苏州市第一学期八年级数学期末试卷(含解析)

合集下载

江苏省苏州市吴中学、吴江、相城区2024届八年级数学第一学期期末监测模拟试题含解析

江苏省苏州市吴中学、吴江、相城区2024届八年级数学第一学期期末监测模拟试题含解析

江苏省苏州市吴中学、吴江、相城区2024届八年级数学第一学期期末监测模拟试题 注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.分式2232-x x y 中的x 、y 同时扩大2倍,则分式值( )A .不变B .是原来的2倍C .是原来的4倍D .是原来的122.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=40°,则∠2=( )A .40°B .50°C .60°D .70°3.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3) 4.已知264x kx ++是完全平方式,则常数k 等于( )A .8B .±8C .16D .±165.已知三角形的两边长分别为3cm 和8cm ,则这个三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm6.如图,在正方形网格中,线段A ′B ′是线段AB 绕某点逆时针旋转角α得到的,点A ′与A 对应,则角α的大小为()A .30°B .60°C .90°D .120°7.人体中红细胞的直径约为0.000 007 7m ,将数0.000 007 7用科学记数法表示为( )A .7.7×-510B .-70.7710⨯C .-67.710⨯D .-77.710⨯8.到三角形三个顶点距离相等的点是( )A .三条角平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点9.如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速注入乙容器中.图2中的线段AB ,CD 分别表示容器中的水的深度h(厘米)与注入时间t(分钟)之间的函数图象.下列结论错误的是( )A .注水前乙容器内水的高度是5厘米B .甲容器内的水4分钟全部注入乙容器C .注水2分钟时,甲、乙两个容器中的水的深度相等D .注水1分钟时,甲容器的水比乙容器的水深5厘米10.长为12、6、5、2的四根木条,选其中三根为边组成三角形,共有( )选法A .4种B .3种C .2种D .1种二、填空题(每小题3分,共24分)11.比较大小:7 _______ 3(填“˃”或“=”或“<”).12.若点P 关于x 轴的对称点为P1(2a+b, -a+1),关于y 轴对称点的点为P2(4-b,b+2),则点P 的坐标为13.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x 千米/时,根据题意列出方程_____.14.如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .15.若4a 2+b 2﹣4a +2b +2=0,则ab =_____.16.若2m =a ,32n =b ,m ,n 为正整数,则22m+15n = (结果用含a 、b 的式子表示)17.如图,已知ABC ∆中,ABC ∠45=︒,F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为_____.18.一组数据3,4,x ,6,7的平均数为5.则这组数据的方差是______.三、解答题(共66分)19.(10分)某校在八年级开展环保知识问卷调查活动,问卷一共10道题,每题10分,八年级(三)班的问卷得分情况统计图如下图所示:(1)扇形统计图中,a 的值为 ________.(2)根据以上统计图中的信息,求这问卷得分的众数和中位数分别是多少分?(3)已知该校八年级共有学生600人,请估计问卷得分在80分以上(含80分)的学生约有多少人?20.(6分)某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示,计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?21.(6分)化简分式222442342a a a a a a-+-÷--+,并在0、1、1-、2、2-中选一个你喜欢的数作为a 的值,求代数式的值22.(8分)如图1是甲、乙两个圆柱形水槽的轴截面示意图.乙槽中有一圆柱形铁块放在其中(圆柱形铁块的下底面完全落在水槽底面上),现将甲槽中的水匀速注人乙槽.甲、乙两个水槽中水的深度()(),y cm y cm 甲乙与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示 槽中的水的深度与注水时间的关系,线段DE 表示 槽中的水的深度与注水时间的关系(填“甲”或“乙”),点B 的纵坐标表示的实际意义是 ;(2)当04x ≤≤时,分别求出y 甲和y 乙与x 之间的函数关系式;(3)注水多长时间时,甲、乙两个水槽中的水深度相同?(4)若乙槽底面积为36平方厘米(壁厚不计) ,求乙槽中铁块的体积.23.(8分)根据记录,从地面向上11km 以内,每升高1km ,气温降低6℃;又知在距离地面11km 以上高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x (km )处的气温为y (℃)(1)写出距地面的高度在11km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km 的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km 时,飞机外的气温.24.(8分)如图,D ,E 分别是等边三角形ABC 边BC 、AC 上的一点,且BD CE =,连接AD 、BE 相交于点O .(1)求证:ABD BCE ∆∆≌;(2)求AOE ∠的度数.25.(10分)在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为()()()2,4,0,4,2,1--A B C ,DEF ∆与ABC ∆关于x 轴对称,A 与,D B 与,E C 与F 对应.(1)在平面直角坐标系中画出ABC ∆;(2)在平面直角坐标系中作出DEF ∆,并写出D E F 、、的坐标.26.(10分)如图,在ABC ∆中,90ACB ∠=︒,点D 是直线BC 上一点.(1)如图1,若2AC BC ==,点D 是BC 边的中点,点M 是线段AB 上一动点,求CMD ∆周长的最小值.(2)如图2,若4AC =,8BC =,是否存在点D ,使以A ,D ,B 为顶点的三角形是等腰三角形,若存在,请直按写出线段CD 的长度:若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1、B 【解题分析】试题解析:∵分式2232x x y-中的x ,y 同时扩大2倍, ∴分子扩大4倍,分母扩大2倍,∴分式的值是原来的2倍.故选B .2、B【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【题目详解】解:∵直尺对边互相平行,∴∠3=∠1=40°,∴∠2=180°−40°−90°=50°.故选:B .【题目点拨】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.3、A【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案. 【题目详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A .【题目点拨】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.4、D【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可求出k 的值.【题目详解】解:∵264x kx ++是完全平方式,∴()2222226488168x kx x kx x x x ++=++±±+==∴k= ±16 故选D .【题目点拨】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.5、C【题目详解】根据三角形两边之和大于第三边,两边之差小于第三边,可知第三边应大于5且小于11,故选C6、C【题目详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.7、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.0000077=7.7×10﹣6,故答案选C.8、D【分析】根据垂直平分线的性质定理的逆定理即可做出选择.【题目详解】∵到一条线段两端点的距离相等的点在这条线段的垂直平分线上,∴到三角形三个顶点距离相等的点是三边的垂直平分线的交点,故选:D.【题目点拨】本题考查了线段垂直平分线,理解线段垂直平分线的性质的逆定理是解答的关键.9、D【解题分析】根据题意和函数图象,可以判断各个选项中的说法是否正确,从而可以解答本题.【题目详解】解:由图可得,注水前乙容器内水的高度是5厘米,故选项A正确,甲容器内的水4分钟全部注入乙容器,故选项B正确,注水2分钟时,甲容器内水的深度是20×=10厘米,乙容器内水的深度是:5+(15﹣5)×=10厘米,故此时甲、乙两个容器中的水的深度相等,故选项C正确,注水1分钟时,甲容器内水的深度是20﹣20×=15厘米,乙容器内水的深度是:5+(15﹣5)×=7.5厘米,此时甲容器的水比乙容器的水深15﹣7.5=7.5厘米,故选项D 错误,故选:D .【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.10、D【分析】根据题目给的四根木条进行分情况讨论,利用三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【题目详解】解:选其中三根为边组成三角形有以下四种选法:12、6、5,12、6、2,12、5、2,6、5、2;能组成三角形的有:6、5、2只有一种.故选:D .【题目点拨】本题主要考查的三角形的形成条件,正确的运用三角形的形成条件,把题目进行分类讨论是解题的关键.二、填空题(每小题3分,共24分)11、<【分析】利用平方法即可比较. 【题目详解】解:∵27)7=,239=,7<9, 73<,故答案为:<.【题目点拨】本题主要考查了无理数的大小比较.掌握平方法比较实数大小的方式是解题关键.12、(2a+b,b+2)【解题分析】答案应为(-9,-3)解决此题,先要根据关于x 轴的对称点为P 1(2a+b ,-a+1)得到P 点的一个坐标,根据关于y 轴对称的点P 2(4-b ,b+2)得到P 点的另一个坐标,由此得到一个方程组,求出a 、b 的值,即可得到P 点的坐标.解:∵若P 关于x 轴的对称点为P 1(2a+b ,-a+1),∴P 点的坐标为(2a+b ,a-1),∵关于y 轴对称的点为P 2(4-b ,b+2),∴P 点的坐标为(b-4,b+2),则2a b b 4{a 1b 2+=--=+, 解得a 2{b 5=-=-. 代入P 点的坐标,可得P 点的坐标为(-9,-3).13、150150 1.22.5x x=+. 【分析】设汽车的平均速度为x 千米/时,则动车的平均速度为2.5x ,根据题意可得:由乘动车到南京比坐汽车就要节省1.2小时,列方程即可.【题目详解】设原来火车的平均速度为x 千米/时,则动车运行后的平均速度为1.8x , 由题意得,150150 1.22.5x x=+. 故答案为:150150 1.22.5x x =+. 【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.14、12°.【解题分析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A=∠AP 2P 1=∠AP 13P 14=x .∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∠P 2P 3P 4=∠P 13P 12P 10=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x .∴∠AP 7P 8=7x ,∠AP 8P 7=7x .在△AP 7P 8中,∠A+∠AP 7P 8+∠AP 8P 7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.15、﹣0.5【分析】利用完全平方公式进行因式分解得到2个完全平方式,通过平方的非负性质推导出,n 个非负项相加为0,则每一项为0.【题目详解】解:∵2244220a b a b +-++=,∴()()222110a b -++=,∴21010a b -=⎧⎨+=⎩解得1,12a b ==-, ∴12ab =-. 故答案为:12-. 【题目点拨】利用完全平方公式因式分解,通过平方非负的性质为本题的关键.16、23a b【分析】同底数幂相乘,底数不变,指数相加【题目详解】原式=215253232322(2)(2)(2)(32)m n m n m n a b ⨯=⨯=⨯=.故答案为23a b考点:同底数幂的计算17、1【分析】根据90ADC ∠=︒和45ABC ∠=︒得出ABD △为等腰直角三角形,从而有BD AD =,通过等量代换得出∠=∠EBC CAD ,然后利用ASA 可证BDF ADC ≅,则有DF CD =.【题目详解】AD BC ⊥90ADB ADC ∴∠=∠=︒45ABC ∠=︒∴ABD △为等腰直角三角形BD AD ∴=BE AC ⊥90BEC ∴∠=︒90EBC C ∴∠+∠=︒90CAD C ∠+∠=︒EBC CAD ∠∠∴=在BDF 和ADC 中,EBC CAD BD ADBDA ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩()BDF ADC ASA ∴≅4DF CD ∴==故答案为:1.【题目点拨】本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,掌握全等三角形的判定方法及性质是解题的关键. 18、2 【分析】先根据平均数的公式121()n x x x x n =+++ 求出x 的值,然后利用方差的公式2222121[()()()]n s x x x x x x n=-+-++- 计算即可. 【题目详解】∵3,4,x ,6,7的平均数为5,∴346755x ++++= 解得5x =2222221[(35)(45)(55)(65)(75)]25s ∴=⨯-+-+-+-+-= 故答案为:2【题目点拨】本题主要考查平均数与方差,掌握平均数与方差的求法是解题的关键.三、解答题(共66分)19、(1)14%;(2)90分,85分;(3)420【分析】(1)利用60分的百分比a 等于1减去其他部分的百分比即可得到;(2)先计算得出调查的总人数,找到这组数据从低到高排列的第25、26个得分,即可即可得到中位数; (3)用600乘以80分及以上的百分比即可得到答案.【题目详解】(1)120%30%20%16%14%a =﹣﹣﹣﹣=;(2)①问卷得分的众数是90分,②问卷调查的总人数为: 714%50÷=(人),第25、26个人的得分分别为80分、90分,问卷得分的中位数是8090852+=(分); (3)600(20%30%20%)⨯++=6000.7420⨯=(人)答:估计问卷得分在80分以上(含80分)的学生约有420人.【题目点拨】此题考查数据的整理计算,能正确计算部分的百分比,求数据的总数,中位数,利用样本的数据计算总体的对应数据.20、要完成这块绿化工程,预计花费75600元.【分析】设小长方形的长为x 米,宽为y 米,根据大长方形周长为76米,小长方形宽的5倍等于长的2倍,据此列方程组求解,然后求出面积,最终求得花费.【题目详解】设小长方形的长为x 米,宽为y 米,由题意得,522(22)76y x x x y =⎧⎨++=⎩, 解得:104x y =⎧⎨=⎩, 则大长方形的长为20米,宽为18米,面积为:20×18=360平方米,预计花费为:210×360=75600(元),答:要完成这块绿化工程,预计花费75600元.【题目点拨】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,根据图形,设出未知数,找出合适的等量关系,列方程组求解.21、a -3当a =1时,原式=-2【分析】先将分式进行约分,再将除法转化为乘法进行约分,代值时,a 的取值不能使原式的分母,除式为0.【题目详解】解:原式=(2)(2)(2)(2)a a a a --+-÷2(2)a a a -+-3 =22a a -+⨯(2)2a a a +--3 =a -3当a =1时,原式=1-3=-2.【题目点拨】本题考查了分式的化简求值.关键是根据分式混合运算的顺序解题,代值时,字母的取值不能使分母,除式为0.22、(1)乙;甲;乙槽中圆柱形铁块的高度是14厘米;(2)y 甲=-2x+12,y 乙=3x+2;(3)注水2分钟;(4)84cm 3【分析】(1)根据题目中甲槽向乙槽注水可以得到折线ABC 是乙槽中水的深度与注水时间之间的关系,点B 表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平;(2)根据题意分别求出两个水槽中y 与x 的函数关系式即可;(3)根据(2)中y 与x 的函数关系式,令y 相等即可得到水位相等的时间;(4)用水槽的体积减去水槽中水的体积即可得到铁块的体积;【题目详解】解:(1)由题意可得:∵乙槽中含有铁块,∴乙槽中水深不是匀速增长,∴折线ABC 表示乙槽中水深与注水时间的关系,线段DE 表示甲槽中水深与注水时间的关系,由点B 的坐标可得:点B 的纵坐标表示的实际意义是:乙槽中圆柱形铁块的高度是14厘米;故答案为:乙;甲;乙槽中圆柱形铁块的高度是14厘米;(2)设线段AB 、DE 的解析式分别为:y 甲=k 1x+b 1,y 乙=k 2x+b 2,∵AB 经过点(0,2)和(4,14),DE 经过(0,12)和(6,0),∴1112414b k b =⎧⎨+=⎩, 解得:1132k b =⎧⎨=⎩, 2221260b k b =⎧⎨+=⎩, 解得:22212k b =-⎧⎨=⎩, ∴当04x ≤≤时, y 甲=-2x+12,y 乙=3x+2;(3)由(2)可知:令y 甲=y 乙,即3x+2=-2x+12,解得x=2,∴当2分钟时两个水槽水面一样高.(4)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm ,即1分钟上升3cm ,当水面没过铁块时,2分钟上升了5cm ,即1分钟上升2.5cm ,设铁块的底面积为acm 2,则乙水槽中不放铁块的体积为:2.5×36cm 3, 放了铁块的体积为3×(36-a )cm 3,∴1×3×(36-a )=1×2.5×36, 解得a=6,∴铁块的体积为:6×14=84(cm 3).【题目点拨】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,解题的关键是理解题意,学会构建方程或方程组解决问题.23、 (1)y =m -6x ;(2)当时飞机距地面12km 时,飞机外的气温为-50℃【分析】(1)根据从地面向上11km 以内,每升高1km ,气温降低6℃即可写出函数表达式;(2)将x =7,y =-26代入(1)中的解析式可求得当时地面的气温;根据地面气温以及飞机的高度利用(1)中的解析式即可求得飞机距离地面12km 时,飞机外的气温.【题目详解】(1) ∵从地面向上11km 以内,每升高1km ,气温降低6℃,地面气温为m(℃),距地面的高度为x(km)处的气温为y(℃),∴y 与x 之间的函数表达式为:y =m -6x(0≤x ≤11);(2)将x =7,y =-26代入y =m -6x ,得-26=m -42,∴m =16,∴当时地面气温为16℃;∵x =12>11,∴y =16-6×11=-50(℃),假如当时飞机距地面12km 时,飞机外的气温为-50℃.【题目点拨】本题考查了一次函数的应用,弄清题意,正确分析各量间的关系是解题的关键.24、(1)见解析;(2)60AOE =︒∠【分析】(1)根据等边三角形的性质,三条边都相等、三个内角都是60︒,即可根据边角边定理判定出ABD BCE ∆∆≌. (2)根据全等三角形的性质、三角形的外角定理进行转化即可得出AOE ∠的度数.【题目详解】(1)证明:∵ABC ∆是等边三角形∴AB BC =,ABC C ∠=∠在ABD ∆和BCE ∆中AB BC ABD C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()ABD BCE SAS ∆∆≌(2)解:∵ABD BCE ∆∆≌∴CBE BAD ∠=∠∵60CBE ABE ABC ∠+∠=∠=︒∴60AOE BAD ABE ∠=∠+∠=︒【题目点拨】本题考查了等边三角形的性质、全等三角形的判定以及性质、三角形的外角定理等知识点,较为基础.25、(1)详见解析;(2)图详见解详, ()()()2,4,0,4,2,1---D E F【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可;(2)关于x 轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出D 、E 、F 的坐标.【题目详解】(1)如图所示:(2)如图所示:()()()2,4,0,4,2,1---D E F【题目点拨】考查了坐标与图形性质、轴对称作图,解答本题的关键是正确的找出三点的位置,另外要掌握关于x 轴对称的点的坐标的特点.26、(1)15+;(2)存在,CD =1或8或58或458.【分析】(1)本小题是典型的“将军饮马”问题,只要作点C 关于直线AB 的对称点E ,连接BE 、DE ,DE 交AB 于点M ,如图1,则此时CMD ∆的周长最小,且最小值就是CD+DE 的长,由于CD 易求,故只要计算DE 的长即可,由轴对称的性质和等腰直角三角形的性质可得BE=BC =2,∠DBE =90°,然后根据勾股定理即可求出DE ,问题即得解决;(2)由于点D 是直线BC 上一点,所以需分三种情况讨论:①当AB=AD 时,如图4,根据等腰三角形的性质求解即可;②当BD=BA 时,如图5,根据勾股定理和等腰三角形的定义求解;③当DA=DB 时,如图6,设CD =x ,然后在直角△ACD 中根据勾股定理求解即可.【题目详解】解:(1)作点C 关于直线AB 的对称点E ,连接BE 、DE ,DE 交AB 于点M ,连接CM ,如图1,则此时CMD ∆的周长最小.∵90ACB ∠=︒,2AC BC ==,点D 是BC 边的中点,∴∠CBA =45°,BD=CD =1,∵点C 、E 关于直线AB 对称,∴BE=BC =2,∠EBA =∠CBA =45°,∴∠DBE =90°, ∴2222215DE BE BD =+=+=.∴CMD ∆的周长的最小值=CD+DE =15+;(2)由于点D 是直线BC 上一点,所以需分三种情况讨论:①当AB=AD 时,如图4,此时CD=CB =8;②当BD=BA 时,如图5,在直线BC 上存在两点符合题意,即D 1、D 2,∵22224845AB AC BC =+=+=,∴1458CD =-,2458CD =+;③当DA=DB 时,如图6,此时点D 为线段AB 的垂直平分线与直线BC 的交点,设CD =x ,则BD=AD =8-x ,在直角△ACD 中,根据勾股定理,得:()22248x x +=-,解得:x =1,即CD =1.综上,在直线BC上存在点D,使以A,D,B为顶点的三角形是等腰三角形,且CD=1或8或458或58.【题目点拨】本题考查了等腰直角三角形的性质、两线段之和最小、等腰三角形的性质和勾股定理等知识,属于常考题型,正确分类、熟练掌握上述基本知识是解题的关键.。

