期末复习卷一至七答案

合集下载

新人教版七年级数学(下册)期末复习卷及答案

新人教版七年级数学(下册)期末复习卷及答案

新人教版七年级数学(下册)期末复习卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.下列图形中,不是轴对称图形的是( )A .B .C .D .3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .86.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.6的相反数为()A.-6 B.6 C.16-D.169.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()32813 1322x x x x ⎧--≤⎪⎨--⎪⎩<的所有整数解.2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为 ;(用含x 的代数式表示)(2)若设丙地的面积为S 平方米,求出S 与x 的关系式;(3)当200x =时,求S 的值.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:车型运费(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、D5、A6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、20°.3、344、-405、40°6、±3三、解答题(本大题共6小题,共72分)1、不等式组的解集:-1≤x <2,整数解为:-1,0,1.2、353、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、略5、(1)40;(2)72;(3)280.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

人教版七年级上册(2024)生物期末复习能力卷(含答案)

人教版七年级上册(2024)生物期末复习能力卷(含答案)

七年级上册生物期末复习卷时间:45分钟分值:100分一、选择题(本大题共15小题,每小题4分,共60分。

)1.下列不属于生命现象的是()A.花开花落B.潮涨潮落C.蜻蜓点水D.孔雀开屏2.用显微镜观察时,视野由甲转换到乙,不需要进行的操作是()A.转动粗准焦螺旋B.转动细准焦螺旋C.移动玻片标本D.转动转换器3.下列对“洋葱鳞片叶表皮细胞是扁平的,动物的肌细胞呈纺锤形,神经细胞则有许多突起”的概括,正确的是()A.生物都是由细胞构成的B.不同的细胞结构各不相同C.不同的细胞大小不同D.不同的细胞形状多种多样4.下图为人体肌细胞的结构示意图。

下列特点与肌细胞收缩关系最大的是()A.①可以控制物质进出细胞B.②中含有无机盐C.肌细胞内含有大量的③D.④内含有遗传物质5.下图中的甲和乙是两种不同的细胞,下列相关叙述错误的是()A.甲可能是构成牛的细胞,乙可能是构成西瓜的细胞B.细胞膜是动物细胞的边界,也是植物细胞的边界C.甲中的能量转换器是③,乙中的能量转换器是②D.西瓜甘甜可口,主要是因为④中含有较多的糖分6.小东对动植物体的结构层次进行了整理,下列叙述正确的是()A.①②分别表示细胞分裂和细胞分化B.B和D中都有保护组织C.桃花和血液分别属于C和ED.E为系统这一结构层次7.结肠小袋纤毛虫能寄生在人体结肠中,引起小袋纤毛虫病。

结肠小袋纤毛虫与草履虫的结构相似,下列说法正确的是()A.结肠小袋纤毛虫既属于细胞层次也属于个体层次B.结肠小袋纤毛虫摄取的食物在伸缩泡中进行消化C.结肠小袋纤毛虫不能完成呼吸、消化等生命活动D.结肠小袋纤毛虫结构复杂,是细胞分裂和分化的结果8.同学们去山区旅游时,经常能看到树干上长了很多苔藓植物。

下列对此现象的分析,不合理的是()A.树干背阴B.山里空气质量好C.树干湿润D.树皮能提供有机物9.下图中的阴影部分表示身体分节,则a、b表示的动物可能是()A.海葵和海蜇B.蜗牛和水母C.蚯蚓和蝗虫D.河蚌和乌贼10.下列动物类群与其主要特征不相符的是()A.扁形动物——呈两侧对称,背腹扁平B.线虫动物——呈圆柱形,体表有角质层C.鸟——体表被毛,胎生、哺乳D.软体动物——身体柔软,大多具有贝壳11.侏儒海马是体型较小的脊椎动物。

统编版(2024新版)七年级上册语文期末基础复习测试卷(含答案)

统编版(2024新版)七年级上册语文期末基础复习测试卷(含答案)

