2017年广东成人高考专升本高等数学(一)真题及答案
成人高考专升本试题及答案

2017年成人高考专升本高等数学模拟试题一高等数学一. 选择题1-10小题;每题4分;共40分1. 设0lim →x =7;则a 的值是AB1C 5D72. 已知函数fx 在点x 0处可等;且f ′x 0=3;则0lim →h 等于A3B0C2D63. 当x0时;sinx 2+5x 3与x 2比较是A 较高阶无穷小量B 较低阶的无穷小量C 等价无穷小量D 同阶但不等价无穷小量 4. 设y=x -5+sinx;则y ′等于A-5x -6+cosxB-5x -4+cosxC-5x -4-cosxD-5x -6-cosx5. 设y=;则f ′1等于A0B-1C-3D36. 等于A2e x +3cosx+cB2e x +3cosxC2e x -3cosxD17. dx 等于A0B1C 2πD π8. 设函数 z=arctan;则x z ∂∂等于 y x z∂∂∂2ABCD9. 设y=e 2x+y 则y x z∂∂∂2=A2ye 2x+y B2e 2x+y Ce 2x+y D –e 2x+y10. 若事件A 与B 互斥;且PA =0.5 PAUB =0.8;则PB 等于A0.3B0.4C0.2D0.1二、填空题11-20小题;每小题4分;共40分11. ∞→x lim 1-2x =12. 设函数fx=在x=0处连续;则 k =13. 函数-e -x 是fx 的一个原函数;则fx =14. 函数y=x-e x 的极值点x=15. 设函数y=cos2x; 求y ″=16. 曲线y=3x 2-x+1在点0;1处的切线方程y=17. dx =18. =19.xdx x sin cos 203⎰π=20. 设z=e xy ;则全微分dz=三、计算题21-28小题;共70分 Ke 2x x<0 Hcosxx ≥01. 1lim →x 2. 设函数 y=x 3e 2x ; 求dy3. 计算4. 计算⎰+10)12ln(dx x5. 设随机变量x 的分布列为 1 求a 的值;并求Px<12 求Dx 6. 求函数y=的单调区间和极值7. 设函数z=x;y 是由方程x 2+y 2+2x-2yz=e z 所确定的隐函数;求dz8. 求曲线y=e x ;y=e -x 与直线x=1所围成的平面图形面积2017年成人高考专升本高等数学模拟试题一答案一、1-10小题;每题4分;共40分1.D2.D3.C4.A5.C6.A7.C8.A9.B10.A二、11-20小题;每小题4分;共40分11.e -212.213.e -x 14.015.-4cos2x16.y=-x+117.1ln -x +c18.2e x +3cosx+c19.20.dz=e xy ydx+xdy三、21-28小题;共70分1.1lim →x == 2.y ′=x 3′e 2x +e 2x ′x 3=3x 2e 2x +2e 2x x 3=x 2e 2x 3+2xdy=x 2e 2x dx3.==cosx 2+1+c4.=xln2x+110-dx=ln3-{x-ln2x+1}10=-1+ln35.10.1+a+0.2+0.1+0.3=1得出a=0.3Px<1;就是将x<1各点的概率相加即可;即:0.1+0.3+0.2=0.62Ex=0.1×-2+0.3×-1+0.2×0+0.1×1+0.3×2=0.2Dx=E{xi-Ex}2=-2-0.22×0.1+-1-0.22×0.3+0-0.22×0.2+1-0.22×0.1+2-0.22×0.3=1.966.1定义域 x ≠-12y ′==3令y ′=0;得出x=0注意x=1这一点也应该作为我们考虑单调区间的点函数在-∞;1U-1;0区间内单调递减 在0;+∞内单调递增该函数在x=0处取得极小值;极小值为17.x f ∂∂=2x+2;y f ∂∂=2y-2z zf ∂∂=-2y-e z x z ∂∂=-x f ∂∂÷zf ∂∂= x y -2 0.1 a -1 0 0.2 0.1 1 2 0.3 x y y ′ -∞;1 - - + -1 -1;0 0 0;+∞ 无意义 无意义 F0=1为小极小值 0==-y f ∂∂÷zf ∂∂== dz=dx+dy8.如下图:曲线y=e x ;y=e -x ;与直线x=1的交点分别为-1S=dx e e x x )(10--⎰=e x +e -x 10=e+e -1-22017答案必须答在答题卡上指定的位置;一、选择题:1~10小题;每小题4分;共40分.. 求的;将所选项前的字母填涂在答题卡相应题号的信息点上.............. C1.20lim(1)x x →+= A .3 B .2C .1D .0D2.设sin y x x =+;则'y =A .sin xB .xC .cos x x +D .1cos x +B3.设2x y e =;则dy =A .2x e dxB .22x e dxC .212x e dx D .2x e dxC4.1(1)x dx -=⎰ A .21x C x -+ B .21x C x++ C .ln ||x x C -+ D .ln ||x x C ++C5.设5x y =;则'y =A .15x -B .5xC .5ln 5xD .15x +C6.00lim xt x e dt x →=⎰A .x eB .2eC .eD .1A7.设22z x y xy =+;则z x∂=∂ A .22xy y + B .22x xy +C .4xyD .22x y +A8.过点(1,0,0);(0,1,0);(0,0,1)的平面方程为A .1x y z ++=B .21x y z ++=C .21x y z ++=D .21x y z ++=B9.幂级数1nn x n ∞=∑的收敛半径R =A .0B .1C .2D .+∞B10.微分方程''2'3()()sin 0y y x ++=的阶数为A .1B .2C .3D .4二、填空题:11~20小题;每小题4分;共40分..将答案填写在答题卡相应题号后.......... 