=t,∴QC=2t,∴BC=BQ+QC=t+2t=3t=6cm,∴t=2,故选B.4.(2018河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()图1图2A.√5B.2D.2√5C.52D作DE⊥BC于点E由题图2可知,点F由点A到点D用时为a s,△FBC的面积为a cm2.∴AD=a.DE·AD=a.∴12∴DE=2.当点F从D到B时,用√5s,∴BD=√5.Rt△DBE中,BE=√AA2-AA2=√(√5)2-22=1,∵ABCD是菱形,∴EC=a-1,DC=a.Rt△DEC中,a2=22+(a-1)2,.解得a=52故选C.5.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题6.(2018山东潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C'D'的位置,B'C'与CD相交于点M,则点M的坐标为.)-1,√33,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C'D', ∴AD=AB'=1,∠BAB'=30°, ∴∠B'AD=60°,在Rt △ADM 和Rt △AB'M 中,∵{AA =AA ',AA =AA ,∴Rt △ADM ≌Rt △AB'M (HL), ∴∠DAM=∠B'AM=12∠B'AD=30°, ∴DM=AD tan ∠DAM=1×√33=√33, ∴点M 的坐标为(-1,√33).三、解答题 7.如图所示,在△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE=OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.MN ∥BC ,∴∠OEC=∠BCE.又∠OCE=∠BCE ,∴∠OEC=∠OCE ,∴OE=OC.同理可证OF=OC ,∴OE=OF.O 运动到AC 中点时,四边形AECF 是矩形.证明:∵CE ,CF 分别是∠ACB 的内,外角平分线.∴∠OCE+∠OCF=12(∠ACB+∠ACD )=12×180°=90°,即∠ECF=90°,又∵OE=OF ,∴当O 点运动到AC 中点时,OA=OC ,四边形AECF 是矩形.8.(2018贵州遵义)如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON.,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,由(1)知OM=ON,∴MN=√2OM=2√10.。
2021年中考复习九年级数学分类专题:正方形的判定与性质(一)(含答案)
![2021年中考复习九年级数学分类专题:正方形的判定与性质(一)(含答案)](https://img.taocdn.com/s3/m/138d7791bd64783e09122be2.png)
2021年九年级数学中考复习分类专题:正方形的判定与性质(一)一.选择题1.下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.有一个角是直角的平行四边形是正方形D.邻边相等的矩形是正方形2.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH 的面积是()A.30 B.34 C.36 D.403.在△ABC中,AC=AB,D,E,F分别是AC,BC,AB的中点,则下列结论中一定正确的是()A.四边形DEBF是矩形B.四边形DCEF是正方形C.四边形ADEF是菱形D.△DEF是等边三角形4.如图,八边形ABCDEFGH中,AB=CD=EF=GH=1,BC=DE=FG=HA=,∠A=∠B=∠C=∠D=∠E=∠F=∠H=135°,则这个八边形的面积等于()A .7B .8C .9D .145.直角梯形ABCD 中,∠A =∠D =90°,DC <AB ,AB =AD =12,E 是边AD 上的一点,恰好使CE =10,并且∠CBE =45°,则AE 的长是( )A .2或8B .4或6C .5D .3或76.如图,小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中任选两个作为补充条件,使▱ABCD 为正方形.现有下列四种选法,你认为其中错误的是( )A .②③B .①③C .①②D .③④7.已知,如图一张三角形纸片ABC ,边AB 长为10cm ,AB 边上的高为15cm ,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB 上,依次这样往上叠放上去,则最多能叠放的正方形的个数是( )A .12B .13C .14D .158.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD 的对角线相交于点O ,过点O作EF 垂直于BD 交AB ,CD 分别于点F ,E ,连接DF ,BE .请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE =OF ;小何:四边形DFBE 是正方形;小夏:S 四边形AFED =S 四边形FBCE ;小雨:∠ACE =∠CAF .这四位同学写出的结论中不正确的是( )A.小青B.小何C.小夏D.小雨9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.810.如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD 的面积为15;③当P在运动过程中,CD的最小值为2﹣6;④当OD⊥AD时,BP=2.其中结论正确的有()A.1个B.2个C.3个D.4个二.填空题11.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.12.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得正方形的对角线AC =40cm,则图1中对角线AC的长为cm.13.