阀门的流量特性曲线
阀门流量特性曲线图结构
用
途
阀门是一种管路附件。 改变通路断面和介质流动方向,控制输送介质流动的一种装置。
1. 接通或截断管路中的介质。 2. 调节、控制管路中介质的流量和压力。
3. 改变管路中介质流动的方向。 4. 阻止管路中的介质倒流。 5. 分离介质。 6. 指示和调节液面高度。 7. 其他特殊用途。
阀体 阀盖 启闭件 阀芯、阀瓣 阀座 密封面 阀杆 填料函
密封性能—阀杆
阀杆是带动启闭件使阀门开启和关闭的重要部件,因 为阀杆是可动件。所以是最易产生外漏的部件。因此,阀 杆密封对于阀门来讲是非常重要的。
阀杆的密封通常用压缩填料。压缩填料是指压入填 料函内使阀杆周围密封的软质材料。
材质
1.壳体:铜(黄铜、青铜)、铸铁、球墨铸铁、铸钢 2.内件:铜、不锈钢 3.密封:EPDM、NBR、PTFE
阀门流量特性曲线图结构
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
概念、用途
阀门是流体输送系统中的控制部件,具有截断、调 节、导流、防止逆流、稳压、分流或溢流泄压等功能。
阀门零部件
参数--公称通径
阀门的公称通径是管路系统中所有管路附件用数字表 示的尺寸。公称通径是供参考用的一个方便的圆整数,与加 工尺寸呈不严格的关系。
公称通径用字母“DN”后跟一个数字标志。
各种参数—压力
1.公称压力 阀门的公称压力PN是一个用数字表示的与压力有关的标示代号,是仅供参考用的一 个方便的圆整数。
2.试验压力 ⅰ阀门的壳体试验压力是指对阀门的阀体和阀盖等联结而成的整个阀门外壳进行试 验的压力,其目的是检验阀体和阀盖的致密性及包括阀体与阀盖联结处在内的整个壳体的 耐压能力。 ⅱ阀门的密封和上密封试验压力是检验启闭件和阀体密封副密封性能和阀杆与阀盖 密封副密封性能的试验压力。
阀门的流量特性曲线
快 开 型 流 量 特 性 示 意 图
阀 芯 特 点 形 成 不 同 的 特 性
阀 芯 的 构 成
阀 门 的 固 有 特 性 曲 线
相对行程%
0
10
20
30
40
50
60
70
80
90
100
相对流量%
3.33
4.68
6.58
9.25
12.99
18.26
25.65
36.05
50.65
71.17
100
3。快开流量特性 此种流量特性的控制阀在开度较小时就有较大的流量,随着开度的增大,流 量很快就达到最大;此后再增加开度,流量变化很小,故称快开性流量特性。 它的相对流量与相对行程的函数关系用下式描述: dq=Kv2q-1dι 代入边界条件,求解得到快开流量特性的函数关系是 q=Q/Qmax=(1/R)√1+(R2-1)L/Lmax=(1/R)√1+(R2-1)ι 快开流量特性控制阀的增益Kv2与流量的倒数成正比,或Kv2∝1/Q,随流量增 大,增益反而减小。 由于这种流量特性的控制阀在小开度时就有较大流量,在增大开度,流量变 化已很小,因此称之为快开流量特性。通常有效行程在1/4阀座直径。 快开流量特性的增益: Kv2=[(Q2max-Q2min)/2Lmax]1/R 工厂实际使用的快开流量特性的函数关系如下 q=Q/Qmax=1-(1-1/R)(1-L/Lmax)2=1-(1-1/R)(1-ι )2 实际快开流量特性的增益 Kv2=2Qmax/Lmax(1-1/R)(1-L/Lmax)
1。线性流量特性 线性流量特性关系是指平衡阀的相对流量与相对位移成直线关系。 即单位位移变化所引起的流量变化是常数。用函数的关系描述为 dq=Kv2dι 两边积分,并带入边界条件 L=0 Q=Qmax L=Lmax Q=Qmax 如果定义控制阀的固有可调比 R=Qmax/Qmin 则带入积分常数后,线性流量特性表示 q=Q/Qmax=1/R[1+(R-1)· L/Lmax]=(R-1/R)ι +1/R 上式表明,线性流量特性平衡阀的相对流量与相对行程呈现线性关系, 直线的斜率是(R-1)/R,截距是1/R.因此,线性流量特性控制阀的增益Kv2 (即直线方程的斜率)与可调比R有关;与最大流量Qmax和流过阀门的流 量Q无关。Kv2 是常数。即增益Kv2=1-1/R.可调比R不同,表示最大流量与 最小流量之比不同,从相对流量坐标看,表示为相对行程为零时的起点不 同,起点的相对流量是1/R。由于最大行程时获得最大流量,因此,相对 行程为1时的相对流量为1。线性流量特性控制阀在不同的行程,如果行程 变化相同,则流量的相对变化量不同。 例:计算R=30时线性流量特性控制阀,行程变化量为10%时,不同行程位置 的相对变化量?
