电流互感器知识整理
互感器基本知识
1.7.1.2倒立式:所有油纸绝缘倒立式电流互感器皆为电容型绝缘 结构. 该类产品同样由膨胀器、壳体、瓷套、一次导体、一次端子、 器身、底座及变压器油等组成:壳体为铸铝件制成,起散热及 一次出线作用;瓷套采用高强瓷烧制而成,起外绝缘爬电及油 容积作用;绝缘全包在二次绕组上,采用高强电缆纸及半导体 纸组成电容型绝缘结构,同一次绕组一起位于上部壳体内,二 次绕组引线由铜绞线外包不溶于油的绝缘材料制成;底座由 Q235钢板或铸铝件制成,其上有接地座、吊攀、铭牌、二次接 线板及放油阀等,该类产品一次绕组由导电铝或铜材制成,全 部原线引出;其它结构及控制同正立式.
A
VA
A
VA
A
VA
A
VA
A
VA
A
VA
A
VA
A
VA
A
VA
kA s 油重
kg 生产序号
准确级
额定动稳定电流 C2
kA 总重
kg 生产日期
接线原理图
年 C1
P2
P1
7S3 7S1 6S3 6S1 5S3 5S1 4S3 4S1 3S3 3S1 2S3 2S1 1S3 1S1 7S4 7S2 6S4 6S2 5S4 5S2 4S4 4S2 3S4 3S2 2S4 2S2 1S4 1S2
中国江苏精科互感器股份有限公司
铭牌 二次接线盒
1.7.2 SF6气体绝缘电流互感器: 该类产品为倒置式结构,由一次导体、一次端子、壳体、外绝 缘、二次绕组组件、支持绝缘子(220kV及以上电压等级采用)、 底座及SF6气体等组成:一次导体由导电铝或铜材制成;一次端 子采用铸铝或铸铜件,可满足载流及机械强度要求;壳体为铸 铝件制成,上装防爆装置,起载流及一次出线作用;外绝缘分 为瓷套及复合空心绝缘子两种,起外绝缘爬电及容积作用;二 次绕组组件位于上部壳体内,由屏蔽罩、压紧装置、二次绕组 及其引线组成,屏蔽罩由铝材通过旋压成型,压紧装置由金属 件及绝缘件组成,二次绕组由环形铁心、绝缘、漆包线及其引 线制成,为二次测量及保护装置提供输出,二次绕组引线由铜 绞线外包聚四氟乙烯绝缘制成;绝缘采用高强度聚脂薄膜,底 座由Q235钢板或铸铝件制成,其上有接地座、吊攀、铭牌、二 次接线板及密度控制器等,支持绝缘子由环氧树脂混合料真空 浇注而成.
电流互感器基础知识
RWL
LC
S
式中,γ为导线的导电率,铜线γ=53m/ (Ω·mm2),铝线γ=32m/(Ω·mm2);S为导 线截面(mm2);Lc为导线的计算长度(m)。 设互感器到仪表单向长度为l1,则:
Lc
l1 3l1
Hale Waihona Puke 2l1星形接线 两相V形接线 一相式接线
18
保护用互感器的准确度选10P级,其复合误差限 值为10%。为了正确反映一次侧短路电流的大小, 二次电流与一次电流成线性关系,也需要校验二次 负荷。
荷; (4)比较实际二次负荷与允许二次负荷。如实际二次负荷小于允许二次负荷,表示
电流互感器的误差不超过10%,如实际二次负荷大于允许二次负荷,则应采取下述措施, 使其满足10%误差:
① ①增大连接导线截面或缩短连接导线长度,以减小实际二次负荷; ②选择变比较大的电流互感器,减小一次电流倍数,增大允许二次负荷。
I1N >I30
S2N
一般: I1N =(1.2~1.5)I30
4). 电流互感器准确度选择及校验
准确度选择的原则:计量用的电流互感器的准确度选0.2~0.5级,测量用的电流互感 器的准确度选1.0~3.0级。为了保证准确度误差不超过规定值,互感器二次侧负荷S2 应不大于二次侧额定负荷S2N ,所选准确度才能得到保证。
(3) 变流比与二次额定负荷 电流互感器的一次额定电流有多种规格可供用户选择。 电流互感器的每个二次绕组都规定了额定负荷,二次绕组回路所带负荷不应超过额定负 荷值,否则会影响精确度。
14
电流互感器的选择与校验
1). 电流互感器型号的选择
根据安装地点和工作要求选择电流互感器的型号。 2).电流互感器额定电压的选择
电流互感器基础知识
电流互感器的基本原理1.1 电流互感器的基本等值电路如图1所示.图1 电流互感器基本等值电路图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流,,Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一次电流之比等于一次绕组与二次绕组匝数比。
即:IpN1=IsN2Is=Ip×N1/N2=Ip/Kn1.2. 电流互感器极性标注电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。
当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。
由于电流方向相反,且铁心中合成磁通为零。
因此得下式:N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。
推出:Is=N1/N2*Ip可见,一二次电流的方向是一致的,是同相位的,因此我们可以用二次电流来表示一次电流(考虑变比折算)。
这正是减极性标注的优点。
1.3. 电流互感器的误差在理想条件下,电流互感器二次电流Is=Ip/Kn,不存在误差。
但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。
这一点我们可以在图1中看到。
实际流入互感器二次负载的电流Is=Ip/Kn-Ie,其中Ie为励磁电流,即建立磁场所需的工作电流。
知识点:电流互感器的应用
二、电流互感器的选择
4、二次负荷的校验
为保证所选电流互感器的准确级,其最大相二次负荷S2,应不大于 所选准确级相应的额定容量。
S2 SN2
三、电流互感器的使用事项
1、电流互感器的接线应保证正确性
一次绕组和被测电路串联,而二次绕组应和连接的所有测量仪表、 继电保护装置或自动装置的电流线圈串联;同时要注意极性的正确性,一次绕 组与二次绕组之间应为减极性关系,一次电流若从同名端(减极性标示法)流 入,则二次电流应从同名端流出。
思考与总结
观察一下我们实训室中的配电系统用的电流 互感器采用的是哪一种接线方式,并且画出它们的实 际接线图?
