射极跟随器时的功率MOSFET的驱动
功率mos管工作原理与几种常见驱动电路图
功率mos管工作原理与几种常见驱动电路图
功率MOSFET的工作原理
截止:漏源极间加正电源,栅源极间电压为零。
P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。
导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。
但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子电子吸引到栅极下面的P区表面当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。
几种MOSFET驱动电路介绍及分析
一. 不隔离的互补驱动电路
图7(a)为常用的小功率驱动电路,简单可靠成本低。
适用于不要求隔离的小功率开关设备。
图7(b)所示驱动电路开关速度很快,驱动能力强,为防止两个MOSFET管直通,通常串接一个0.5~1小电阻用于限流,该电路适用于不要求隔离的中功率开关设备。
这两种电路特点是结构简单。
功率MOSFET属于电压型控制器件,只要栅极和源极之间施加的电压超过其阀值电压就会导通。
由于MOSFET存在结电容,关断时其漏源两端电压的突然上升将会通过结电容在栅源两端产生干扰电压。
常用的互补驱动电路的关断回路阻抗小,关断速度较快,但它不能提供负压,故抗干扰性较差。
为了提高电路的抗干扰性,可在此种驱动电路的基础上增加一级有V1、V2、R组成的电路,产生一个负压,电路原理图如图8所示。
当V1导通时,V2关断,两个MOSFET中的上管的栅、源极放电,下管的栅、源极充电,即上管关断,下管导通,则被驱动的功率管关断;反之V1关断时,V2导通,上管导通,。
大功率mos管驱动电路
大功率mos管驱动电路大功率MOS管驱动电路是一种常见的电路设计,它能够有效地驱动高功率的MOS管,以实现电路的高效工作。
本文将从电路原理、设计要点和常见问题等方面进行介绍。
一、电路原理大功率MOS管驱动电路主要由信号发生器、驱动电路和MOS管组成。
信号发生器产生所需的驱动信号,驱动电路将信号进行放大和整形,然后通过电流放大器将信号输出给MOS管。
MOS管根据驱动信号的变化,控制其通断状态,从而实现对电路的控制。
二、设计要点1.选择合适的MOS管:在大功率应用中,选择合适的MOS管至关重要。
一方面,要考虑其额定电流和功率,确保能够承受所需的负载;另一方面,还要考虑其开关特性和导通电阻等参数,以提高电路的效率和稳定性。
2.驱动电路的设计:驱动电路应能够提供足够的电流和电压来驱动MOS管。
一般采用放大器和电流放大器的组合来实现。
放大器负责放大信号的幅度,而电流放大器则负责提供足够的电流给MOS管。
同时,还要考虑到驱动电路的响应速度和抗干扰能力。
3.防止过热和电磁干扰:由于大功率MOS管在工作过程中会产生较大的功耗和电磁干扰,因此需要采取相应的措施来防止过热和干扰。
例如,可以在电路中加入散热器和滤波电路,以提高电路的稳定性和抗干扰能力。
4.保护电路的设计:在大功率应用中,由于电流和电压较大,一旦发生故障可能会对电路和设备造成严重损坏。
因此,需要在电路中加入过流、过压和过温等保护电路,以保证电路和设备的安全运行。
三、常见问题1.如何选择合适的MOS管?选择MOS管时,需要考虑所需的电流和功率,以及其开关特性和导通电阻等参数。
同时,还需要考虑其封装形式和散热性能等因素。
2.如何设计驱动电路?驱动电路应能够提供足够的电流和电压来驱动MOS管。
一般采用放大器和电流放大器的组合来实现。
同时,还要考虑到驱动电路的响应速度和抗干扰能力。
3.如何防止过热和电磁干扰?可以在电路中加入散热器和滤波电路,以提高电路的稳定性和抗干扰能力。
mos管驱动功率
MOS管驱动功率1. 介绍MOS管(金属氧化物半导体场效应管)是一种常见的功率开关器件,常用于电源、电机和通信设备等领域。
MOS管的功率输出能力受到其驱动电路的限制,而驱动功率则是决定MOS管开关速度和效率的关键因素。
本文将详细讨论MOS管驱动功率的相关知识。
2. MOS管的工作原理MOS管由金属门极、氧化层和半导体基区构成。
当控制电压施加在金属门极上时,MOS管的导通状态由基区内的电荷控制决定。
MOS管在导通状态时,可以将较大的电源电流传递至负载电路,完成功率输出。
3. MOS管驱动电路的基本要求为了充分发挥MOS管的性能,驱动电路需要满足以下几个基本要求:3.1 高速驱动MOS管的关断和导通速度直接影响功率开关的效率和稳定性。
驱动电路应具备足够的驱动能力,以确保MOS管能够迅速从导通状态切换至关断状态,或者从关断状态切换至导通状态。
3.2 低功耗驱动电路应具备尽可能低的功耗,以减少对供电系统的负荷。
高效率的驱动电路能够在MOS管的导通和关断状态之间实现较小的能量损耗。
3.3 耐压能力MOS管可以在高电压下工作,而驱动电路需要提供足够的耐压能力以保证工作的稳定性。
合理的驱动电路设计要能够适应不同工作电压下的应用需求。
3.4 可靠性驱动电路需要具备较高的可靠性,以确保MOS管能够在长时间工作中保持稳定。
驱动电路应防止异常电压和电流对MOS管造成损坏,并提供适当的保护功能。
4. MOS管驱动电路设计MOS管驱动电路的设计需要考虑以上要求,并结合具体应用场景进行优化。
以下是常见的MOS管驱动电路设计方案:4.1 单极性驱动电路单极性驱动电路适用于低电压应用场景,通过一个晶体管实现对MOS管的驱动。
晶体管的控制信号使得MOS管从导通到关断的过程变得更加迅速。
4.2 双极性驱动电路双极性驱动电路适用于高电压应用场景,通过两个晶体管实现对MOS管的驱动。
两个晶体管的工作互补,可以提供更高的驱动能力和更快的开关速度。
mosfet驱动电路工作原理
mosfet驱动电路工作原理MOSFET(金属氧化物半导体场效应晶体管)是电子学中的一种重要的半导体元件,通常被用作开关、放大器、电压控制器等。
在应用中,MOSFET需要配合驱动电路进行控制,使得电路能够正常工作,充分发挥其功能。
本文将围绕MOSFET驱动电路的工作原理进行详细阐述。
一、MOSFET基本原理MOSFET是一种四端口晶体管,其构造包括栅极、漏极、源极和互补MOSFET洞(NMOS)或场效应管(PMOS)。