节流阀流量特性曲线求解方法
书山有路勤为径,学海无涯苦作舟
节流阀流量特性曲线求解方法
建立了节流阀整体有限元数字模型,分析了节流阀的流量特性,进行了不同开度下的流场网格划分及边界条件施加和求解,绘制了流量特性曲线,形成了关于节流阀流量特性求解的通常方法。
1、概述节流阀是通过改变节流截面积控制流体流量的阀门,其主要由阀体、阀盖、阀杆和阀瓣等零部件组成。
阀门的节流元件阀瓣多为圆锥流线型,通过改变阀门的节流面积达到调节流量和压力。
随着有限元软件的发展,为节流阀阀瓣节流面设计带来了更精确的方法,同时通过有限元求解对阀门不同开度下的流量进行整合分析得到节流阀流量特性曲线,从而可以直观的反应该阀门的流量调节性能,满足客户的使用要求。
2、流场分析应用Solidworks 软件对节流阀进行整体有限元数模建立,通过Solidworks Flowworks 对节流阀进行了不同开度下的流量测定。
2.1、数学模型
在Solidworks 软件中,应用拉伸和旋转等实体命令,建立实体模型,再应用装配模块对各零部件进行装配(2.2、网格划分
将建立的立体数学模型,导入到Solidworks Flowworks 模块中,对其进行流场网格划分,分别对节流阀阀瓣开启高度h 为4.5mm(2.3、边界条件加载边界条件是确定分析初始状态,设定内部流体为水,阀前设置流量为
3m3/h,温度为室温,试验压力为6kPa。
2.4、求解
应用Solidworks Flowworks 求解器对节流阀不同开度下的流场进行求解,从分析结构可以发现,当开度为4.5mm 时,阀瓣与阀座附近最大流速为。
自力式流量控制阀的特性曲线及对使用的指导意义
自力式流量控制阀的特性曲线及对使用的指导意义刘兆军一、概述自力式流量控制阀是目前国内解决供热系统水利失调的有力武器,很多供热公司在使用它进行供热系统的流量控制之后,多年不热的用户热了,冬季开窗户的少了。
但是,也有不少供热公司,在使用自力式流量控制阀之后,出现原来热的用户反而不热的现象。
这样的问题出现之后,供热公司或说产品有问题,或说自力式流量控制阀本身就不好用,而自力式流量控制阀的生产厂家则说供热公司的供热系统有问题,最终谁也说不清真正的原因。
为了解释这种现象,也为了更好地促进自力式流量控制阀行业的健康发展,为了让更多的人充分认识自力式流量控制阀,为了让更多的供热公司用好自力式流量控制阀,有必要对自力式流量控制阀进行深入的探究。
要深入的探究自力式流量控制阀,就必须研究它的性能参数及特性曲线。
二、自力式流量控制阀的由来我国第一台自力式流量控制阀,在一九九零年由位于河北省廊坊市的原中油管道局动力实业总公司环保节能设备厂张炳礼先生发明,批量生产后名称为“自力式流量控制器”,注册商标为“爱能”,至今已经有十多年的历史了。
后来,国内也有人将其叫做“自力式流量控制阀”、“自动平衡阀”、“动态平衡阀”、“恒流量阀”、“流量平衡阀”。
2003年,在建设部相关部门的推动下,以“爱能牌”自力式流量控制阀的企业标准为基础,在固安县爱能供热设备有限公司制定了自力式流量控制阀的行业标准草案,获得建设部批准,标准号是CJ/T179-2003。
行业标准中,将其名称指定为“自力式流量控制阀”。
自此,自力式流量控制阀的发展迈上了一个新台阶。
二、自力式流量控制阀的现状目前,国内生产自力式流量控制阀的厂家很多,大体可将其分为三种:第一种是专业生产自力式流量控制阀的厂家;第二种是原来生产调节阀、平衡阀等其他水力调控阀门的厂家,现在增加了自力式流量控制阀的生产;第三种是生产普通关断阀的厂家,增加了自力式流量控制阀的生产。
从市场上各个厂家自力式流量控制阀的性能来看,也可分为三类:第一类性能好的,各项性能指标均能达到或超过行业标准要求,本文中称其为A类产品;第二类质量一般的,各项性能指标中个别指标没有达到行业标准要求,其它指标达到行业标准要求,本文中称其为B类产品;第三类性能低下的,各项性能指标中多数指标没有达到行业标准要求,个别指标达到行业标准要求,本文中称其为C类产品。
DEH阀门流量特性曲线校正
基于弗 留格尔估算 法简 单 、 为精确 , 文采 用 以下 基 于弗 较 本 留格尔公式法演变 的流量公式 进 行计 算 , 公式如下 。