统编版(2024新版)七年级上册语文期末基础复习测试卷1.根据拼音写出相应的汉字。

(3分)亲爱的同学们,一个学期的语文学习,是否让你发现了生活的可爱之处?你看,有情致丰富的万物,有真zhì热忱的人们,还有那份童趣盎然和哲思之美。

这一切,都让我们感受到了生命的滚tàng 和重量。

下面,让我们继续跟随文字的脚印,去发现生活的péng 勃,人间的温暖……万物有灵诗句作者与出处深情之月,托付对友人的深切关怀。

(1),随君直到夜郎西。

李白《闻王昌龄左迁龙标遥有此寄》不羁之山,寄托个性解放的少年意气。

河流大野犹嫌束,(2)。

谭嗣同《潼关》愁苦之雨,见证羁旅中的苦涩与无奈君问归期未有期,(3)。

李商隐《夜雨寄北》坚韧之菊,不负秋阳,竞相怒放。

(4),应傍战场开。

岑参《行军九日思长安故园》凌云之鹤,承载一腔豪情,直冲云霄。

(5),(6),刘禹锡《秋词(其一)》奔流之水,提醒时光流逝,且行且珍惜。

(7),(8),《〈论语〉十二章》【热身活动:“书”里有乾坤】(12分)1.以下是小组开展的有关“书”的研讨活动,请你一试身手,补充空白内容。

(12分)小语:最早出现在甲骨文中的“书”的字样是一只手抓住一个东西(刀或者笔)在器物上刻写,可见,“书”最早的意思是(1)。

后来,人们把写的东西装订成册,“书”就引申为成册的著作,如春秋战国时期儒家学派的经典著作(2)《》,它是记录孔子及其弟子言行的一部书。

书中“(3),(4)”一句,说的是几个人一起走路,其中必定有可以做我老师的人。

小文:“书”还有其他意思呢,如诸葛亮的《诫子书》,这个“书”的意思是(5)。

不仅如此,古代诗人还常常借“书”来寄托情思,如王湾在《次北固山下》中用“(6)?(7)”传递思乡之情;李商隐在给妻子的“书”(《夜雨寄北》)中,用“(8),(9)”把眼前的凄苦兑换成未来团聚的欢乐。