MOSFET的栅极和漏极之间有一薄的氧化层,可以控制漏极与源极间的导电通道的状态,从而实现电流的控制。
当控制电压加到栅极上时,电场使得氧化层变薄,导致漏极和源极之间的导通电路打开。
反之,当控制电压从栅极移除,氧化层变厚,电路关闭。
二、MOSFET驱动电路原理MOSFET驱动电路经常被用来控制MOSFET开关转换,以改变电路的工作状态。
MOSFET驱动电路的核心在于控制栅压,使得MOSFET的导通状况可以根据需要实时变化。
常见的MOSFET驱动电路主要包括基本共源极、基本共漏极、共射极三种类型。
1.基本共源极MOSFET驱动电路基本共源极MOSFET驱动电路是一种简单的电路方案。
其原理是利用反向二极管来限制MOSFET栅极的过高电压,防止栅极氧化层损坏。
当输入信号上升时,PN结变为正向偏置,电流通过电阻R1向上流,MOSFET的栅极电压升高,使得MOSFET导通;当输入信号下降时,PN结变为反向偏置,但此时MOSFET的电容被放电,使得MOSFET仍然保持导通状态。
2.基本共漏极MOSFET驱动电路基本共漏极MOSFET驱动电路采用共漏极放大电路作为MOSFET的驱动部分,可以大幅提高驱动能力。
当输入信号上升时,MOSFET的栅极电压升高,使得源极电压下降,共漏极电路对源极提供的电压扩大了MOSFET的驱动功率,从而更好地驱动MOSFET;当输入信号下降时,MOSFET的电容放电,使得MOSFET继续导通。
常见的MOSFET驱动方式驱动电路的参数计算
常见的MOSFET驱动方式,驱动电路的参数计算在简单的了解MOS管的基本原理以及相关参数后,如何在实际的电路中运用是我们努力的方向。
比如在实际的MOS驱动电路设计中,如何去根据需求搭建电路,计算参数,根据特性完善电路,根据实际需求留余量等等,在这些约束条件下搭建一个相对完善的电路。
参考了一些资料后,就我目前的需求和自身的理解力分享相关的一些笔记和理解。
1.常见的MOSFET驱动方式直接驱动:最简单的驱动方式,比如用单片机输出PWM信号来驱动较小的MOS。
使用这种驱动方式,应注意几点;一是实际PWM和MOS的走线距离必定导致寄生电感引起震荡噪声,二是芯片的驱动峰值电流,因为不同芯片对外驱动能力不一样。
三是MOS的寄生电容Cgs、Cgd如果比较大,导通就需要大的能量,没有足够的峰值电流,导通的速度就会比较慢。
图腾柱/推拉式驱动电路由两个三极管构成,上管是NPN型,下管是PNP型三极管,两对管共射联接处为输出端,结构类似于乙类推挽功率放大器。
利用这种拓扑放大驱动信号,增强电流能力。
(驱动IC内部也是集成了类似的结构)隔离式驱动电路为了满足安全隔离也会用变压器驱动。
如图其中R1抑制振荡,C1隔直流通交流同时防止磁芯饱和。
隔离式的驱动电路不太常见,就不做过多的了解。
小结:当然除以上驱动电路之外,还有很多其它形式的驱动电路。
对于各种各样的驱动电路并没有一种是最好的,只能结合具体应用,选择最合适的拓扑。
2.驱动电路的参数计算我的实际工作中碰到最多的驱动电路是以下这种能够控制开关速度的驱动电路,我就以它举例做进一步的分析。
如图,在驱动电阻Rg2上并联一个二极管。
其中D1常用快恢复二极管,使关断时间减小同时减小关断损耗,Rg1可以限制关断电流,R1为mos管栅源极的下拉电阻,给mos管栅极积累的电荷提供泄放回路。
(根据MOSFET栅极高输入阻抗的特性,一点点静电或者干扰都可能导致MOS管误导通,所以R1也起降低输入阻抗作用,一般取值在10k~几十k)Lp为驱动走线的杂散寄生电感,包括驱动IC引脚、MOS引脚、PCB走线的感抗,精确的数值很难确定,通常取几十nH。
详细讲解MOSFET管驱动电路
详细讲解M O S F E T管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素;这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的;下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创;包括MOS管的介绍,特性,驱动以及应用电路;1,MOS管种类和结构MOSFET管是FET的一种另一种是JFET,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种;至于为什么不使用耗尽型的MOS管,不建议刨根问底;对于这两种增强型MOS管,比较常用的是NMOS;原因是导通电阻小,且容易制造;所以开关电源和马达驱动的应用中,一般都用NMOS;下面的介绍中,也多以NMOS 为主;MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的;寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍;在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管;这个叫体二极管,在驱动感性负载如马达,这个二极管很重要;顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的;2,MOS管导通特性导通的意思是作为开关,相当于开关闭合;NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况低端驱动,只要栅极电压达到4V或10V就可以了;PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况高端驱动;但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS;3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗;选择导通电阻小的MOS管会减小导通损耗;现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有;MOS在导通和截止的时候,一定不是在瞬间完成的;MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失;通常开关损失比导通损失大得多,而且开关频率越快,损失也越大;导通瞬间电压和电流的乘积很大,造成的损失也就很大;缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