江苏省苏州市第一学期八年级数学期末试卷(含解析)

江苏省苏州市第一学期八年级数学期末试卷(含解析)

江苏省苏州市第一学期八年级数学期末试卷(含解析)一、选择题1.在平面直角坐标系中,下列各点在第二象限的是( ) A .(3,1) B .(3,-1) C .(-3,1) D .(-3,-1)2.下列成语描述的事件为随机事件的是( ) A .守株待兔 B .水中捞月 C .瓮中捉鳖 D .水涨船高 3.已知等腰三角形的两边长分别为3和4,则它的周长为( )A .10B .11C .10或11D .74.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直5.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个B .2个C .3个D .4个6.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形; 命题4:直角三角形中斜边最长; 以上真命题的个数是( ) A .1B .2C .3D .47.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .38.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100 km ; ②前半个小时,货车的平均速度是40 km/h ; ③8∶00时,货车已行驶的路程是60 km ; ④最后40 km 货车行驶的平均速度是100 km/h ; ⑤货车到达乙地的时间是8∶24, 其中,正确的结论是( )A .①②③④B .①③⑤C .①③④D .①③④⑤ 9.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3)10.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A 3xB .23xC 3xD 3x二、填空题11.17.85精确到十分位是_____.12.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.13.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________. 14.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.15.如果2x -有意义,那么x 可以取的最小整数为______. 16.阅读理解:对于任意正整数a ,b ,∵()20a b-≥,∴20a ab b -+≥,∴2a b ab +≥,只有当a b =时,等号成立;结论:在2a b ab +≥(a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab .若1m ,11m m +-有最小值为__________.17.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.18.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .19.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。

苏州市八年级(上)期末数学试卷(含答案)

苏州市八年级(上)期末数学试卷(含答案)

苏州市八年级(上)期末数学试卷(含答案)一、选择题1.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2) B.(2,-3)C.(1,-2)D.(-1,2)2.已知一次函数y=kx+3(k≠0)的图象经过点A,且函数值y随x的增大而增大,则点A 的坐标可能是()A.(﹣2,﹣4)B.(1,2)C.(﹣2,4)D.(2,﹣1)3.7的平方根是()A.±7 B.7 C.-7 D.±74.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12B.13C.14D.155.下列图案中,不是轴对称图形的是()A.B.C.D.6.下到图形中,不是轴对称图形的是()A.B.C.D.7.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 8.对于函数y =2x ﹣1,下列说法正确的是( ) A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 9.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4) 10.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.12.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.13.3.145精确到百分位的近似数是____.14.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.15.4的平方根是 .16.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)17.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.18.用四舍五入法将2.0259精确到0.01的近似值为_____.19.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________20.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题21.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.22.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆.(1)画出DEF ∆;(2)DEF ∆的面积为 .23.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =. 24.计算与求值:(1)计算:()203120195274+-+--. (2)求x 的值:24250x -=25.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:()1一个直角三角形的两条直角边分别为512、,那么这个直角三角形斜边长为____; ()2如图①,AD BC ⊥于,,,10,6D AD BD AC BE AC DC ====,求BD 的长度; ()3如图②,点A 在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数10B 点(保留痕迹).四、压轴题26.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以1/cm s的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t(s).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他cm s,是否存在实数x,使得△ACP 与△BPQ 全等?若条件不变.设点 Q 的运动速度为x/存在,求出相应的x、t的值;若不存在,请说明理由.27.如图,已知等腰△ABC 中,AB=AC,∠A<90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与BE 交于点P.当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A=44°时,求∠BPD 的度数;(2)设∠A=x°,∠EPC=y°,求变量y 与x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.28.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】7)2=7,∴77.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.6.C解析:C【解析】【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.7.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+(2)2=(3)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.D解析:D【解析】,错误.画函数的图象,选项A,点(1,0)代入函数,01由图可知,B,C错误,D,正确. 选D.9.B解析:B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.12.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.13.15.【解析】【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【详解】解:3.145≈3.15(精确到百分位).故答案为3.15.解析:15.【解析】【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【详解】解:3.145≈3.15(精确到百分位).故答案为3.15.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到解析:0【解析】【分析】根据题意,由36x =时,代入32y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴3330y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.15.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.16.>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,是等腰直角三角形,∴,∴.故答案为另:此题也可直接测量得到结果.【点解析:>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.17.8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,解析:8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为604x +,乙做40个所用的时间为40x , 列方程为:604x +=40x, 解得:x=8,经检验:x=8是原分式方程的解,且符合题意,所以乙每小时做8个,故答案为8.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.18.03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似解析:03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.19.(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向右平移2个单位,再向上平移3个单位,∴点B′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.20..【解析】【分析】由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解 解析:12. 【解析】【分析】 由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解:∵DE 垂直平分AB 交BC 于点E ,∴EA =EB ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴△ACE 为等腰直角三角形,∴CA =CE =1,∴三角形ACE 的面积=12×1×1=12. 故答案为:12. 【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 三、解答题21.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451x x x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.22.(1)见详解;(2)4.【解析】【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A 、B 、O 三个对应点D 、E 、F 的坐标,然后画出图形即可;(2)把△DEF 放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)∵点A (1,3),B (3,1),O (0,0),∴把△ABO 向下平移3个单位再向右平移2个单位后A 、B 、O 三个对应点D (1+2,3-3)、E (3+2,1-3)、F (0+2,0-3),即D (3,0)、E (5,-2)、F (2,-3);如图:(2)△DEF 的面积:11133131322=9 1.5 1.52=4222⨯-⨯⨯-⨯⨯-⨯⨯---. 【点睛】此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.23.11x +,13. 【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可. 【详解】2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭, ()()()211111x x x x x x +--+=⋅-+, 11x =+, 当2x =时,原式13=. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.24.(1)52;(2)52x =±. 【解析】【分析】(1)分别计算零指数幂,利用平方根的性质化简,计算立方根和算术平方根,然后把所得的结果相加减;(2)依次移项,系数化为1,两边同时开平方即可.【详解】解:(1)原式=115(3)2++--=52; (2)移项得:2425x =,系数化为1得:2254x =, 两边同时开平方得:52x =±. 【点睛】本题考查实数的混合运算和利用平方根解方程.(1||a =,2(0)a a =≥;(2)中需注意的是方程右边的常数项(正数)有正负两个平方根,不要漏解.25.()113;()28BD =;()3.数轴上画出表示数的B 点.见解析.【解析】【分析】 (1)根据勾股定理计算;(2) 根据勾股定理求出AD ,根据题意求出BD;(3) 根据勾股定理计算即可.【详解】()1∵这一个直角三角形的两条直角边分别为512、∴这个直角三角形斜边长为225+12=13故答案为:13()2∵AD BC ⊥∴90ADC BDE ∠=∠=︒在ADC 中,90,10,6ADC AC DC ∠=︒==,则由勾股定理得8BD =,在t R ADC 和t R BDE △中AD BD AC BE=⎧⎨=⎩ ∴t t R ADC R BDE ≌∴8BD AD ==(3)点A 在数轴上表示的数是:22-215+=- ,由勾股定理得,221+3=10OC =以O 为圆心、OC 为半径作弧交x 轴于B ,则点B 即为所求,故答案为:5点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.四、压轴题26.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.27.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】 (1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -,由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.28.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2)12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上,∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)C k -+,如图2, -1<C y ≤2,即:-1<33k+ ≤2, 则334k -≤<-. 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解;(2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