谢 谢!
二、电流互感器的选择
3、额定电压与额定电流的选择
电流互感器的一次额定电压的选择主要是满足相应电网电压的要求, 其绝缘水平能够承受电网电压长期运行,并承受可能出现的雷电过电压、操作 过电压及异常运行方式下的电压。一次侧额定电流应尽可能比电路的正常工作 电流大1/3左右。 电流互感器的二次额定电流采用5A或者1A。
电流互感器的应用
电流互感器的接线方式 电流互感器的选择 电流互感器的使用注意事项
一、电流互感器的接线方式
(一)单相式接线Байду номын сангаас
只有一只电流互感器组成, 接线简单。它可以用于小电流接 地系统零序电流的测量,也可以 用于三相对称电流中电流的测量 或过负荷保护等。
一、电流互感器的接线方式
(二)不完全星形接线
一、电流互感器的接线方式
(四)两相差电流接线
也仅用于三相三线制电路中, 这种接线的优点是不但节省一块电流互感 器,而且也可以用一块继电器反映三相电 路中的各种相间短路故障,亦即用最少的 继电器完成三相过电流保护,节省投资。
电流互感器小知识
电流互感器小知识电流互感器是重要的电力设备,认识电流互感器是了解二次回路的基础。
今天我们就一起来认识一下电流互感器。
1、电流互感器的作用(1)将一次系统的电流信息准确传递到二次侧相关设备。
(2)将一次系统的大电流变换为二次侧的小电流,使得测量、计量仪表和继电保护等装置标准化、小型化,并降低了对二次设备绝缘的要求。
(3)将二次设备以及二次系统与一次系统高压设备在电气方面很好的隔离,保证了二次设备和人身的安全。
2、变比和准确度级电流互感器的二次参数包括变比和准确度级。
变比:表示一次电流与二次侧电流的比值,是继电保护整定计算及计量专业的重要参数。
变比的选择,首先应考虑额定工况下测量仪表的指示精度和满足保护装置额定输入电流及工作精度的要求。
例如,当保护装置的额定输入电流为5A时,在正常工况下,测量级的电流互感器二次输出电流应在1~4.5A之间比较合理。
如果太小,(如小于0.5A)就不合理了。
保护级的电流互感器,由于要保证在系统故障时不饱和,一般变比要大于测量级的电流互感器变比。
注意,电流互感器一次绕组,串联变比不变容量增大一倍;并联变比增大一倍,容量不变。
二次绕组,串联变比不变,容量增大一倍;并联变比减小一半,容量不变。
准确度级:目前,国内采用的电流互感器的准确度级有六个:0.1、0.2、0.5、1、3、5级。
按照计量、测量类和保护类两类讨论,计量测量类需要运行时精确测量,满足正常负荷下测量要求,保护类在故障态时进行保护,满足极限情况下的要求。
计量、测量准确等级:0.1、0.2、0.5等。
如0.5级表示在额定工况下,电流互感器的传递误差不大于0.5%。
保护准确等级:一般采用P级,例如,5P20,表示20倍额定电流下误差是5%,所以保护级虽然精度不如计量测量级,但具有很强的抗饱和能力。
所以CT的绕组不能使用错误,否则容易出现饱和现象,对于继电保护部分将出现误动或拒动(纵差保护容易误动,因为检测差流过大。
后备保护由于采集数值过小又会出现拒动的情况)。
电流互感器知识整理
电流互感器知识整理电流互感器知识简介为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量.但一般的测量和保护装置不能直接接入一次高压设备,而需要将一次系统的高电压和大电流按比例变换成低电压和小电流,供给测量仪表和保护装置使用.执行这些变换任务的设备,最常见的就是我们通常所说的互感器.进行电压转换的是电压互感器(voltagetransformer),而进行电流转换的互感器为电流互感器(currenttransformer),简称为CT.本文将讨论电流互感器的相关基本知识.1.电流互感器的基本原理1.1电流互感器的基本等值电路如图1所示.图1电流互感器基本等值电路图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流, Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N 1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗.电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一次电流之比等于一次绕组与二次绕组匝数比。
即:IpN1=IsN2Is=Ip×N1/N2=Ip/Kn1.2.电流互感器极性标注电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。
当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。
由于电流方向相反,且铁心中合成磁通为零。
因此得下式:N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。
电流互感器相关知识汇总
电流互感器的相关知识汇总2014年3月15日电流互感器主要由三部分组成:铁心、一次线圈和二次线圈。
由于铁心磁阻的存在,电流互感器在传变电流的过程中,必须消耗一小部分电流用于激磁,使铁心磁化,从而在二次线圈产生感应电势和二次电流,电流互感器的误差就是由于铁心所消耗的励磁电流引起的。
由于激磁电流和铁损的存在,电流互感器一次电流和二次电流的差值是一个向量,误差包括比值差和相角差。
影响误差的因素:1、电流互感器的内部参数是影响电流互感器误差的主要因素。
⑴二次线圈内阻R2和漏抗X2对误差的影响: 当R2增大时比差和角差都增大; X2增大时比差增大,但角差减小,因此要改善误差应尽量减小R2和适当的X2值。
由于二次线圈内阻R2和漏抗X2与二次负载Rfh和Xfh比较而言值很小,所以改变R2和X2对误差的影响不大,只有对小容量的电流互感器影响才较显著。