数;这两种办法都可以减小开关损失;4,MOS管驱动跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了;这个很容易做到,但是,我们还需要速度;在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电;对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大;选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小;第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压;而高端驱动的MOS管导通时源极电压与漏极电压VCC相同,所以这时栅极电压要比VCC大4V或10V;如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了;很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管;上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量;而且电压越高,导通速度越快,导通电阻也越小;现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了;MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs;讲述得很详细,所以不打算多写了;5,MOS管应用电路MOS管最显着的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光;现在的MOS驱动,有几个特别的需求,1,低压应用当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有左右的压降,导致实际最终加在gate上的电压只有;这时候,我们选用标称gate电压的MOS管就存在一定的风险;同样的问题也发生在使用3V或者其他低压电源的场合;2,宽电压应用输入电压并不是一个固定值,它会随着时间或者其他因素而变动;这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的;为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值;在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗;同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗;3,双电压应用在一些控制电路中,逻辑部分使用典型的5V或者数字电压,而功率部分使用12V甚至更高的电压;两个电压采用共地方式连接;这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题;在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构;于是我设计了一个相对通用的电路来满足这三种需求;电路图如下:图1 用于NMOS的驱动电路图2 用于PMOS的驱动电路这里我只针对NMOS驱动电路做一个简单分析:Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh;Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通;R2和R3提供了aPWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置;Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND最低都只有一个Vce的压降,这个压降通常只有左右,大大低于的Vce;R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值;这个数值可以通过R5和R6来调节;最后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制;必要的时候可以在R4上面并联加速电容;这个电路提供了如下的特性:1,用低端电压和PWM驱动高端MOS管;2,用小幅度的PWM信号驱动高gate电压需求的MOS管;3,gate电压的峰值限制4,输入和输出的电流限制5,通过使用合适的电阻,可以达到很低的功耗;6,PWM信号反相;NMOS并不需要这个特性,可以通过前置一个反相器来解决;在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题;DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电;目前DC-DC转换器设计技术发展主要趋势有:1高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善;小功率DC-DC转换器的开关频率将上升到兆赫级;2低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求;这些技术的发展对电源芯片电路的设计提出了更高的要求;首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作;其次,对于电池供电的便携式电子设备来说,电路的工作电压低以锂电池为例,工作电压~,因此,电源芯片的工作电压较低;MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC芯片中多采用MOS管作为功率开关;但是由于MOS管的寄生电容大,一般情况下NMOS开关管的栅极电容高达几十皮法;这对于设计高工作频率DC-DC转换器开关管驱动电路的设计提出了更高的要求;在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路;这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹;本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路;电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压,负载电容为60pF时,工作频率能够达到5MHz以上;自举升压电路自举升压电路的原理图如图1所示;所谓的自举升压原理就是,在输入端IN 