2020-2021学年江苏省苏州市八年级(上)期末数学试卷及参考答案

2020-2021学年江苏省苏州市八年级(上)期末数学试卷及参考答案

2020-2021学年江苏省苏州市八年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.2.(2分)64的立方根是()A.4B.8C.±4D.±83.(2分)已知点P(x,y)在第四象限,且点P到x轴,y轴的距离分别为2,5.则点P 的坐标为()A.(5,﹣2)B.(﹣2,5)C.(2,﹣5)D.(﹣5,2)4.(2分)已知点P(2,m)在一次函数y=mx﹣3m+2的图象上,则m的值为()A.﹣2B.﹣1C.1D.25.(2分)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的“优美比”.若在等腰三角形ABC中,∠A=36°,则它的优美比k为()A.B.2C.D.36.(2分)下列整数中,与最接近的是()A.﹣1B.0C.1D.27.(2分)2020年12月11日“双12苏州购物节”火爆启动,截止12月12日20:00苏州地区线上消费支付实时金额达到了8460211211元人民币,用科学记数法表示8460211211(精确到100000000)为()A.85×108B.8.46×1010C.8.46×109D.8.5×1098.(2分)如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数表达式为()A.y=2x﹣6B.y=2x﹣3C.D.y=x﹣39.(2分)如图,有一长方体容器,AB=3,BC=2,AA'=4,一只蚂蚁沿长方体的表面,从点C爬到点A'的最短爬行距离是()A.B.C.7D.10.(2分)在数轴上,点A表示﹣2,点B表示4.P,Q为数轴上两点,点P从点A出发以每秒1个单位长度的速度向左运动,同时点Q从点B出发以每秒2个单位长度的速度向左运动,点Q到达原点O后,立即以原来的速度返回,当点Q回到点B时,点P与点Q同时停止运动.设点P运动的时间为x秒,点P与点Q之间的距离为y个单位长度,则下列图象中表示y与x的函数关系的是()A.B.C.D.二、填空题(每题2分,满分16分,将答案填在答题纸上)11.(2分)下列4个数:0.,,π﹣3.14,,其中无理数有个.12.(2分)比较大小:2﹣1(填“>”、“=”或“<”).13.(2分)将一个含45°的三角尺和一把直尺按如图所示摆放,若∠2=20°,则∠1=°.14.(2分)“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x轴,星海街所在的直线为y轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为A(6,﹣4),小明所在位置的坐标为B(﹣2,2),则小明与东方之门的实际距离为米.15.(2分)一次函数y=﹣2x+4与y=x﹣2的图象与y轴所围成的三角形面积为.16.(2分)如图,点C在DE上,∠B=∠E,AB=AE,∠CAD=∠BAE=45°,则∠ACB=°.17.(2分)如图,在△ABC中,∠BAC=90°,点D在BC上,AB=AC,BD=BA,点E 在BC的延长线上,CA=CE,连接AE,则∠DAE的度数为°.18.(2分)如图,已知点A,点B分别为y轴和x轴正半轴上两点,以AB为斜边作等腰直角三角形ABC,点A,点B,点C按顺时针方向排列,若AB=4,△AOB的面积为3,则点C的坐标为.三、解答题(本大题共10小题,共64分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:(﹣3)0﹣+.20.(5分)如图,在△ABC中,AB=AC,过点A作AD∥BC交∠ABC的平分线BD于点D,求证:AC=AD.21.(5分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶都在格点上.(1)画出△ABC关于x轴对称的△A'B'C';(2)连接B'C,CC',则△B'CC'的周长为.22.(5分)三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1),并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为a,b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.23.(6分)如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE =CF.(1)求证:△ABC≌△DFE;(2)求证:点O为BF的中点.24.(6分)如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.25.(8分)某技工培训中心有钳工20名、车工30名.现将这50名技工派往A,B两地工作,设派往A地x名钳工,余下的技工全部派往B地,两地技工的月工资情况如下表:钳工/(元/月)车工/(元/月)A地36003200B地32002800(1)试写出这50名技工的月工资总额y(元)与x(名)之间的函数表达式,并写出x 的取值范围;(2)根据预算,这50名技工的月工资总额不得超过155000元.当派往A地多少名钳工时,这些技工的月工资总额最大?月工资总额最大为多少元?26.(8分)如图1,在四边形ABCD中,若∠A,∠C均为直角,则称这样的四边形为“美妙四边形”.(1)概念理解:长方形美妙四边形(填“是”或“不是”);(2)性质探究:如图1,试证明:CD2﹣AB2=AD2﹣BC2;(3)概念运用:如图2,在等腰直角三角形ABC中,AB=AC,∠A=90°,点D为BC的中点,点E,点F分别在AB,AC上,连接DE,DF,如果四边形AEDF是美妙四边形,试证明:AE+AF=AB.27.(8分)如图,用x表示A中的实数,y表示B中与x对应的实数,且y与x满足一次函数y=kx+b(k,b为常数,k≠0).(1)π是A中的实数,则B中与之对应的实数是;(2)点(a2+1,2﹣a2)在该函数的图象上吗?请说明理由;(3)若点P(a,2a﹣3)到直线y=kx+b的距离是,求a的值.28.(8分)在△ABC中,AB=AC,点P为△ABC边上的动点,速度为1cm/s.(1)如图1,点D为AB边上一点,AD=1cm,动点P从点D出发,在△ABC的边上沿D→B→C的路径匀速运动,当到达点C时停止运动.设△APC的面积为S1(cm2),△BPC的面积为S2(cm2),点P运动的时间为t(s).S1,S2与t之间的函数关系如图2所示,根据题意解答下列问题:①在图1中,AB=cm,BC=cm;②在图2中,求EF和MN的交点H的坐标;(2)在(1)的条件下,如图3,若点P,点Q同时从点A出发,在△ABC的边上沿A →B→C的路径匀速运动,点Q运动的速度为0.5cm/s,当点P到达点C时,点P与点Q 同时停止运动.求t为何值时,|BP﹣BQ|最大?最大值为多少?2020-2021学年江苏省苏州市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.【点评】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.2.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵4的立方是64,∴64的立方根是4.故选:A.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.3.【分析】根据第四象限点的坐标符号和点P到x轴、y轴的距离可得答案.【解答】解:点P(x,y)点在第四象限,且点P到x轴、y轴的距离分别为2、5,则点P的坐标为(5,﹣2),故选:A.【点评】此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y 轴的距离=横坐标的绝对值.4.【分析】把点P(2,m)代入y=mx﹣3m+2得2m﹣3m+2=m,即可得出答案.【解答】解:∵点P(2,m)在一次函数y=mx﹣3m+2的图象上,∴2m﹣3m+2=m,∴m=1,故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.【分析】分两种情况:∠A为顶角或∠A为底角,再根据三角形内角和定理可求得底角或顶角的度数,即可得到它的优美比k.【解答】解:当∠A为顶角时,则底角∠B=72°;此时,优美比k==2;当∠A为底角时,则顶角为108°;此时,优美比k==(k<1,不合题意,舍去);故选:B.【点评】本题主要考查竺腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键,注意分类讨论.6.【分析】先估算出的取值范围,再根据不等式的基本性质估算出﹣1的取值范围即可.【解答】解:∵4<5<9,∴2<<3,∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∴1.2﹣1<1.3,∴与最接近的是1.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.7.【分析】先利用科学记数法表示,然后根据近似数的精确度进行四舍五入.【解答】解:8460211211=8.460211211×109≈8.5×109.故选:D.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.8.【分析】如图,直线AC把△ABO分成周长相等的两部分,则AO+OC=AB+BC,利用直线AB的解析式求出B(0,﹣4),A(3,0),则AB=5,则利用AO+OC=AB+BC可求出OC=3,所以C(0,﹣3),然后利用待定系数法求直线AC的解析式即可.【解答】解:如图,直线AC把△ABO分成周长相等的两部分,则AO+OC=AB+BC,当x=0时,y=x﹣4=﹣4,则B(0,﹣4),∴OB=4,当y=0时,x﹣4=0,解得x=3,则A(3,0),∴OA=3,∴AB==5,∵AO+OC=AB+BC,∴3+OC=5+4﹣OC,解得OC=3,∴C(0,﹣3),设直线AC的解析式为y=kx+b,把A(3,0),C(0,﹣3)代入得,解得,∴直线AC的解析式为y=x﹣3.故选:D.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.9.【分析】分三种情况,根据勾股定理即可得到结论.【解答】解:如图1,A′C===,如图2,A′C===,如图3,A′C===3,∵<3<,∴从点C爬到点A'的最短爬行距离是.故选:B.【点评】本题考查了平面展开﹣最短路线问题,我们将此类复杂题目转化为用勾股定理解答的题目就很好理解了.10.【分析】根据左移减,右移加可得点P和Q表示的数,根据两点间的距离公式可得PQ 的长,即得y与x的关系式.【解答】解:由题意得:点P表示的数为:﹣2﹣x,当0≤x≤2时,点Q从B到O,点Q表示的数为:4﹣2x,∴y=PQ=(4﹣2x)﹣(﹣2﹣x)=4﹣2x+2+x=6﹣x,当2<x≤4时,点Q从O到B,点Q表示的数为:0+2(x﹣2)=2x﹣4,∴y=PQ=(2x﹣4)﹣(﹣2﹣x)=3x﹣2.故选:B.【点评】本题考查了动点问题的函数图象,结合动点考查了两点间的距离,理解题意,找到相等关系进行正确分类是解题的关键.二、填空题(每题2分,满分16分,将答案填在答题纸上)11.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.,,π﹣3.14,,其中无理数有π﹣3.14,,一共2个.故答案为:2.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.【分析】直接利用估算无理数的大小方法分析得出答案.【解答】解:∵1<<2,∴0<2﹣<1,故答案为:<.【点评】此题主要考查了实数比较大小,正确估算无理数的大小是解题关键.13.【分析】根据平行线的性质可得,∠2=∠3=20°,再根据等腰直角三角形的性质可得∵∠1+∠3=45°,即可得出答案.【解答】解:如图1,根据题意可得,∠2=∠3=20°,∵∠1+∠3=45°,∴∠1=25°.故答案为:25.【点评】本题主要考查了等腰三角形的性质及平行线的性质,合理应用平行线的性质及等腰直角三角形性质是解决本题的关键.14.【分析】根据两点之间的距离和勾股定理解答即可.【解答】解:小明与东方之门的实际距离=,10×100=1000(米),故答案为:1000.【点评】此题考查勾股定理的应用,关键是根据两点之间的距离和勾股定理解答.15.【分析】分别求出两图象与y轴的交点坐标以及两图象的的交点,即可求解.【解答】解:∵一次函数y=﹣2x+4的图象与y轴相交,∴交点坐标为(0,4),∵y=x﹣2的图象与y轴相交,∴交点坐标为(0,﹣2),联立方程组可得,解得:,∴交点坐标为(2,0),∴三角形面积=×2×(4+2)=6,故答案为:6.【点评】本题考查了一次函数图象上点的坐标特征,求出交点坐标是本题的关键.16.【分析】由“ASA”可证△ABC≌△EAD,可得AD=AC,∠ACB=∠D,由等腰三角形的性质可求解.【解答】解:∵∠CAD=∠BAE=45°,∴∠BAC=∠DAE,在△ABC和△AED中,,∴△ABC≌△EAD(ASA),∴AD=AC,∠ACB=∠D,∴∠D=∠ACD=67.5°,∴∠ACB=67.5°,故答案为67.5.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定定理是本题的关键.17.【分析】在△ABC中,∠BAC=90°,AB=AC,是等腰直角三角形,所以∠B=∠ACB =45°,根据其他边相等可求出解.【解答】解:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,在△ABE中,∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=112.5°﹣67.5°=45°,故答案为:45.【点评】本题考查了等腰直角三角形的性质和三角形的外角性质,熟练掌握性质是解题的关键.18.【分析】先求出OA,OB的长,由“AAS”可证△AGC≌△BHC,可得AG=BH,CH=GC,即可求解.【解答】解:如图,设AC与OB交于点E,过点C作CH⊥OB于H,CG⊥x轴于G,∴四边形OGCH是矩形,∴OG=CH,OH=GC,∵AB=4,△AOB的面积为3,∴OA2+OB2=16,×OA×OB=3,∴OA+OB=2,OB﹣OA=2,(负值舍去),∴OB=+1,OA=﹣1,∵∠AEO=∠BEC,∠AOB=∠ACB=90°,∴∠OAE=∠EBC,在△AGC和△BHC中,,∴△AGC≌△BHC(AAS),∴AG=BH,CH=GC,∴﹣1+OG=+1﹣OH,CH=CG=OH=OG,∴OG=OH=1=CH=CG,∴点C(1,﹣1),故答案为:(1,﹣1).【点评】本题考查了全等三角形的判定和性质,矩形的判定和性质,勾股定理等知识,求出OA,OB的长是本题的关键.三、解答题(本大题共10小题,共64分.解答应写出文字说明、证明过程或演算步骤.)19.【分析】直接利用零指数幂的性质以及立方根的定义、算术平方根的定义分别化简得出答案.【解答】解:原式=1﹣3﹣2=﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质定理即可得到结论.【解答】证明:∵AD∥BC,∴∠D=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠D,∴AB=AD,∵AB=AC,∴AC=AD.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义,正确的识别图形是解题的关键.21.【分析】(1)利用关于x轴对称的点的坐标特征写出A′、B′、C′的坐标,然后描点即可;(2)利用勾股定理分别计算出B′C、B′C′,从而得到△B'CC'的周长.【解答】解:(1)如图,△A'B'C'为所作;(2)B′C==5,B′C′==,CC′=8,△B'CC'的周长=5++8.故答案为5++8.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,22.【分析】由面积的和差关系可求解.【解答】证明:∵,∴c2+ab=ab+b2+a2+ab,∴c2=a2+b2.【点评】本题考查了勾股定理的证明,利用面积和差关系可求解.23.【分析】(1)由“SAS”可证△ABC≌△DFE;(2)由“AAS”可证△ACO≌△DEO,可得EO=CO,可得结论.【解答】证明:(1)∵AB∥DF,∴∠B=∠F,∵BE=CF,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SAS);∴AC=DE,∠ACB=∠DEF,在△ACO和△DEO中,,∴△ACO≌△DEO(AAS),∴EO=CO,∴点O为BF的中点.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.24.【分析】(1)根据待定系数法即可求得;(2)作CD⊥y轴于D,通过证得△AOB≌△BDC,即可求得C的坐标,然后根据待定系数法即可求得直线l的解析式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,故答案为1;(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.【点评】本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,解题的关键:(1)把M的坐标代入y=2x+b;(2)是通过证得三角形全等求得C的坐标.25.【分析】(1)根据题意和表格中的数据,可以写出这50名技工的月工资总额y(元)与x(名)之间的函数表达式,并写出x的取值范围;(2)根据这50名技工的月工资总额不得超过155000元,可以求得x的取值范围,然后利用一次函数的性质,即可得到当派往A地多少名钳工时,这些技工的月工资总额最大,月工资总额最大为多少元.【解答】解:(1)由题意可得,y=3600x+3200(20﹣x)+2800×30=400x+148000,即这50名技工的月工资总额y(元)与x(名)之间的函数表达式是y=400x+148000(0≤x≤20);(2)∵这50名技工的月工资总额不得超过155000元.∴400x+148000≤155000,解得x≤17,∵x为整数,∴0≤x≤17且x为整数,∵y=400x+148000,∴y随x的增大而增大,∴当x=17时,y取得最大值,此时y=154800,即当派往A地17名钳工时,这些技工的月工资总额最大,月工资总额最大是154800元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.26.【分析】(1)根据“美妙四边形”的概念填空;(2)连接BD,根据勾股定理得到:CD2+CB2=AD2+AB2,即CD2﹣AB2=AD2﹣BC2;(3)连接AD,证明△BED≌△AFD(ASA),则BE=AF,故AE+AF=AB.【解答】解:(1)如答图1,矩形ABCD中,∠A,∠C均为直角,则长方形ABCD是美妙四边形.故答案是:是;(2)如答图2,连接BD,.∵∠C=90°,∠A=90°,由勾股定理知,BD2=CD2+CB2,BD2=AD2+AB2,∴CD2+CB2=AD2+AB2,∴CD2﹣AB2=AD2﹣BC2;(3)如答图3,连接AD,∵四边形AEDF是美妙四边形,∠A=90°,∴∠EDF=90°.∵∠A=90°,AB=AC,点D位为斜边BC上的中点,∴∠B=∠C=45°,AD⊥BD,BD=CD=AD=BC.∴∠BDE+∠ADE=∠ADF+∠ADE=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA).∴BE=AF.∴AE+AF=AE+BE=AB.即AE+AF=AB.【点评】本题主要考查了四边形综合题,解题过程中涉及到的知识点有:全等三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线,勾股定理等,难度不大,关键在于正确理解“美妙四边形”的概念.27.【分析】(1)将(﹣3,6),(0,3)代入一次函数y=kx+b中,可得一次函数y=﹣x+3,进而可得结果;(2)将x=a2+1代入y=﹣x+3,即可说明理由;(3)可以作两条与该直线平行且距离为的直线,将y=0代入y=﹣x+3,即x=3,即该直线与x、y轴围成的三角形为等腰直角三角形,过点C作CD⊥直线y于点D,过点A作AE⊥直线y1于点E,根据勾股定理可得直线y1、y2与直线y的b值相差2,即可得y1=﹣x+5,y2=﹣x+1,将P(a,2a﹣3)分别代入直线y1、y2,即可得a的值.【解答】解:(1)由题意可知:将(﹣3,6),(0,3)代入一次函数y=kx+b中,得k=﹣1,b=3,∴一次函数y=﹣x+3,当x=π时,y=﹣π+3,故答案为:﹣π+3;(2)点(a2+1,2﹣a2)在该函数的图象上,理由如下:将x=a2+1代入y=﹣x+3,得y=﹣(a2+1)+3=2﹣a2,故点(a2+1,2﹣a2)在该函数的图象上;(3)由题意可知:可以作两条与该直线平行且距离为的直线,将y=0代入y=﹣x+3,即x=3,即该直线与x、y轴围成的三角形为等腰直角三角形,如图所示:即OA=OB=3,∴△AOB是等腰直角三角形,过点C作CD⊥直线y于点D,过点A作AE⊥直线y1于点E,∵CD=AE=,y2∥y,y1∥y,∴∠CAD=∠AFE=∠ACD=∠FAE=45°,∴CD=AD=,根据勾股定理,得AC==2,同理,AF=2,∴直线y1、y2与直线y的b值相差2,即OC=AO﹣AC=3﹣2=1,OF=OA+AF=3+2=5,∴y1=﹣x+5,y2=﹣x+1,将P(a,2a﹣3)分别代入直线y1、y2,得a1=,a2=.故a的值为或.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,解决本题的关键是掌握一次函数的性质.28.【分析】(1)由图象可求解;,即可求点H坐标;(2)由勾股定理可求AT的长,由三角形的面积公式可求S△ABC(3)分三种情况讨论,由线段的和差关系可求解.【解答】解:(1)①由图2可知,BD=4cm,BC=6cm,∴AB=5(cm),故答案为:5,6;②如图1,过点A作AT⊥BC于T,∵AB=AC,AT⊥BC,∴BT=CT=3(cm),∴AT===4(cm),=BC×AT=12(cm2),∴S△ABC∴当S1=S2时,S1=S2=6,此时点P是AB的中点,∴AP=BP=,∴PD=,∴点H(,6);(2)①当0≤t≤5时,P,Q均在AB上,∴当t=5时,|BP﹣BQ|最大=2.5cm,②当5<t≤10时,P在AB上,Q在BC上,∴|BP﹣BQ|=|t﹣5﹣(5﹣0.5t)|=|1.5t﹣10|,∴当t=10时,最大=5cm,③当10<t≤11时,P,Q均在BC上,∴|BP﹣BQ|=|t﹣5﹣(0.5t﹣5)|=0.5t,∴当t=11时,最大=5.5cm,∴综上,t=11时,|BP﹣BQ|最大值为5.5cm.【点评】本题是三角形综合题,考查了函数图象的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.。

苏州市第一学期初二数学期末考试综合试卷(1)及答案

苏州市第一学期初二数学期末考试综合试卷(1)及答案

2019—2020学年第一学期初二数学期末考试综合试卷(1)试卷分值130分;知识点涵盖:苏科版八年级上册; 一、选择题:(本大题共10小题,每小题3分,共30分)1. (2015•呼伦贝尔)25的算术平方根是……………………………………………( ) A .5; B .-5; C .±5;D;2. (2015•金华)如图,数轴上的A 、B 、C 、D四点中,与数 ) A .点A ; B .点B ;C .点C ; D .点D ; 3. (2015•绥化)在实数0、π、227, ) A .1个; B .2个 ;C .3个; D .4个; 4.(2015•内江)函数11y x =-中自变量的取值范围是………………………( ) A .2x ≤; B .2x ≤且1x ≠; C .<2且1x ≠; D .1x ≠;5. (2014•南通)点P (2,-5)关于轴对称的点的坐标为……………………………( ) A .(-2,5)B .(2,5)C .(-2,-5)D .(2,-5)6. 两条直线y=a+b 与y=b+a 在同一直角坐标系中的图象位置可能是…………( )7. (2015•济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于的不等式+b >+4的解集是……………………………………………………( ) A .>-2B .>0C .>1D .<18. 已知等腰三角形的两边长分別为a 、b ,且a 、b()223130a b +-=,则此A. B. C. D.第2题图第7题图第9题图等腰三角形的周长为………………………………………………………………( ) A .7或8 B .6或1O C .6或7D .7或10;9. 如图,在平面直角坐标系中,点A 在第一象限,点P 在轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P共有……………………………………………………………………………( ) A .2个 ;B .3个; C .4个 ;D .5个;10. (2015•泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=6,BC= ,则FD 的长为……………………………( ) A .2; B .4; C;D.二、填空题:(本大题共8小题,每小题3分,共24分)11. 在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= . 12. (2015•泉州)比较大小:).13. 由四舍五入法得到的近似数38.810⨯精确到 位.14. 已知点P (a ,b )在一次函数y=4+3的图象上,则代数式4a-b-2的值等于 . 15. 如图,已知△ABC 中,AB=AC ,点D 、E 在BC 上,要使△ABD ≌ACE ,则只需添加一个适当的条件是 .(只填一个即可)16. 一次函数y=(m+2)+1,若y 随的增大而增大,则m 的取值范围是 . 17. 如图,将Rt △ABO 绕点O 顺时针旋转90°,得到Rt A B O '',已知点A 的坐标为(4,2),则点A ′的坐标为 .18. 如图,已知等边三角形ABC 的边长为10,点P 、Q 分别为边AB 、AC 上的一个动点,点P 从点B 出发以1cm/s 的速度向点A 运动,点Q 从点C 出发以2cm/s 的速度向点A 运动,连接PQ ,以Q 为旋转中心,将线段PQ 按逆时针方向旋转60°得线段QD ,若点P 、Q 同时出发,则当运动_______s 时,点D 恰好落在BC 边上.三、解答题:(本大题共76分)19.(本题满分8分)(1)求()2116x +=中的x ; (2;第10题图第15题第17题第18题图20. (本题满分6分)(2015•温州)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D .(1)求证:AB=CD .(2)若AB=CF ,∠B=30°,求∠D 的度数.21. (本题满分6分)△ABC 在平面直角坐标系Oy 中的位置如图所示. (1)将△ABC 沿x 轴翻折得到111A B C ,作出111A B C ; (2)将111A B C 向右平移4个单位,作出平移后的222A B C .(3)在轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标: .(不写解答过程,直接写出结果)22. (本题满分6分)已知一个正数的两个平方根分别为a 和29a -. (1)求a 的值,并求这个正数; (2)求2179a -的立方根.23. (本题满分6分)(2015•淄博)在直角坐标系中,一条直线经过A (-1,5),P (-2,a ),B (3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.24. (本题满分6分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=12 AB.25. (本题满分9分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.26. (本题满分7分)(2015•盐城)如图,在平面直角坐标系Oy中,已知正比例函数34y x=与一次函数7y x=-+的图象交于点A.(1)求点A的坐标;(2)设轴上有一点P (a ,0),过点P 作轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图象于点B 、C ,连接OC .若BC=75OA ,求△OBC 的面积.27.(本题满分7分)如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且()2411023a b a b ++-+=. (1)求a 、b 的值;(2)①在y 轴上的负半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标; ②在坐标轴的其它位置是否存在点M ,使结论“△COM 的面积=12△ABC 的面积”仍然成立?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.28.(本题满分7分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?29. (本题满分8分)(2015•齐齐哈尔)甲、乙两车分别从相距480m的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.2019—2020学年第一学期初二数学期末考试综合试卷(1)参考答案一、选择题:1.A ;2.B ;3.B ;4.B ;5.B ;6.A ;7.C ;8.A ;9.C ;10.B ;二、填空题:11.65°;12.>;13.百;14.-5;15.BD=EC (答案不唯一);16. 2m >-;17.(2,-4);18.103; 三、解答题:19.(1)3或-5;(2)8.5;20.(1)略;(2)75°;21.(1)略;(2)略;(3)8,05⎛⎫⎪⎝⎭; 22.(1)3a =,这个正数是9;(2)-4; 23. (1)7a =;(2)3;24. 证明:如图,连接BE ,∵在△BCD 中,DB=BC ,E 是CD 的中点, ∴BE ⊥CD ,∵F 是AB 的中点,∴在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF=12AB . 25.(1)略;(2)30°;(3)32; 26.(1)A (4,3);(2)28; 27. (1)2a =-,3b =;(2)①M (0,-7.5);②存在. M (0,7.5),M (2.5,0);M (-2.5,0); 28. 解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得()()1224124212201232a b a b +-=⎧⎪⎨+-=⎪⎩,解得:12.5a b =⎧⎨=⎩. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. (2)∵当0≤≤12时,y=;当>12时,y=12+(-12)×2.5=2.5-18,∴所求函数关系式为:()()022.51812x x y x x ≤≤⎧⎪=⎨->⎪⎩. (3)∵=26>12,∴把=26代入y=2.5-18,得:y=2.5×26-18=47(元). 答:小黄家三月份应交水费47元.29. 解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60-1-1)=720÷6=120(千米/小时) ∴t=360÷120=3(小时).(2)①当0≤≤3时,设1y k x =,把(3,360)代入,可得31k =360, 解得1k =120,∴y=120(0≤≤3). ②当3<≤4时,y=360. ③4<≤7时,设2y k x b =+, 把(4,360)和(7,0)代入,可得2120840k b =-⎧⎨=⎩,∴y=-120+840(4<≤7).(3)①(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,(480-360+120)÷60=240÷6=4(小时) ③两车都朝A 地行驶时,设乙车出发小时后两车相距120千米, 则60-[120(-1)-360]=120,所以480-60=120,所以60=360, 解得=6.综上,可得乙车出发83小时、4小时、6小时后两车相距120千米.。