Q:
p r
×盟
pt
() 1
式 中 , 为不同负 荷下 的试 验 调节 级压力 ; 为 额定 调节 p p
级压力 ; 为额定 负荷 时试 验主蒸 汽压力值 ( 验要求 该压 试
汽轮机调节汽 门作 为 D H系统 的 主要执 行机 构 , E 其流
量特性偏差过大会导致节流损失加大 、 次调频 的响应负荷 一
主蒸汽通过调 节 汽 门时 的节流 损失 较 大 , 降低 了机 组 的效 率; 多阀控 制方式是 随机组负荷 的改变逐个 开启或关 闭调节
汽 门的, 般只有 一个汽 门处 于半开启 的调节 状态 , 它 的 一 其 调节汽 门或处于全开状态或处于全关状态 , 这种调节 方式下
摘要 : 就汽轮机长期运行或者大修之后 D H系统 阀门流量特 性偏离原 来 曲线 的问题 , E 对某 60 W 机组 阀门流量 0M 特性试验进行说明 , 并对 D H系统 阀门流量 曲线进行校正 , E 校正后机组 A C响应及一 次调频能力增强 。此工作对 G
汽轮机组阀门流量特性 曲线校正有一定的参考价值 。 关键词 : 汽轮 机 ; E 阀门; D H; 流量 分类号 :K 2 T 35 文献标 识码 : A 文章编号 :0 15 8 (0 1 0 - 8 -3 10 —84 2 1 )40 80 2
第5卷第4 3 期
21 0 1年 8月
汽
轮
机
技
术
Vo J 3 N 4 l 5 o. Au . 01 g2 1
TURBI NE TECHN0L0GY
阀门检测哪些项目阀门检测报告如何出具(一)
阀门检测哪些项目阀门检测报告如何出具(一)引言概述:阀门检测是确保工业设备正常运行的重要环节,通过对阀门的检测可以及时发现阀门的故障和问题,并采取相应的维修和更换措施,以保障设备的正常运行。
本文将介绍阀门检测的相关项目以及如何出具阀门检测报告。
一、阀门密封性能检测1. 检测阀门是否存在泄露问题2. 测试阀门的密封性能3. 检查阀座和阀瓣之间的间隙情况4. 检测阀门的可调节程度5. 验证阀门的工作压力范围二、阀门流量特性检测1. 测试阀门的流量特性曲线2. 检查阀门的额定流量和实际流量是否相符3. 验证阀门的调节能力4. 检测阀门的流量损失情况5. 观察阀门的开启和关闭过程中是否出现过大的流量冲击三、阀门材料及制造工艺检测1. 验证阀门的材料是否符合要求2. 检查阀门的制造工艺是否合格3. 检测阀门的零部件是否装配完整4. 验证阀门的表面涂层是否均匀且耐腐蚀5. 检查阀门的标识和铭牌是否齐全清晰可见四、阀门操作及控制系统检测1. 检查阀门的开关操作是否灵活2. 验证阀门的使用寿命和可靠性3. 检测阀门的开启和关闭时间及过程是否符合要求4. 验证阀门的远程控制和自动化控制功能是否正常5. 检测阀门的防护系统和安全措施是否完备有效五、阀门安全性能检测1. 检查阀门的防爆和防火性能2. 验证阀门的抗震能力3. 检测阀门的耐高温和耐低温性能4. 验证阀门的防冻和防腐蚀能力5. 检查阀门的紧急关闭和紧急排放装置是否可靠总结:阀门检测的项目包括阀门密封性能检测、阀门流量特性检测、阀门材料及制造工艺检测、阀门操作及控制系统检测、阀门安全性能检测等。
通过对这些项目的检测,可以全面了解阀门的工作状况,并及时采取相应的措施进行维修和更换。
阀门检测报告应包含详细的检测结果和意见建议,以便于工程师和技术人员参考,并做出正确的决策。
SIS数据分析优化汽机阀门流量特性曲线
SIS数据分析优化汽机阀门流量特性曲线发表时间:2018-08-06T16:38:40.430Z 来源:《电力设备》2018年第11期作者:许斯顿[导读] 摘要:针对汽机阀门流量特性不线性的情况,通过对历史数据的采集分析,对实际的汽机调门-流量特性进行辨识,并通过优化使汽机调门流量曲线线性化的方法。
(广东珠海金湾发电有限公司广东珠海 519000)摘要:针对汽机阀门流量特性不线性的情况,通过对历史数据的采集分析,对实际的汽机调门-流量特性进行辨识,并通过优化使汽机调门流量曲线线性化的方法。