小嘉:在梳理“书”的相关义项时,我感受到了中华文化的博大精深,作为中华儿女的自豪感yóu rán ér sh ēng(10)。

2022-2023学年京改版七年级上期末复习数学试卷含答案解析

2022-2023学年京改版七年级上期末复习数学试卷含答案解析

2022-2023学年北京课改新版七年级上册数学期末复习试卷一.选择题(共7小题,满分14分,每小题2分)1.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.2.通过严格实施低碳管理等措施,2022年北京冬奥会和冬残奥会全面实现了碳中和.根据测算,北京冬奥会三个赛区的场馆使用绿电4亿千瓦时,可以减少燃烧12.8万吨标准煤,减少排放二氧化碳32万吨,实现了“山林场馆、生态冬奥”的目标:其中的32万用科学记数法表示为()A.32×104B.3.2×104C.3.2×105D.3.2×1063.下列各组中的两个图形为全等形的是()A.两块三角尺B.两枚硬币C.两张A4纸D.两片枫树叶4.下面几何体中,由一个平面和一个曲面围成的是()A.圆锥B.正方体C.圆柱D.球5.下列运算中,正确的是()A.B.2a+3b=5abC.(﹣6)÷(﹣2)=﹣3D.﹣|﹣2|=﹣26.有理数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b<0B.|b|>2C.ab>0D.a﹣b>07.如图,点P是直线a外一点,过点P作PA⊥a于点A,在直线a上取一点B,连接PB,使PB=PA,C在线段AB上,连接PC.若PA=4,则线段PC的长不可能是()A.3.8B.4.9C.5.6D.5.9二.填空题(共8小题,满分24分,每小题3分)8.如果向东行走10m,记作10m,那么向西行走15m,应记作.9.已知x=2是关于x的方程3a=2(x+1)的解,则代数式﹣a2的值为.10.当时,﹣2x的值为正数;不等式3(x+1)≥5x﹣3的正整数解是.11.如图,直线AB、CD交于点O,CO⊥OE,OF是∠AOD的平分线,OG是∠EOB的平分线,∠AOC=44°,则∠FOG=.12.小明的存款是a元,小华的存款比小明存款的一半多2元,则小华的存款为元.13.小王同学在解方程4x﹣2=□x﹣5时,发现“□“处的数字模糊不清,但察看答案可知该方程的解为x =3,则□处的数字为.14.对任意有理数a,b,c,d,规定一种新运算:,已知,则x=.15.按一定规律排列的多项式:2x2﹣2y,4x3﹣3y,6x4﹣4y,8x5﹣5y,…,根据上述规律,则第n个多项式是.三.解答题(共11小题,满分60分)16.(5分)阅读下列材料:|x|=,即当x<0时,.用这个结论可以解决下面问题:(1)已知a、b是有理数,当ab≠0时,求的值;(2)已知a、b是有理数当abc≠0时,求+的值;(3)已知a、b、c是有理数,a+b+c=0,abc<0,求的值.17.(5分)计算(1)﹣17+(﹣6)+23﹣(﹣20);(2);(3);(4).18.(5分)解下列方程:(1)3x﹣2=4+5x;(2).19.(5分)解下列方程.(1)x+2(x+1)=8+x;(2)=﹣1.20.(5分)化简与求值:(1)化简;a2﹣2ab﹣3a2+6ab;(2)先化简,再求值:2(3x2y﹣xy2)﹣3(﹣xy2+3x2y),其中x=﹣2,y=3.21.(5分)按要求画图:(1)如图1,平面上有四个点A,B,C,D,按下列要求画出图形.①连接BD;②画直线AC交BD于点M;③画出线段CD的反向延长线;(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注意:添加所有符合要求的正方形,添加的正方形用阴影和序号表示).22.(6分)按要求画图,并回答问题:如图,平面内有三个点A,B,C.根据下列语句画图:(1)画直线AB;(2)射线BC;(3)延长线段AC到点D,使得CD=AC;(4)通过画图、测量,点B 到点D 的距离约为 cm (精确到0.1);(5)通过画图、测量,点D 到直线AB 的最短距离约为 cm (精确到0.1).23.(6分)中国银行的个人所得税自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表:纳税级数个人每月应纳税所得额 纳税税率 1不超过1500元的部分 3% 2 超过1500元但不超过4500元的部分10%3 超过4500元但不超过9000元部分20% … … … (1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额为多少?24.