⑵铁芯截面对误差的影响:铁芯截面增大使铁芯的磁通密度减少,励磁电流减小,从而改善比差和角差。
没有补偿的电流互感器在额定条件下铁芯的磁通密度已经很小,所以减少磁通密度也相对减小了导磁系数,使励磁电流减小不多,而且磁通密度越小效果越差。
⑶线圈匝数对误差的影响: 增加线圈匝数就是增加安匝,增加匝数可以使磁通密度减小,其改善误差的效果比增加铁芯截面显著得多。
但是线圈匝数的增加会引起铜用量的增加,同时引起动稳定倍数的减少和饱和倍数的增加。
此外,对于单匝式的电流互感器(如穿心型或套管型电流互感器一次线圈只允许一匝)不能用增加匝数的办法改善误差。
⑷减少铁芯损耗和提高导磁率。
在铁芯磁通密度不变的条件下,减少铁芯励磁安匝和损耗安匝也将改善比差和角差,因此采用优质的磁性材料和采取适宜的退火工艺都能达到提高导磁率和减少损耗的目的。
铁芯磁性的优劣还影响饱和倍数,铁芯磁性差时饱和倍数较校。
2、运行中的电流互感器的误差当电流互感器已经定型,其内部参数就确定了,那么它的误差大小将受二次电流(或一次电流)、二次负载、功率因数以及频率的影响。
电流互感器基础知识介绍PPT课件
电流互感器具有测量精度高、稳定性好、可靠性高、寿命长等特点,是电力系 统中的重要设备之一。同时,由于其具有较大的变比,可以满足不同场合的测 量和保护需求。
02
电流互感器的结构与组成
一次绕组
一次绕组:也称为初级绕组,是 电流互感器输入端,用于将高电 压、大电流转换为低电压、小电
流。
一次绕组通常由铜线或多股绝缘 线绕制而成,匝数较少,匝数决
绝缘电阻与耐压
总结词
绝缘电阻与耐压是评估电流互感器电气性能的重要参数,它们分别代表了互感器的绝缘性能和耐受电压的能力。
详细描述
绝缘电阻是指在正常工作条件下,互感器一次侧与二次侧之间的电阻值,它是衡量互感器绝缘性能的重要指标。 耐压是指在一定时间内,互感器能够承受的最高电压值,它是衡量互感器电气安全性能的重要指标。在选择和使 用电流互感器时,应关注其绝缘电阻和耐压参数是否符合相关标准和使用要求。
03
电流互感器的技术参数
额定电流比
总结词
额定电流比是电流互感器的一个重要参数,它表示了互感器一次侧与二次侧的电 流值之比。
详细描述
额定电流比通常由制造厂家根据互感器的设计、材料和工艺等因素确定,它决定 了互感器在正常工作条件下的输出电流与输入电流的比值。对于电力系统中的互 感器,额定电流比通常较大,以适应大电流的测量需求。
铁心:是电流互感器 的重要组成部分,通 常由硅钢片叠压而成。
铁心的磁性能直接影 响互感器的准确度等 级和误差特性。
铁心的作用是导磁和 导磁回路,提供磁通 路径并减小磁阻。
其他组件
01
其他组件包括绝缘材料、支架、 外壳等,用于支撑和保护绕组和 铁心,并提供电气隔离。
02
此外,还包括一些辅助电路和辅 助元件,如补偿电路、稳压电路 等,以确保互感器的正常运行和 准确测量。
电流互感器并联变比和串联变比
电流互感器并联变比和串联变比1. 电流互感器的基础知识电流互感器(CT),听起来有点高深,对吧?实际上,它在电力系统中扮演着非常重要的角色。
简单来说,电流互感器就像是电力系统中的一个小助手,负责测量大电流并将其转化为更容易处理的小电流。
说白了,就是把“巨无霸”变成“小可爱”,方便我们进行监控和保护。
那电流互感器的变比,哎呀,这就像是一个魔法公式,能够帮我们准确测量电流,避免大电流直接冲击到测量仪器上。
接下来,我们就来探讨一下电流互感器在并联和串联的情况下,它们的变比究竟有什么不同吧!1.1 电流互感器并联变比当我们把电流互感器并联起来时,变比的计算就像是调配鸡尾酒,不能乱来。
并联变比,简单来说,就是电流互感器在并联状态下,它们的变比是如何影响整体电流的。
这时候,我们需要把每个互感器的变比视为一个“成分”,然后计算它们的总效果。
比如,如果你有两个互感器,一个变比是100:1,另一个是200:1,那么它们并联的总变比就不是简单的平均数哦。
这就像是调酒师调配鸡尾酒时,每种酒的比例都会影响到最后的口感,我们要做的是找到最合适的比例,让整体电流的测量准确无误。
并联的好处是可以分担电流负担,像一支足球队,大家分工合作,整体效率更高。
1.2 电流互感器串联变比再说说电流互感器串联的情况,这就有点像把两根电缆连起来传电流。
串联变比的计算其实也没那么复杂,只不过需要注意的是,当电流互感器串联时,它们的变比会相乘。
举个例子,如果一个互感器的变比是50:1,另一个是20:1,串联后,整体变比就是50×20:1,这样就能把电流的测量范围扩大,适应更大的电流。
如果说并联是团队合作,串联就像是给自己加倍努力,结果就会是原来的变比乘以倍数。
这种方式可以让我们应对更大的电流,但要确保所有的互感器都能安全承受,别让它们“炸了锅”。
2. 实际应用中的变比选择选择并联还是串联的变比,其实就像是选鞋子一样,不同的场合需要不同的“鞋子”。
电流互感器知识点总结
电流互感器知识点1、定义电流互感器是将交流大电流变成小电流(5A或1A),供电给测量仪表和保护装置的电流线圈。
可以把高电压与仪表和保护装置等二次设备隔开,保证了测量人员与仪表的安全。
使用电流互感器时,应将一次绕组与被测回路串联,电流互感器工作时相当于普通变压器短路运行状态。
电流互感器的二次电流和一次电流的关系是随着一次电流的大小而变化。
2、运行1)电流互感器不得超额定容量长期运行(长期过负荷【即通过的电流超过电流互感器的额定电流】会使误差增大,表计指示不正确;会使铁芯和绕组过热,绝缘老化快,甚至损坏电流互感器;);2)电流互感器二次侧电路应始终闭合;(运行中的CT上拆除电流表等仪表时,应先将二次绕组短路;二次绕组如有不用的,应采取短接处理。
)3)电流互感器二次侧线圈的一边和铁芯应同时接地;(CT二次侧接地是保护接地,防止一、二次绕组间因绝缘损坏而击穿时,二次绕组串入高电压,危机设备及人身安全)。
4)电流互感器的二次回路必须有且只能有一个接地点。