关键词:阀门流量特性:SIS数据:重叠度Analysis of SIS data flow characteristic curve based on the optimization of turbine valvesXU Sidun(Guangdong Zhuhai Jinwan Power Company Limited equipment thermal control division)Abstract: According to the flow characteristics of turbine valve is not a linear case, through the analysis of historical data, the actual turbine valve flow characteristics were identified, and the method of turbine valve flow curve linearization by optimizing.Key words: The valve flow characteristics: SIS data: overlap1.前言:汽机调门流量特性是指流经汽机调速汽门的蒸汽流量与开度的对应关系。
由于汽轮机调门的开度—流量呈非线性关系,而此非线性关系对汽轮机的控制是十分不利的,所以必需通过调门流量特性曲线修正,使总阀位给定与总进汽量呈线性关系,才能达到有效地控制汽机的目的。
机组阀门流量特性试验滑压曲线优化方案
TPRI江苏华美热电有限公司1、2号机组阀门流量特性试验及滑压曲线优化方案西安热工研究院有限公司二〇一六年十月目录1.编制目的 (2)2.适用标准 (2)3.试验内容 (2)4.试验条件 (3)5.阀门流量特性试验方法及步骤 (3)6.滑压曲线优化试验内容及步骤 (5)7.试验注意事项 (5)1. 编制目的DEH中的高调门动作情况直接影响着火电机组的实发功率和主汽压力的运行品质,恰当的高调门流量曲线和阀门重叠曲线,是提高AGC发电品质、一次调频动作质量的关键因素之一。
由于调试、安装、机组大小修、设备装置的漂移等原因,在运机组会发生高调门曲线和重叠曲线偏离理想值的现象,有时甚至会发生一次调频质量下降和AGC品质下降的情况。
汽机高调门特性曲线优化试验,通过试验确认汽机高调门开度和主汽流量的关系,拟合出高调门全行程开度流量特性,计算、试验、校正顺阀方式下的高调门重叠度函数。
滑压曲线的设置合理性,直接影响着机组效率及调功能力。
原始初设滑压曲线由设计参数得出,以机组郎肯循环热效率为优先,未考虑调门节流损失及阀门线性磨损情况。
通过滑压曲线优化,找出各个负荷点最佳压力设定值,在保证机组调功裕度的前提下,基于实际调门特性,降低节流损失,达到节能提效的目的。
编写本方案的目的是规范1、2号机组阀门流量特性试验及滑压曲线优化调试行为,确保设备、人身不受伤害。
保证系统调试保质、保量、有序进行。
2. 适用标准DL/T656—2006 火力发电厂汽机控制系统验收测试规程DL/T824—2002 汽轮机电液调节系统性能验收导则DL/T711—1999 汽轮机调节控制系统实验导则国能安全[2014]161号《防止电力生产重大事故的二十五项重点要求》《电厂汽机运行规程》DEH厂家技术资料DCS厂家技术资料3. 试验内容3.1 阀门流量特性试验●汽机高调门开度和蒸汽流量对应数据的试验测定。
●汽机高调门开度/蒸汽流量特性曲线的拟合。
流量与阀门开度的关系
阀门的流量特性不同的流量特性会有不同的阀门开度;①快开流量特性,起初变化大,后面比较平缓;②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到50%,阀门的流量也达到50%;③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。
阀门开度与流量、压力的关系,没有确定的计算公式。
它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。
调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系:Q/Qmax=f(L/Lmax)调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系:Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。