(6分)如图,O 为AB 上一点,∠BOC =40°,OD 平分∠AOC ,∠DOE =90°,求∠AOE 的度数.25.(6分)已知线段AB 上有若干个不重合的点,求出该线段上任意两点所决定的线段长度(包括线段AB ),并记所有这些线段的长度总和为αAB .例如:图1中,AB =12,C 为AB 的中点,则αAB =AB +AC +CB =12+6+6=24.(1)如图2,线段AB 上有C 、D 两点,其中AB =12,AC :CD :DB =1:2:3,求αAB ;(2)如图3,线段AB 上有C 、D 、E 三点,其中C 为AB 的中点,E 为DB 的中点,且CE =4,αAB =64,求AB 的长度;(3)线段AB 上有C 、D 两点,线段上任意两点所决定的线段长度是整数,若αAB =38,且CD 的长度为奇数,直接写出AB 的长度.26.(6分)如图1,点A、B分别在数轴原点O的左右两侧,且OA=OB,点B对应的数是10.(1)求A点对应的数.(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为4个单位长度/秒、2个单位长度/秒,点P向左运动,速度为5个单位长度/秒.设它们运动时间为t秒,当点P是MN的中点时,求t的值.参考答案解析一.选择题(共7小题,满分14分,每小题2分)1.解:﹣﹣(﹣)==﹣.故选:A.2.解:32万=320000=3.2×105.故选:C.3.解:A、两块三角尺不一定是全等形,故此选项不合题意;B、两枚硬币不一定是全等形,故此选项不合题意;C、两张A4纸是全等形,故此选项符合题意;D、两片枫树叶不一定是全等形,故此选项不合题意;故选:C.4.解:A.因为圆锥是由1个平面和1个曲面围成,故A选项符合题意;B.因为正方体是由6个平面围成,故B选项不符合题意;C.因为圆柱是由2个平面和1个曲面围成,故C选项不符合题意;D.因为球体是1个曲面围成,故D选项不符合题意.故选:A.5.解:A.()3=,故A不符合题意;B.2a与3b不能合并,故B不符合题意;C.(﹣6)÷(﹣2)=3,故C不符合题意;D.﹣|﹣2|=﹣2,故D符合题意;故选:D.6.解:由题意:a=﹣1<0,b=2.5>0,|b|>|a|,∴ab<0,a+b>0,a﹣b<0,|b|>2•,故选:B.7.解:∵过点P作PA⊥a于点A,在直线a上取一点B,连接PB,使PB=PA,C在线段AB上,连接PC.若PA=4,∴PB=6,∴4≤PC≤6,故PC不可能是3.8,故选:A.二.填空题(共8小题,满分24分,每小题3分)8.解:如果向东行走10m,记作10m,那么向西行走15m,应记作﹣15m.故答案为:﹣15m.9.解:将x=2代入3a=2(x+1),∴3a=2×3,∴a=2,∴原式=﹣4=,故答案为:10.解:﹣2x>0,x<0;3(x+1)≥5x﹣3,3x+3≥5x﹣3,3x﹣5x≥﹣3﹣3,﹣2x≥﹣6,x≤3;∴不等式3(x+1)≥5x﹣3的正整数解是1,2,3.故答案为:x<0;1,2,3.11.解:∵CO⊥OE,∴∠COE=90°.∴∠EOB=180°﹣∠AOC﹣∠COE=46°.又∵OG是∠EOB的平分线,∴∠BOG==23°.∵∠AOC=44°,∴∠AOD=180°﹣∠AOC=136°.又∵OF是∠AOD的平分线,∴∠AOF==68°.∴∠BOF=180°﹣∠AOF=112°.∴∠FOG=∠FOB+∠BOG=112°+23°=135°.12.解:依题意得,小华存款:a+2.故答案为:a+2.13.解:设“□”处的数字为a,把x=3代入方程,得4×3﹣2=3a﹣5,解得:a=5,则“□”处的数字为5.故答案为:5.14.解:∵,∴x•(﹣1)﹣2×3=2,∴﹣x﹣6=2,∴﹣x=2+6,∴﹣x=8,∴x=﹣8,故答案为:﹣8.15.解:∵2x2﹣2y,4x3﹣3y,6x4﹣4y,8x5﹣5y,…,∴第n个多项式为2n•x n+1﹣(n+1)y,故答案为:2n•x n+1﹣(n+1)y.三.解答题(共11小题,满分60分)16.