2020-2021苏州市初二数学上期末试卷(带答案)

2020-2021苏州市初二数学上期末试卷(带答案)

2020-2021苏州市初二数学上期末试卷(带答案)一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣63.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .134.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 5.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形6.下列各式中不能用平方差公式计算的是( )A .() 2x y)x 2y -+(B .()2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 7.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙 8.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形9.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A.段①B.段②C.段③D.段④10.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°11.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.1012.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20°B.40°C.50°D.70°二、填空题13.计算:24a3b2÷3ab=____.14.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB 上一动点,则PC+PD的最小值为_____.15.等边三角形有_____条对称轴.16.把0.0036这个数用科学记数法表示,应该记作_____.17.若实数,满足,则______.18.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.19.求值:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-----= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______. 20.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 .三、解答题21.(1)分解下列因式,将结果直接写在横线上:x 2+4x+4= ,16x 2+24x+9= ,9x 2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx+c(a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子表示a 、b 、c 之间的关系;②解决问题:若多项式x 2﹣2(m ﹣3)x+(10﹣6m)是一个完全平方式,求m 的值.22.A 、B 两种机器人都被用来搬运化工原料,A 型机器人比 B 型机器人每小时多搬运 60kg.A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?23.先化简,再求值:22141121a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中3a =. 24.为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200 米的道路进行了改造,铺设草油路面.铺设400 米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?25.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通.在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.A解析:A【解析】因为ba b-=14,所以4b=a-b.,解得a=5b,所以ab=55bb=.故选A.4.C解析:C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】根据题意可得,走高速所用时间150202.5x-小时,走国道所用时间150x小时即150150201.52.5x x--=故答案选择C.【点睛】本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.5.D【解析】【分析】【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.6.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.7.B解析:B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.D解析:D【解析】试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,∴(b﹣c)(a2+b2﹣c2)=0,∴b﹣c=0,a2+b2﹣c2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.9.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.10.D解析:D【解析】试题解析::(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选D.11.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C12.C解析:C【解析】【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.二、填空题13.8a2b【解析】【分析】根据单项式的除法法则计算把系数和同底数幂分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式计算后选取答案【详解】24a3b2÷3ab=(24÷3)a解析:8a2b【解析】【分析】根据单项式的除法法则计算,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算后选取答案.【详解】24a3b2÷3ab,=(24÷3)a2b,=8a2b.故答案为8a2b.【点睛】本题考查的知识点是同底数幂的除法,解题的关键是熟练的掌握同底数幂的除法. 14.12【解析】【分析】作C关于AB的对称点E连接ED易求∠ACE=60°则AC=AE且△ACE为等边三角形CP+PD=DP+PE为E与直线AC之间的连接线段其最小值为E到AC的距离=AB=12所以最小解析:12【解析】【分析】作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.【详解】作C关于AB的对称点E,连接ED,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE,∴△ACE为等边三角形,∴CP+PD=DP+PE为E与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.15.3【解析】试题解析:等边三角形有3条对称轴考点:轴对称图形解析:3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.16.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】17.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:,∴∴;故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.18.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a∥b∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案为80°【点睛】本题考查了平行线的性质三角形解析:80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.19.【解析】【分析】由题意平方差公式把每一项展开然后直接约分运算即可得出答案【详解】解:===故填【点睛】本题考查有理数幂的化简与求值熟练掌握平方差公式把每一项展开是解题的关键 解析:1120【解析】【分析】由题意平方差公式把每一项展开,然后直接约分运算即可得出答案.【详解】 解:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =1111111111111111...1111223344991010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132435810911 (223344991010)⨯⨯⨯⨯⨯⨯⨯⨯⨯ =1120故填1120. 【点睛】本题考查有理数幂的化简与求值,熟练掌握平方差公式把每一项展开是解题的关键. 20.5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10﹣n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定解解析:5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣6,故答案为1.5×10﹣6.考点:科学记数法—表示较小的数.三、解答题21.(1)(x+2)2,(4x+3)2,(3x ﹣2)2;(2)①b 2=4ac ,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b 2=4ac ,即可得出答案;②利用①的规律解题.【详解】(1)x 2+4x+4=(x+2)2,16x 2+24x+9=(4x+3)2,9x 2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b 2=4ac ,故答案为b 2=4ac ;②∵多项式x 2-2(m-3)x+(10-6m )是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m ),m 2-6m+9=10-6mm 2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b 2=4ac 是解此题的关键.22.A 型机器人每小时搬运240kg ,则B 型机器人每小时搬运180kg .【解析】【分析】设B 型机器人每小时搬运xkg ,则A 型机器人每小时搬运()60x + kg ,根据A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,列方程求解.【详解】设B 型机器人每小时搬运xkg ,则A 型机器人每小时搬运()60x + kg120090060x x=+, 方程两边乘()60x x +,得120090054000x x =+,解得:180x =校验:当600x =时,()600x x +≠所以,原分式方程的解为180x =60240x +=,答:A 型机器人每小时搬运240kg ,则B 型机器人每小时搬运180kg .【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.12a a -+,25. 【解析】【分析】 根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】 解:22141121a a a a -⎛⎫-÷ ⎪--+⎝⎭=()()()2111122a a a a a ---⋅-+- =()()21122a a a a --⋅+- =12a a -+ , 当a=3时,原式=313+2- =25 . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)80;(2)21900.【解析】【分析】(1)设原计划每天铺设路面x 米,则提高工作效率后每天完成(1+25%)x 米,根据等量关系“利用原计划的速度铺设400 米所用的时间+提高工作效率后铺设剩余的道路所用的时间=13”,列出方程,解方程即可;(2)先求得利用原计划的速度铺设400 米所用的时间和提高工作效率后铺设剩余的道路所用的时间,根据题意再计算总工资即可.【详解】(1)设原计划每天铺设路面x 米,根据题意可得:()400120040013125%x x -+=+ 解得:80x =检验:80x =是原方程的解且符合题意,∴ 80x =答:原计划每天铺设路面80米.原来工作400÷80=5(天). (2)后来工作()()120040080120%8⎡⎤-÷⨯+=⎣⎦(天).共支付工人工资:1500×5+1500×(1+20%)×8=21900(元) 答:共支付工人工资21900元.【点睛】本题考查了分式方程的应用,根据题意正确找出等量关系,由等量关系列出方程是解决本题的关键.25.(1)甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)应选甲工程队单独完成;理由见解析.【解析】【分析】(1)设甲工程队单独完成这项工程需要x 天,则乙工程队单独完成这项工程需要1.5x天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y 元,则乙工程队每天的费用是(y ﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y 的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【详解】解:(1)设甲工程队单独完成这项工程需要x 天,则乙工程队单独完成这项工程需要1.5x 天, 依题意,得:12121.5x x+=1, 解得:x =20,经检验,x =20是原分式方程的解,且符合题意,∴1.5x =30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天; (2)设甲工程队每天的费用是y 元,则乙工程队每天的费用是(y ﹣250)元, 依题意,得:12y+12(y ﹣250)=27720,解得:y =1280,∴y ﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元), 乙工程队单独完成共需要费用:1030×30=30900(元). ∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.【点睛】本题主要考查了分式方程的实际应用,解题的关键是合理设出未知数,找到等量关系,列出方程.。

江苏省苏州市第一学期八年级数学期末试卷(含解析)

江苏省苏州市第一学期八年级数学期末试卷(含解析)

江苏省苏州市第一学期八年级数学期末试卷(含解析)一、选择题1.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .2.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°3.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( ) A .12y y < B .12y y =C .12y y >D .不能确定4.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限6.下到图形中,不是轴对称图形的是( )A .B .C .D .7.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒8.下列说法正确的是( )A .(﹣3)2的平方根是3 B .16=±4 C .1的平方根是1 D .4的算术平方根是2 9.点(2,-3)关于原点对称的点的坐标是() A .(-2,3) B .(2,3) C .(-3,-2) D .(2,-3) 10.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.12.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 13.3-的绝对值是 .14.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.15.如图,在△PAB 中,PA=PB ,D 、E 、F 分别是边PA ,PB ,AB 上的点,且AD=BF ,BE=AF ,若∠DFE=40°,则∠P=____°.16.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 17.在△ABC 中,已知AB =15,AC =11,则BC 边上的中线AD 的取值范围是____. 18.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________. 19.若分式2223x x -+的值为零,则x 的值等于___. 20.如图,在△ABC 中,AB =6,AC =5,BC =9,∠BAC 的角平分线AP 交BC 于点P ,则CP 的长为_____.三、解答题21.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-. (1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.22.已知2y +与x 成正比,当x =1时,y =﹣6. (1)求y 与x 之间的函数关系式;(2)若点(a ,2)在这个函数图象上,求a 的值.23.在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为△ABC 外一点,且∠MDN=60°,∠BDC=120°,BD=DC .探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及△AMN 的周长x 与等边△ABC 的周长y 的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时xy=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想( I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.24.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上(网格线的交点).(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)(2)点C的坐标为(,)(直接写出结果)(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①请在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为(,);(直接写出结果)③试在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,此时,QA2+QC2的长度之和最小值为.(在图中画出点Q的位置,并直接写出最小值答案)25.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y (km)与出发时间t(h)之间的函数关系如图1中线段AB所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.(1)小明骑自行车的速度为km/h、妈妈骑电动车的速度为km/h;(2)解释图中点E的实际意义,并求出点E的坐标;(3)求当t为多少时,两车之间的距离为18km.四、压轴题26.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上;②直接写出∠BDC的度数(用含α的式子表示)为;(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转的过程中,在什么情况下线段BF的长取得最大值?若AC2a,试写出此时BF的值.27.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.28.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)29.如图,在平面直角坐标系中,直线AB经过点A 332)和B3,0),且与y轴交于点D,直线OC与AB交于点C,且点C3.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.30.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B解析:B 【解析】 【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案. 【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°. 故选:B .【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.3.C解析:C 【解析】 【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可. 【详解】解:∵一次函数31y x =-+的系数k <0,y 随x 增大而减小, 又∵两点的横坐标2<3, ∴12y y > 故选C. 【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.4.B解析:B 【解析】 【分析】根据无理数的定义判断即可. 【详解】 解:3π-,7是无理数,3127-=1-3 ,227-可以化成分数,不是无理数.故选 B 【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.5.B解析:B 【解析】 【分析】 【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限, 故选B .6.C解析:C 【解析】 【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴. 【详解】解:A 、是轴对称图形,故此选项错误; B 、是轴对称图形,故此选项错误; C 、不是轴对称图形,故此选项正确; D 、是轴对称图形,故此选项错误; 故选:C . 【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.7.B解析:B 【解析】 【分析】延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.8.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B164=,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.9.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数, 点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.10.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.二、填空题11.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.12.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的,所以14..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.15.100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解析:100【解析】【分析】根据等腰三角形的性质得到∠A=∠B ,证明△ADF ≌△BFE ,得到∠ADF=∠BFE ,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB ,∴∠A=∠B ,在△ADF 和△BFE 中,AD BF A B AF BE =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BFE (SAS ),∴∠ADF=∠BFE ,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF ,∴∠A=∠DFE=40°,∴∠P=180°-∠A -∠B=100°;故答案为:100.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.16..【解析】【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.17.2<AD<13【解析】【分析】延长AD 至E ,使得DE=AD ,连接CE ,然后根据“边角边”证明△ABD 和△ECD 全等,再根据全等三角形对应边相等可得AB=CE ,然后利用三角形任意两边之和大于第三解析:2<AD <13【解析】【分析】延长AD 至E ,使得DE=AD ,连接CE ,然后根据“边角边”证明△ABD 和△ECD 全等,再根据全等三角形对应边相等可得AB =CE ,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,从而得解.【详解】解:如图,延长AD 至E ,使得DE=AD ,连接CE ,∵AD 是△ABC 的中线,∴BD=CD ,在△ABD 和△ECD 中,∵AD =DE ,∠ADB =∠EDC ,BD =CD∴△ABD ≌△ECD (SAS ),∴AB=CE ,∵AB=15,∴CE=15,∵AC=11,∴在△ACE 中,15-11=4,15+11=26,∴4<AE <26,∴2<AD <13;故答案为:2<AD <13.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD 延长得AD=DE ,构造全等三角形,然后利用三角形的三边的关系解决问题.18.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.19.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.20..【解析】【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出,从而得到,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是解析:45 11.【解析】【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出162152APBAPCAB PMS ABS ACAC PN⋅===⋅,从而得到162152APBAPCPB hS PBS PCPC h⋅===⋅,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是∠BAC的角平分线,∴PM=PN,∴162152APBAPCAB PMS ABS ACAC PN⋅===⋅,设A到BC距离为h,则162152APBAPCPB hS PBS PCPC h⋅===⋅,∵PB+PC=BC=9,∴CP=9×511=4511,故答案为:45 11.【点睛】本题主要考查三角形的角平分线的性质,结合面积法,推出AB AC PB PC=,是解题的关键. 三、解答题21.(1) 32m =,213AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6), ∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346 242OQ⨯⋅=⨯⨯⨯,∴OQ=2,∴点Q坐标为(0,2).【点睛】考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.22.(1)y=-4x-2;(2)a=-1.【解析】【分析】(1)设y+2=kx,将x=1、y=-6代入y+2=kx可得k的值;(2)将点(a,2)的坐标代入函数的解析式求a的值.【详解】解:(1)∵y+2与x成正比,∴设y+2=kx,将x=1、y=-6代入y+2=kx得-6+2=k×1,∴k=-4,∴y=-4x-2(2)∵点(a,2)在函数y=-4x-2图象上,∴2=-4a-2,∴a=-1.【点睛】本题主要考查函数解析式的求法.如果事先知道函数的形式,可先设函数的解析式,再采用待定系数法求解.23.(1)BM+NC=MN;23xy=;(2)成立:BM+NC=MN;(3)BM+MN=NC.证明见解析.【解析】【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系 BM+NC=MN,此时2 =3xy;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC-BM=MN.【详解】解:(1)如图1,BM、NC、MN之间的数量关系 BM+NC=MN.此时2 =3 xy.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴2 =3xy;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴2 =3xy;(3)证明:在CN上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC-BM=MN.【点睛】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.24.(1)见解析;(2)(-2,5);(3)①见解析;②点P2的坐标为(﹣m,n﹣6);③2【解析】【分析】(1)建立适当的平面直角坐标系,根据点A坐标为(﹣1,2),点B的坐标为(﹣5,2)即可画出直角坐标系;(2)根据坐标系即可写出点C的坐标;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①即可在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,即可写出点P2的坐标;③根据对称性即可在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,进而可以求出QA2+QC2的长度之和最小值.【详解】(1)∵点A坐标为(﹣1,2),点B的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系;(2)根据坐标系可知:点C的坐标为(﹣2,5),故答案为:﹣2,5;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①如图即为坐标系中画出的△A2B2C2;②点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,∴点P2的坐标为(﹣m,n﹣6),故答案为:﹣m,n﹣6;③根据对称性可知:在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,∴连接A2C1交y轴于点Q,此时QA2+QC2的长度之和最小,即为A2C1的长,A2C1=2,∴QA2+QC2的长度之和最小值为2.故答案为:2.【点睛】此题主要考查平面直角坐标系中三角形的平移以及对称性的运用,熟练掌握,即可解题.25.(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或3 2【解析】【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205,点E的纵坐标为:95×16=1445∴点E (95,1445); (3)根据题意得,(16+20)t =(36﹣18)或(16+20)t =36+18, 解得:t =12或t =32, 答:当t 为12或32时,两车之间的距离为18km . 【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.四、压轴题26.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,(10+2)a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a ==,即可求得BF【详解】(1)①连接AD ,如图1.∵点C 与点D 关于直线l 对称,∴AC = AD .∵AB = AC ,∴AB = AC = AD .∴点B ,C ,D 在以A 为圆心,AB 为半径的圆上.②∵AD=AB=AC ,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,,F是以AC为直径的圆上一点,设AC中点为O,∵在△BOF中,BO+OF≥BF,当B、O、F三点共线时BF最长;如图,过点O作OH⊥BC,∵∠BAC=90°,2a,∴24==,∠ACB=45°,且OH⊥BC,BC AC a∴∠COH=∠HCO=45°,∴OH=HC,∴2=,OC HC∵点O是AC中点,AC2a,∴2OC a=,==,∴OH HC a∴BH=3a,∴10=,BO a∵点C关于直线l的对称点为点D,∴∠AFC=90°,∵点O是AC中点,∴2==,OF OC a∴102=,BF a∴当B、O、F三点共线时BF最长;最大值为102)a.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.27.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD =∠BEF ,在AF 上截取AG =EF ,连接BG ,BF ,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.28.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.29.(1)y=﹣3x +2;(2)△AOD 为直角三角形,理由见解析;(3)t =23或3. 【解析】【分析】(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b ,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解; (3)点C,1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C1),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH(2﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12O P ,即可求解;③当PO =PM 时,故这种情况不存在. 【详解】 解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:320b b ⎧+⎪⎨⎪=+⎩,解得:=2k b ⎧⎪⎨⎪=⎩故直线AB 的表达式为:y=﹣3x +2; (2)直线AB 的表达式为:y+2,则点D (0,2), 由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,故△AOD 为直角三角形;(3)直线AB 的表达式为:y=﹣3x +2,故点C,1),则OC =2, 则直线AB 的倾斜角为30°,即∠DBO =30°,则∠ODA =60°,则∠DOA =30°故点C(3,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH=32(2﹣t)=QH,OQ=QH+OH=3(2﹣t)+12(2﹣t)=t,解得:t=23;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=12OP,即t=12(2﹣t),。