输入一个方波信号,利用电容Cboot将A点电压抬升至高于VDD的电平,这样就可以在B端输出一个与输入信号反相,且高电平高于VDD的方波信号;具体工作原理如下;当VIN为高电平时,NMOS管N1导通,PMOS管P1截止,C点电位为低电平;同时N2导通,P2的栅极电位为低电平,则P2导通;这就使得此时A点电位约为VDD,电容Cboot两端电压UC≈VDD;由于N3导通,P4截止,所以B点的电位为低电平;这段时间称为预充电周期;当VIN变为低电平时,NMOS管N1截止,PMOS管P1导通,C点电位为高电平,约为VDD;同时N2、N3截止,P3导通;这使得P2的栅极电位升高,P2截止;此时A 点电位等于C点电位加上电容Cboot两端电压,约为2VDD;而且P4导通,因此B点输出高电平,且高于VDD;这段时间称为自举升压周期;实际上,B点电位与负载电容和电容Cboot的大小有关,可以根据设计需要调整;具体关系将在介绍电路具体设计时详细讨论;在图2中给出了输入端IN电位与A、B两点电位关系的示意图;驱动电路结构图3中给出了驱动电路的电路图;驱动电路采用Totem输出结构设计,上拉驱动管为NMOS管N4、晶体管Q1和PMOS管P5;下拉驱动管为NMOS管N5;图中CL为负载电容,Cpar为B点的寄生电容;虚线框内的电路为自举升压电路;本驱动电路的设计思想是,利用自举升压结构将上拉驱动管N4的栅极B点电位抬升,使得UB>VDD+VTH ,则NMOS管N4工作在线性区,使得VDSN4 大大减小,最终可以实现驱动输出高电平达到VDD;而在输出低电平时,下拉驱动管本身就工作在线性区,可以保证输出低电平位GND;因此无需增加自举电路也能达到设计要求;考虑到此驱动电路应用于升压型DC-DC转换器的开关管驱动,负载电容CL很大,一般能达到几十皮法,还需要进一步增加输出电流能力,因此增加了晶体管Q1作为上拉驱动管;这样在输入端由高电平变为低电平时,Q1导通,由N4、Q1同时提供电流,OUT端电位迅速上升,当OUT端电位上升到VDD-VBE时,Q1截止,N4继续提供电流对负载电容充电,直到OUT端电压达到VDD;在OUT端为高电平期间,A点电位会由于电容Cboot 上的电荷泄漏等原因而下降;这会使得B点电位下降,N4的导通性下降;同时由于同样的原因,OUT端电位也会有所下降,使输出高电平不能保持在VDD;为了防止这种现象的出现,又增加了PMOS管P5作为上拉驱动管,用来补充OUT端CL的泄漏电荷,维持OUT端在整个导通周期内为高电平;驱动电路的传输特性瞬态响应在图4中给出;其中a为上升沿瞬态响应,b为下降沿瞬态响应;从图4中可以看出,驱动电路上升沿明显分为了三个部分,分别对应三个上拉驱动管起主导作用的时期;1阶段为Q1、N4共同作用,输出电压迅速抬升,2阶段为N4起主导作,使输出电平达到VDD,3阶段为P5起主导作用,维持输出高电平为VDD;而且还可以缩短上升时间,下降时间满足工作频率在兆赫兹级以上的要求;需要注意的问题及仿真结果电容Cboot的大小的确定Cboot的最小值可以按照以下方法确定;在预充电周期内,电容Cboot 上的电荷为VDDCboot ;在A点的寄生电容计为CA上的电荷为VDDCA;因此在预充电周期内,A点的总电荷为Q_{A1}=V_{DD}C_{boot}+V_{DD}C_{A} 1B点电位为GND,因此在B点的寄生电容Cpar上的电荷为0;在自举升压周期,为了使OUT端电压达到VDD,B点电位最低为VB=VDD+Vthn;因此在B点的寄生电容Cpar上的电荷为Q_{B}=V_{DD}+V_{thn}Cpar 2忽略MOS管P4源漏两端压降,此时Cboot上的电荷为VthnCboot ,A点寄生电容CA的电荷为VDD+VthnCA;A点的总电荷为QA2=V_{thn}C_{BOOT}+V_{DD}+V_{thn}C_{A} 3同时根据电荷守恒又有Q_{B}=Q_{A}-Q_{A2} 4综合式1~4可得C_{boot}=\frac{V_{DD}+V_{thn}}{v_{DD}-v_{thn}}Cpar+\frac{v_{thn}}{v_{DD}-v_{ thn}}C_{A}=\frac{V_{B}}{v_{DD}-v_{thn}}Cpar+\frac{V_{thn}}{v_{DD}-v_{thn}}C_{ A} 5从式5中可以看出,Cboot随输入电压变小而变大,并且随B点电压VB变大而变大;而B点电压直接影响N4的导通电阻,也就影响驱动电路的上升时间;因此在实际设计时,Cboot的取值要大于式5的计算结果,这样可以提高B点电压,降低N4导通电阻,减小驱动电路的上升时间;P2、P4的尺寸问题将公式5重新整理后得:V_{B}={V_{DD}-V_{thn}\frac{C_{boot}}{Cpar}-V_{thn}\frac{C_{A}}{Cpar} 6 从式6中可以看出在自举升压周期内, A、B两点的寄生电容使得B点电位降低;在实际设计时为了得到合适的B点电位,除了增加Cboot大小外,要尽量减小A、B两点的寄生电容; 在设计时,预充电PMOS管P2的尺寸尽可能的取小,以减小寄生电容CA;而对于B点的寄生电容Cpar来说,主要是上拉驱动管N4的栅极寄生电容,MOS管P4、N3的源漏极寄生电容只占一小部分;我们在前面的分析中忽略了P4的源漏电压,因此设计时就要尽量的加大P4的宽长比,使其在自举升压周期内的源漏电压很小可以忽略;但是P4的尺寸以不能太大,要保证P4的源极寄生电容远远小于上拉驱动管N4的栅极寄生电容;阱电位问题如图3所示,PMOS器件P2、P3、P4的N-well连接到了自举升压节点A上;这样做的目的是,在自举升压周期内,防止他们的源/漏--阱结导通;而且这还可以防止在源/漏--阱正偏时产生由寄生SRC引起的闩锁现象;上拉驱动管N4的阱偏置电位要接到它的源极,最好不要直接接地;这样做的目的是消除衬底偏置效应对N4的影响;Hspice仿真验证结果驱动电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证;在表1中给出了电路在不同工作电压、不同负载条件下的上升时间tr和下降时间tf 的仿真结果;在图5中给了电路工作在输入电压、工作频率为5MHz、负载电容60pF条件下的输出波形;结合表1和图5可以看出,此驱动电路能够在工作电压为,工作频率为5MHz,并且负载电容高达60pF的条件下正常工作;它可以应用于低电压、高工作频率的DC-DC转换器中作为开关管的驱动电路;结论本文采用自举升压电路,设计了一种BiCMOS Totem结构的驱动电路;该电路基于Samsung AHP615 BiCMOS工艺设计,可在电压供电条件下正常工作,而且在负载电容为60pF的条件下,工作频率可达5MHz以上;。