5)电流互感器二次回路切换时:应停用相应的保护装置;严禁操作过程中开路。
6)保护和仪表共用一套电流互感器时,当表计回路有工作,应注意必须在表计本身端子上短接,注意不要开路且不要把保护回路短路;现场工作时应根据实际接线确定短路位置和安全措施;在同一回路中如有零序保护、高频保护等,均应在短路之前停用。
3、极性1)电流互感器的极性是什么?何谓减极性和加极性?极性错误会有什么危害?答:规定电流互感器的一次线圈的首端标为L1,尾端标为L2,二次线圈的首端标为K1,尾端标为K2,在接线中L1 ,K1(L2 和K2)均为同极性端。
减极性:假定一次电流从L1流入,从L2流出,感应出的二次电流从K1流出,从K2流入,这种LH的极性称为减极性。
反之将K1与K2换位时,称为加极性。
危害:在使用中极性错误会引起保护误动作,尤其是两相三继电器的过电流保护,变压器的差动保护,母差保护等电流互感器极性和接线必须正确。
电流互感器介绍(典藏版)解析
电流互感器一.基本概念和基本原理1.基本概念互感器:一种变压器,供测量仪器、仪表、继电器和其它类似电器用。
电流互感器:一种互感器,在正常使用条件下其二次电流与一次电流实质上成正比,而其相位差在联结方法正确时接近于零的互感器。
电流互感器主要分为两大类:测量级互感器和保护级互感器。
电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电流变换成较小的标准电流值,一般是5A或1A,这样可以减小仪表和继电器的尺寸,简化其规格,有利于这些设备的小型化、标准化,所以说电流互感器的主要作用是:a. 传递信息供给测量仪表、仪器或继电保护、控制装置;b. 使测量、保护和控制装置与高电压相隔离;c.有利于测量仪器、仪表和保护、控制装置的小型化、标准化。
测量级互感器:专门用于测量电流和电能的电流互感器。
如:3、1、0.5、0.2、0.1、0.5S、0.2S、0.1S、0.3、0.6、1.2、1M、2M保护级互感器:专门用于继电保护和自动控制的电流互感器。
如:5P、10P、C类互感器(如C800)、5PR、10PR、PX、X、PS、PL 、TPX、TPY、TPS铁心开气隙的目的:控制剩磁铁心需开气隙的电流互感器:5PR、10PR、TPY执行标准:国标:GB 1208-2006 电流互感器GB 16847-1997 保护用电流互感器暂态特性技术要求国际标准:IEC 60044-1、IEC 60044-6其它国家标准:IEEE/C57.13、CAN3-C13、AS 60044.1、BS等600/1A的CT二次匝数为600÷1=6003.套管型电流互感器的基本参数及基本常识3.1 额定电流比:例1:300-400-600/5A,即表示此互感器有三个变比,其额定一次电流分别为300、400及600A,额定二次电流为5A,二次匝数应分别为60、80及120匝。
S1-S2:300/5、60匝S1-S3:400/5、80匝S1-S4:600/5、120匝例2:600/5MR、C800 (美国标准IEEE Std C57.13-1993)MR:多变比C类互感器:相当于10P20800:二次端电压(V)C800:相当于10P20、200V A出线标记――X2-X3 50/5 10匝X1-X2 100/5 20匝X1-X3 150/5 30匝X4-X5 200/5 40匝X3-X4 250/5 50匝X2-X4 300/5 60匝X1-X4 400/5 80匝X3-X5 450/5 90匝X2-X5 500/5 100匝X1-X5 600/5 120匝20匝10匝50匝40匝X1X2X3X4X53.2 准确级要求3.2.1保护级互感器:3.2.1.1标准准确限值系数ALF:5、10、15、20、30、40等。
电流互感器知识:铭牌、接线图、重点问题详解
电流互感器知识:铭牌、接线图、重点问题详解我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结了一些电流互感器知识,供参考使用。
一电流互感器铭牌标志电流互感器型号由以下几部分组成,各部分字母、符号表示内容:第一个字母:L——电流互感器第二个字母:F——风压式;M——母线式(穿芯式)第三个字母:C——瓷绝缘式;Z——浇注式第四个字母:B——保护;D——差动第一个字母:数字——电压等级(kV)。
例如:LMZ—0.66表示用环氧树脂浇注的穿芯式电流互感器 0.66kV。
额定工作电压,互感器允许长期运行的最高相同电压有效值。
额定一次电流,作为互感器性能基准的一次电流值。
额定二次电流,作为互感器性能基准的二次电流值,通常为5A或1A。
额定电流比,额定一次电流与额定二次电流之比。
额定负荷,确定互感器准确级所依据的负荷值。
电流互感器二次K1、K2端子以外的回路阻抗都是电流互感器的负荷。
通常以视在功率伏安或以阻抗欧姆表示。
额定功率因数,二次额定负荷阻抗的有功部分与额定阻抗之比。
准确度等级,在规定使用条件下,互感器的误差在该等级规定的限值之内电力工程中计量常用的等级有0.2、0.5、0.2S、0.5S等。
二测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
1、普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。
2、穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
三电流互感器接线图电流互感器接线总体分为四个接线方式:1、单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
电流互感器知识介绍
•
•