解:(1)①当a>0,b>0时,==1+1=2;②当a<0,b<0时,==﹣1﹣1=﹣2;当a>,b<0时,==1﹣1=0;当a<0,b>0时,==﹣1+1=0;综上,当ab≠0时,的值为2或﹣2或0;(2)当a>0,b>0,c>0时,+==1+1+1=3;当a<0,b<0,c<0时,+==﹣1﹣1﹣1=﹣3;当a,b,c中两正一负时,+=1,当a,b,c中两负一正时,+=﹣1,综上,当abc≠0时,+的值为3或﹣3或1或﹣1;(3)∵a+b+c=0,∴b+c=﹣a,a+c=﹣b,a+b=﹣c,∴==﹣().∵abc<0,∴a,b,c中两正一负,当a,b,c中两正一负时,∵+=1,∴原式=﹣()=﹣1.∴的值为﹣1.17.解:(1)﹣17+(﹣6)+23﹣(﹣20)=﹣17﹣6+23+20=20;(2)=﹣60×﹣60×+60×+60×=﹣45﹣50+44+35=﹣16;(3)=(﹣50+)×(﹣8)=﹣50×(﹣8)+×(﹣8)=400﹣=399;(4)=(1.75﹣1.75)+(3+2)﹣6=0+6﹣6=﹣.18.解:(1)移项得:3x﹣5x=4+2,合并得:﹣2x=6,解得:x=﹣3;(2)去分母得:2(2x﹣1)﹣(10x+1)=12,去括号得:4x﹣2﹣10x﹣1=12,移项得:4x﹣10x=12+2+1,合并得:﹣6x=15,解得:x=﹣2.5.19.解:(1)x+2(x+1)=8+x,去括号,得,移项,得,合并同类项,得2x=6,系数化成1,得x=3;(2)=﹣1,去分母,得3(1﹣x)=2(4x﹣1)﹣6,去括号,得3﹣3x=8x﹣2﹣6,移项,得﹣3x﹣8x=﹣2﹣6﹣3,合并同类项,得﹣11x=﹣11,系数化成1,得x=1.20.解:(1)a2﹣2ab﹣3a2+6ab=(a2﹣3a2)+(﹣2ab+6ab)=﹣2a2+4ab;(2)2(3x2y﹣xy2)﹣3(﹣xy2+3x2y)=6x2y﹣2xy2+3xy2﹣9x2y=﹣3x2y+xy2,当x=﹣2,y=3时,原式=﹣3×(﹣2)2×3+(﹣2)×9=﹣36﹣18=﹣54.21.解:(1)如图1中,线段BD,直线AC,射线DC即为所求作.(2)如图2中,有四种情形.22.解:(1)如图,直线AB即为所求;(2)如图,射线BC即为所求;(3)如图,线段CD即为所求;(4)通过画图、测量,点B到点D的距离约为3.1cm;(5)通过画图、测量,点D到直线AB的最短距离约为3.1cm.23.解:(1)(4000﹣3500)×3%=500×3%=15(元),1500×3%+(6000﹣3500﹣1500)×10%=45+1000×10%=45+100=145(元).答:甲每月应缴纳的个人所得税为15元;乙每月应缴纳的个人所得税为145元.(2)若丙每月工资收入额为1500+3500=5000(元),则每月应缴税:1500×3%=45(元).45<95<145,则丙的纳税级数为2.设丙每月的工资收入额应为y元,则45+(y﹣3500﹣1500)×10%=95,解得y=5500.答:丙每月的工资收入额应为5500元.24.解:∵O为AB上一点,∠BOC=40°,∴∠AOC=180°﹣40°=140°∵OD平分∠AOC∴∠AOD=∠AOC=70°又∵∠DOE=90°∴∠AOE=20°25.解:(1)∵AB=12,AC:CD:DB=1:2:3,∴AC=2,CD=4,DB=6,∴AD=AC+CD=2+4=6,BC=CD+BD=4+6=10,∴αAB=AC+CD+DB+AD+CB+AB=2+4+6+6+10+12=40;(2)设BE=x,∵E是DB的中点,∴DE=EB=x,∴DB=2x,CD=CE﹣DE=4﹣x,∵C为AB的中点,∴AC=BC=CD+DE+EB=(4﹣x)+x+x=4+x,∴AB=2AC=8+2x,AD=AC+CD=(4+x)+(4﹣x)=8,∴AE=AD+DE=8+x,∵αAB=64,∴AC+CD+DE+EB+AD+AE+AB+CE+CB+DB=64,即(4+x)+(4﹣x)+x+x+8+(8+x)+(8+2x)+4+(4+x)+2x=64,解得x=3,∴AB=8+2x=14;(3)∵αAB=38,∴AC+CD+DB+AD+AB+CB=38,即3AB+CD=38,∴,∵CD是奇数,AB为正整数,∴CD=5,11,17,23,29,35,而CD<AB,∴满足条件的有CD=5,∴AB=11.26.解:(1)∵点B对应的数是10,∴OB=10,∵OA=OB,∴OA=12.又∵点A在原点的左侧,∴点A对应的数为﹣12.(2)当运动时间为t秒时,点M对应的数为4t,点N对应的数为2t﹣12,点P对应的数为﹣5t+10,依题意,得:4t+2t﹣12=2(﹣5t+10),解得:t=2.答:当点P是MN的中点时,t的值为2.。