调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。
阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin,则直线流量特性的流量与开度的关系为:Q/Qmax=(1/R)[1+(R-1)L/Lmax]开度一半时,Q/Qmax=51.7%等百分比流量特性:Q/Qmax=R^(L/Lmax-1)开度一半时,Q/Qmax=18.3%快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)开度一半时,Q/Qmax=75.8%流量特性主要有直线、等百分比(对数)、抛物线及快开四种①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。
②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。
③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。
④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。
隔膜阀的流量特性接近快开特性,蝶阀的流量特性接近等百分比特性,闸阀的流量特性为直线特性,球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。
阀门流量特性曲线图结构
概念、用途
阀门是流体输送系统中的控制部件,具有截断、调节、 导流、防止逆流、稳压、分流或溢流泄压等功能。
用
途
阀门是一种管路附件。
改变通路断面和介质流动方向,控制输送介质流动的一种装置。 1. 接通或截断管路中的介质。
2. 调节、控制管路中介质的流量和压力。
3. 改变管路中介质流动的方向。 4. 阻止管路中的介质倒流。 5. 分离介质。 6. 指示和调节液面高度。
密封性能—阀杆
阀杆是带动启闭件使阀门开启和关闭的重要部件,因 为阀杆是可动件。所以是最易产生外漏的部件。因此,阀 杆密封对于阀门来讲是非常重要的。 阀杆的密封通常用压缩填料。压缩填料是指压入填料 函内使阀杆周围密封的软质材料。
材
质
1.壳体:铜(黄铜、青铜)、铸铁、球墨铸铁、铸钢 2.内件:铜、不锈钢 3.密封:EPDM、NBR、PTFE
密封性能--密封面
阀门的密封面是指阀座与关闭件互相接触而进行关闭 的部分。 由于阀门在使用过程中密封面在进行密封中要受到冲 刷和磨损,所以阀门的密封性能随着使用时间而减低。
1. 金属密封面
2. 软密封面
密封性能—垫片
垫片是阀门产生外漏的关键因素之一 1. 金属平垫片 2. 压缩石棉纤维垫片 3. 缠绕式垫片
阀权度对流量特性曲线的影响
等百分比特性
线性特性
快开型:行程较小时,流量就比较大,随着行程的增大流量很快 达到最大。阀的有效行程<d/4(d为阀座直径)。行程再增大时已不 起调节作用,适用于双位控制。
调节阀流量特性曲线的选择
期望的阀门控制信号—热量输出曲线图
实际的换热器/风机盘管流量—热量输出特性曲线
期望的阀门开度/信号—流量特性曲线
电动调节阀的流量特性测试实验
实验六 电动调节阀的流量特性测试实验一、调节阀的流量特性曲线:调节阀的流量特性是指被控介质流过阀门的相对流量和阀门相对开度之间的关系,即 ⎪⎭⎫ ⎝⎛=L l f Q Q max (7-1) 式中max Q /Q 为相对流量,即某一开度流量与全开流量之比;l /L 为相对行程,即某一开度行程与全行程之比。
目前常用阀的理想流量特性分为:直线特性、对数(等百分比)特性、快开特性和抛物线特性四种曲线,如下图3-2-1所示:图7-1 调节阀的理想流量特性曲线在实际工业场合用的最多的是第一种线性调节阀,此种阀较易配合各种管路和流量传感器完成流量控制,本套装置也是采用线性调节阀。