3.电流互感器的型号参数 • 一、电流互感器型号: • 第一字母:L—电流互感器 • 第二字母:A—穿墙式;Z—支柱式;M—母线式;D—单 匝贯穿式;V—结构倒置式;J—零序 • 接地检测用;W—抗污秽;R—绕组裸露式 • 第三字母:Z—环氧树脂浇注式;C—瓷绝缘;Q—气体绝 缘介质;W—与微机保护专用 • 第四字母:B—带保护级;C—差动保护;D—D级;Q— 加强型;J—加强型ZG • 第五数字:电压等级 产品序号
电流互感器知识
1.电流互感器的原理 2.电流互感器的作用 3.电流互感器的型号参数 4.电流互感器的接线方式 5.电流互感器的注意事项 6.公司案例:济南铂晶电子科技有限公司
1.电流互感器的原理
• 电流互感器原理是依据电磁感 应原理的。电流互感器是由闭 合的铁心和绕组组成。它的一 次绕组匝数很少,串在需要测 量的电流的线路中,因此它经 常有线路的全部电流流过,二 次绕组匝数比较多,串接在测 量仪表和保护回路中,电流互 感器在工作时,它的2次回路始 终是闭合的,因此测量仪表和 保护回路串联线圈的阻抗很小, 电流互感器的工作状态接近短 路。
• • •
5.电流互感器的注意事项
• 电流互感器 - 使用注意事项电流互感器运行时,副边不允许开路。因 为一旦开路,原边电流均成为励磁电流,使磁通和副边电压大大超过 正常值而危及人身和设备安全。因此,电流互感器副边回路中不许接 熔断器,也不允许在运行时未经旁路就拆下电流表、继电器等设备。 • 电流互感器运行时,副边不允许开路。原因如下: • ⒈电流互感器一次被测电流磁势I1N1在铁芯产生磁通Φ1 • ⒉电流互感器二次测量仪表电流磁势I2N2在铁芯产生磁通Φ2 • ⒊电流互感器铁芯合磁通:Φ = Φ1 + Φ2 • ⒋因为Φ1.Φ2方向相反,大小相等,互相抵消,所以 Φ = 0 • ⒌若二次开路,即 I2 = 0 ,则:Φ = Φ1,电流互感器铁芯磁通很强, 饱和,铁心发热,烧坏绝缘,产生漏电 • ⒍若二次开路,即 I2 = 0 ,则:Φ = Φ1,Φ在电流互感器二次线圈 N2中产生很高的感生电势e,在电流互感器二次线圈两端形成高压, 危及操作人员生命安全 • ⒎电流互感器二次线圈一端接地,就是为了防止高压危险而采取的保 护措施。
电流互感器知识
电流互感器基本知识
若到了高海拔地区做试验,绝缘水平中的一次工 频耐压为103kV, 若再乘以一个系数,这样互感器就有可能被打坏。
电流互感器基本知识
2.变比,额定一次电流与二次电流的比值,我们在平时的确认时会遇 到很多变比写法,举例介绍如下: a.600/5A,代表一次电流为600A,二次电流为5A,二次有可能为单绕 组,也可能为多绕组,若为多绕组时其它的绕组“/5”省略掉了,也 有时详细写的,600/5/5/5,二次有3个绕组,全为5A。 b.300-600/1A,300,600/1A,300;600/1A,二次绕组带有抽头,若没 有特殊标明则认为所有的二次绕组都要做抽头。 c.300-600/1/600/1A,第一个二次绕组做抽头,第二个二次绕组不抽 头,为600/1A。 d.300/1/600/5A,第一个二次绕组变比为300/1A,第二个二次绕组变 比为600/5A。
电流互感器基本知识
一、电流互感器基本原理 电流互感器是一种专门用作变换 电流的特种变压器,代号CT。互 感器的一次绕组串联在电力线路 中,线路电流就是互感器的一次 电流。互感器的二次绕组外部回 路接有测量仪表、仪器或继电保 护、自动控制装置。根据电力线 路电压等级的不同,电流互感器 的一次、二次绕组间பைடு நூலகம்有足够的 绝缘以保证所有低压设备与高电 压相隔离。电力线路中的电流各 不相同,通过电流互感器一二次
电流互感器基本知识
d.还要格外注意一下,有时这样写:5P20/15VA,Uk>=200V,Rct<=1ohm,在 抄写时不要把某一项漏掉了,它为5P20但不是PX级,含义为既要满足5P20 要求还要满足Uk及Rct,不做PX级要求的匝变试验。 4.二次额定负荷,互感器二次所接的负载,标准值有1、2.5、3.75、5、 7.5、10、15、20、25、30、40、50、60、80、100VA。特别说明一点,在 带有抽头的情况下,如200-300-400/5A,0.2S,15VA,代表15VA对于每个档 位都要满足。又如200-300-400/5A,0.2S,15VA on 400/5A,代表15VA只满 足400/5A档,至于200/5A和300/5A档也要满足0.2S级,但负荷可以小于 15VA。 5.短时热稳定电流及动稳定电流,电流互感器在短路时会受到短路电流冲 击,因此电流互感器有足够的承受短路电流热作用和机械作用的能力。
互感器基础知识介绍
互感器基础知识介绍内容预览测量用互感器在电力线路中用于对交流电压或电流进行变换,以满足高电压或大电流的测量,起着一次系统与二次系统之间的桥梁作用。
一、电流互感器1、电流互感器简称为TA,种类也很多,按电压等级分为低压和高压;按一次线圈的匝数可分为单匝式和多匝式;按外形可分为羊角式和穿心式;按安装方法可分为支持式和穿墙式;按绝缘方式可分为油浸式、干式和瓷绝缘;按安装地点可分为户内式和户外式;按铁芯多少可分为单铁芯和多铁芯。
2、TA的型号一般表为:□ □ □--□ □--□第一个方框代表:L(电流)第二个方框代表:见下表第三个方框代表:见下表第四个方框代表:额定电压第五个方框代表:准确度等级第六个方框代表:额定电流表一:电流互感器的字母意义第二个方框A 穿墙式第三个方框Z 浇注绝缘B 支持式C 瓷绝缘D 贯穿式单匝W 户外装置F 贯穿式复匝 B 过流保护M 贯穿式母线型G 改进型R 装入式 D 差动保护Q 线圈式S 速饱和C 瓷箱式J 接地保护或加大容量Z 支柱式Q 加强型Y 低压型K 瓷外壳式3、电流互感器工作原理(原理接线见右图)(1)电流互感器的特点是: (1)一次线圈串联在电路中,并且匝数很少,因此,一次线圈中的电流完全取决于被测电路的负荷电流,而与二次电流无关;(2)电流互感器二次线圈所接仪表和继电器的电流线圈阻抗都很小,所以正常情况下,电流互感器在近于短路状态下运行。