人教版七年级下册数学期末综合复习卷(含答案)

人教版七年级下册数学期末综合复习卷(含答案)

人教版七年级下册数学期末综合复习卷(含答案)一、选择题1.如图所示,B 与2∠是一对( )A .同位角B .内错角C .同旁内角D .对顶角 2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5-- 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.如图,点E 在CA 延长线上,DE 、AB 交于F ,且BDE AEF ∠=∠,B C ∠=∠,EFA 比FDC ∠的余角小10︒,P 为线段DC 上一动点,Q 为PC 上一点,且满足FQP QFP ∠=∠,FM 为EFP ∠的平分线.则下列结论:①//AB CD ;②FQ 平分AFP ∠;③140B E ∠+∠=︒;④QFM ∠的角度为定值.其中正确结论的个数有( )A .1个B .2个C .3个D .4个6.下列说法正确的是( )A .0的立方根是0B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是237.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒8.如图,在平面直角坐标系中,点A 从原点O 出发,按A →A 1→A 2→A 3→A 4→A 5…依次不断移动,每次移动1个单位长度,则A 2021的坐标为( )A .(673,﹣1)B .(673,1)C .(674,﹣1)D .(674,1)九、填空题9.已知1x -=8,则x 的值是________________.十、填空题10.点P (﹣2,3)关于x 轴的对称点的坐标是_____.十一、填空题11.如图,已知△ABC 是锐角三角形,BE 、CF 分别为∠ABC 与∠ACB 的角平分线,BE 、CF 相交于点O ,若∠A=50°,则∠BOC=_______.十二、填空题12.如图,//AB CD ,点F 在CD 上,点A 在EF 上,则132∠+∠-∠的度数等于______.十三、填空题13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.十四、填空题14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.十五、填空题15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.十六、填空题16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.十七、解答题17.(1)计算:34|22|89-+-; (2)解方程组:1312223x y x y ⎧-=-⎪⎨⎪+=⎩. 十八、解答题18.求下列各式中的x 值:(1)(x ﹣1)2=4;(2)(2x +1)3+64=0;(3)x 3﹣3=38. 十九、解答题19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE证明:∵AB //CD (已知)∴∠4=∠ ( )∵∠3=∠4(已知)∴∠3=∠ ( )∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ( )即:∠ =∠ .∴∠3=∠ .∴AD //BE ( )二十、解答题20.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C .(1)求出ABC 的面积;(2)平移ABC ,若点A 的对应点2A 的坐标为()0,2-,画出平移后对应的222A B C △,写出2B 坐标.二十一、解答题21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值.二十二、解答题22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)二十三、解答题23.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由. 二十四、解答题24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.二十五、解答题25.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由【参考答案】一、选择题1.B解析:B【分析】根据“同位角、内错角、同旁内角”的意义进行判断即可.【详解】解:∠B与∠2是直线DE和直线BC被直线AB所截得到的内错角,故选:B.【点睛】本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C 、操场上红旗的飘动不是平移,故本选项错误;D 、教室可移动黑板的左右移动是平移,故本选项正确.故选:D .【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.C【分析】根据各象限内点的坐标特征判断即可.【详解】由图可知,小手盖住的点在第四象限,∴点的横坐标为正数,纵坐标为负数,∴(2,-3)符合.其余都不符合故选:C .【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键. 4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确.故选:B .【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.D【分析】①由BDE AEF ∠=∠可得AE ∥BD ,进而得到B EAF ∠=∠,结合B C ∠=∠即可得到结论;②由//AB CD 得出AFQ FQP ∠=∠,结合FQP QFP ∠=∠即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;【详解】∵BDE AEF ∠=∠,∴AE ∥BD ,∴B EAF ∠=∠,∵B C ∠=∠,∴EAF C ∠=∠,∴//AB CD ,结论①正确;∵//AB CD ,∴AFQ FQP ∠=∠,∵FQP QFP ∠=∠,∴AFQ QFP ∠=∠,∴FQ 平分AFP ∠,结论②正确;∵//AB CD ,∴EFA FDC ∠=∠,∵EFA 比FDC ∠的余角小10︒,∴40EFA ∠=︒,∵B EAF ∠=∠,180EFA E EAF ∠+∠+∠=︒,∴180140B E EFA ∠+∠=︒-∠=︒,结论③正确;∵FM 为EFP ∠的平分线, ∴111222MFP EFP EFA AFP ∠=∠=∠+∠, ∵AFQ QFP ∠=∠, ∴12QFP AFP ∠=∠, ∴1202QFM MFP QFP EFA ∠=∠-∠=∠=︒,结论④正确; 故正确的结论是①②③④;故答案选D .【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键. 6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A .0的立方根是0,正确,符合题意;B .0.25的算术平方根是0.5,故B 选项错误,不符合题意;C .-1000的立方根是-10,故C 选项错误,不符合题意;D .49的算术平方根是23,故D 选项错误,不符合题意, 故选A .【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】根据同位角相等,两直线平行即可求解.【详解】解:如图:a b,∠1=60°,因为//所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…,点A坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位,则2021÷6=336…5,所以,前336次循环运动点A共向右运动336×2=672个单位,且在x轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A2021的坐标是(674,﹣1).