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版)一、选择题1.在平面直角坐标系中,下列各点位于第四象限的点是( ) A .(2,3)- B .()4,5-C .(1,0)D .(8,1)--2.若分式12xx -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .2 3.下列运算正确的是( )A .=2B .|﹣3|=﹣3C .=±2D .=34.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 5.若等腰三角形的一个内角为92°,则它的顶角的度数为( ) A .92° B .88° C .44° D .88°或44° 6.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-7.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A .SSSB .SASC .AASD .ASA8.到ABC ∆的三顶点距离相等的点是ABC ∆的是( )A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点9.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题11.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠C =70°,则∠B =_____°.12.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.13.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.14.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.15.1x -在实数范围内有意义的条件是__________.16.已知22139273m ⨯⨯=,求m =__________.17.等腰三角形中有一个角的度数为40°,则底角为_____________.18.Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 在边AB 上,连接CD .有以下4种说法:①当DC DB =时,BCD ∆一定为等边三角形 ②当AD CD =时,BCD ∆一定为等边三角形③当ACD ∆是等腰三角形时,BCD ∆一定为等边三角形 ④当BCD ∆是等腰三角形时,ACD ∆一定为等腰三角形 其中错误的是__________.(填写序号即可) 19.在实数:311-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 20.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.三、解答题21.计算:(1)()03420121+---; (2)1383322+-+. 22.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.阅读下列材料,然后解答问题: 问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”. (1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.24.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题: (1)甲、乙两地相距 km ,轿车比货车晚出发 h ; (2)求线段CD 所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?25.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.四、压轴题26.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.27.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCES最大值.28.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”; ②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值; ②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACFSS的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.2.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.A解析:A 【解析】 【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论. 【详解】 A .=2,此选项计算正确; B .|﹣3|=3,此选项计算错误;C .=2,此选项计算错误;D .不能进一步计算,此选项错误. 故选A . 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.4.A解析:A 【解析】 【分析】3329a b a b a b a 23a b a ab ab ab a ⨯⨯即可求解. 【详解】解:∵a >0,b >0,3329a b a b a b a 23a b a ab ab ab a ⨯⨯15233ab ab ab =故选:A . 【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.5.A解析:A 【解析】 【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论. 【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.6.A解析:A【解析】【分析】令点P的横坐标小于0,列不等式求解即可.【详解】解:∵点P P(1+m,3)在第二象限,∴1+m<0,解得: m<-1.故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.8.D解析:D【解析】【分析】根据垂直平分线的性质进行判断即可;【详解】∵到△ABC的三个顶点的距离相等,∴这个点在这个三角形三条边的垂直平分线上,即这点是三条垂直平分线的交点.故答案选D.【点睛】本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.9.B解析:B【解析】【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长=AB+BD+AD=16,∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.10.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题11.【解析】【分析】根据等腰三角形的性质得到∠ADC=70,再根据三角形外角的性质和等腰三角形可求∠B的度数.【详解】∵AC=AD,∠C=70,∴∠ADC=∠C=70,∵AD=DB,∴∠解析:【解析】【分析】根据等腰三角形的性质得到∠ADC=70︒,再根据三角形外角的性质和等腰三角形可求∠B 的度数.【详解】∵AC=AD,∠C=70︒,∴∠ADC=∠C=70︒,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=35︒.故答案为:35.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.12.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n ;∴m +n =﹣2k +b +b =﹣2k +2b =2(﹣k +b )=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m +n 看作一个整体,进行计算,是解题的关键.13.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.14.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC是等边三角形是解题的关键.15.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意x>解析:1【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0,解得:x>1.x>.故答案为:1【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.16.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.17.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°; 当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°. 故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.18.③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵,,∴,∵,∴为等边三角形∴①正确;②∵,,∴,∵,∴,,∴,∴为等边三角形∴②正确;解析:③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵DC DB =,∴BCD ∆为等边三角形 ∴①正确;②∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵AD CD =,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形∴②正确;③当DA DC =时∵90ACB ∠=︒,30A ∠=︒,ACD ∆是等腰三角形,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形;当AC AD =时,易得BCD ∆不为等边三角形∴③错误;④∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵BCD ∆是等腰三角形,∴BCD ∆是等边三角形,60DCB ∠=︒∴30ACD ∠=︒,∴ACD ∆为等腰三角形;∴④正确;故答案为:③.【点睛】本题主要考查了等边三角形,等腰三角形的判定及性质,熟练掌握等边三角形、等腰三角形的判定及性质的证明方法是解决本题的关键.19.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 20.8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF⊥BC 于点F ,作解析:8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF ⊥BC 于点F ,作CP ⊥AB 于点P ,根据题意得此时CP 的值最小;解:作BC 边上的高AF ,∵AB =AC =5,BC =6,∴BF =CF =3,∴由勾股定理得:AF=4,∴S △ABC =12AB •PC =12BC •AF =12×5CP =12×6×4 得:CP =4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用.三、解答题21.(1)4;(2)32332. 【解析】【分析】(1)先进行开平方,0次幂以及开立方运算,再进行加减运算即可;(2)先化简各个含根号的式子,再合并即可得出结果【详解】 解:(1)原式=2+1+1=4; (2)原式23223=32332. 【点睛】本题考查实数的相关运算,掌握基本运算法则是解题的关键. 22.(1)50;80;3(2)()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩(3)货车出发3小时或5小时后两车相距90千米【解析】【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【详解】解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩; (3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.23.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =,(2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.24.(1)300;1.2 (2)y =110x ﹣195 (3)3.9;234千米【解析】【分析】(1)由图象可求解;(2)利用待定系数法求解析式;(3)求出OA 解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km ,轿车比货车晚出发1.2小时; 故答案为:300;1.2;(2)设线段CD 所在直线的函数表达式为:y =kx +b ,由题意可得:300=4.580 2.5k b k b +⎧⎨=+⎩解得:110195k b =⎧⎨=-⎩∴线段CD 所在直线的函数表达式为:y =110x ﹣195;(3)设OA 解析式为:y =mx ,由题意可得:300=5m ,∴m =60,∴OA 解析式为:y =60x ,∴60110195y x y x =⎧⎨=-⎩∴ 3.9234x y =⎧⎨=⎩答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.25.BF 的长为【解析】【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB,E为AB中点∴AE=BE,CE⊥AB,∠FEB=∠FEA=90°在Rt△FEB与Rt△FEA中,BE AEBEF AEFFE FE=⎧⎪∠=∠⎨⎪=⎩∴Rt△FEB≌Rt△FEA又∵AD平分∠BAC,在等腰直角三角形ABC中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5°在△BFD中,∠BFD=∠FBE+∠FAE=45°又∵BD⊥AD,∠D=90°∴△BFD为等腰直角三角形,BD=FD=3∴222232BF BD FD BD=+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.四、压轴题26.(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11.③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6. 故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.27.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.28.(1)①)3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC≌△AOB,3(,0)Ak-,A在x轴正半轴上,所以BF=OA,所以OF=OB-OF=3 3k +点3(3,3)Ck-+,如图2, -1<Cy≤2,即:-1<33k+≤2,则334k-≤<-.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

苏州市相城区第一学期八年级数学期末考试试卷及答案

苏州市相城区第一学期八年级数学期末考试试卷及答案

2019~2020学年第一学期期末考试试卷八年级数学本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。

考试用时120分钟。

注意事项1. 答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2. 答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3. 考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题(本大题共有10小题,每小题3分,共30分.以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.)1. 下列图形中,轴对称图形的个数为A. 4个B. 3个C. 2个D. 1个 2.x 的取值范围是A. 2x >-B. 2x ≤-C. 2x <-D.x 2≥-3. 如图,已知AE CF =,AFD CEB ∠=∠下列一个条件后仍无法判定ADF CBE≅V V 的是 A. A C ∠=∠ B. AD CB = C.BE DF = D. //AD BC4. 下列计算正确的是 A.= B.2=C. x x =-D. 2x x =5. 点(2,3)P -关于x 轴对称的点是A. (2,3)-B. (2,3)C. (2,3)--D. (2,3)- 6. 若把分式2x yx y++中的x 和y 都扩大3倍,且0x y +≠,那么分式的值A.不变B.扩大3倍C.缩小3倍D.缩小6倍 7. 如图,两个正方形的面积分别为64和49,则AC 等于A. 15B. 17C. 23D. 1138. 一次函数1y mx m =+-的图象过点(0,2)且y 随x 的增大而增大,则mA.1-B. 1C. 3D. 1-或39. 已知关于x 的分式方程211a x +=+的解是非正数,则a 的取值范围是 A.1a ≤- B. 1a ≤且2a ≠- C.1a ≤-且2a ≠-1a ≤10. 如图所示,购买一种苹果,所付款金额y (元)与购买量x (千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买 3千克这种苹果比分三次每次购买1千克这种苹果可节省A. 1元B. 2元C. 3元D. 4元二、填空题(本大题共8 小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上。

苏科版苏州市八年级(上)期末数学试卷解析版

苏科版苏州市八年级(上)期末数学试卷解析版

苏科版苏州市八年级(上)期末数学试卷解析版一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠B .5x =C .5x >D .5x <3.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 4.点(3,2)A -关于y 轴对称的点的坐标为( )A .(3,2)B .(3,2)-C .(3,2)--D .(2,3)-5.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:36.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .2B .2C .6D .37.下列实数中,无理数是( )A .227B .3πC .D 8.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)-C .(4,3)-D .()3,4-9.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( )A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位10.如果m 是任意实数,则点()P m 4m 1-+,一定不在 A .第一象限B .第二象限C .第三象限D .第四象限11.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量12.函数111y k x b =+与222y k x b =+的部分自变量和对应函数值如下:当12y y >时,自变量x 的取值范围是( ) A .2x >-B .2x <-C .1x >-D .1x <-13.9的平方根是( ) A .3B .81C .3±D .81± 14.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( ) A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2)15.的整数部分用a 表示,小数部分用b 表示,4的整数部分用c 表示,小数部分用d 表示,则b dac+值为( )A .12 B .14C D二、填空题16.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______. 17.对于分式23x a ba b x++-+,当1x =时,分式的值为零,则a b +=__________.18.若分式293x x --的值为0,则x 的值为_______.19.函数y x 3=-中,自变量x 的取值范围是 .20.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .21.分解因式:12a 2-3b 2=____.22.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。

江苏省苏州市八年级(上)期末数学试卷解析版

江苏省苏州市八年级(上)期末数学试卷解析版

江苏省苏州市八年级(上)期末数学试卷解析版一、选择题1.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x > 2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 3.4的平方根是( )A .2B .2±C .2D .2± 4.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-, B .()23, C .()23--, D .()23-,5.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .456.下列实数中,无理数是( )A .0B .﹣4C 5D .177.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)8.下列图案属于轴对称图形的是( ) A . B . C . D .9.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4- 10.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1) 二、填空题11.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.13.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.14.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.15.阅读理解:对于任意正整数a ,b ,∵20a b ≥,∴0a ab b -≥,∴2a b ab +≥a b =时,等号成立;结论:在2a b ab +≥a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab 若1m 1m m -有最小值为__________.16.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.17.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.18.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .19.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.20.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________三、解答题21.已知一次函数5y kx =+的图象经过点(2,1)A -.(1)求k 的值;(2)在图中画出这个函数的图象;(3)若该图象与x 轴交于点B ,与y 轴交于点C ,试确定OBC ∆的面积..22.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由.(2)求四边形ABCD 的面积.23.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数,这个函数的图象如图所示.(1)求y 关于x 的函数表达式;(2)求旅客最多可免费携带行李的质量.24.一次函数的图象经过点A (2,4)和B (﹣1,﹣5)两点.(1)求出该一次函数的表达式;(2)画出该一次函数的图象;(3)判断(﹣5,﹣4)是否在这个函数的图象上?(4)求出该函数图象与坐标轴围成的三角形面积.25.已知21a =+,求代数式223a a -+的值.四、压轴题26.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.27.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值.28.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)29.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.30.如图,直线l 1的表达式为:y=-3x+3,且直线l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C .(1)求点D 的坐标;(2)求直线l 2的解析表达式;(3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由图知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大,由此得出当x>0时,y>2,进而可得解.【详解】根据图示知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大;即当x>0时函数值y的范围是y>2;因而当不等式kx+b-2>0时,x的取值范围是x>0.故选:A.【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.2.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.3.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 4.B解析:B【解析】【分析】根据关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P(2,-3)关于x轴对称,∴对称点与点P横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).本题考查的是坐标与图形的变换,关于y 轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,5.B解析:B【解析】【分析】易得BE =DE ,利用勾股定理求得DE 的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD =∠DBC .又∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠EBD ,∴BE =DE .设BE =DE =x ,∴AE =12﹣x . ∵四边形ABCD 是矩形,∴∠A =90°,∴AE 2+AB 2=BE 2,即(12﹣x )2+62=x 2,x =7.5,∴S △EDB =12×7.5×6=22.5. 故选B . 【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.6.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 7.C解析:C【解析】【分析】根据函数图象的性质判断系数k >0,则该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.8.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.9.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.10.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题11.x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故解析:x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2【点睛】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b -a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数的解析式.13.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.14.18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:=当,时,原式,故答案为:18【点睛】此题考查了整式的混解析:18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:32232a b a b ab ++=222ab a ab b 2=ab a b当3a b +=,2ab =时,原式2=23=18,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.15.3【解析】【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,解析:3【解析】【分析】根据a b +≥(a 、b进行化简求最小值. 【详解】1=1111m m m111m=111m1211=31m m即:当1m 时,m m 3, 故答案为:3.【点睛】 准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.16.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.17.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 18..【解析】【分析】【详解】如图,过点C 作CD ⊥y 轴于点D ,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO ,在△ABO 与△BCD 中,∠CBD=∠BAO,解析:(21)-,. 【解析】【分析】【详解】如图,过点C 作CD ⊥y 轴于点D ,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO ,在△ABO 与△BCD 中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB ,∴△ABO ≌△BCD (AAS ), ∴CD=OB ,BD=AO ,∵点A (1,0),B (0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C 在第二象限,∴点C 的坐标是(-2,1).19.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB ,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°,∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,,当点D 运动到点C 时,,∴点E 移动的路线长为cm .20.(3,4)【解析】分析:首先根据点A 和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A 的坐标为(-4,-1),A′的坐标为(-2,2), ∴平移法则为:先向 解析:(3,4)【解析】分析:首先根据点A 和点A ′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B ′的坐标.详解:∵A 的坐标为(-4,-1),A ′的坐标为(-2,2), ∴平移法则为:先向右平移2个单位,再向上平移3个单位, ∴点B ′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.三、解答题21.(1)3k =-;(2)画图见解析;(3)256OBC S =△ 【解析】【分析】(1)把点(2,1)A -代入解析式5y kx =+即可求出k 的值;(2)用两点法画出函数图像即可;(3)利用三角形面积公式进行计算.【详解】解:(1)将2,1x y ==-代入5y kx =+得:251k +=-,解得3k =-;(2)∵3k =-,∴35y x =-+,当x=0时,y=5;当y=0时,-3x+5=0,53x =, 如图:(3)由(2)知,53OB=,OC=5,则55•253226 OBCOC OBS⨯===.【点睛】本题主要考查了满足函数解析式的点一定在函数的图象上,一次函数与坐标轴的交点,以及图形与坐标的性质,求出一次函数解析式是解答本题的关键.22.(1)∠D是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=625.又∵CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=12AD•DC+12AB•BC=12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.23.(1)()12105y x x =->(2)10kg 【解析】【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x 超过规定时,y 与x 之间的函数表达式;(2)令y =0,求出x 值,此题得解.【详解】解:(1)设y 与x 的函数表达式为y =kx +b , 由题意可得:304406k b k b +=⎧⎨+=⎩解得:152k b ⎧=⎪⎨⎪=-⎩ ∴125y x =-(x >10); (2)当y =0,12=05x -, ∴x =10, ∴旅客最多可免费携带行李的质量为10kg .【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.24.(1)y =3x ﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4)23. 【解析】【分析】 (1)利用待定系数法即可求得;(2)利用两点法画出直线即可;(3)把x =﹣5代入解析式,即可判断;(4)求得直线与坐标轴的交点,即可求得.【详解】解:(1)设一次函数的解析式为y =kx+b∵一次函数的图象经过点A (2,4)和B (﹣1,﹣5)两点∴245k b k b +=⎧⎨-+=-⎩,解得:k 3b 2=⎧⎨=-⎩∴一次函数的表达式为y =3x ﹣2;(2)描出A 、B 点,作出一次函数的图象如图:(3)由(1)知,一次函数的表达式为y =3x ﹣2将x =﹣5代入此函数表达式中得,y =3×(﹣5)﹣2=﹣17≠﹣4∴(﹣5,﹣4)不在这个函数的图象上;(4)由(1)知,一次函数的表达式为y =3x ﹣2令x =0,则y =﹣2,令y =0,则3x ﹣2=0,∴x =23, ∴该函数图象与坐标轴围成的三角形面积为:12×2×23=23. 【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.25.4【解析】试题分析:先将223a a -+变形为(a-1)2+2,再将21a =代入求值即可.试题解析:223a a -+=221a a -++2=(a-1)2+2当2+1时,原式=2+1-1)2+2=2)2+2=2+2=4. 四、压轴题26.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边), 此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.27.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,(10+2)a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a ==,即可求得BF【详解】(1)①连接AD ,如图1.∵点C 与点D 关于直线l 对称,∴AC = AD .∵AB = AC ,∴AB = AC = AD .∴点B ,C ,D 在以A 为圆心,AB 为半径的圆上.②∵AD=AB=AC ,∴∠ADB=∠ABD ,∠ADC=∠ACD ,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,,F是以AC为直径的圆上一点,设AC中点为O,∵在△BOF中,BO+OF≥BF,当B、O、F三点共线时BF最长;如图,过点O作OH⊥BC,∵∠BAC=90°,2a,∴24BC AC a==,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴2OC HC=,∵点O是AC中点,AC2a,∴2OC a=,∴OH HC a==,∴BH=3a,∴10BO a=,∵点C关于直线l的对称点为点D,∴∠AFC=90°,∵点O是AC中点,∴2OF OC a==,∴102BF a=,∴当B、O、F三点共线时BF最长;最大值为102)a.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.28.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.29.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM为△ADE中DE边上的高,∴AM=EM=MD,∴AM+BD=CM;故答案为:90°,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE的面积始终保持不变,△ADE与△ADC面积的和达到最大,∴△ADC面积最大,∵在旋转的过程中,AC始终保持不变,∴要△ADC面积最大,∴点D到AC的距离最大,∴DA⊥AC,∴△ADE与△ADC面积的和达到的最大为2+12×AC×AD=5+2=7,故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.30.(1)(1,0);(2)362y x-=;(3)92;(4)(6,3).【解析】【分析】(1)由题意已知l1的解析式,令y=0求出x的值即可;(2)根据题意设l 2的解析式为y=kx+b ,并由题意联立方程组求出k ,b 的值;(3)由题意联立方程组,求出交点C 的坐标,继而即可求出S △ADC ;(4)由题意根据△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到AD 的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D (1,0);(2)设直线l 2的解析表达式为y=kx+b ,由图象知:x=4,y=0;x=3,y =32-,代入表达式y=kx+b , ∴40332k b k b +⎧⎪⎨+-⎪⎩==, ∴326k b ⎧⎪⎨⎪-⎩==, ∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|-3|=3,则P 到AD 距离=3,∴P 纵坐标的绝对值=3,点P 不是点C ,∴点P 纵坐标是3,∵y=1.5x-6,y=3,∴1.5x-6=3,解得x=6,所以P (6,3).【点睛】本题考查的是一次函数图象的性质以及三角形面积的计算等有关知识,熟练掌握求一次函数解析式的方法以及一次函数图象的性质和三角形面积的计算公式是解题的关键.。