电流互感器一、二次额定电流之比,称为电流互感器的额定互感比:kn=I1n/I2n。
因为一次线圈额定电流I1n己标准化,二次线圈额定电流I2n统一为5(1或0.5)安,所以电流互感器额定互感比亦已标准化。
kn还可以近似地表示为互感器一、二次线圈的匝数比,即kn≈kN=N1/N2式中N1、N2为一、二线圈的匝数。
(2)电流互感器使用时注意事项电流互感器二次侧不允许开路运行。
如果电流互感器二次侧开路,铁芯中的磁通随一次电流的增大面急剧增大,不仅引起铁心严重饱和,而且在二次侧感应产生一个高电压,对二次回路绝缘有严重危害,甚至击穿烧坏,而且由于铁心饱和,磁感应强度的曲线变化陡度增加,引起二次侧感应电势出现很高的尖顶波,其电压幅值可达2~3KV的危险数值,这时如果有人触及二次回路,也容易造成触电伤害。
电流互感器介绍
电流互感器介绍电流互感器是一种常用的测量电流的传感器,它是将高电压线路中的电流通过互感原理转换成可以测量的小电流信号。
它广泛应用于电力系统、工业自动化、铁路、石化等领域,为电能计量、保护和控制系统提供了重要的测量数据。
一、原理及工作方式电流互感器采用的核心原理是互感作用。
当高压线路中通过电流时,产生的磁场会在互感器的一侧诱发出较小的次级电流。
电流互感器通常由一个主线圈(一侧)和一个次级线圈(另一侧)组成。
主线圈通常由高导磁材料制成,次级线圈则由细导线绕制而成。
主线圈与次级线圈的匝数比决定了互感器的转化比例。
电流互感器的工作方式可以分为两种:负载型和无负载型。
负载型电流互感器通常用于测量设备或系统的电流,其次级线圈的负载电阻一般为固定值,根据欧姆定律可以得到电流的大小。
无负载型电流互感器则常用于保护和控制系统,其次级线圈不连接负载,通过次级线圈测量的电流信号被输入到保护和控制装置中进行处理。
二、特点和应用领域1.高精度:电流互感器具有较高的精度和线性度,可以有效地实现电流的准确测量,误差较小。
2.安全性:互感器可将高压线路中的电流转换为较小的次级电流,以保护测量设备和人身安全。
3.高灵敏度:电流互感器能够测量很小的电流变化,对于需要高精度电流测量的场合非常适用。
4.高可靠性:互感器通常采用绝缘材料和特殊封装,以确保其在恶劣环境下的正常工作。
5.宽频带:电流互感器具有较宽的频率范围,可以适应不同频率的交流电流测量需求。
6.大通量:互感器的主线圈绕制密度高,具有较大的磁通量,能够有效地捕捉到高压线路中的电流信号。
1.电力系统:在电能计量、电力调度、设备保护和故障检测中,互感器起到了至关重要的作用。
2.工业自动化:在电机控制、电力监测和系统诊断中,互感器可以提供精确的电流数据,保证系统运行的稳定性和安全性。
3.铁路系统:电流互感器在铁路供电系统中用于电流测量和隔离,确保铁路线路的正常运行和安全操作。
4.石化行业:互感器可以用于石油、化工等领域的电流监测和控制,提高工作效率和生产安全性。
电流互感器基础知识
1 互感器定义1.1互感器互感器是一种特殊的变压器,用于给测量仪器、仪表、继电器和其它类似电器提供信息的变压器。
根据提供的信息不同,主要分为电流互感器和电压互感器。
1.2 电流互感器(Current Transformer简称CT)电流互感器是一种在短路状态下运行的变压器,用于给测量仪器、仪表、继电器和其它类似电器提供电流信息,在正常使用条件下其二次电流与一次电流成正比,相位差在联结方法正确时接近于零。
电流互感器接在线路上,主要用来改变线路的电流,所以电流互感器在一些地方也叫变流器。
国标代号为GB 1208-1997 eqv IEC 185:1987。
新的国际标准为IEC 60044-1:20001.3 电压互感器(voltage transformer简称PT)电压互感器是一种在空载状态下运行的变压器,用于给测量仪器、仪表、继电器和其它类似电器提供电压信息的变压器,在正常使用条件下其二次电压与一次电压成正比,而其相位差在联结方法正确时接近于零。
国标代号为GB 1207-1997 eqv IEC 186:1987。
新的国际标准为IEC 60044-2:20002 电流互感器构成eqv IEC 186:1987电流互感器由闭合铁心以及绕在该铁心上的一次线圈、二次线圈和一些安装部件组成,一、二次线圈之间,线圈与铁心之间均有绝缘隔离。
3 电流互感器工作原理电流互感器的一次绕组串联在电力线路中,线路电流就是互感器的一次电流I1,二次绕组外部接有负荷,形闭合回路。
当电流I1 流过互感器的一次绕组时,建立一次磁动势,I1与一次绕组匝数N1的乘积就是一次磁动势,也称一次安匝。
一次磁动势分为两部分,其中一小部分用来励磁,使铁心中产生磁通;另外一大部分用来平衡二次磁动势。
二次磁动势也称二次安匝,是二次电流I2与二次绕组匝数N2的乘积。
用于励磁的叫做励磁磁动势也叫励磁安匝,是励磁电流I0与一次绕组匝数N1的乘积。
用于平衡二次磁动势的这一部分一次磁动势,其大小与二次磁动势相等,但方向相反。
电流电压互感器基础知识培训
(八)SF6电流互感器的充/补气方法
出厂的 SF6 互感器,SF6 气体压力都没有达到额定工作压力,因此运行前 必须进行一次充气,使其达到额定工作压力。互感器经长期运行后,其压力 下降至补气压力时,就要及时进行补气。 1、充气(补气)操作前,在气瓶上安装一个减压器,减压后接一根高压增强 胶管,胶管的另一端装有专用的抽真空气阀,具体操作步骤如下: 1.1把胶管与 SF6 气瓶上的减压器连接好,先要开气瓶阀门,再调节减压器至 一定压力范围(0.4-0.5Mpa); 1.2用 Ø8 圆钢(或其它物体)把抽真空充气阀的阀芯顶开一点,将管内的空 气排出,冲洗管道(10~15 秒视管道长度而定); 1.3将产品底座上的堵头旋下,将抽真空充气阀与产品上的自封阀相连,注意: 自封阀上加有 Ø20 密封圈),这时开始充气,观察密度继电器,充至额定压 力后,将 SF6 气瓶阀门关闭,再把抽真空充气阀与自封阀分离,然后把自封 阀上的堵头堵好,整个充气过程结束。