实际应用中,理想特性曲线较难得到,因为当将调节阀实际接入管道时,其特性会受多种因素的影响,如连接管道阻力、前后压差、多管路融合与分支等,所以很难得到理想流量特性描述的四种曲线,本套装置也不例外,但在大部分区域内调节阀依然保持线性工作状态。
二、调节阀的流量特性测试1、实验目的:① 掌握实验步骤及数据的测试方法。
② 通过实验测试数据验证电动调节阀的特性在大部分曲线范围内工作属于线性的。
③ 分析为什么调节阀的流量特性曲线和理想特性曲线是有区别的。
2、实验设施:化工自动化仪表实验平台、实验导线、计算机、MCGS 组态软件、RS485/232转换器;3、实验原理:为了测量调节阀的特性曲线,首先需要把对象系统的管路开通,确保水能在动力系统的驱动下流经电动调节阀和流量计,最后将水打出水管,管路流通见下3-2-2图。
对于本套装置的流量测量装置主要有三种:电磁流量计、涡轮流量计和孔板流量计,在考虑测量精度和流体压力损失较小的情况下,优先选用电磁流量计进行测量,然后流经涡轮流量计,将阀前管道尽可能地放长,并将电磁流量计输出信号送到智能仪表测量端用于现场显示和上位机监控,通过上位机绘制曲线即可判断电动调节阀的特性曲线是否为线性。
图7-2 电动调节阀流量特性测试流程图4、实验步骤:①实验之前先将储水箱中贮足水量,一般接近储水箱容积的4/5,然后将阀F1-2、F1-3、F1-7全开,其余手动阀门关闭;②将仪表控制箱中的1#通讯线(接有两块智能调节仪和一块流量积算仪)经RS485/232转换器接至计算机的串口上,本工程初始化使用COM1端口通讯;③将仪表控制箱中“电磁流量计”的输出对应接至智能调节仪Ⅰ的“0~5V/1~5V输入”端,将智能调节仪Ⅰ的“4~20mA输出”端对应接至“电动调节阀”的控制信号输入端;④打开对象系统仪表控制箱的单相空气开关,给所有仪表上电;⑤智能仪表Ⅰ基本参数设置:Sn=33、DIP=0、dIL=0、dIH=1200、oPL=0、oPH=100、CF=0、Addr=1;⑥打开MCGS组态环境,选择“化工仪表工程”,按“F5”进入运行环境,点击“进入实验工程”,然后进入实验“主菜单”,选择“实验一、电动阀流量特性测试实验”;⑦在实验界面中有“通讯成功”标志,表示计算机已和三块仪表建立了通讯关系;若显示“通讯失败”并闪烁,说明有仪表没有与上位机通讯成功,检查转换器、通讯线以及计算机COM端口设置是否正确;⑧通讯成功后,本实验需要手动控制智能调节仪Ⅰ的输出,以控制电动调节阀的开度改变管道流量的大小。
阀门流量特性分析与优化
道 系 统 参 数 设 计 大 小 、各 种 型 号 阀 门 的 组 合 运 用 形 式 及 管 道
系统运行控制要求等。
基 于 阀 门 的 固 有 流 量 特 性 方 程 ,结 合 管 路 系 统 及 阀 门 的
安装 布 置 情 况 ,得 出 上述 四 种 典 型 流 量 特 性 方 程 相 对 应 的 阀
(4)
q=[1+(姨 R -1)子]2/R 等百分比流量特性方程可表示为:
q =R 子-1 快开流量特性方程可表示为:
(5) (6)
q= 姨1+(R2-1)子 /R
(7)
通 常 情 况下 ,管 道 系 统 内 的 阀 门 均 不 会 在 阀 门 前 后 恒 压
差下运行,在阀门开启和关闭的过程中,阀门上下游的压力差
1 分析需求
南 方 电 网公 司 中 长期 发 展 战略 中 提 出 创 先 目 标 :率 先 建 成“ 服 务 好 、管 理 好 、形 象 好 ”的 国 际 领 先 供 电 企 业 。 企 业 创 先 需要稳 步 推 进 企 业 级 决 策 支 持 体 系 及 综 合 计 划 管 理 ,做 到 精益化管理,提升工作质量和工作效率,实现高效减负。
0 引言
近 年 来 的研 究 发 现证 明 ,阀 门 的 流 量 特 性 以 及 针 对 阀 门 流量的调节控制与优化是影响管道系统水锤效应的关键性因 素,然而,关于管道系统阀门的选型以及阀门在管道系统内的 相 关 性 应 用 研 究 较 多 ,而 在 管 道 系 统 内 系 统 地 研 究 分 析 阀 门 流量特性以及阀门流量特性对管道系统水锤效应的影响关系 的研究较少。
Y max为阀门开度的最大值;子为相应情况下的阀门开度大小。