11.3lim(1)___.x x x →∞-=112.曲线x y e -=在点(0,1)处的切线斜率___.k =-1/e13.设2x y x e =;则'___.y =2xe^x+x^2e^x14.设cos y x =;则'___.y =-sinx15.3(1)___.x dx +=⎰x^4/4+x+C 16.1___.x e dx ∞-=⎰2/e17.设22z x y =+;则___.dz =2+2y18.设z xy =;则2___.z x y ∂=∂∂119.01___.3n n ∞==∑1 20.微分方程0dy xdx +=的通解为___.y =y=-x^2/2三、解答题:21~28小题;共70分..解答应写出推理、演算步骤;并将其写在答题卡...相应题号后....... 21.本题满分8分1/4设函数22()sin 2x a f x x x⎧+⎪=⎨⎪⎩,0,0x x ≤>;在0x =处连续;求常数a 的值.22.本题满分8分计算0lim .sin x xx e e x-→- 23.本题满分8分设23x t t t ⎧=⎪⎨=⎪⎩;t 为参数;求1t dy dx =.根号下t-124.本题满分8分设函数32()39f x x x x =--;求()f x 的极大值.-925.本题满分8分求1(1)dx x x +⎰. 26.本题满分10分计算2Dx ydxdy ⎰⎰;其中积分区域D 由2y x =;1x =;0y =围成.27.本题满分10分求微分方程2''3'26y y y e ++=的通解.28.本题满分10分证明:当0x >时;(1)ln(1)x x x ++>.。
《2017年成人高考专升本《高等数学一》真题及答案

答案:B 第6题
答案:B 第7题
答案:A 第8题
答案:A
第 3 页 共 11 页
第9题
答案:C 第 10 题
答案:C 二、填空题:11~20 小题。每小题 4 分,共 40 分.把答案填在题中横线上。
第 11 题 答案:
第 4 页 共 11 页
第 12 题
答案:y=1 第 13 题
答案:f(-2)=28 第 14 题
《2017 年成人高考专升本《高等数学一》真题及答案
一、选择题:1~10 小题。每小题 4 分,共 40 分.在每个小题给出的四个选 项 中,只有一项是符合题目要求的。把所选项前的字母填在题后的括号内。
第1题
答案:C 第2题
答案:C
第 1 页 共 11 页
第3题1 页
答案:0 第 15 题
答案: 第 16 题 答案:8
第 5 页 共 11 页
第 17 题 答案: 第 18 题 答案: 第 19 题
答案: 第 20 题 答案:
第 6 页 共 11 页
三、解答题:21~28 题,前 5 小题各 8 分,后 3 小题各 10 分。共 70 分.解答 应写出推理、演算步骤。
第 21 题
答案:
第 22 题 答案:
第 7 页 共 11 页
第 23 题 答案:
第 8 页 共 11 页
第 23 题 答案:
第 24 题 答案:
第 9 页 共 11 页
第 25 题 答案:
第 26 题 答案:
第 10 页 共 11 页
第 27 题 答案:
第 28 题 答案:
第 11 页 共 11 页
2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|0或1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。
《2017年成人高考专升本《高等数学一》真题及答案

一、选择题:1~10 小题。每小题 4 分,共 40 分.在每个小题给出的四个选 项 中,只有一项是符合题目要求的。把所选项前的字母填在题后的括号内。
第1题
答案:C 第2题
答案:C
第 1 页 共 11 页
第3题
答案:D 第4题
答第 21 题
答案:
第 22 题 答案:
第 7 页 共 11 页
第 23 题 答案:
第 8 页 共 11 页
第 23 题 答案:
第 24 题 答案:
第 9 页 共 11 页
第 25 题 答案:
第 26 题 答案:
第 10 页 共 11 页
第 27 题 答案:
第 28 题 答案:
第 11 页 共 11 页
答案:0 第 15 题
答案: 第 16 题 答案:8
第 5 页 共 11 页
第 17 题 答案: 第 18 题 答案: 第 19 题
答案: 第 20 题 答案:
第 6 页 共 11 页
三、解答题:21~28 题,前 5 小题各 8 分,后 3 小题各 10 分。共 70 分.解答 应写出推理、演算步骤。
答案:B 第6题
答案:B 第7题
答案:A 第8题
答案:A
第 3 页 共 11 页
第9题
答案:C 第 10 题
答案:C 二、填空题:11~20 小题。每小题 4 分,共 40 分.把答案填在题中横线上。
第 11 题 答案:
第 4 页 共 11 页
第 12 题
答案:y=1 第 13 题
答案:f(-2)=28 第 14 题
2017年专升本高等数学真题试卷

高等数学请考生按规定用笔将全部试题的答案涂、写在答题纸上。
选择题部分注意事项 :1.答题前,考生务势必自己的姓名、准考据号用黑色笔迹的署名笔或钢笔填写在答题纸规定的地点上。
2. 每题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号。
不可以答在试题卷上。
一、选择题 :本大题共5小题,每题4分,共20分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