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版) 一、选择题 1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22- 2.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x = B .||y x = C .1y x = D .412x y = 3.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm4.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .5.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .766.在下列分解因式的过程中,分解因式正确的是()A.-xz+yz=-z(x+y) B.3a2b-2ab2+ab=ab(3a-2b)C.6xy2-8y3=2y2(3x-4y) D.x2+3x-4=(x+2)(x-2)+3x7.如图,折叠Rt ABC∆,使直角边AC落在斜边AB上,点C落到点E处,已知6cmAC=,8cmBC=,则CD的长为()cm.A.6 B.5 C.4 D.38.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA 上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1 B.43C.53D.29.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,2, 3 10.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C二、填空题11.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC=__.12.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).13.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .14.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b=+⎧⎨=+⎩的解为____. 15.若正实数,m n 满足等式222(1)(1)(1)m n m n +-=-+-,则m n ⋅=__________.16.在实数:311-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 17.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .18.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .19.已知一次函数1y kx b =+与2y mx n =+的函数图像如图所示,则关于,x y 的二元一次方程组0,0kx y b mx y n -+=⎧⎨-+=⎩的解是______.20.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____.三、解答题21.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.22.已知:如图,点A 是线段CB 上一点,△ABD 、△ACE 都是等边三角形,AD 与BE 相交于点G ,AE 与CD 相交于点F .求证:△AGF 是等边三角形.23.在平面直角坐标系中,直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,直线l 2:y =kx +2(k >0)与坐标轴交于点C ,D ,直线l 1,l 2与相交于点E .(1)当k =2时,求两条直线与x 轴围成的△BDE 的面积;(2)点P (a ,b )在直线l 2:y =kx +2(k >0)上,且点P 在第二象限.当四边形OBEC 的面积为233时. ①求k 的值;②若m =a +b ,求m 的取值范围.24.已知:如图,ABC △和ADE △均为等腰直角三角形,90BAC DAE ∠=∠=︒,连结AC ,BD ,且D 、E 、C 三点在一直线上,2AD =,2DE EC =.(1)求证:ADB AEC △≌△;(2)求线段BC 的长.25.如图,正比例函数y =34x 与一次函数y =ax +7的图象相交于点P (4,n ),过点A (2,0)作x 轴的垂线,交一次函数的图象于点B ,连接OB .(1)求a 值;(2)求△OBP 的面积;(3)在坐标轴的正半轴上存在点Q ,使△POQ 是以OP 为腰的等腰三角形,请直接写出Q 点的坐标.四、压轴题26.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.27.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.28.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .29.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.30.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACF S S 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】 A 中-2=2,不是互为相反数;B 382-=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数;故选:D .【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x= ,y 是x 的函数,故正确;D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】 主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001.故选:C .【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确;C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;D .y kx =过原点,而图中两条直线都不过原点,故错误.故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.5.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.6.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误;6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C .【点睛】因式分解的意义.7.D解析:D【解析】【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度.【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm===.由折叠的性质知,AE=AC=6cm,DE=CD,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2即CD2+42=(8-CD)2,解得:CD=3cm.故选:D.【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE是直角三角形,并计算(或用CD表示)它的三边是解决此题的关键.8.C解析:C【解析】【分析】先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x,则DE=x,DO=3-x∴=4,∴OE=1,在Rt△DOE中,DO2+OE2=DE2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答. 9.B解析:B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.10.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△A解析:①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.13.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5cm 为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm .【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.14..【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数与的图象的交点的坐标为(−1,2),∴方程组的解是.【点睛】本题考查了一次函数和二元一次方程(组)解析:12x y =-⎧⎨=⎩. 【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),∴方程组32y kx y x b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.15.【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得的值.【详解】∵∴∴∴,故答案为:.【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的 解析:12【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得m n ⋅的值.【详解】∵2222(1)()2()12221m n m n m n m mn n m n +-=+-++=++--+ 2222(1)(1)2121m n m m n n -+-=-++-+∴222222212121m mn n m n m m n n ++--+=-++-+∴21mn = ∴12mn =, 故答案为:12. 【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的化简是解决本题的关键. 16.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 17.y=x-3【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y=kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2解析:y=32x-3 【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y=kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2时,y=6x =3,∴A(2,3),B (2,0), ∵y=kx 过点 A(2,3),∴3=2k ,∴k=32,∴y=32 x,∵直线y=32x平移后经过点B,∴设平移后的解析式为y=32x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=32x-3,故答案为:y=32x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.18..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,解析:(21),.【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).19.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数和一次函数的图象交点的坐标为∴方程组的解是: .故答案为: .【点睛】本题解析:12x y =-⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数1y kx b =+和一次函数2y mx n =+的图象交点的坐标为()1,2,-∴方程组00kx y b mx y n -+=⎧⎨-+=⎩的解是:12x y =-⎧⎨=⎩ . 故答案为: 12x y =-⎧⎨=⎩. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.掌握以上知识是解题的关键.20.y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x +2的图象向下平移2个单位长度后,所得图象的函数关系式为y =2x +2﹣2=2x .故答案为:y =2x .【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x 左加右减;上下平移,b 上加下减”是解此题的关键.三、解答题21.(1)22y x =-,y x =;(2)2x <;(3)1.【解析】【分析】(1)先把P (1,0),(0,-2)代入y=ax+b,可求出a,b 的值,然后把M 点坐标代入一次函数可求出m 的值;再将点M 的坐标代入y=kx 可得出k 的值.(2)观察函数图象,写出正比例函数图象在一次函数图象上方所对应的自变量的范围即可.(3)作MN 垂直x 轴,然后根据三角形面积求得即可.【详解】解:(1)∵y ax b =+经过()1,0和()0,2-∴02k b b =+⎧⎨-=⎩解得2k =,2b =- 一次函数表达式为:22y x =-∵点M 在该一次函数上,∴2222m =⨯-=,M 点坐标为()2,2又∵M 在函数y kx =上,∴2122m k ===. ∴正比例函数为y x =.(2)由图像可知,2x <时,22x x >-(3)作MN 垂直x 轴,由M 的纵坐标知2MN =, ∴故11212MOP S ∆=⨯⨯=.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.见解析【解析】【分析】由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.【详解】证明:∵△ABD,△ACE都是等边三角形,∴AD=AB,AE=AC,∴∠DAE=∠BAD=∠CAE=60°∴∠BAE=∠DAC=120°,在△BAE和△DAC中AD=AB,∠BAE=∠DAC,AE=AC,∴△BAE≌△DAC.∴∠1=∠2在△BAG和△DAF中∠1=∠2,AB=AD,∠BAD=∠DAE,∴△BAG≌△DAF,∴AG=AF,又∠DAE=60°,∴△AGF是等边三角形.【点睛】本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0)解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB , ∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D ,∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上,∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上∴b =4a +2,∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.24.(1)详见解析;(2)10BC =【解析】【分析】(1)根据等式的基本性质可得∠DAB =∠EAC ,然后根据等腰直角三角形的性质可得DA =EA ,BA =CA ,再利用SAS 即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE ,从而求出EC 和DC ,再根据全等三角形的性质即可求出DB ,∠ADB=∠AEC ,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.【详解】证明:(1)∵90BAC DAE ∠=∠=︒∴∠DAE -∠BAE =∠BAC -∠BAE∴∠DAB =∠EAC∵ABC ∆和ADE ∆均为等腰直角三角形∴DA =EA ,BA =CA在△ADB 和△AEC 中DA EA DAB EAC BA CA =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC(2)∵ADE △是等腰直角三角形,2AD AE ==∴2=,∵2DE EC =∴EC=112DE =, ∴DC=DE +EC=3∵△ADB ≌△AEC ∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE +∠BDC ,∠AEC=∠ADE +∠DAE=∠ADE +90°∴∠BDC=90°在Rt △BDC 中,BC ==【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.25.(1)a=-1;(2)7;(3)点Q 的坐标为(5,0)或(8,0)或(0,5)或(0,6)【解析】【分析】(1)先由点P 在正比例函数图象上求得n 的值,再把点P 坐标代入一次函数的解析式即可求出结果;(2)易求点B 坐标,设直线AB 与OP 交于点C ,如图,则点C 坐标可得,然后利用△OBP 的面积=S △BCO +S △BCP 代入相关数据计算即可求出结果;(3)先根据勾股定理求出OP 的长,再分两种情况:当OP=OQ 时,以O 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 1、Q 2,如图2,则点Q 1、Q 2即为所求,然后利用等腰三角形的定义即可求出结果;当PO=PQ 时,以P 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 4、Q 3,如图3,则点Q 4、Q 3也为所求,然后利用等腰三角形的性质即可求得结果.【详解】 解:(1)把点P (4,n )代入y =34x ,得:n =34×4=3,∴P (4,3), 把P (4,3)代入y =ax +7得,3=4a +7,∴a =﹣1;(2)∵A (2,0),AB ⊥x 轴,∴B 点的横坐标为2,∵点B 在y =﹣x +7上,∴B (2,5),设直线AB 与OP 交于点C ,如图1,当x =2时,33242y =⨯=,∴C (2,32), ∴△OBP 的面积=S △BCO +S △BCP =12⨯2×(5﹣32)+12⨯(4﹣2)×(5﹣32)=7;(3)过点P作PD⊥x轴于点D,∵P(4,3),∴OD=4,PD=3,∴22OP=+=,345当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,且Q2(5,0)、Q1(0,5);当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,由于PO=PQ3,∴DQ3=DO=4,∴Q3(8,0),过点P作PF⊥y轴于点F,同理可得:FQ4=FO=3,∴Q4(0,6).综上所述,在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6).【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理、三角形的面积和等腰三角形的性质等知识,属于常考题型,熟练掌握一次函数的相关知识和等腰三角形的性质是解题的关键.四、压轴题26.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】 (1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -,由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.27.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩,所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.28.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211 【解析】【分析】(1)①先证明∠DAC =∠ECB ,由AAS 即可得出△ADC ≌△CEB ;②由全等三角形的性质得出AD =CE =8,CD =BE =6,即可得出DE =CD +CE =14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t =8t−10,解得:t =2;综上所述,当△PCM 与△QCN 全等时,则t 等于1011s 或2s , 故答案为:1011s 或2s . 【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.29.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x ﹣3=3y ﹣2,整理得,y =x ﹣13; (3)设点E 的坐标为(a ,a +2),。