mos源极跟随器原理
mos源极跟随器原理MOS源极跟随器是一种重要的放大电路结构,广泛应用于电子设备和通信系统中。
它通过对输入信号进行放大和驱动负载电阻,实现电流放大和电压放大,具有高增益、高输入阻抗、低输出阻抗等优点。
下面将从原理、工作方式和性能优势等方面详细介绍MOS源极跟随器。
1.原理MOS源极跟随器主要由一个MOS管、负载电阻和电源组成。
它的工作原理是当输入信号施加在MOS管的栅极上时,栅极电压变化导致管子的导通负载电阻也跟着变化。
这样,输出信号就能够实现对输入信号进行放大。
2.工作方式MOS源极跟随器的工作方式可以分为两个阶段:放大阶段和驱动阶段。
在放大阶段,当输入信号施加在MOS管的栅极上时,如果输入信号的幅值足够大,就会导致MOS管的导通。
此时,栅极上的电压波形通过负载电阻传递到输出端,起到放大作用。
在驱动阶段,栅极上的电压波形驱动负载电阻,负载电阻再通过输出端输出,向下级电路提供电流或电压。
由于MOS源极跟随器的输出电压等于栅极电压减去阀压,因此输出端电压总是低于栅极电压,这样可以有效减小输出电压的波动范围。
3.性能优势MOS源极跟随器相比其他放大电路具有以下几个性能优势:(1)高增益:MOS源极跟随器的增益比较高,可以达到几十到几百倍。
这样可以实现信号的高频放大,适用于高频通信和射频设备。
(2)高输入阻抗:由于MOS管的栅极上没有电流流过,所以输入端的电阻非常高,可以达到几百兆欧姆到几千兆欧姆。
这样可以减小输入端对源信号的影响,提高电路的稳定性。
(3)低输出阻抗:由于MOS源极跟随器能够提供较大的输出电流,所以输出端的电阻比较低,可以达到几十欧姆到几百欧姆。
这样可以减小后级负载电路对输出端的负载影响,提高电路的响应速度和输出功率。
(4)宽频带:MOS源极跟随器的频带宽度一般较高,可以达到数十兆赫兹到数百赫兹。
这样可以满足高频设备对带宽的要求,适用于宽带通信和射频设备。
(5)低功耗:MOS源极跟随器由于采用MOS管作为放大元件,具有低功耗的特点。
射极跟随器射极跟随器原理
射极跟随器射极跟随器原理射极跟随器(也称为源跟随器)是一种基本的电子电路,常被用于放大信号和驱动负载。
它的原理是通过使用一个晶体管或场效应管来实现输入信号的放大和输出信号的跟随。
射极跟随器的基本结构由三个主要部分组成:输入电阻、输入信号级和输出信号级。
输入电阻用于接收输入信号,输入信号级用于放大输入信号,并将其传递给输出信号级,输出信号级则用于跟随输入信号并将其输出。
射极跟随器的原理可以通过以下步骤来解释:1.输入信号进入输入电阻:射极跟随器的输入电阻通常由一个电阻器组成,用于接收输入信号。
这个电阻器将输入信号传递给输入信号级。
2.输入信号被放大:输入信号级通常由一个晶体管或场效应管组成,用于放大输入信号。
输入信号经过放大后,其电流和电压值增加,并传递给输出信号级。
3.输出信号跟随输入信号:输出信号级通常也由一个晶体管或场效应管组成,用于跟随输入信号。
当输入信号级放大输入信号时,输出信号级会复制该放大后的信号,并将其输出。
射极跟随器的原理可以总结为:输入信号经过放大后,输出信号级会跟随输入信号并将其输出。
这种跟随能力使得射极跟随器在许多电子应用中非常有用,例如作为信号放大器、驱动电路或电流源。
射极跟随器的优点包括:1.提供高输入阻抗:射极跟随器的输入电阻通常很高,使其能够接收来自低阻抗源的输入信号。
2.提供低输出阻抗:射极跟随器的输出电阻通常很低,使其能够驱动负载电路,而不会导致信号失真或功率损耗。
3.提供恒定的放大倍数:射极跟随器的放大倍数几乎是恒定的,不会受到输入信号的变化而改变。
射极跟随器的应用广泛,特别是在音频放大器、功率放大器和驱动电路中。
它可以用于放大音频信号、驱动扬声器、驱动电机或其他负载,同时保持信号的准确性和稳定性。
总结起来,射极跟随器是一种基本的电子电路,通过使用晶体管或场效应管来放大输入信号并将其跟随输出。
它具有高输入阻抗、低输出阻抗和恒定的放大倍数等优点,在许多电子应用中发挥着重要作用。
MOS管驱动电路总结
MOS管驱动电路总结MOS(金属氧化物半导体)管驱动电路是一种常见的功率电子器件,用于驱动高功率负载或控制功率器件的开关。
它通过电路中的MOS管(也称为MOSFET)来实现开关效果。
MOSFET驱动电路的设计与应用具有重要意义,下面是对MOS管驱动电路的总结。
一、MOS管的基本原理MOS管是一种具有与传统晶体管相似结构的半导体器件。
它的核心部分是氧化层上的金属层和半导体基区。
MOS管通过改变基区和导通层之间的电阻来实现开关效果。
MOS管具有低输入电阻、高输入阻抗、快速开关速度和较低的功耗等优势。
二、MOS管的驱动方式1.直流驱动:直流驱动方式是最简单的方式,只需将DC信号连接到MOS管的栅极,使其在正常工作区域内工作。
直流驱动方式适用于低频应用。
2.求幅驱动:幅度驱动方式是通过向MOS管的栅极施加一个脉宽调制信号来控制其导通和关闭状态。
脉宽调制信号的幅度决定了MOS管的开启程度,从而控制输出信号的幅度。
求幅驱动方式适用于一些需要调整信号幅度的应用。
3.双电源驱动:双电源驱动方式使用两个电源分别给MOS管的源极和栅极提供电压。
这种驱动方式可以保持MOS管在稳态工作区域内,避免其处于截止区或饱和区,从而提高工作效率。
三、MOS管驱动电路的设计要点1.选择适当的驱动电路结构和元件:常见的MOS管驱动电路结构包括共射极结构、共源结构和H桥结构。
不同结构适用于不同的应用场景。
此外,还需选择合适的电阻、电容和二极管等元件。