11.已知函数 f ( x) e x,则 x=0 是函数 f(x) 的().(A )可去中断点( B)连续点( C)跳跃中断点( D)第二类中断点2.设函数 f(x) 在[a,b] 上连续,则以下说法正确的选项是(A )必存在bf ( x)dx f ()(b a)( a,b ) , 使得a(B )必存在( a,b ) , 使得 f(b)-f(a)= f '()(b a)(C)必存在( a,b ) , 使得 f ()0(D )必存在( a,b ) , 使得 f '()03以下等式中,正确的选项是( A ) f '( x)dx f (x) (B)df (x) f ( x) (C)df ( x)dx f (x) (D)dxd f ( x)dx f ( x)4.以下广义积散发散的是+111+ ln x+x(A )1+x2 dx(B)0 1x2dx (C)0x dx( D )0e dx5.微分方程y -3 y 2 y e x sin x, 则其特解形式为(A )ae x sin x(B )xe x( acosx b sin x)(C)xae x sin x(D)e x(a cosx b sin x)非选择题部分注意事项 :1.用黑色笔迹的署名笔或钢笔将答案写在答题纸上,不可以答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确立后一定使用黑色笔迹的署名笔或钢笔描黑。
二.填空题 :本大题共10小题,每题 4 分,共 40 分。
2017年广东成人高考专升本高等数学(一)真题及答案

♦ 2017年广东成人高考专升本高等数学(一)真题及答案1.当x→0时,下列列变量量是⽆无穷⼩小量量的为 1 A. x 2B. 2xC. sin xD. ln(x e )lim(1 2 )x2. x xA.eB. e1C. e 2D. e2⎧ 1e x , x 0⎫3.若函数 f (x ) ⎪ 2⎪⎩a , x 0, 1⎪ ⎬ ⎪⎭ 在x=0处连续,则常数a=A.0B. 2C.1D.2设函数 f (x ) x ln x ,则 f (e )A.-1B.0C.1.2函数f (x ) x 33x 的极⼩小值为 A.-2 B.0 C.2 D.4⽅方程 x 2 2 y 2 3Z 21 表示的⼆二次曲⾯面是圆锥⾯面 旋转抛物⾯面 球⾯面 椭球⾯面1(2x k ) dx 1 若 0,则常数k=A.-2B.-1C.0D.1设函数f(x)在[a,b]上连续且f(x)>0, 则bf (x ) dx0 abf (x ) dx0 abf (x) dx 0 a∞b f (x ) dx a的符号⽆无法确定x 1 y 2 z 3空间直线 3 A. (3,-1,2)B. (1, -2,3)C. (1,1,-1)D. (1,-1,-1) 1 2 的⽅方向向量量可取为 (1)n已 知 a 为常数,则级数 n 1 n a 2发散 条件收敛 绝对收敛收敛性与a 的取值有关limx 2 11. x 2 sin(x 2) . 曲线yx 12x 1 的⽔水平渐近线⽅方程为 .limf (x )f (1)若函数f(x)满⾜足f’(1)=2,则 x 1 x 21.设函数 f (x ) x 1x , 则f'(x) =.2(sin x cos x ) dx 2.1+ x ∞12 dx16. 0 .已知曲线 y x 2 x 2 的切线L 斜率为3,则L 的⽅方程为.z设⼆二元函数 z ln(x 2y ) ,则x.设f(x)为连续函数,则 x(f (t ) dt ) 0 .x n幂级数 n 0 3n的收敛半径为 .lim求 x 0 e x sin x 1x 2 ⎧⎪x 1t 2 ,⎫⎪dy⎨y 1t 3 ,⎬22.设⎪⎩⎪⎭ ,求 dx已知sinx 是f(x) 的⼀一个原函数,求xf (x ) dx计算xf(x ) dxz2z百度文库资料店设⼆二元函数z x 2 y2 x y 1,求y 及x y百度文库资料店=计算⼆二重积分 D x 2 y 2 dxdy,其中区域 D(x , y ) | xy 24求微分⽅方程y dy x 2dx的通解28.⽤用铁⽪皮做⼀一个容积为V 的圆柱形有盖桶,证明当圆柱的⾼高等于底⾯面直径时,所使⽤用的 铁⽪皮⾯面积最⼩小.1~5 CCBDA 6~10 DCAABy1 参考答案1111.[答案]112.2 13.1 14.2xx 215.216. 2 17.3x-y-3=0 18. x 2 y19.f(x) 20.3 lim e x sin x 1 2 lim e x cos xlime x sin x 1 21. x 0x x 0 2x x 0 2 2dy2dydt3t3dx dxdtt 2t2因为sinx 是f(x)的⼀一个原函数,所以xf (x ) dx xf (x ) f (x ) dx xf (x )sin x Cx2百度文库资料店设t ,则x t2 , dx 2tdt,0 t 2 .· |r 4 122t1 xdx1 tdx0 02 1 2(1 1 t)dt2 ⎡t | 2 ln(1 t ) |2 ⎤ ⎣ 0 0 ⎦2(2 ln 3) 4 2 ln 3因为 z x 2 y 2x y 1,所以 z 2x 2y 1 y z 2xy 21x2zxy 4xy26.D 可表示为0 2 ,0 r 2x 2 y 2dxdy r ·r dr dDD22dr 2 dr 0 02 13 230 16 3 y dy x 2 , dxydy x 2 dx ,两边同时积分, 1 y 2 1 x 3 C ,2 313y 2 2x 3 Cy2 2x2 C即31设圆柱形的底⾯面半径为r,⾼高为h,则V r 2 h ,令dS4 r 2 h 0,dr2r h d 2 S4dr 2于是由实际问题得,S 存在最⼩小值,即当圆柱的⾼高等于底⾯面直径时,所使⽤用的铁⽪皮⾯面积最 ⼩小.。
2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是()A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.a 2>b 2D.ac>bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D.√236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为()A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。
2017成人高考专升本《高等数学》真题及参考答案评分标准