电流互感器的选择
根据安装地点(户内或户外式)和安装方式(如穿墙式、支 持式、装入式)选择其型式
(五)、电流互感器型号含义
L V Q B– 110 W2 L --------- 电流互感器 V --------- 倒立式结构 Q -------- 绝缘介质为气体 B --------- 带有保护级 110 -------- 设备额定电压(kV) W2 --------- 污秽等级Ⅲ级
与双绕组变压器相似,是由铁芯和一次、二次绕组两个主要部分构成。 0.5kV电流互感器的一次和二次绕组都套在同一铁芯上,是结构最简单的互 感器。 不同的二次负荷对电流互感器有不同的精度要求。为了节省空间和成本,往 往几个铁芯(没有磁联系,各自绕着相应的二次绕组)共享一个一次线圈,构成 一台电流互感器。一般3~35kV电流互感器均有2个二次绕组;110kV电流 互感器有3~5二次绕组;而220kV及以上则有4~7个二次绕组。另外,为了 适应不同一次负荷电流的要求,110kV及以上的电流互感器常将一次绕组分 成几组,通过改变一次绕组的串、并联关系,即可方便地获得2~3个额定电 流比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流互感器知识整理电流互感器知识简介为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量.但一般的测量和保护装置不能直接接入一次高压设备,而需要将一次系统的高电压和大电流按比例变换成低电压和小电流,供给测量仪表和保护装置使用.执行这些变换任务的设备,最常见的就是我们通常所说的互感器.进行电压转换的是电压互感器(voltagetransformer),而进行电流转换的互感器为电流互感器(currenttransformer),简称为CT.本文将讨论电流互感器的相关基本知识.1.电流互感器的基本原理1.1电流互感器的基本等值电路如图1所示.图1电流互感器基本等值电路图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流, Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N 1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗.电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一次电流之比等于一次绕组与二次绕组匝数比。
即:IpN1=IsN2Is=Ip×N1/N2=Ip/Kn1.2.电流互感器极性标注电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。
当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。
由于电流方向相反,且铁心中合成磁通为零。
因此得下式:N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。
推出:Is=N1/N2*Ip可见,一二次电流的方向是一致的,是同相位的,因此我们可以用二次电流来表示一次电流(考虑变比折算)。
这正是减极性标注的优点。
1.3.电流互感器的误差在理想条件下,电流互感器二次电流Is=Ip/Kn,不存在误差。
但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。
这一点我们可以在图1中看到。
实际流入互感器二次负载的电流Is=Ip/Kn-Ie,其中Ie为励磁电流,即建立磁场所需的工作电流。
这样在电流幅值上就出现了误差。
正常运行时励磁阻抗很大,励磁电流很小,因此误差不是很大经常可以被忽略。
但在互感器饱和时,励磁阻抗会变小,励磁电流增大,使误差变大。
考虑到励磁阻抗一般被作为电抗性质处理,而二次负载一般为阻抗性质,因此在二次感应电势Es的作用下,Is和Ie不同相位,因此造成了一次电流I p=Is+Ie与二次电流Is存在角度误差δ,且角误差与二次负载性质有关。
图2表示了二次负载为纯阻性的情况。
图中,二次感应电势Es领先铁芯中磁通Фm90度。
可以近似认为励磁电流Ie与Фm同相。
Es加在Xct、Rct、Zb上产生二次电流Is。
Is与Ie合成Ip。
可见,图中Is与Ip不同相位,两者夹角即为角度误差。
对互感器误差的要求一般为,幅值误差小于1 0%,角度误差小于7度。
1.4.电流互感器的简单分类根据用途电流互感器一般可分为保护用和计量用两种。
两者的区别在于计量用互感器的精度要相对较高,另外计量用互感器也更容易饱和,以防止发生系统故障时大的短路电流造成计量表计的损坏。
根据对暂态饱和问题的不同处理方法,保护用电流互感器又可分为P类和TP类。
P(protection,保护)类电流互感器不特殊考虑暂态饱和问题,仅按通过互感器的最大稳态短路电流选用互感器,可以允许出现一定的稳态饱和,而对暂态饱和引起的误差主要由保护装置本身采取措施防止可能出现的错误动作行为(误动或拒动)。
TP(transi entprotection,暂态保护)类电流互感器要求在最严重的暂态条件下不饱和,互感器误差在规定范围内,以保证保护装置的正确动作。
对于其它类型的互感器,比如光互感器,电子式电流互感器等实际应用还很少,因此这里不作介绍。
2.电流互感器的饱和前面我们讲到电流互感器的误差主要是由励磁电流Ie引起的。
正常运行时由于励磁阻抗较大,因此Ie很小,以至于这种误差是可以忽略的。
但当CT饱和时,饱和程度越严重,励磁阻抗越小,励磁电流极大的增大,使互感器的误差成倍的增大,影响保护的正确动作。
最严重时会使一次电流全部变成励磁电流,造成二次电流为零的情况。