另 外 ,阀 门 前 后 两 端 的 水 压 差 对 阀 门 的 流 量 特 性 具 有 十
阀门的流量特性曲线
例:计算R=30时线性流量特性控制阀,行程变化量为10%时,不同行程位置 的相对变化量?
解:不同行程ι 时的相对的流量如下表 相对流量变化10%时,
在相对流量10%处,相对流量的变化量为(22.67-13)/13=74.38%; 在相对流量50%处,相对流量的变化量为(61.33-51.7)/51.7=18.62%; 在相对流量90%处,相对流量的变化量为(100-90.33)/90.33=10.71%。
等百分比流量特性控制阀的增 Kv2=(Q/Lmax)
等百分比流量特性控制阀的增益Kv2与流量Q成正比,又因 △Q/Q=R△ι -1 当相对行程变化量相同时,流量也变化相同的百分比,因此称为等百分比流量特性
例:计算R=30时等百分比流量特性控:根据q=R(ι -1)计算不同相对行程ι 和相对 量q。行程变化量为10%时,不同行程位置的相对变化量
示例说明,等百分比流量特性的控制阀在不同开度下,相同的行程变化引起 量的相对变化是相等的,因此称之为等百分比流量特性,它在全行程范围内具有 同的控制精度。它在小开度时,增益较小,因此调节平缓;在大开度时,增益较
,能够有效地进行调节
50
60
70
80
90 100
相对流量% 3.33 4.68 6.58 9.25 12.99 18.26 25.65 36.05 50.65 71.17 100
几种。
1。线性流量特性 线性流量特性关系是指平衡阀的相对流量与相对位移成直线关系。
即单位位移变化所引起的流量变化是常数。用函数的关系描述为
dq=Kv2dι 两边积分,并带入边界条件
L=0 Q=Qmax L=Lmax Q=Qmax 如果定义控制阀的固有可调比 R=Qmax/Qmin
流量与阀门开度的关系
流量与阀门开度的关系阀门的流量特性不同的流量特性会有不同的阀门开度;①快开流量特性,起初变化大,后面比较平缓;②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到50%,阀门的流量也达到50%;③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。
阀门开度与流量、压力的关系,没有确定的计算公式。
它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。
调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系:Q/Qmax=f(L/Lmax)调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系:Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。
调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。
阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin ,则直线流量特性的流量与开度的关系为:Q/Qmax=(1/R)[1+(R-1)L/Lmax]开度一半时,Q/Qmax=51.7%等百分比流量特性:Q/Qmax=R^(L/Lmax-1)开度一半时,Q/Qmax=18.3%快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)开度一半时,Q/Qmax=75.8%流量特性主要有直线、等百分比(对数)、抛物线及快开四种①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。
②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。
③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。
④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。