2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.当0→x 时,下列变量是无穷小量的为()A.21x B.x2 C.xsin D.()e x +ln 2.=⎪⎭⎫ ⎝⎛+→xx x 21lim 0()A.eB.1-e C.2e D.2-e 3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=()A.0B.21 C.1 D.24.设函数()x x x f ln =,则()='e f ()A.-1B.0C.1D.25.函数()x x x f 33-=的极小值为()A.-2B.0C.2D.46.方程132222=++z y x 表示的二次曲面是()A.圆锥面B.旋转抛物面C.球面D.椭球面7.若()1210=+⎰dx k x ,则常数=k ()A.-2B.-1C.0D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则()A.()0>dx x f ba ⎰ B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba ⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为()A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ()A.发散B.条件收敛C.绝对收敛D.敛散性与a 的取值有关二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________18.设二元函数()y x z +=2ln ,则=∂∂xz_________19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin limx x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy 23.已知x sin 是()x f 的一个原函数,求()⎰'dxx f x24.计算dx x⎰+41125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x 2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x 4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6=''()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f 6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。
2017年成人高考高数一真题及答案

24.设√ = t,则 x = 2 , = 2,0 ≤ ≤ 2
4
2
2
1
∫
= ∫
= ∫ (1 −
)
1+
0 1 + √
0 1+t
0
1
2
= 2,|20 − ln(1 + ) |20 = 2 ∗ (2 − 3)
= 4 − 23
25.因为 = 2 2 + − + 1,所以
20.幂级数∑∞
=0 3 的收敛半径为
三、解答题(21-28 题,共 70 分)
21. limx→0
−sin −1
2
2
,
,
22.设 x=1+t
3
y=1+t
dy
求dx
23.已知sin 是函数f(x)的一个原函数,求∫ ′ ()
4
24.计算∫0
1
1+√
2
25.设二元函数z = x 2 2 + − + 1,求及
3
dy
27.y dx = 2
y
dy
= 2
dx
1
1
两边同时积分,2 y 2 = 3 3 + 1
3y 2 = 2 3 + 1
y2 =
2 3
+ 1
3
28.设圆柱形的底面半径为 r,高为 h,则V = 2 ℎ
所用铁皮面积S = 2 + 2ℎ
dS
令dr = 4πr − 2πh = 0
26. 计算二重积分∬ √ 2 + 2 ,其中区域 = *(, )| 2 + 2 ≤ 4+。
学历类《成考》专升本《高等数学一》考试试题及答案解析

学历类《成考》专升本《高等数学一》考试试题及答案解析姓名:_____________ 年级:____________ 学号:______________1、若事件A 与B 互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于( )A 、03B 、04C 、02D 、01正确答案:A答案解析:暂无解析2、设y=x5+sinx ,则y′等于( )A 、B 、C 、D 、正确答案:A答案解析:暂无解析3、当 x→0时,sin(x +5x )与 x 比较是( )A 、较高阶无穷小量B 、较l D 、低阶无穷小量正确答案:D答案解析:暂无解析6、微分方程 y ’=2y 的通解为y=( )A 、B 、C 、D 、正确答案:A答案解析:暂无解析7、设z=x -3y ,则dz=( )A 、2xdx-3ydyB 、x dx-3dyC 、2xdx-3dy正确答案:C答案解析:暂无解析8、在空间直角坐标系中,方程x +y =1表示的曲面是()A、柱面B、球面C、锥面D、旋转抛物面正确答案:A答案解析:暂无解析9、设y+sinx,则 y’’=()A、-sinxB、sinxC、-cosxD、cosx正确答案:A答案解析:暂无解析10、B答案解析:暂无解析11、设y=x ,则y’=()A、B、C、D、正确答案:C答案解析:暂无解析12、设函数z=3x2y,则αz/αy=()A、6yB、6xyC、3xD、3X正确答案:D答案解析:暂无解析13、设函数y=3x+1,则y’=()A、0B、1C、2D、3正确答案:A答案解析:暂无解析14、设函数y=(2+x) ,则y’=A、(2+x)C、(2+x)D、3(2+x)正确答案:B答案解析:暂无解析15、设函数 y=e-2 ,则dy=A、B、C、D、正确答案:B答案解析:暂无解析16、设函数y=2x+sinx,则y’=A、1-cosxB、1+cosxC、2-cosxD、2+cosx正确答案:D答案解析:暂无解析17、设z=ey ,则全微分dz=()正确答案:答案解析:暂无解析18、设函数y=cos2x,求y″=()正确答案:-4cos2x答案解析:暂无解析19、函数y=x-e的极值点x=()正确答案:答案解析:暂无解析20、函数-ex 是 f(x) 的一个原函数,则 f(x) =()正确答案:答案解析:暂无解析21、当x→0时,sin(x +5x )与x 比较是( )A、较高阶无穷小量B、较低阶的无穷小量C、等价无穷小量D、同阶但不等价无穷小量正确答案:答案解析:22、设y=x5+sinx,则y′等于( )A、B、C、D、正确答案:答案解析:23、若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于( )A、03B、04C、02D、01正确答案:答案解析:24、设函数y=2x+sinx,则y’=A、1-cosxB、1+cosxC、2-cosxD、2+cosx正确答案:答案解析:25、微分方程y’=x+1的通解为y= ______.正确答案:答案解析:暂无解析26、过点(1,-1,-2)且与平面2x-2y+3z=0垂直的直线方程为______.正确答案:答案解析:暂无解析27、函数y=1/3x -x的单调减少区间为______.正确答案:(-1,1)答案解析:暂无解析28、微分方程y/=3x2 的通解l正确答案:3x答案解析:暂无解析34、设函数y=x3,则y/=()正确答案:答案解析:35、设函数y=(x-3) ,则dy=()正确答案:答案解析:36、设函数y=sin(x-2),则y”=()正确答案:答案解析:37、过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为()正确答案:答案解析:38、设函数x=3x+y2,则dz=()正确答案:答案解析:39、微分方程y/=3x2的通解为y=()正确答案:答案解析:40、函数y=1/3x -x的单调减少区间为______.正确答案:答案解析:41、求曲线y=x -3x+5的拐点。
2017年成人高考试题及答案

2017年成人高考专升本高等数学模拟试题一 高等数学一. 选择题(1-10小题,每题4分,共40分) 1. 设0lim→x sinaxx =7,则a 的值是( ) A 17B 1C 5D 7 2. 已知函数f(x)在点x 0处可等,且f ′(x 0)=3,则0lim→h f(x 0+2h )-f(x 0)h 等于( ) A 3 B 0 C 2 D 63. 当x 0时,sin(x 2+5x 3)与x 2比较是( )A 较高阶无穷小量B 较低阶的无穷小量C 等价无穷小量D 同阶但不等价无穷小量 4. 设y=x -5+sinx ,则y ′等于( )A -5x -6+cosxB -5x -4+cosxC -5x -4-cosxD -5x -6-cosx 5. 设y=4-3x 2 ,则f ′(1)等于( ) A 0 B -1 C -3 D 36. ⎠⎛(2e x-3sinx)dx 等于( )A 2e x +3cosx+cB 2e x +3cosxC 2e x -3cosxD 1 7. ⎠⎛01dx 1-x 2 dx 等于( )A 0B 1 C2πD π 8. 设函数 z=arctan yx ,则xz ∂∂等于( )y x z ∂∂∂2A -yx 2+y 2Byx 2+y 2 Cxx 2+y 2 D-xx 2+y 29. 设y=e 2x+y则yx z ∂∂∂2=( ) A 2ye 2x+y B 2e 2x+y C e 2x+y D –e 2x+y10. 若事件A 与B 互斥,且P (A )= P (AUB )=,则P (B )等于( ) A B C D二、填空题(11-20小题,每小题4分,共40分) 11. ∞→x lim (1-1x )2x =12. 设函数f(x)= 在x=0处连续,则 k =13. 函数-e -x 是f(x)的一个原函数,则f(x)= 14. 函数y=x-e x 的极值点x= 15. 设函数y=cos2x , 求y ″=16.曲线y=3x 2-x+1在点(0,1)处的切线方程y=Ke 2x x<0Hcosx x ≥017. ⎠⎛1x-1dx =18. ⎠⎛(2e x -3sinx)dx =19.xdx x sin cos 203⎰π=20. 设z=e xy ,则全微分dz= 三、计算题(21-28小题,共70分)1. 1lim →x x 2-12x 2-x-12. 设函数 y=x 3e 2x , 求dy3. 计算 ⎠⎛xsin(x 2+1)dx4. 计算⎰+1)12ln(dx x5. 设随机变量x 的分布列为 (1) 求a 的值,并求P(x<1) (2) 求D(x)6. 求函数y=e x1+x的单调区间和极值7. 设函数z=(x,y)是由方程x 2+y 2+2x-2yz=e z 所确定的隐函数,求dz8. 求曲线y=e x ,y=e -x 与直线x=1所围成的平面图形面积x y-2a-1 01 22017年成人高考专升本高等数学模拟试题一 答案一、(1-10小题,每题4分,共40分)1. D2. D3. C4. A5. C6. A7. C 9. B 10. A 二、(11-20小题,每小题4分,共40分)11. e -2 12. 2 13. e -x 14. 0 16. y=-x+1 17. 1ln -x +c 18. 2e x +3cosx+c 19. 14 20. dz=e xy (ydx+xdy)三、(21-28小题,共70分)1. 