2.考虑驱动电源和信号电源的匹配:驱动电路的电源电压应与MOS管的额定电压匹配,以确保稳定可靠的工作。
此外,还需注意输入信号的频率和幅度与驱动电路的匹配性。
3.保护电路的设计:由于MOS管具有较高的功率特性,对驱动电路的保护显得尤为重要。
常见的保护电路包括过流保护、过温保护、过压保护和短路保护等。
4.电流放大器的设计:为了提高MOS管的驱动能力,通常需要使用电流放大器来增大输出电流,从而驱动更大的负载。
MOSFET详解
MOS管的基本知识(转载)(来自百度壓力山大)现在的高清、液晶、等离子电视机中开关电源部分除了采用了PFC技术外,在元器件上的开关管均采用性能优异的MOS管取代过去的大功率晶体三极管,使整机的效率、可靠性、故障率均大幅的下降。
由于MOS管和大功率晶体三极管在结构、特性有着本质上的区别,在应用上;驱动电路也比晶体三极管复杂,致使维修人员对电路、故障的分析倍感困难,此文即针对这一问题,把MOS管及其应用电路作简单介绍,以满足维修人员需求。
一、什么是MOS管MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应管中的绝缘栅型。
因此,MOS管有时被称为绝缘栅场效应管。
在一般电子电路中,MOS管通常被用于放大电路或开关电路。
1、MOS管的构造;在一块掺杂浓度较低的P型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作为漏极D和源极S。
然后在漏极和源极之间的P型半导体表面复盖一层很薄的二氧化硅(Si02)绝缘层膜,在再这个绝缘层膜上装上一个铝电极,作为栅极G。
这就构成了一个N沟道(NPN 型)增强型MOS管。
显然它的栅极和其它电极间是绝缘的。
图1-1所示 A 、B 分别是它的结构图和代表符号。
同样用上述相同的方法在一块掺杂浓度较低的N型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的P+区,及上述相同的栅极制作过程,就制成为一个P沟道(PNP型)增强型MOS管。
图1-2所示A 、B分别是P沟道MOS 管道结构图和代表符号。
图1 -1-A图1 -2-A2、MOS管的工作原理:图1-3是N沟道MOS管工作原理图图1-3-A图1-3-B从图1-3-A可以看出,增强型MOS管的漏极D和源极S之间有两个背靠背的PN 结。
当栅-源电压VGS=0时,即使加上漏-源电压VDS,总有一个PN结处于反偏状态,漏-源极间没有导电沟道(没有电流流过),所以这时漏极电流ID=0。
MOS管驱动电路详解
MOS管驱动电路综述连载(一)时间:2009-07-06 8756次阅读【网友评论2条我要评论】收藏在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。
这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。
1、MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P 沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。
至于为什么不使用耗尽型的MOS管,不建议刨根问底。
对于这两种增强型MOS管,比较常用的是NMOS。
原因是导通电阻小,且容易制造。
所以开关电源和马达驱动的应用中,一般都用NMOS。
下面的介绍中,也多以NMOS为主。
MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。
寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。
在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。
这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。
顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。
2、MOS管导通特性导通的意思是作为开关,相当于开关闭合。
NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。
但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
3、MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。
mos管的驱动方法
mos管的驱动方法MOS管(Metal Oxide Semiconductor Field Effect Transistor)是一种单极性半导体器件,被广泛用于电子电路中的电流调节、放大和开关控制等应用。
为了有效地使用MOS管,需要学习正确的驱动方法。
本文将详细介绍MOS管的驱动方法。
一、MOS管基本结构二、MOS管驱动方式MOS管的驱动方式需要根据应用场合和电路参数进行选择。
通常,驱动方式分为两种:电压驱动和电流驱动。
1. 电压驱动电压驱动是一种常见的MOS管驱动方式,它通过控制栅极电压大小来调节源漏之间的电流。
在电压驱动中,栅电极与源电极连接,如果栅极与源极之间的电压为零,则MOS管处于关闭状态;如果栅极与源极之间的电压为正,则MOS管被打开,从而使电流流过源漏之间的沟道。
反之,如果栅极与源极之间的电压为负,则MOS管会被过度耗损并加热,不利于器件寿命。
2. 电流驱动电流驱动方式是一种根据MOS管的性能特点而采用的驱动方式。
它通过控制栅极电流的大小来调节源漏之间的电流。
通常,在电流驱动中,栅极电流与源极之间的电压是恒定的,而源极与漏极之间的电压则会随着电流的变化而变化。
电流驱动的优点是可以减小MOS管的开关时间,同时可以提高电路的工作效率。
三、MOS管的驱动电路MOS管的驱动电路是一种将输入信号转换为MOS管控制电压或电流输出的电路。
在MOS 管的驱动电路中,常用的驱动电路包括单级放大器驱动、两级放大器驱动和反馈放大器驱动等。
1. 单级放大器驱动单级放大器驱动是一种简单的MOS管驱动电路,它通过单个晶体管来放大输入信号并产生控制电压输出。
在单级放大器驱动中,输入信号被放大后,通过一个电容器来转换为栅极控制电压,并驱动MOS管。