苏州市第一学期初二数学期末考试综合试卷(1)含答案

苏州市第一学期初二数学期末考试综合试卷(1)含答案

第8题图第9题图苏州市2019-2020学年第一学期初二数学期末考试综合试卷(1)分值:130分;一、选择题:(本大题共10小题,每小题3分,共30分)的值为…………………………………………………………………()A.5; B.﹣5;C.±5;D.25;2.在下列实数中:-2,117,0,π,﹣3.030030003…,无理数有…()A.1个; B.2个; C.3个; D.4个;3.1.0149精确到百分位的近似值是………………………………………………()A.1.0149; B. 1.015;C. 1.01; D. 1.0;4. 如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是……………( )A.∠D=∠C,∠BAD=∠ABC; B.∠BAD=∠ABC,∠ABD=∠BAC;C.BD=AC,∠BAD=∠ABC; D.AD=BC,BD=AC;5. 等腰三角形的一个角是80°,则它顶角的度数是……………………………()A.80° B.80°或20° C.80°或50°D.20°6.(2013•淄博)如果m是任意实数,则点P()4,1m m-+一定不在………………()A.第一象限B.第二象限C.第三象限D.第四象限7.若m n<,且m,n为相邻的整数,则m n+的值为……………………()A.2; B. 3; C. 4; D. 5;8.若点A(),x a y b++,B(),x y在一次函数图象上的位置如图,则下列结论正确的是………………()A.0a>;B.0a<;C.0b=; D.0ab<;9.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是………………………………………………………………()A.CD、EF、GH; B. AB、EF、GH;C. AB、CF、EF;D. GH、AB、CD;10. 在平面直角坐标系中,已知A(1,1)、B(3,5),要在坐标轴上找一点P,使得△PAB的周长最小,则点P的坐标为……………………………………………………………()第4题图第10题图第16题图A .(0,1);B .(0,2);C .4,03⎛⎫ ⎪⎝⎭; D .(0,2)或4,03⎛⎫ ⎪⎝⎭;二、填空题:(本大题共8小题,每小题3分,共24分)11.1= _________ .9的平方根是 _________ ;38x =-,则x = _________ . 12. 点P (﹣2,3)关于x 轴的对称点的坐标是 .13.20b -=,则以a ,b 为边长的等腰三角形的周长为_________.14.(2013•娄底)如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 (添加一个条件即可).15.(2013.泰州)如图,△ABC 中,AB+AC=6cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABD 的周长为 ___________cm .16.如图,∠ACB=90°,AC=BC ,BE ⊥CE 于D ,AD ⊥CE 于E ,若AD ﹣BE=5cm ,则ED= cm . 17. 如图,函数2y x =-和y kx b =+的图象相交于点A (),3m ,则关于x 的不等式20kx b x ++>的解集为 _________.18. 如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为 .三、解答题:(本大题共11小题,共76分)19.(本题满分8分)(1114-⎛⎫⎪⎝⎭; (2)求()31125x -=-中x 的值.第15题图第14题图第17题图第18题图20.(本题满分6分)如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且DB=DC,求证:EB=FC.21.(本题满分6分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.22.(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC 关于y 轴对称的△A ′B ′C ′; (3)写出点B ′的坐标.23. (本题满分6分)已知:y 与2x +成正比例,且1x =时,3y = (1)写出y 与x 之间的函数关系式; (2)计算4x =时,y 的值; (3)计算4y =时,x 的值.24. (本题满分6分)已知实数a 、b 、c 在数轴上的位置如图所示,且a b =,化简a ab ++-.25.(本题满分8分)已知直线y kx b =+经过点A (5,0),B (1,4). (1)求直线AB 的解析式;(2)若直线24y x =-与直线AB 相交于点C ,求点C 的坐标;x(3)根据图象,写出关于x 的不等式24x kx b ->+的解集.26.(本题满分7分)如图,OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D 、E 两点的坐标.27. (本题满分6分)如图,△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点. (1)若AB=10,AC=8,求四边形AEDF 的周长; (2)求证:EF 垂直平分AD .28.(8分)如图(1),公路上有A 、B 、C 三个车站,A 、B 两地相距630千米,甲、乙两车分别从A 、B 两地同时出发,匀速相向而行,甲车9小时到达C 站后停止行驶,乙车经过2小时到达C 站并继续行驶,乙车的速度是甲车速度的,线段MG 与折线段ND ﹣DF 分别表示甲、乙两车到C 站的距离为1y (千米)、2y (千米)与它们的行驶时间x (小时)之间的函数图象如图(2)所示.(1)求甲、乙两车的速度;(2)两小时后,求乙车到C 站的距离2y 与行驶时间x (小时)之间的函数表达式; (3)两函数图象交于点E ,求点E 的坐标,并说明它表示的实际意义.29. (本题满分9分) 已知直线443y x =-+与x 轴和y 轴分别交与B 、A 两点,另一直线经过点B 和点D (11,6). (1)求AB 、BD 的长度,并证明△ABD 是直角三角形;(2)在x 轴上找点C,使△ACD 是以AD 为底边的等腰三角形,求出C 点坐标;(3)一动点P 速度为1个单位/秒,沿A -B -D 运动到D 点停止,另有一动点Q 从D 点出发,以相同的速度沿D -B -A 运动到A 点停止,两点同时出发,PQ 的长度为y (单位长),运动时间为t (秒),求y关于的t函数关系式.2019-2020学年第一学期初二数学期末考试综合试卷(1)参考答案一、选择题:1.A;2.C;3.C;4.C;5.C;6.D;7.B;8.B;9.B;10.D;二、填空题:1,3±,-2;12.(-2,-3); 13.5;14.∠B=∠C;15.6;16.5;17. 1.5x>-;18.120°;三、解答题:19.(1)-3;(2)4x=-;20.证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF;∵DE⊥AB于E,DF⊥AC于F.∴在Rt△DBE和Rt△DCF中DE DFDB DC=⎧⎨=⎩,∴Rt△DBE≌Rt△DCF(HL);∴EB=FC.21.(1)证明:∵AB=AC,AE=CD,∠BAE=∠C=60°,在△ABE 和△ACD 中,AE DC BAE C AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAD (SAS ),∴AD=BE . (2)解:∵△ABE ≌△CAD ,∴∠ABE=∠CAD , ∴∠BFD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.22.(1)、(2)答案略;(3)(2,1); 23.(1)2y x =+;(2)6;(3)2; 24.23a c -+;25.(1)5y x =-+;(2)C (3,2);(3)3x >; 26.D (0,5),E (4,8);27.(1)18;(2)∵DE=AE ,DF=AF ,∴EF 垂直平分AD. 28. 解:(1)设甲车的速度为a 千米/时,则乙车的速度为a 千米/时,由函数图象,得9a+2×a=630,解得:a=60,∴乙车的速度为:60×=45千米/时. 答:甲车的速度为60千米/时,乙车的速度为45千米/时; (2)由题意,得乙车全程需要的时间为:630÷45=14小时, ∴F (14,540).设DF 的解析式为y 2=2+b 2,由函数图象,得,解得:,∴两小时后,乙车到C 站的距离y 2与行驶时间(小时)之间的函数表达式为y 2=45﹣90; (3)设MG 的解析式为y 1=1+b 1,由题意,得,解得:,∴y 1=﹣60+540,∴.当y 1=y 2时,=6,∴y=180.∴E (6,180),表示行驶6小时后在距离C 站180千米处相遇. 29. (1)(0,4),(3,0),5,10A B AB BD ==过点D 作DH x H ⊥轴于,11,2,DH AH ==由勾股定理得AD =再由2225,100AB BD ==,那么222AB BD AD +=,所以ABD ∆是直角三角形.(2)设OC 长为x ,则由等腰三角形以及勾股定理得到22226)11(4+-=+x x解得14122x =141(,0)22C ∴ ; (3)0t 57.5,1527.510,2151015,t y t t y t t ≤≤<≤=-<≤=-<≤。

苏州市第一学期初二数学期末考试综合试卷(1)及答案(推荐)

苏州市第一学期初二数学期末考试综合试卷(1)及答案(推荐)

2019—2020学年第一学期初二数学期末考试综合试卷(1)试卷分值130分;知识点涵盖:苏科版八年级上册; 一、选择题:(本大题共10小题,每小题3分,共30分)1. (2015•呼伦贝尔)25的算术平方根是……………………………………………( ) A .5; B .-5; C .±5;D2. (2015•金华)如图,数轴上的A 、B 、C 、D四点中,与数表示的点最接近的是…( ) A .点A ; B .点B ;C .点C ; D .点D ; 3. (2015•绥化)在实数0、π、227, ) A .1个;B .2个 ;C .3个;D .4个;4.(2015•内江)函数11y x =-中自变量x 的取值范围是………………………( ) A .2x ≤; B .2x ≤且1x ≠; C .x <2且1x ≠; D .1x ≠;5. (2014•南通)点P (2,-5)关于x 轴对称的点的坐标为……………………………( ) A .(-2,5) B .(2,5) C .(-2,-5) D .(2,-5)6. 两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图象位置可能是…………( )7. (2015•济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是……………………………………………………( ) A .x >-2 B .x >0 C .x >1 D .x <18. 已知等腰三角形的两边长分別为a 、b ,且a 、b()223130a b +-=,则此等腰三角形的周长为………………………………………………………………( ) A .7或8 B .6或1O C .6或7 D .7或10;9. 如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有……………………………………………………………………………( ) A .2个 ;B .3个; C .4个 ;D .5个;10. (2015•泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=6,BC= FD 的长为……………………………( ) A .2; B .4; C;D.二、填空题:(本大题共8小题,每小题3分,共24分)11. 在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= .A. B. C. D.第2题图 第7题图第9题图13. 由四舍五入法得到的近似数38.810⨯精确到 位. 14. 已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a-b-2的值等于 . 15. 如图,已知△ABC 中,AB=AC ,点D 、E 在BC 上,要使△ABD ≌ACE ,则只需添加一个适当的条件是 .(只填一个即可)16. 一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是 . 17. 如图,将Rt △ABO 绕点O 顺时针旋转90°,得到Rt A B O '',已知点A 的坐标为(4,2),则点A ′的坐标为 .18. 如图,已知等边三角形ABC 的边长为10,点P 、Q 分别为边AB 、AC 上的一个动点,点P 从点B 出发以1cm/s 的速度向点A 运动,点Q 从点C 出发以2cm/s 的速度向点A 运动,连接PQ ,以Q 为旋转中心,将线段PQ 按逆时针方向旋转60°得线段QD ,若点P 、Q 同时出发,则当运动_______s 时,点D 恰好落在BC 边上.三、解答题:(本大题共76分)19.(本题满分8分)(1)求()2116x +=中的x ; (220. (本题满分6分)(2015•温州)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D . (1)求证:AB=CD .(2)若AB=CF ,∠B=30°,求∠D 的度数.21. (本题满分6分)△ABC 在平面直角坐标系xOy 中的位置如图所示. (1)将△ABC 沿x 轴翻折得到111A B C ,作出111A B C ; (2)将111A B C 向右平移4个单位,作出平移后的222A B C .(3)在x 轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标: . (不写解答过程,直接写出结果)22. (本题满分6分)已知一个正数的两个平方根分别为a 和29a -. (1)求a 的值,并求这个正数;(2)求2179a -的立方根.23. (本题满分6分)(2015•淄博)在直角坐标系中,一条直线经过A (-1,5),P (-2,a ),B (3,-3)三点. (1)求a 的值;第10题图第15题第17题第18题图24. (本题满分6分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=12 AB.25. (本题满分9分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.26. (本题满分7分)(2015•盐城)如图,在平面直角坐标系xOy中,已知正比例函数34y x=与一次函数7y x=-+的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交34y x =和7y x=-+的图象于点B、C,连接OC.若BC=75OA,求△OBC的面积.27.(本题满分7分)如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且()2411023a b a b ++-+=. (1)求a 、b 的值;(2)①在y 轴上的负半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标; ②在坐标轴的其它位置是否存在点M ,使结论“△COM 的面积=12△ABC 的面积”仍然成立?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.28. (本题满分7分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?29. (本题满分8分)(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.2019—2020学年第一学期初二数学期末考试综合试卷(1)参考答案一、选择题:1.A;2.B;3.B;4.B;5.B;6.A;7.C;8.A;9.C;10.B;二、填空题:11.65°;12.>;13.百;14.-5;15.BD=EC(答案不唯一);16.2m>-;17.(2,-4);18.103; 三、解答题:19.(1)3或-5;(2)8.5;20.(1)略;(2)75°;21.(1)略;(2)略;(3)8,05⎛⎫⎪⎝⎭; 22.(1)3a =,这个正数是9;(2)-4; 23. (1)7a =;(2)3;24. 证明:如图,连接BE ,∵在△BCD 中,DB=BC ,E 是CD 的中点, ∴BE ⊥CD ,∵F 是AB 的中点,∴在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF=12AB .25.(1)略;(2)30°;(3)32; 26.(1)A (4,3);(2)28; 27. (1)2a =-,3b =; (2)①M (0,-7.5);②存在. M (0,7.5),M (2.5,0);M (-2.5,0); 28. 解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得()()1224124212201232a b a b +-=⎧⎪⎨+-=⎪⎩,解得:12.5a b =⎧⎨=⎩. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. (2)∵当0≤x ≤12时,y=x ;当x >12时,y=12+(x-12)×2.5=2.5x-18,∴所求函数关系式为:()()022.51812x x y x x ≤≤⎧⎪=⎨->⎪⎩. (3)∵x=26>12,∴把x=26代入y=2.5x-18,得:y=2.5×26-18=47(元). 答:小黄家三月份应交水费47元. 29. 解:(1)根据图示,可得乙车的速度是60千米/时, 甲车的速度是:(360×2)÷(480÷60-1-1)=720÷6=120(千米/小时) ∴t=360÷120=3(小时).(2)①当0≤x ≤3时,设1y k x =,把(3,360)代入,可得31k =360, 解得1k =120,∴y=120x (0≤x ≤3). ②当3<x ≤4时,y=360. ③4<x ≤7时,设2y k x b =+, 把(4,360)和(7,0)代入,可得2120840k b =-⎧⎨=⎩,∴y=-120x+840(4<x ≤7).(3)①(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(小时)②当甲车停留在C地时,(480-360+120)÷60=240÷6=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x-[120(x-1)-360]=120,所以480-60x=120,所以60x=360,解得x=6.综上,可得乙车出发83小时、4小时、6小时后两车相距120千米.。

苏科版苏州市八年级上学期期末数学试卷 (解析版)

苏科版苏州市八年级上学期期末数学试卷 (解析版)

苏科版苏州市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .92.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===3.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )A .3B 7C .4D 114.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,5.分式221x x -+的值为0,则x 的值为( )A .0B .2C .﹣2D .126.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<327.+1x x 的取值范围是( ). A .x >﹣1 B .x ≥0C .x ≥﹣1D .任意实数8.在22、0.3•、227-38( )A .1个B .2个C .3个D .4个9.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .10.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x-+=2 C .1000100030x x --=2 D .1000100030x x--=2 12.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .313.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .4 14.下列一次函数中,y 随x 增大而增大的是( ) A .y=﹣3x B .y=x ﹣2 C .y=﹣2x+3 D .y=3﹣x 15.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题16.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.17.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.18.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______. 19.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;20.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.21. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.22.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.23.如图,在△ABC 中,∠B=40°,BC 边的垂直平分线交BC 于D ,交AB 于E ,若CE 平分∠ACB,则∠A=______°.24.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)25.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-. (1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ; (2)解释点P (16,0)的实际意义; (3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米?28.已知a 、b 为实数,且满足23440a b b -+-+=. (1)求a ,b 的值;(2)若a ,b 为ABC 的两边,第三边c 为5,求ABC 的面积.29.人教版教材指出:等边三角形是三边都相等的特殊的等腰三角形.请证明:有一个角是60︒的等腰三角形是等边三角形.30.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由. (2)求四边形ABCD 的面积.31.已知直线AB :y=kx+b 经过点B (1,4)、A (5,0)两点,且与直线y=2x-4交于点C .(1)求直线AB 的解析式并求出点C 的坐标;(2)求出直线y=kx+b 、直线y=2x-4及与y 轴所围成的三角形面积;(3)现有一点P 在直线AB 上,过点P 作PQ ∥y 轴交直线y=2x-4于点Q ,若线段PQ 的长为3,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 【详解】解:意,得+2 ∴0<m <1, ∴|m-1|+(m+6) =1-m+m+6 =7, 故选C . 【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m 的值,确定m 的范围.2.D解析:D 【解析】 【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.3.C解析:C 【解析】 【分析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB =DC 12=CB ,AD ⊥BC ,再利用勾股定理求出AD的长.【详解】∵AB=AC,AD是边BC上的中线,∴DB=DC12=CB=3,AD⊥BC,在Rt△ABD中,∵AD2+BD2=AB2,∴AD==4.故选:C.【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB是直角三角形.4.B解析:B【解析】【分析】根据关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P(2,-3)关于x轴对称,∴对称点与点P横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,5.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.6.B解析:B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.C解析:C【解析】【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.8.A解析:A 【解析】 【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可. 【详解】解:在实数2、•0.3、227-中,2是无理数; •0.3循环小数,是有理数; 227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个. 故选:A . 【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.9.C解析:C 【解析】 【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确. 【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误. 故选:C . 【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.10.B解析:B 【解析】 【分析】 【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限, 故选B .11.A解析:A 【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.D解析:D 【解析】 【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度. 【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =, ∴由勾股定理得,22226810AB AC BC cm =+=+=.由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm , 在Rt △BDE 中,由勾股定理得, DE 2+BE 2=BD 2 即CD 2+42=(8-CD)2, 解得:CD=3cm . 故选:D . 【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE是直角三角形,并计算(或用CD表示)它的三边是解决此题的关键.13.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.B解析:B【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选B.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.15.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.二、填空题16.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.17..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:118. 【解析】【分析】 设C 点坐标为(0,a ),由勾股定理可表示出BC 2和AC 2,由△ABC 是以AB 为底的等腰三角形可知BC =AC ,据此可列出关于a 的方程,求解即可.【详解】解:设C 点坐标为(0,a ),当△ABC 是以AB 为底的等腰三角形时,BC =AC ,平方得BC 2=AC 2,即32+a 2=22+(4﹣a )2,化简得8a =11,解得a =118. 故OC =118, 故答案为:118. 【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.18.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x轴对称的点的坐标特征,要与关于y轴对称的点的坐标特征相区别.19.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 20.150【解析】【分析】连接OP,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案. 【详解】解:如图,连接OP,E,F分别为点P关于OA,OB的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.21.30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC ,AD ⊥BC ,∴∠BAD=12∠BAC=30°, 故答案为30°.22.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到 解析:0【解析】【分析】根据题意,由36x =时,代入3y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴3330y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.23.60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.24.>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小. 【详解】解:如下图所示,是等腰直角三角形,∴,∴.故答案为另:此题也可直接测量得到结果.【点解析:>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.25.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC , ∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质. 三、解答题 26.(1) 32m =,213AB =;(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯,∴OQ =2,∴点Q 坐标为(0,2).【点睛】考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.27.(1)甲步行的速度为60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲);(3)乙步行的速度为80 m/min ;乙走完全程用的时间为30min ;(4)乙到达终点时,甲离终点距离是360米.【解析】【分析】(1)根据甲先出发4 min ,结合图象可知4 min 他们的距离为240,即可求甲的速度; (2)结合函数图象可知,当t=16分钟时,y 为0,据此可答;(3)根据t=16分钟时,甲乙所走的路程相等求得乙步行的速度,再用总路程÷乙步行的速度即可得解;(4)甲的速度×(乙走完全程的时间+4)=乙到达终点时甲的路程.再用总路程-甲的路程即可.【详解】(1)甲步行的速度为:240÷4=60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲); (3)乙步行的速度为:16×60÷12=80 m/min ;乙走完全程用的时间为:2400÷80=30min ;(4)乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.28.(1)3a =,2b =;(2【解析】【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;(2)利用勾股定理逆定理判断出△ABC 是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【详解】解:(12440b b -+=整理得:()220b -=∴3a =,2b =;(2)∵2222529c b ,2239a ==∴222c b a +=,∴△ABC 是直角三角形,90A ∠=︒,∴△ABC 的面积1122255bc .【点睛】本题考查了二次根式的应用和非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.29.详见解析【解析】【分析】根据题意,给出已知和求证,加以证明即可得解.【详解】已知:如下图,ABC ∆是等腰三角形,∠A =60°,证明:ABC ∆是等边三角形.证明:∵ABC ∆是等腰三角形∴AB=AC∴∠B=∠C∵∠A =60°∴∠B=∠C=18060602︒-︒=︒ ∴ABC ∆是等边三角形.【点睛】本题主要考查了等边三角形的判定,熟练掌握等边三角形的判定证明是解决本题的关键.30.(1)∠D 是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC ,先根据勾股定理求得AC 的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD 和△ACB 的面积之和等于四边形ABCD 的面积,进行计算即可.【详解】(1)∠D 是直角.理由如下:连接AC .∵AB =20,BC =15,∠B =90°,∴由勾股定理得AC 2=202+152=625.又∵CD =7,AD =24,∴CD 2+AD 2=625,∴AC 2=CD 2+AD 2,∴∠D =90°.(2)四边形ABCD 的面积=12AD •DC +12AB •BC =12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.31.(1)y=-x+5;点C (3,2);(2)S=272;(3)P 点坐标为(2,3)或(4,1). 【解析】【分析】(1)根据待定系数法求出直线AB 解析式,再联立两函数解出C 点坐标;(2)依次求出y=-x+5和y=2x-4与y 轴交点坐标,根据三角形的面积公式即可求解;(3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4),根据线段PQ 的长为3,分情况即可求解.【详解】(1)∵直线y=kx+b 经过点A (5,0),B (1,4),∴ 504k b k b +⎧⎨+⎩== 解得 15k b =-⎧⎨=⎩∴直线AB 的解析式为:y=-x+5;∵若直线y=2x-4与直线AB 相交于点C ,∴ 524y x y x =-+⎧⎨-⎩= 解得 32x y =⎧⎨=⎩ ∴点C (3,2);(2)∵y=-x+5与y 轴交点坐标为(0,5),y=2x-4与y 轴交点坐标为(0,-4) ,C 点坐标为(3,2)∴S=932722⨯= (3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4)则-m+5-(2m-4)=3 或者2m-4-(-m+5)=3解得m= 2 或m=4∴P点坐标为(2,3)或(4,1).【点睛】此题主要考查一次函数图像与几何综合,解题的关键是熟知一次函数的图像与性质、待定系数法的应用.。