1lim →x x 2-12x 2-x-1=(x-1)(x-1)(x-1)(2x+1) =232. y ′=(x 3)′e 2x +(e 2x )′x 3=3x 2e 2x +2e 2x x 3 =x 2e 2x (3+2x) dy=x 2e 2x dx3. ⎠⎛xsin(x 2+1)dx =12 ⎠⎛sin(x 2+1)d(x 2+1) =12 cos(x 2+1)+c4. ⎠⎛01ln(2x+1)dx =xln(2x+1) 1-⎠⎛012x (2x+1)dx =ln3-{x-12 ln(2x+1)}10=-1+32ln35. (1) +a+++=1 得出a=P(x<1),就是将x<1各点的概率相加即可,即:++= (2) E(x)=×(-2)+×(-1)+×0+×1+×2=D(x)=E{xi-E(x)}2=2×+2×+2×+2×+2×=6. 1) 定义域 x ≠-12) y ′=e x(1+x)-e x(1+x)2 =xex(1+x)23)令y ′=0,得出x=0(注意x=1这一点也应该作为我们考虑单调区间的点)↓ ↓ ↑函数在(-∞,1)U (-1,0)区间内单调递减 x y y ′(-∞,1)--+-1 (-1,0)0 (0,+∞)无意义 无意义F(0)=1为小极小值在(0,+∞)内单调递增该函数在x=0处取得极小值,极小值为1 7.x f ∂∂ =2x+2, y f ∂∂ =2y-2z zf∂∂ =-2y-e zx z ∂∂=-xf∂∂ ÷z f ∂∂ =2(x+1)2y+e z azay ==-y f ∂∂÷zf ∂∂=2y-2z -(2y+e z ) =2y-2z 2y+e z dz=2(x+1)2y+e zdx+2y-2z2y+e zdy 8.如下图:曲线y=e x,y=e -x,与直线x=1的交点分别为A(1,e),B(1,e -1)则S=dx e e x x )(1--⎰= (e x +e -x ) 10=e+e -1-22017年成人高考专升本高等数学模拟试题二答案必须答在答题卡上指定的位置,答在试卷上无效.......。
成人高考高起专数学真题及答案

2017年成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,,6)2.函数y=3sin x 4的最小正周期是( )π π π π 3.函数y=√x (x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1}4.设a,b,c 为实数,且a>b,则( )>b-cB.|a|>|b|C.a 2>b 2 >bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D. √23 6.函数y=6sinxcosc 的最大值为( )7.右图是二次函数y=x 2+bx+c 的部分图像,则>0,c>0 8.已知点A(4,1),B(2,3),则线段AB +1=0 +y-5=0 =0 +1=09.函数y=1x 是( )A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )个 个 个 个11.若lg5=m,则lg2=( )+1 12.设f(x+1)=x(x+1),则f(2)= ( )13.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )16.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )17.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为,其中3条的质量分别为,和,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a a }为等差数列,且a 2+a 4−2a 1=8.(1)求{a a }的公差d;(2)若a 1=2,求{a a }前8项的和a 8.23.(本小题满分12分)设直线y=x+1是曲线y=a 3+3a 2+4x+a 的切线,求切点坐标和a 的值。
2017年成人高考专升本)试题及答案

2017年成人高考专升本高等数学模拟试题一 高等数学一. 选择题(1-10小题,每题4分,共40分) 1. 设0lim→x sinaxx =7,则a の值是( ) A 17B 1C 5D 7 2. 已知函数f(x)在点x 0处可等,且f ′(x 0)=3,则0lim→h f(x 0+2h )-f(x 0)h 等于( ) A 3 B 0 C 2 D 63. 当x 0时,sin(x 2+5x 3)与x 2比较是( )A 较高阶无穷小量B 较低阶の无穷小量C 等价无穷小量D 同阶但不等价无穷小量 4. 设y=x -5+sinx ,则y ′等于( )A -5x -6+cosxB -5x -4+cosxC -5x -4-cosxD -5x -6-cosx 5. 设y=4-3x 2 ,则f ′(1)等于( ) A 0 B -1 C -3 D 36. ⎠⎛(2e x-3sinx)dx 等于( )A 2e x +3cosx+cB 2e x +3cosxC 2e x -3cosxD 1 7. ⎠⎛01dx1-x 2 dx 等于( )A 0B 1 C2πD π 8. 设函数 z=arctan yx ,则xz ∂∂等于( )y x z ∂∂∂2A-y x 2+y 2 B y x 2+y 2 C x x 2+y 2 D -xx 2+y 29. 设y=e2x+y则yx z∂∂∂2=( )A 2ye 2x+yB 2e 2x+yC e 2x+yD –e 2x+y10. 若事件A 与B 互斥,且P (A )=0.5 P (AUB )=0.8,则P (B )等于( ) A 0.3 B 0.4 C 0.2 D 0.1二、填空题(11-20小题,每小题4分,共40分) 11. ∞→x lim (1-1x )2x =12. 设函数f(x)= 在x=0处连续,则 k =13. 函数-e -x 是f(x)の一个原函数,则f(x)= 14. 函数y=x-e x の极值点x=Ke 2x x<0 Hcosx x ≥015. 设函数y=cos2x , 求y ″=16. 曲线y=3x 2-x+1在点(0,1)处の切线方程y= 17. ⎠⎛1x-1dx =18. ⎠⎛(2e x-3sinx)dx =19.xdx x sin cos 23⎰π=20. 