2. 两级放大器驱动两级放大器驱动是一种更复杂的MOS管驱动电路,它由两级放大器组成,可以提供更高的增益和更好的稳定性。
在两级放大器驱动中,第一级放大器可以增强输入信号并调整其频率响应,第二级放大器则可以放大信号并驱动MOS管。
MOS管工作原理及其驱动电路
功率场效应晶体管MOSFET1.概述MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。
功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。
结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。
其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。
2.功率MOSFET的结构和工作原理功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。
按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。
2.1功率MOSFET的结构功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。
导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。
按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET),本文主要以VDMOS器件为例进行讨论。
MOSFET驱动电路设计参考
MOSFET驱动电路设计参考MOSFET(金属氧化物半导体场效应晶体管)驱动电路是控制MOSFET开关的电路,它提供适当的电流和电压来确保MOSFET能够在正确的时间和条件下完全关闭和打开。
MOSFET驱动电路设计需要考虑到反馈和保护机制、功耗和效率以及电流和电压需求等因素。
以下是一些MOSFET驱动电路设计的参考。
1.电流放大器驱动电路:电流放大器是一种被广泛使用的MOSFET驱动电路设计,它通过升压变压器和反馈电路来将电流放大,并且能够提供足够的电流来驱动MOSFET。
这种电路设计具有简单、可靠和成本低廉的特点。
2.隔离式驱动电路:隔离式驱动电路是一种通过电流隔离器将控制电路与MOSFET隔离开来的设计。
通过隔离电路,可以阻止外部电路中的噪声、干扰和电压峰值对MOSFET的影响。
这种驱动电路设计适用于需要高耐受性和抗干扰性的应用。
3.模拟驱动电路:模拟驱动电路利用可变电流源来控制MOSFET。
这种设计需要一个与控制信号相对应的电压源,以确保MOSFET的开启和关闭速度与输入信号相匹配。
模拟驱动电路适用于需要快速响应和高精确度的应用,如音频放大器和直流直流变换器。
4.逻辑驱动电路:逻辑驱动电路是一种基于逻辑门电路的设计,通过逻辑门来控制MOSFET的开关。
逻辑驱动电路具有简单、易实现和低功耗的特点,适用于数字电路中的应用。
在设计MOSFET驱动电路时,还需要考虑以下几个关键因素:1.电流和电压需求:根据MOSFET的规格和应用需求,确保设计的驱动电路能够提供足够的电流和电压来使MOSFET达到预期的工作状态。
2.反馈和保护机制:添加适当的反馈和保护电路,如电流限制器和短路保护器,以确保MOSFET在超载、短路或其他异常情况下得到保护。
3.功耗和效率:通过优化电路设计和选择高效的元件来降低功耗,提高效率。
例如,可以选择低电阻的电源和高效的驱动器。
4.温度控制和散热设计:合理布局电路和选择散热器,以降低MOSFET的工作温度,提高可靠性和稳定性。
MOSFET驱动电路的设计与仿真
MOSFET驱动电路的设计与仿真摘要:MOSFET(金属氧化物半导体场效应晶体管)作为一种常见的功率开关元件,广泛应用于电路的开关和驱动控制中。
本文将介绍MOSFET驱动电路的设计与仿真过程,包括驱动电路的选型、电路的设计和电路的性能分析等。
一、驱动电路的选型在选择驱动电路时,需要考虑以下几个因素:1. 驱动电路的电压要能满足MOSFET的驱动要求。
通常,MOSFET的门极电压(Vgs)需要在规定的范围内才能正常工作。
2.驱动电路的电流要能满足MOSFET的驱动要求。
MOSFET的门极电流(Ig)需要足够大才能迅速充放电。
3.驱动电路的速度要能满足应用场景的需求。
驱动电路的响应速度需要足够快以确保MOSFET的正常开关操作。
4.驱动电路的成本要能够接受。
驱动电路的成本包括电路的制作、元件的购买等。
二、电路的设计根据选型的结果,可以开始设计驱动电路。
以下是驱动电路设计的几个关键步骤:1.选择适合的驱动电源。
电源的选择需要根据电路的工作电压和电流要求来确定。
一般来说,可以选择开关电源或者稳压电源。
2.选择合适的驱动电路拓扑结构。
驱动电路常见的拓扑结构包括共射极、共集极和共基极。
选择适合的拓扑结构需要考虑MOSFET的特性,如集电极功率损耗、输出电压的放大倍数等。
3.选择合适的驱动电路元件。
驱动电路元件包括电阻、电容和三极管等。
选取合适的元件需要考虑电压和电流的要求、响应速度和成本等因素。
4.进行电路的原理图设计。
根据选取的驱动电源、拓扑结构和元件,绘制驱动电路的原理图。
5.进行电路的PCB布局设计。
根据原理图,将电路元件进行布局,保证电路的稳定性和可靠性。
三、电路的仿真在完成电路设计后,可以利用电路仿真软件进行电路的性能分析和验证。
通过仿真可以评估电路的各种性能参数,如频率响应、电压和电流波形、功率损耗等。
在进行仿真前,需要建立电路的仿真模型。
根据电路的原理图和元件参数,建立仿真模型。
利用仿真软件进行电路性能分析。
MOSFET管经典驱动电路设计大全
MOSFET管经典驱动电路设计大全1.简单的驱动电路最简单的MOSFET驱动电路是使用普通的NPN晶体管作为驱动器。
这种电路只需要一个晶体管和几个电阻。
晶体管的基极通过一个电阻连接到控制信号源,并且其发射极通过一个电阻连接到地。
MOSFET的栅极通过一个电阻与晶体管的集电极相连。
当驱动信号施加在基极时,晶体管将导通,从而允许电流流过栅极电阻,最终控制MOSFET的导通。
2.共射极驱动电路共射极驱动电路使用一个普通的NPN晶体管作为驱动器,并且具有共射极配置。
这种电路可以提供较高的驱动电流,并且对于驱动大功率的MOSFET特别有效。