在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=10,点E在AB上,BE=6且∠DCE=45°,则DE的长为.14.小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具制作成图1所示菱形,并测得∠B=60°,接着活动学具制作成图2所示正方形,并测得正方形的对角线AC=acm,则图1中对角线AC的长为cm.15.如图,在四边形ABCD中,AB=BC,AB∥CD,AD∥BC,∠ABC=90°.点E、F分别在边AB、AD上,CE与BF相交于点G,BE=AF.线段BG的垂直平分线交BE于点H,且∠EHG =54°.若∠EGH=m o,则m=.16.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.17.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG =3.则△CGE与四边形BFHP的面积之和为.三.解答题18.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.19.如图,▱ABCD中,∠A=45°,过点D作ED⊥AD交AB的延长线于点E,且BE=AB,连接BD,CE.(1)求证:四边形BDCE是正方形;(2)P为线段BC上一点,点M,N在直线AE上,且PM=PB,∠DPN=∠BPM.求证:AN =PB.20.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D 不重合),BE⊥EF,且∠ABE+∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)连结BD,交EF于点Q,求证:DQ•BC=CE•DF.21.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.22.如图,4×4方格中每个小正方形的边长都为1.(1)直接写出图1中正方形ABCD的面积及边长;(2)在图2的4×4方格中,画一个面积为10的格点正方形(四个顶点都在方格的顶点上);并把图2中的数轴补充完整,然后用圆规在数轴上表示实数.23.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.参考答案一.选择题1.解:A、正确.对角线互相垂直的矩形是正方形;B、正确.对角线相等的菱形是正方形;C、错误.应该是有一个角是直角的平行四边形是矩形;D、正确.邻边相等的矩形是正方形;故选:C.2.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.3.解:结论:四边形ADEF是菱形.理由如下:∵CD=AD,CE=EB,∴DE∥AB,∵BE=EC,BF=FA,∴EF∥AC,∴四边形ADEF是菱形,∵AC=AB,∴AD=AF,∴四边形ADEF是菱形.故选:C.4.解:如图,延长AB、DC交于M点,延长CD、FE交于N点,延长EF、HG交于P点,延长GH、BA交于Q点,则MNPQ是矩形,∵∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,∴△BCM、△DEN、△FGP、△AHQ均为等腰直角三角形.这个八边形的面积等于=矩形面积﹣4个小三角形的面积=3×3﹣4×1×1÷2=7.故选:A.5.解:如图,过点B作BF⊥CD交DC的延长线于F,∵∠A=∠D=90°,AB=AD,∴四边形ABFD是正方形,把△ABE绕点B顺时针旋转90°得到△BFG,则AE=FG,BE=BG,∠ABE=∠FBG,∵∠CBE=45°,∴∠CBG=∠CBF+∠FBG=∠CBF+∠ABE=90°﹣∠CBE=90°﹣45°=45°,∴∠CBE=∠CBG,在△CBE和△CBG中,,∴△CBE≌△CBG(SAS),∴CE =CG ,∴AE +CF =FG +CF =CG =CE ,设AE =x ,则DE =12﹣x ,CF =10﹣x ,∴CD =12﹣(10﹣x )=x +2,在Rt △CDE 中,CD 2+DE 2=CE 2,即(x +2)2+(12﹣x )2=102,整理得,x 2﹣10x +24=0,解得x 1=4,x 2=6,所以AE 的长是4或6.故选:B .6.解:A 、∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当AC =BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;B 、∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当③AC =BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;C 、∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当②∠ABC =90°时,菱形ABCD 是正方形,故此选项正确,不合题意;D 、∵四边形ABCD 是平行四边形,∴当③AC =BD 时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选:A .7.解:作CF ⊥AB 于点F ,设最下边的一排小正方形的上边的边所在的直线与△ABC 的边交于D 、E ,∵DE ∥AB ,∴=,即=,解得:DE =,而整数部分是4,∴最下边一排是4个正方形. 第二排正方形的上边的边所在的直线与△ABC 的边交于G 、H . 则=,解得GH =,而整数部分是3,∴第二排是3个正方形;同理:第三排是:3个;第四排是2个,第五排是1个,第六排是1个,则正方形的个数是:4+3+3+2+1+1=14.故选:C .8.