设z=e xy ,则全微分dz= 三、计算题(21-28小题,共70分) 1. 1lim →x x 2-12x 2-x-12. 设函数 y=x 3e 2x , 求dy3. 计算 ⎠⎛xsin(x 2+1)dx4. 计算⎰+1)12ln(dx x5. 设随机变量x の分布列为 (1) 求a の值,并求P(x<1) (2) 求D(x)6. 求函数y=e x1+xの单调区间和极值7. 设函数z=(x,y)是由方程x 2+y 2+2x-2yz=e z 所确定の隐函数,求dz8. 求曲线y=e x ,y=e -x 与直线x=1所围成の平面图形面积x y-2 0.1a-1 0 0.20.11 2 0.32017年成人高考专升本高等数学模拟试题一 答案一、(1-10小题,每题4分,共40分)1. D2. D3. C4. A5. C6. A7. C8.A9. B 10. A 二、(11-20小题,每小题4分,共40分)11. e -2 12. 2 13. e -x 14. 0 15.-4cos2x 16. y=-x+1 17. 1ln -x +c 18. 2e x +3cosx+c 19. 14 20. dz=e xy (ydx+xdy)三、(21-28小题,共70分)1. 1lim →x x 2-12x 2-x-1=(x-1)(x-1)(x-1)(2x+1) =232. y ′=(x 3)′e 2x +(e 2x )′x 3=3x 2e 2x +2e 2x x 3 =x 2e 2x (3+2x) dy=x 2e 2x dx3. ⎠⎛xsin(x 2+1)dx =12 ⎠⎛sin(x 2+1)d(x 2+1) =12 cos(x 2+1)+c 4. ⎠⎛01ln(2x+1)dx =xln(2x+1) 1-⎠⎛012x (2x+1)dx =ln3-{x-12 ln(2x+1)}10=-1+32ln35. (1) 0.1+a+0.2+0.1+0.3=1 得出a=0.3P(x<1),就是将x<1各点の概率相加即可,即:0.1+0.3+0.2=0.6 (2) E(x)=0.1×(-2)+0.3×(-1)+0.2×0+0.1×1+0.3×2=0.2D(x)=E{xi-E(x)}2=(-2-0.2)2×0.1+(-1-0.2)2×0.3+(0-0.2)2×0.2+(1-0.2)2×0.1+(2-0.2)2×0.3=1.966. 1) 定义域 x ≠-12) y ′=e x(1+x)-e x(1+x)2 =xex(1+x)23)令y ′=0,得出x=0(注意x=1这一点也应该作为我们考虑单调区间の点)x函数在(-∞,1)U (-1,0)区间内单调递减 在(0,+∞)内单调递增该函数在x=0处取得极小值,极小值为17.x f ∂∂ =2x+2, y f ∂∂ =2y-2z zf∂∂ =-2y-e zx z ∂∂=-xf∂∂ ÷z f ∂∂ =2(x+1)2y+e zazay ==-y f ∂∂÷zf ∂∂=2y-2z -(2y+e z ) =2y-2z 2y+e z dz=2(x+1)2y+e z dx+2y-2z2y+e zdy 8.如下图:曲线y=e x,y=e -x,与直线x=1の交点分别为A(1,e),B(1,e -1)则 S=dx e ex x)(1--⎰= (e x +e -x ) 10=e+e -1-22017年成人高考专升本高等数学模拟试题二答案必须答在答题卡上指定の位置,答在试卷上无效.......。
成人高考高起点数学考试真题和答案解析

2017年成考高起点数学(理)真题及答案第1卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)=【】A.1B.3C.2D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.10D.2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。
2017年成人高等考试《数学一》(专升本)真题及答案

2017年成人高等考试《数学一》(专升本)真题及答案[单选题]1.当x→0时,下列变量是无穷小量的为()A.B.2xC.sinxD.ln(x+e)参考答案:C参考解析:【考情点拨】本题考查了无穷小量的知识点.[单选题]2.()A.eB.e-1C.e2D.e-2参考答案:C参考解析:[单选题]3.()A.0B.C.1D.2参考答案:B参考解析:【考情点拨】本题考查了函数在一点处连续的知识点.[单选题]4.设函数ƒ(x)=xlnx,则ƒ´(e)=()A.-1B.0C.1D.2参考答案:D参考解析:【考情点拨】本题考查了导数的基本公式的知识点. [单选题]5.函数ƒ(x)=x3-3x的极小值为()A.-2B.0C.2D.4参考答案:A参考解析:【考情点拨】本题考查了极小值的知识点.[单选题]6.方程x2+2y2+3z2=1表示的二次曲面是()A.圆锥面B.旋转抛物面C.球面D.椭球面参考答案:D参考解析:【考情点拨】本题考查了二次曲面的知识点.[单选题]7.A.-2B.-1C.0D.1参考答案:C参考解析:【考情点拨】本题考查了定积分的知识点.[单选题]8.设函数ƒ(x)在[a,b]上连续且ƒ(x)>0,则() A.B.C.D.参考答案:A参考解析:【考情点拨】本题考查了定积分性质的知识点.[单选题]9.()A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-1,-1)参考答案:A参考解析:【考情点拨】本题考查了直线方程的方向向量的知识点.[单选题]10.()A.发散B.条件收敛C.绝对收敛D.收敛性与a的取值有关参考答案:B参考解析:【考情点拨】本题考查了级数的收敛性的知识点.[问答题]1.参考解析:[问答题]2.参考解析:[问答题]3.参考解析:[问答题]4.参考解析:[问答题]5.参考解析:[问答题]6.参考解析:[问答题]7.参考解析:即y2=2/3x3+C[问答题]8.