MOSFET的栅极连接到驱动晶体管的集电极,并且通过一个电阻与源极相连。
此电路还可以通过添加一个二极管来保护MOSFET免受反向电压的损坏。
3.升压驱动电路升压驱动电路是一种通过升压来改善MOSFET开关速度和效率的驱动电路。
这种电路使用一个电感器、一个开关和一个脉冲宽度调制(PWM)控制器来提供短暂的高电压脉冲。
这种高电压脉冲可以快速地开启和关闭MOSFET,从而提高其开关速度和效率。
4.高低侧驱动电路高低侧驱动电路是一种使用驱动器来同时控制高侧和低侧MOSFET的开关的电路。
该电路利用一个半桥驱动器,包括两个晶体管和一个PWM控制器。
其中一个晶体管驱动高侧MOSFET,另一个晶体管驱动低侧MOSFET。
PWM控制器可以调整两个晶体管的开关频率和占空比,从而控制MOSFET 的导通和关断。
以上是一些常见的MOSFET管经典驱动电路设计。
每种电路都有其适用的场景和优缺点。
在设计时,需要根据具体应用的需求来选择合适的驱动电路,并确保合理的功率传输和电流控制。
基于射极跟随器的IGBT栅极驱动器技术分析
基于射极跟随器的IGBT栅极驱动器技术分析作者:海飞乐技术时间:2018-05-23 14:04 微控制器发出的隔离驱动信号通过驱动器管理功率半导体器件(例如IGBT)。
概括地说,IGBT的栅极驱动器是一个放大器,它通过提高电压和电流来放大控制信号。
栅极驱动器的主要作用是对IGBT的输入和反向传输电容充放电。
因此,栅极驱动器(除其他影响因素外)与IG8T的开关性能密切相关,也与通态损耗和开关损耗有关。
栅极驱动器不仅可以开通和关断IGBT,还可以实现更为复杂的控制,后文将详细介绍。
例如,实现保护功能和控制开关阶段的du/dt和di/dt。
因此,首先介绍常用的驱动IGBT的基本电路,然后进一步分析那些复杂的功能。
基本上,栅极驱动器要对某个电容进行充放电,这个电容充电电荷被称为栅极电荷QG,而且原则上可以由以下两种方法确定电压作为参考,即Q G=C•U (1)电流作为参考,即Q G=I•t (2)在实际应用中,采用参考电压的栅极驱动器相对于后者有一些优势,后文有更详细的介绍。
下面将介绍电压源驱动器。
现在,几乎绝大多数的IGBT驱动器都是基于电压源。
与电流源栅极驱动器相比,它的优势是其功率损耗在栅极电阻上,而不是在驱动中的电流源内。
通过栅极电阻,可以调整最大的栅极电流。
栅极电流的计算推导将在后文进行说明。
电压源驱动器的另一优势是相对简单的电路和控制方法。
如今,驱动器的市场由像BJT射极跟随器的电压源驱动器和MOSFET驱动器平分,但实际这两者有所不同。
更新的一代,例如,N沟道推挽栅极驱动已经在混合信号ASIC中实现并提高了电路的集成度。
图1给出了IGBT电压源驱动的基本电路。
像栅极电感L CE等参数不能忽视,必须加以重视。
图1 电压源驱动的基本电路1.H桥电路H桥电路可以很简单地实现在IGBT栅极上电位的逆转。
基于H桥电路的IGBT驱动器如图2所示。
这里,控制信号被转换成反相和非反相信号。
非反相信号导通晶体管VT3和VT2,相应地,反相信号导通VT1和VT4。
mosfet驱动原理
mosfet驱动原理MOSFET 就像是电路世界里的一个神奇小开关,而驱动它可有着不少门道呢!咱们先来说说 MOSFET 到底是啥。
它呀,简单说就是一种半导体器件,能让电流通过或者阻断,就像家里的水龙头,想开就开,想关就关。
那怎么让这个“小开关”听话地工作呢?这就得靠驱动电路啦!驱动电路就像是MOSFET 的小指挥家,告诉它什么时候该开,什么时候该关。
想象一下,MOSFET 内部有个叫“栅极”的地方,这就像是它的耳朵,得好好哄着。
当我们给栅极加上合适的电压,就相当于跟 MOSFET 说:“宝贝,该导通啦!”这时候,电流就能顺畅地通过它。
可这电压也不是随便加的哦,得恰到好处。
加少了,MOSFET 可能不听话,犹犹豫豫不肯导通;加多了呢,又可能会把它给“宠坏”,甚至造成损坏。
所以呀,找到那个最合适的电压范围,就像是给它送上了一份贴心的礼物。
还有哦,MOSFET 导通和关断的速度也很重要。
如果导通太慢,那电路工作起来就会拖拖拉拉,效率低下;要是关断太慢,就可能会出现一些奇怪的问题,比如电流乱窜,就像调皮的小孩子不听话。
为了让 MOSFET 快速又听话地导通和关断,驱动电路里还会有一些小技巧。
比如说,会加上一些电容和电阻,来调整电压的上升和下降时间,就像是给 MOSFET 做了个舒适的小床,让它能舒舒服服地工作。
而且哦,不同的应用场景对 MOSFET 驱动的要求也不一样呢!在一些功率较大的电路里,比如电动车的控制器,那对 MOSFET 驱动的要求就特别高,得让它又快又准地工作,不然车子跑起来可就没劲儿啦。
在一些小功率的电路里,比如手机充电器,虽然要求没那么严格,但也得保证MOSFET 能稳定可靠地工作,不然手机充电可就出问题啦。
总之呢,MOSFET 驱动原理就像是一场和小开关的有趣游戏,我们得了解它的脾气,掌握好驱动的技巧,才能让电路乖乖地为我们服务。
怎么样,是不是觉得 MOSFET 也没那么神秘啦?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率MOSFET的驱动当然色可使明射极跟随器。
最近,制作了很多使用功率MOSFET的高速开关电源。
观察开关电源用控制IC的数据表,就会发现作为功率MOS的常见驱动的设备。
代表性的开关电源用控制IC TL494等,如图1所示,驱动输出发射极接地,无论射极跟随器的哪种形式均可使用,将输出晶体管的集电极、发射极独立,管脚被分配排列。
虽然一般情况下射极跟随器的使用较多,但以高速驱动为目的还需仔细考虑。
图1开关电源用PWM控制器一例
图2是用晶体管射极跟随器,驱动功率MOSFET门极的例子.从电路的动作上,门极闭合很快,但门极打开时由于发射极电阻RE的放电,而变成了低速的动作。
图3是FE=1kΩ时的开关波肜.由于关闭延迟很大(时间轴变更为10μs/div达到30μs,所以不能使用。
因此,尝试变更为RE=100Ω,此时如图4所示,只能缩短到约3μs还不能说Ok。
导通很快,但关闭需要时间.
图2 由射极跟随器组成的功率MOSFET驱动
图3 由射极跟随器驱动组成的功率MOSFET的开关波形
图4 由射极跟随器组成的功率MOSFET的开关波形。