解:∵四边形ABCD 是平行四边形,∴OA =OC ,CD ∥AB ,∴∠ECO =∠FAO ,(故小雨的结论正确),在△EOC 和△FOA 中,,∴△EOC ≌△FOA ,∴OE =OF (故小青的结论正确),∴S △EOC =S △AOF , ∴S 四边形AFED =S △ADC =S 平行四边形ABCD ,∴S 四边形AFED =S 四边形FBCE 故小夏的结论正确,∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE∥FB,∴四边形DFBE是平行四边形,∵OD=OB,EO⊥DB,∴ED=EB,∴四边形DFBE是菱形,无法判断是正方形,故小何的结论错误,故选:B.9.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD =S正方形DEBF=16,∴DE=4.故选:C.10.解:①∵四边形OACB是矩形,∴∠OBC=90°,∵将△OBP沿OP折叠得到△OPD,∴OB=OD,∠PDO=∠OBP=90°,∠BOP=∠DOP,∴∠DOP=∠BOP=45°,∴∠BOD=90°,∴∠BOD=∠OBP=∠ODP=90°,∴四边形OBPD是矩形,∵OB=OD,∴四边形OBPD为正方形;故①正确;②过D作DH⊥OA于H,∵点A(10,0),点B(0,6),∴OA=10,OB=6,∴OD=OB=6,∠BOP=∠DOP=30°,∴∠DOA=30°,∴DH==3,∴△OAD的面积为OA•DH=×3×10=15,故②正确;③连接OC,则OD+CD≥OC,即当OD+CD=OC时,CD取最小值,∵AC=OB=6,OA=10,∴OC===2,∴CD=OC﹣OD=2﹣6,即CD的最小值为2﹣6;故③正确;④∵OD⊥AD,∴∠ADO=90°,∵∠ODP=∠OBP=90°,∴∠ADP=180°,∴P,D,A三点共线,∵OA∥CB,∴∠OPB=∠POA,∵∠OPB=∠OPD,∴AP=OA=10,∵AC=6,∴CP==8,∴BP=BC﹣CP=10﹣8=2,故④正确;故选:D.二.填空题(共7小题)11.解:过点B作BF⊥AD于点F,延长DF使FG=EC,连接BG,∵AD∥BC,∠D=90°,∴∠C=∠D=90°,BF⊥AD∴四边形CDFB是矩形∵BC=CD∴四边形CDFB是正方形∴CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,∵BC=BF,∠BFG=∠C=90°,CE=FG∴△BCE≌△BFG(SAS)∴BE=BG,∠CBE=∠FBG∵∠ABE=45°,∴∠CBE+∠ABF=45°,∴∠ABF+∠FBG=45°=∠ABG∴∠ABG=∠ABE,且AB=AB,BE=BG∴△ABE≌△ABG(SAS)∴AE=AG=5,∴AF=AG﹣FG=5﹣2=3在Rt△ADE中,AE2=AD2+DE2,∴25=(DF﹣3)2+(DF﹣2)2,∴DF=6∴BC=6故答案为:612.解:如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=40°,∴AB=BC=20,在图1中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=20,故答案为:20,13.解:如图,∵AD∥BC(BC>AD),∠B=90°,∴∠A=90°,过点C作CG⊥AD,交AD的延长线于点G,∵AB=BC=10,∴四边形ABCG是正方形,∴∠BCG=90°,BC=CG,∵∠DCE=45°,∴∠DCG+∠BCE=45°,延长AB到BH使BH=DG,在△CDG与△CHB中,,∴△CDG≌△CHB(SAS),∴CH=CD,∠BCH=∠GCD,∴∠DCE=∠HCE,∵CE=CE,∴△CEH≌△CED(SAS),∴DE=EH=BE+DG,在过点C作CG⊥AD,交AD的延长线于点G,∵DE=DG+BE,设DG=x,则AD=10﹣x,DE=x+6,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(10﹣x)2+42=(x+6)2,解得x=2.5.∴DE=2.5+6=8.5.故答案是:8.5.14.解:如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=a,∴AB=BC=a,在图1中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=a,故答案为:a,15.解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴∠A=∠CBE=90°,∵BC=AB,BE=AF,∴△BCE≌△ABF(SAS),∴∠ABF=∠BCE,∵∠ABF+∠CBF=90°,∴∠CBF+∠BCE=90°,∴∠BGC=∠EGB=90°,∵点H在线段BG的垂直平分线上,∴HB=HG,∴∠HGB=∠HBG,∵∠EHG=∠HBG+∠HGB=54°,∴∠HGB=∠HBG=27°,∴∠EGH=90°﹣27°=63°,∴m=63,故答案为63.16.解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.17.解:法1:∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,又CG⊥BE,即∠BGC=90°,∴∠BCG+∠CBG=90°,∴∠ABF=∠BCG,又AF⊥BG,∴∠AFB=∠BGC=90°,∴△ABF≌△BCG,∴AF=BG,BF=CG=FH=3,又∵FH=BF,∴AH=FG,设AH=FG=x,∵PH⊥AF,BF⊥AF,∴∠AHP=∠AFB=90°,又∠PAH为公共角,∴△APH∽△ABF,∴=,即PH=,∵PH∥BF,BP不平行FH,∴四边形BFHP为梯形,其面积为=+;又∵∠BCG+∠ECG=90°,∠ECG+∠BEC=90°,∴∠BCG=∠BEC,又∠BGC=∠CGE=90°,∴△BCG∽△CEG,∴=,即GE=,故Rt△CGE的面积为×3×,则△CGE与四边形BFHP的面积之和为++=+=9.法2:延长AF交BC于点K,∵正方形ABCD,∴AB=BC,∠ABC=90°,∴∠CBE+∠ABF=90°,∴AF⊥BE,∴∠AFB=90°,∴∠BAF+∠ABF=90°,∴∠CBE=∠BAF,又∠ABC=∠BCE=90°,∴△ABF≌△BEC,∴BF=CG=3(全等三角形对应高相等),∴BF=FH=3,作射线QH,过B作BQ⊥HQ于点Q,∴∠BFH=∠QHF=∠Q=90°,且BF=FH,∴四边形QBFH为正方形,且面积为32=9,∴BQ=BF=CE=3,∵∠PBQ+∠PBE=90°,且∠PBE=∠BEC,且∠BEC+∠GCE=90°,∴∠BPQ=∠ECG,∴△BPQ≌△CEG,∴S△CGE +S四边形BPHF=S△BPQ+S四边形BPHF=S正方形BQHF=9.