用铁皮做一个容积为V的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小.参考解析:于是由实际问题得,S存在最小值,即当圆柱的高等于底面直径时,所使用的铁皮面积最小.[填空题]1.参考解析:【答案】1[填空题]2.参考解析:【答案】【考情点拨】本题考查了水平渐近线方程的知识点.[填空题]3.参考解析:【答案】1【考情点拨】本题考查了一阶导数的知识点.[填空题]4.参考解析:【答案】【考情点拨】本题考查了一阶导数的性质的知识点.[填空题]5.参考解析:【答案】2【考情点拨】本题考查了函数的定积分的知识点.[填空题]6.参考解析:【答案】【考情点拨】本题考查了反常积分的知识点.[填空题]7.已知曲线y=x2+x-2的切线ι斜率为3,则ι的方程为_________. 参考解析:【答案】3x-y-3=0【考情点拨】本题考查了切线的知识点.[填空题]8.参考解析:【答案】【考情点拨】本题考查了二元函数偏导数的知识点.[填空题]9.参考解析:【答案】f(x)【考情点拨】本题考查了导数的原函数的知识点.[填空题]10.参考解析:【答案】3【考情点拨】本题考查了幂级数的收敛半径的知识点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
♦ 2017年广东成人高考专升本高等数学(一)真题及答案
1.当x→0时,下列列变量量是⽆无穷⼩小量量的为 1 A. x 2
B. 2x
C. sin x
D. ln(x e )
lim(1 2 )x
2. x x
A.e
B. e
1
C. e 2
D. e
2
⎧ 1
e x , x 0⎫
3.若函数 f (x ) ⎪ 2
⎪⎩a , x 0, 1
⎪ ⎬ ⎪
⎭ 在x=0处连续,则常数a=
A.0
B. 2
C.1
D.2
设函数 f (x ) x ln x ,则 f (e )
A.-1
B.0
C.1
.2
函数
f (x ) x 3
3x 的极⼩小值为 A.-2 B.0 C.2 D.4
⽅方程 x 2 2 y 2 3Z 2
1 表示的⼆二次曲⾯面是
圆锥⾯面 旋转抛物⾯面 球⾯面 椭球⾯面
1
(2x k ) dx 1 若 0
,则常数k=
A.-2
B.-1
C.0
D.1
设函数f(x)在[a,b]上连续且f(x)>0, 则
b
f (x ) dx
0 a
b
f (x ) dx
0 a
b
f (x) dx 0 a
∞
b f (x ) dx a
的符号⽆无法确定
x 1 y 2 z 3
空间直线 3 A. (3,-1,2)
B. (1, -2,3)
C. (1,1,-1)
D. (1,-1,-1) 1 2 的⽅方向向量量可取为 (1)n
已 知 a 为常数,则级数 n 1 n a 2
发散 条件收敛 绝对收敛
收敛性与a 的取值有关
lim
x 2 11. x 2 sin(x 2) . 曲线
y
x 1
2x 1 的⽔水平渐近线⽅方程为 .
lim
f (x )
f (1)
若函数f(x)满⾜足f’(1)=2,则 x 1 x 2
1
.
设函数 f (x ) x 1
x , 则f'(x) =
.
2
(sin x cos x ) dx 2
.
1+ x ∞
1
2 dx
16. 0 .
已知曲线 y x 2 x 2 的切线L 斜率为3,则L 的⽅方程为
.
z
设⼆二元函数 z ln(x 2
y ) ,则
x
.
设f(x)为连续函数,则 x
(
f (t ) dt ) 0 .
x n
幂级数 n 0 3n
的收敛半径为 .
lim
求 x 0 e x sin x 1
x 2 ⎧⎪x 1
t 2 ,⎫⎪
dy
⎨
y 1
t 3 ,⎬
22.设⎪⎩
⎪⎭ ,求 dx
已知sinx 是f(x) 的⼀一个原函数,求
xf (x ) dx
计算
xf
(x ) dx
z
2
z
百度文库资料店
设⼆二元函数z x 2 y2 x y 1
,求y 及x y
百度文库资料店
=
计算⼆二重积分 D x 2 y 2 dxdy
,其中区域 D
(x , y ) | x
y 2
4
求微分⽅方程
y dy x 2
dx
的通解
28.⽤用铁⽪皮做⼀一个容积为V 的圆柱形有盖桶,证明当圆柱的⾼高等于底⾯面直径时,所使⽤用的 铁⽪皮⾯面积最⼩小.
1~5 CCBDA 6~10 DCAAB
y
1 参考答案
1
1
11.[答案]1
12.
2 13.1 14.
2x
x 2
15.2
16. 2 17.3x-y-3=0 18. x 2 y
19.f(x) 20.3 lim e x sin x 1 2 lim e x cos x
lim
e x sin x 1 21. x 0
x x 0 2x x 0 2 2
dy
2
dy
dt
3t
3
dx dx
dt
t 2t
2
因为sinx 是f(x)的⼀一个原函数,所以
xf (x ) dx xf (x ) f (x ) dx xf (x )
sin x C
x
2
百度文库资料店
设
t ,则x t2 , dx 2tdt,0 t 2 .
· |
r 4 1
2
2t
1 x
dx
1 t
dx
0 0
2 1 2
(1 1 t
)dt
2 ⎡t | 2 ln(1 t ) |2 ⎤ ⎣ 0 0 ⎦
2(2 ln 3) 4 2 ln 3
因为 z x 2 y 2
x y 1,所以 z 2x 2
y 1 y z 2xy 2
1
x
2
z
x
y 4xy
26.D 可表示为0 2 ,0 r 2
x 2 y 2
dxdy r ·r dr d
D
D
2
2
d
r 2 dr 0 0
2 1
3 2
3
0 16 3 y dy x 2 , dx
ydy x 2 dx ,
两边同时积分, 1 y 2 1 x 3 C ,
2 3
1
3y 2 2x 3 C
y2 2
x2 C
即3
1
设圆柱形的底⾯面半径为r,⾼高为h,则V r 2 h ,
令
dS
4 r 2 h 0,
dr
2r h d 2 S
4
dr 2
于是由实际问题得,S 存在最⼩小值,即当圆柱的⾼高等于底⾯面直径时,所使⽤用的铁⽪皮⾯面积最 ⼩小.。