引起互感器饱和的原因一般为电流过大或电流中含有大量的非周期分量,这两种情况都是发生在事故情况下的,这时本来要求保护正确动作快速切除故障,但如果互感器饱和就很容易造成误差过大引起保护的不正确动作,进一步影响系统安全。
因此对于电流互感器饱和的问题我们必须认真对待。
互感器的饱和问题如果进行详细分析是非常复杂的,因此这里仅进行定性分析。
所谓互感器的饱和,实际上讲的是互感器铁心的饱和。
我们知道互感器之所以能传变电流,就是因为一次电流在铁芯中产生了磁通,进而在缠绕在同一铁芯中上的二次绕组中产生电动势U=4.44f*N*B*S×10-8。
式中f为系统频率,HZ;N为二次绕组匝数;S 为铁芯截面积,m2;B为铁芯中的磁通密度。
如果此时二次回路为通路,则将产生二次电流,完成电流在一二次绕组中的传变。
而当铁芯中的磁通密度达到饱和点后,B随励磁电流或是磁场强度的变化趋于不明显。
也就是说在N,S,f确定的情况下,二次感应电势将基本维持不变,因此二次电流也将基本不变,一二次电流按比例传变的特性改变了。
我们知道互感器的饱和的实质是铁芯中的磁通密度B过大,超过了饱和点造成的。
而铁芯中磁通的多少决定于建立该磁通的电流的大小,也就是励磁电流Ie的大小。
当Ie过大引起磁通密度过大,将使铁芯趋于饱和。
而此时互感器的励磁阻抗会显著下降,从而造成励磁电流的再增大,于是又进一步加剧了磁通的增加和铁芯的饱和,这其实是一个恶性循环的过程。
从图1中我们可以看到,Xe的减小和Ie的增加,将表现为互感器误差的增大,以至于影响正常的工作。
铁芯的饱和我们可以一般可以分成两种情况来了解。
其一是稳态饱和,其二为暂态饱和。
对于稳态饱和,我们可以借助图一进行分析。
在图中我们可以知道,Ie和二次电流Is是按比例分流的关系。
我们假设励磁阻抗Ze不变。
当一次电流由于发生事故等原因增大时,Ie也必然会按比例增大,于是铁芯磁通增加。
如果一次电流过大,也会引起Ie的过大,从而又会走入上面我们所说的那种循环里去,进而造成互感器饱和。
暂态饱和,是指发生在故障暂态过程中,由暂态分量引起的互感器饱和。
我们知道,任何故障发生时,电气量都不是突变的。
故障量的出现必然会伴随着或多或少的非周期分量。
而非周期分量,特别是故障电流中的直流分量是不能在互感器一二次间传变的。
这些电流量将全部作为励磁电流出现。
因此当事故发生时伴有较大的暂态分量时,也会造成励磁电流的增大,从而造成互感器饱和。
3.电流互感器的误差分析和计算当我们知道电流互感器的误差主要是由于励磁电流Ie引起的之后,就有必要根据实际运行情况来检验所使用的电流互感器的误差是否符合要求。
互感器的误差包括角度误差和幅值误差。
就继电保护专业而言,角度误差的测量过于繁复且实际情况下误差也极少出现超标的情况,我们更关注的是幅值的误差。
我们一般要求一次电流Ip等于保护安装处可能的最大短路电流时,幅值误差小于等于10%,这也就说我们平时所说的1 0%误差分析中的要求。
根据一般的电路原理我们可知,在图一中,为满足10%误差的要求(Ie小于等于1 0%的Ip/Kn),则必须保证励磁阻抗Ze大于等于9倍的二次回路总负载阻抗(Xct+R ct+Zb)。
因此为了进行10%误差分析,我们必须知道保护安装处的最大短路电流、对应于该电流的互感器励磁阻抗值和电流互感器的二次回路总负载阻抗。
下面我们分别进行讨论。
3.1.励磁阻抗的测量励磁阻抗的测量试验就是我们平时所说的伏安特性试验,试验一般以图二所示的互感器简化示意图为基础。
我们自互感器二次侧施加电压U,测得励磁电流Ie(因为此时互感器一次侧开路,因此电流只能流过励磁阻抗Ze,所以此电流一定是励磁电流。
另外,还需注意此项试验一般应在一次开路的情况下进行,以防止一次回路分流,产生误差)。
改变外加电压U,会得到不同的Ie。
多组U和Ie的组合,就构成了我们的伏安特性试验数据。
将这些数据所对应的点在U-Ie坐标系中绘出并连成曲线,就是互感器的伏安特性曲线。
该曲线上任一点的切线,就近似是该点的数据所对应的励磁阻抗。
图二电流互感器伏安特性示意图图三电流互感器伏安特性曲线图三是比较典型的伏安特性曲线。
由图中可见,励磁阻抗并不是一个恒定的值,而是随着Ie的变化不断变化的。
曲线在初始阶段基本为一条直线,励磁阻抗的值基本保持不变,这对应着互感器的线性工作区。
而当超过饱和点O点后,曲线急剧趋于水平,U很小的变化都会带来Ie极大的增加。
说明此时励磁阻抗的值突然变得很小,这对应于互感器的饱和工作区。
这种U-Ie曲线,我们说只能近似表示励磁阻抗的特性。
因为从图一中可以看到,真正加在励磁阻抗Ze上的电压并不是U,而是E。
用U来计算励磁阻抗实际上是将二次绕组电阻Rct和二次绕组电抗Xct包含在内了。
实际工作中,我们一般用二次绕组电阻来近似代替整个二次绕组阻抗Zct(底漏磁互感器,Xct可忽略)。
继电保护技术问答提供数据如下:对于110KV以上电压等级的互感器一般取Zct=R,3 5KV贯串式或常用馈电线互感器取Zct=3R,R为互感器二次绕组直流电阻值。
这样以来我们就可以得出励磁电压E=U-Ie×Zct从而的求得励磁阻抗Ze=E/Ie然而,通过这种计算我们仅仅是将上面的伏安特性试验数据变成了一组励磁阻抗的数值。
为了确定在最大短路电流情况下互感器是否满足10误差要求,还必须确认哪一个励磁阻抗的数值是在最大短路电流情况下的励磁阻抗。
因此在进行下一步计算前,必须确定最大短路电流,从而确定伏安特性数据中用那一组数据来计算励磁阻抗。
3.2.电流倍数m的确定电流倍数m的确定,根据不同的保护类型有不同的计算方法。
下面分别进行一些说明。
3.2.1纵差保护m=Krel*Ikmax/I1n式中Ikmax――最大穿越故障短路电流。
纵差保护的整定一般是对过区外故障时的最大不平衡电流的。
因此,这里取最大穿越故障电流以考量这是互感器的误差是否满足要求。
Krel――考虑非周期分量影响后的可靠系数。