故答案为:9三.解答题(共6小题)18.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.19.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵BE=AB,∴BE∥CD,∴四边形BDCE是平行四边形,∵ED⊥AD,∠A=45°,∴∠A=∠DEA=45°,∴AD=DE,∴△ADE是等腰直角三角形,又∵AB=BE,∴DB=BE,DB⊥BE,∴平行四边形BDCE是正方形;(2)∵四边形BDCE是正方形,∴BD=BE=AB,∠DBP=∠EBP=45°,∵PM=PB,∴∠PBM=∠PMB=45°,∴∠BPM=90°,∴∠DPN=∠BPM=90°,∴∠DPB=∠NPM,在△DBP和△NMP中,,∴△DBP≌△NMP(AAS),∴DB=MN,∴AB=NM,∴AN=BM,∵BP=PM,∠BPM=90°,∴BM=BP,∴AN=BP.20.证明:(1)如图,作EM⊥BC于点M,∵四边形ABCD是矩形,∴AB⊥BC,∴EM∥AB,∴∠ABE=∠BEM,∠BAC=∠CEM,∵∠ABE+∠CEF=45°,∴∠BEM+∠CEF=45°,∵BE⊥EF,∴∠CEM=45°=∠BAC,∴∠BAC=∠ACB=45°,∴AB=BC,∴矩形ABCD是正方形;(2)如图,∵∠BEF+∠BCF+∠EFC+∠EBC=360°,∴∠EBC+∠EFC=180°,且∠EFC+∠QFD=180°,∴∠DFQ=∠EBC,∵四边形ABCD是正方形,∴∠ACB=∠BDC=45°,∴△BCE∽△FDQ,∴,∴BC•DQ=CE•DF.21.证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,(1分)∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,(2分)∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(4分)(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,(5分)在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),(6分)∴EM=BN.(7分)22.解:(1)CD==,正方形ABCD的面积=5;(2)如图所示:.23.(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)①解:∵△BDE≌△BAC,∠ADB=45°,∴∠EDA=α﹣45°,∵∠DAG=360°﹣45°﹣90°﹣α=225°﹣α,②证明:∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)解:结论:当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.理由:由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方形
7. 如图所示,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部
分的面积是.
8. 如图,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落
在Q处,EQ与BC交于点G,则△EBG的周长是cm.
9. 如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,点H是AF的中点,
那么CH的长是.
三、解答题(共2小题;共26分)
11. 如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长
线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
12. 如图,在Rt△ABC中,∠C=90º,BD是Rt△ABC的一条角平分线,点O,E,F分别在BD,
BC,AC上,且四边形OECF是正方形.
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.
答案
第一部分
1. B
2. C
3. A
4. D
5. C
第二部分
6. 有一个角是直角或对角线相等
7. 2
8. 12
9. √5
10. 12
第三部分
11. (1)∵四边形ABCD是正方形,
∴∠BAD=∠B=90∘,∠DAF+∠FAB=∠BAM+∠AMB=90∘,∴∠AMB=∠EAF.
又EF⊥AM,
∴∠AFE=90∘,
∴∠B=∠AFE,
∴△ABM∽△EFA.
(2)∵∠B=90∘,AB=12,BM=5,
∴AM=√122+52=13,AD=12.
∵F是AM的中点,
∴AF=1
2AM=13
2
.
∵△ABM∽△EFA,
∴BM
AF =AM
AE
,即513
2
=13
AE
,
∴AE=16.9,
∴DE=AE−AD=4.9.
12. (1)过点O作OM⊥AB于点M.
∵正方形OECF,
∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F.∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E.
∴OM=OE=OF.
∴点O在∠BAC的平分线上.
(2)∵Rt△ABC中,∠C=90∘,AC=5,BC=12,
∴AB=13.
易证△BMO≌△BEO,△AMO≌△AFO.
∴BE=BM,AM=AF.
又BE=BC−CE,AF=AC−CF,而CE=CF=OE,
故BE=12−OE,AF=5−OE.
显然BM+AM=AB,即BE+AF=13,12−OE+5−OE=13.解得OE=2.。