2021-2022学年江苏省苏州市八年级(上)期末数学试题及答案解析

2021-2022学年江苏省苏州市八年级(上)期末数学试题及答案解析

2021-2022学年江苏省苏州市八年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列四个图标中,轴对称图案是( )A. B. C. D.2. 下列四个数中,无理数是( )C. √5D. 0A. 0.3⋅B. −2273. 若点P(a+2,a)在y轴上,则点P的坐标为( )A. (−2,0)B. (0,−2)C. (2,0)D. (0,2)4. 若最简二次根式√1+2a与√3是同类二次根式,则a的值为( )A. 2B. 4C. −1D. 15. 若一次函数y=(m−1)x−1的图象经过第一、三、四象限,则m的值可能为( )A. −2B. −1C. 0D. 26. 如图,数轴上点A表示的数是−1,点B表示的数是1,BC=1,∠ABC=90°,以点A为圆心,AC长为半径画弧,与数轴交于原点右侧的点P,则点P表示的数是( )A. √5−1B. √5−2C. √3−1D. 2−√37. 在△ABC中,CD为AB边上的中线,AB=6,CD=BC=3.下列结论:①△ABC是直角三角形;②△BCD是等边三角形;③∠A=30°;④AC=2BC,其中正确结论的个数为( )A. 1B. 2C. 3D. 48. 苏州素有“园林之城”美誉,以拙政园、留园为代表的苏州园林“咫尺之内再造乾坤”,是中华园林文化的翘楚和骄傲.如图,某园林中一亭子的顶端可看作等腰△ABC,其中AB=AC,若D是BC边上的一点,则下列条件不能说明AD是△ABC角平分线的是( )A. 点D到AB,AC的距离相等B. ∠ADB=∠ADCC. BD=CDD. AD=12BC9. 定义一种“⊗”运算:a⊗b=ba−b (a≠b),例如:1⊗3=31−3=−32,则方程2⊗x=1x−2+1的解是( )A. x=−1B. x=12C. x=32D. x=210. 为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A处匀速跑往B处,乙同学从B处匀速跑往A处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x(秒),甲、乙两人之间的距离为y(米),y与x之间的函数关系如图所示,则图中t的值是( )A. 503B. 18 C. 553D. 20二、填空题(本大题共8小题,共16.0分)11. 16的平方根是______.12. 北京2022年冬奥会志愿者招募活动于2019年12月5日启动,截至到2021年12月5日,共有来自全球168个国家和地区的超过961000人报名.将961000用四舍五入法精确到10000,并用科学记数法表示,则961000可表示为______.13. 化简:(1x−1+1)÷xx−1=______.14. 已知点A(−3,y1),B(−5,y2)是一次函数y=x−3图象上的两点,则y1______y2.(填“>”、“=”或“<”)15. 如图,已知△ABC中,CD⊥AB,垂足为D,CB是△DCE的角平分线,F是AC的中点,若DF=6.5,AD=5,S△ABC=48,则点B到CE的距离为______.16. 如图,三角形纸片ABC中,∠ACB=90°,BC=3,AB=5.D是BC边上一点,连接AD,把ABD沿AD翻折,点B恰好落在AC延长线上的点B′处,则CD的长为______.17. 已知P(a,b)是一次函数y=−2x+4图象上一点,则a2+b2的最小值是______.18. “GGB”是一款数学应用软件,用“GGB”绘制的函数y=−x2(x−4)和y=−x+4的图象如图所示.若x=a,x=b分别为方程−x2(x−4)=−1和−x+4=−1的一个解,则根据图象可知a______b.(填“>”、“=”或“<”).三、解答题(本大题共10小题,共64.0分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市第一学期八年级数学期末试卷(含解析) 一、选择题 1.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 2.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .22320m mn n -++=B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --= 3.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .764.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .3 5.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A .1个 B .2个 C .3个 D .4个6.如果0a b -<,且0ab <,那么点(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x +1,若这两个三角形全等,则x 的值为( )A .2B .2或C .或D .2或或8.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对9.下列式子中,属于最简二次根式的是( )A .12B .0.5C .5D .1210.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P 1,第二次碰到正方形的边时的点为P 2…,第n 次碰到正方形的边时的点为P n ,则P 2020的坐标是( )A .(5,3)B .(3,5)C .(0,2)D .(2,0)二、填空题11.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.12.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.13.将函数y=3x+1的图象沿y 轴向下平移2个单位长度,所得直线的函数表达式为_____.14.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.15.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.16.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。

17.化简:|32|-=__________.18.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.19.若直角三角形斜边上的中线是6cm,则它的斜边是 ___ cm.20.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题21.(1)计算:()238116-+--;(2)求()3121x-+=中x的值.22.用函数方法研究动点到定点的距离问题.在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:S与x的函数关系为S=1,1,10,1,1,1,x xx xx x-<⎧⎪-==⎨⎪->⎩并画出图像如图:借助小明的研究经验,解决下列问题:(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.①随着x增大,y怎样变化?②当x取何值时,y取最小值,y的最小值是多少?③当x<1时,证明y随着x增大而变化的规律.23.如图1,在直角坐标系xoy中,点A、B分别在x、y轴的正半轴上,将线段AB绕点B 顺时针旋转90°,点A的对应点为点C.(1)若A(6,0),B(0,4),求点C的坐标;(2)以B为直角顶点,以AB和OB为直角边分别在第一、二象限作等腰Rt△ABD和等腰Rt △OBE ,连DE 交y 轴于点M ,当点A 和点B 分别在x 、y 轴的正半轴上运动时,判断并证明AO 与MB 的数量关系.24.如图,四边形ABCD 中,AB CB AD CD ==,,对角线AC ,BD 相交于点O ,,OE AB OF CB ⊥⊥,垂足分别是E 、F ,求证:OE OF =.25.计算或求值(1)计算:(2a+3b )(2a ﹣b );(2)计算:(2x+y ﹣1)2;(3)当a =2,b =﹣8,c =5时,求代数式242b b ac a-+-的值; (4)先化简,再求值:(m+252m --)243m m -⨯-,其中m =12-. 四、压轴题26.如图,直线112y x b =-+分别与x 轴、y 轴交于A ,B 两点,与直线26y kx =-交于点()C 4,2.(1)b = ;k = ;点B 坐标为 ;(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.27.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?28.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF29.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=22,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.2.B解析:B【解析】【分析】作图,根据等腰三角形的性质和勾股定理可得2220m mn n+-=,整理即可求解【详解】解:如图,222m m n m,22222m n mn m,2220m mn n+-=.故选:B.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.3.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE,进而可得∠EAB=∠ABE,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC的度数.【详解】∵DE是AC的垂直平分线,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.4.D解析:D【解析】【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度.【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm ===. 由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm ,在Rt △BDE 中,由勾股定理得,DE 2+BE 2=BD 2即CD 2+42=(8-CD)2,解得:CD=3cm .故选:D .【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE 是直角三角形,并计算(或用CD 表示)它的三边是解决此题的关键. 5.A解析:A【解析】【分析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A .本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.B解析:B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.A解析:A【解析】【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x-2与4是对应边,或3x-2与5是对应边,计算发现,3x-2=5时,2x-1≠4,故3x-2与5不是对应边.【详解】解:∵△ABC 三边长分别为3,4,5,△DEF 三边长分别为3,3x-2,2x-1,这两个三角形全等,①3x-2=4,解得:x=2,当x=2时,2x+1=5,两个三角形全等.②当3x-2=5,解得:x=,把x=代入2x+1≠4,∴3x-2与5不是对应边,两个三角形不全等.故选A .【点睛】此题主要考查了全等三角形的性质,分类讨论正确得出对应边是解题关键.8.C解析:C【解析】【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.9.C解析:C【解析】2,被开方数含分母,不是最简二次根式,故本选项错误;D. 故选C.10.D解析:D【解析】【分析】根据轴对称的性质分别写出点P 1的坐标为、点P 2的坐标、点P 3的坐标、点P 4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P 1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【点睛】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.二、填空题11.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.13.y=3x-1【解析】∵y=3x+1的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.故答案为y=3x﹣1.解析:y=3x-1【解析】∵y=3x+1的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x ﹣1.故答案为y=3x ﹣1.14.【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点和点关于原点对称,∴,,∴;故答案为:.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记解析:4-【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点(,1)A a 和点(3,)B b 关于原点O 对称,∴3a =-,1b =-,∴3(1)4a b +=-+-=-;故答案为:4-.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数,比较简单.15.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.16.(9,0)【解析】【分析】将△AOC绕点A逆时针旋转,使得AO和AB重合,构造出直角三角形,利用旋转的性质证明全等,通过勾股定理设出未知数列方程求解.【详解】解:将△AOC绕点A逆时针旋转解析:(9,0)【解析】【分析】将△AOC绕点A逆时针旋转,使得AO和AB重合,构造出直角三角形,利用旋转的性质证明全等,通过勾股定理设出未知数列方程求解.【详解】解:将△AOC绕点A逆时针旋转,使得AO和AB重合,旋转后点C到点C′的位置,连接C′D,∵AO=AB,∠OAB=90°,∴△AOB为等腰直角三角形,∵∠CAD=45°,∴∠C′AD=45°,又∵AC=AC′,AD=AD∴△ACD≌△AC′D(SAS)∴CO=CD′∵若△ACO的面积等于△ABO面积的13,OB=12,∴OC= BC′=4,BC=8,∵∠AOC=∠AB C′=45°,∠ABO=45°∴∠C′BO=90°,设CD=x,在Rt△DBC′中,C′D2=BD2+BC′2,解得:x=5,即CD=5,∵OC=4,所以OD=9,∴D(9,0)【点睛】本题考查了旋转的性质,勾股定理,全等三角形,利用旋转构造直角三角形是本题的关键. 17.【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】解:∵,∴原式,故答案为:.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小解析:23【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】<,32=-∴原式32)=-23故答案为:23.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小是解题关键.18.22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【解析:22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.19.12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm,∴则它的斜边是:cm;故答案为:12.【点睛】本题考查了直解析:12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm,⨯=cm;∴则它的斜边是:2612故答案为:12.【点睛】本题考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.20.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题21.(1)-5;(2)x=0【解析】【分析】(1)先化简立方根,乘方,二次根式,然后进行有理数的加减运算;(2)利用立方根的概念解方程.【详解】=-+-解:(1)原式214=-.5x-=-(2)()3112()311x-=-x-=-11x=【点睛】本题考查立方根及算术平方根的求法,掌握概念正确计算是本题的解题关键.22.(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩,当x =-2时,S 的最小值为0;(2)①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大,②当1≤x ≤5时,y 取最小值,y 的最小值是4,③当x <1时,y 随x 增大而减小.【解析】【分析】(1)根据x 轴上两点之间的距离等于它们差的绝对值,以及绝对值的意义可直接写出结论; (2)根据x 轴上两点之间的距离等于它们差的绝对值,得出PM 和PN 的距离,它们之和即为y.①分情况讨论,根据一次函数的性质可得y 的变化情况;②根据y 的变化情况可求;③当x <1时,62y x =-,根据函数的增减性可得.【详解】(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩;∵当x <2时y 随x 增大而减小,当x >2时y 随x 的增大而增大,∴当x =-2时,S 的最小值为0.(2)由题意得y =|1|x -+|5|x -,根据绝对值的意义,可转化为y =62,14,1526,5x x x x x -<⎧⎪⎨⎪->⎩①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大.②当1≤x ≤5时,y 取最小值,y 的最小值是4.③当x <1时,62y x =-,∵-2<0∴当x <1时,y 随x 增大而减小.【点睛】本题考查一次函数的应用,一次函数的性质,化简绝对值.掌握x 轴上两点之间的距离公式,能分段讨论化简绝对值是解决此题的关键.23.(1)C (-4,-2);(2)AO = 2MB .证明见解析.【解析】【分析】(1)过C 点作y 轴的垂线段,垂足为H 点,证明△ABO ≌△BCH ,利用全等三角形的性质结合C 在第三象限即可求得C 点坐标;(2)过D 点作DN ⊥y 轴于点N ,证明△DBN ≌△BAO ,根据全等三角形对应边相等BN =AO ,DN =BO ,再证明△DMN ≌△EMB ,可得MN =MB ,于是可得AO =2MB.【详解】(1)解:过C 点作y 轴的垂线段,垂足为H 点.∴∠BHC=∠AOB=90°,∵A(6,0),B(0,4)∴OA=6,OB=4∵∠ABC=90°,∴∠ABO+∠OBC=90°,又∠ABO+∠OAB=90°,∴∠OBC=∠OAB,∵在△ABO和△BCH中BHC AOBOBC OABAB BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO≌△BCH,∴AO=BH=6,CH=BO=4,∴OH=2,∴C(-4,-2).(2)AO= 2MB.过D点作DN⊥y轴于点N,∴∠BND=∠AOB=90°,∵△ABD、△OBE为等腰直角三角形,∴∠ABD=∠OBE=90°,AB=BD,BO=BE,∴∠DBN+∠ABO=∠BAO+∠ABO=90°,∴∠DBN =∠BAO ,∴△DBN ≌△BAO ,∴BN =AO ,DN =BO ,在△DMN 和△EMB 中,∵DN =BO=BE ,∠DNM =∠EBM ,∠DMN =∠EMB ,∴△DMN ≌△EMB ,∴MN =MB =12BN =12AO ∴AO =2MB .【点睛】 本题考查坐标与图形,旋转的性质,全等三角形的性质与判定,等腰直角三角形的性质.能正确作出辅助线,并根据全等三角形的判定定理证明三角形全等是解决此题的关键.24.证明见解析.【解析】【分析】欲证明OE=OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD=∠CBD ,问题就迎刃而解了.【详解】在△ABD 和△CBD 中,AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.25.(1)4a 2+4ab ﹣3b 2;(2)4x 2+4xy+y 2﹣4x ﹣2y ﹣1;(34)﹣2m ﹣6,-5【解析】【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出24b ac -,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式26m =--,然后把m 的值代入计算即可.【详解】解:(1)原式224263a ab ab b =-+-22443a ab b =+-;(2)原式2(2)2(2)1x y x y =+-+-2244421x xy y x y =++---;(3)224(8)42524b ac -=--⨯⨯=,= (4)原式(2)(2)52(2)[]23m m m m m +---=--- (3)(3)2(2)23m m m m m +--=--- 2(3)m =-+26m =--,当12m =-时,原式12()652=-⨯--=-. 【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键.四、压轴题26.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2,∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m ,∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =,∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.27.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.28.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.29.(1)①见解析;②DE=297;(2)DE的值为517【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.30.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解析;(3)27 2【解析】【分析】(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏差三角形的定义,即可得到结论;(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直线EA的距离是3,根据三角形的面积公式,即可求解.【详解】(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),∴点C的坐标为(2,0),如图1,∵AC=AB,∴∠ACB=∠ABC,∵∠OCA+∠ACB=180°,∴∠OBA+∠OCA=180°,故答案为:(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由如下:如图2中,在AD上取一点H,使得AH=AB.∵AC平分∠BAD,∴∠CAH=∠CAB,又∵ AC=AC,∴△CAH≌△CAB(SAS),∴CH=CB,∠B=∠AHC,∵∠B+∠D=180°,∠AHC+∠CHD=180°,∴∠D=∠CHD,∴CH=CD,∴CB=CD,∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,∴△ABC与△ACD是偏差三角形;(3)如图3中,延长CA至点E,使AE=BD,连接BE,∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,∴∠BDC=∠BAE,又∵AB=CD,∴∆BDC≅∆EAB(SAS),∴EA=BD,∵点C到直线BD的距离是3,∴点B到直线EA的距离是3,∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=12∙(AC+EA)×3 =12∙(AC+BD)×3 =12×9×3=272.【点睛】本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.。

相关文档
最新文档