故选:C.【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.九、填空题9.65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵=8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题10.(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为解析:(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为(﹣2,﹣3).【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.十一、填空题11.115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB解析:115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)= 12×130°=65°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°十二、填空题12.180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥解析:180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥CD,∴∠1=∠AFD,∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,∴∠2+360°-∠1-∠3=180°,∴∠1+∠3-∠2=180°,故答案为:180°【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解十三、填空题13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32°故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17;如果三次才输出结果:则x =(17-2)÷3=5;如果四次才输出结果:则x =(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.十五、填空题15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.十六、填空题16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.十七、解答题17.(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1)232)11x y =⎧⎨=⎩. 【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=222233-= (2)原方程组可化为:32(1)23(2)x y x y -=-⎧⎨+=⎩ , (1)×2−(2)得:−7y =−7,解得:y =1;把y =1代入(1)得:x−3×1=−2,解得:x =1,故方程组的解为:11x y =⎧⎨=⎩ ; 【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.十八、解答题18.(1)x =3或x =﹣1;(2)x =﹣2.5;(3)x =1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.十九、解答题19.FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=∠BAF,根据平行线的判定推出即可.【详解】证明:∵AB//CD(已知)∴∠4=∠FAB(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠FAB(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即:∠FAB=∠CAD∴∠3=∠CAD∴AD //BE (内错角相等,两直线平行)故填:BAF ,两直线平行,同位角相等,BAF ,等量代换,DAC ,DAC ,内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 二十、解答题20.(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B 2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A 2的坐标,确定平移方式,然后求出B 2,C 2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)∵在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C ,∴AC =3,BC =2, ∴1=32ABC S AC BC =△; (2)∵A (-3,2),A 2(0,-2),∴A 2是由A 向右平移3个单位得到的,向下平移4个单位长度得到的,∴B 2,C 2的坐标分别为(3,0),(3,-2),如图所示,即为所求.【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a=,∵a>0,∴5a=(2)∵459,∴253<<,∴m=2,n2,∴2m a an-+=)222=))222=+-45=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.二十二、解答题22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.二十三、解答题23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.二十四、解答题24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ =∠OPN +∠NPQ =∠GOP +∠PQF ,∵∠GOC =∠GOP +∠POQ =135°,∴∠GOP =135°-∠POQ ,∴∠OPQ =135°-∠POQ +∠PQF .如图,当点P 在GF 延长线上时,作PN //a ,连接PQ ,OP ,则PN //a //b ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴135°-∠POQ =∠OPQ +∠PQF .【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.二十五、解答题25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.。

初中七年级数学上册期末专项复习4套含答案

初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020

② 1 1 1
1

13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.

七年级下语文期末复习试卷语文(附答案)

七年级下语文期末复习试卷语文(附答案)

七年级(下)语文期末复习试卷本卷共8页。

满分120分。

含卷面书写5分。

另有附加题8分。

考试时间120分钟。

一.(18分)1.把下列一句话抄写在田字格中,要求字迹工整、规范、美观。

(2分) 黄 河 ! 你 是 中 华 民 族 的 摇 篮 !2. 下列词语中加点字读音有错误的一项是( B )(2分) A. 斑蝥.(m áo ) 攒.(cu án ) 玉簪.花(z ān ) 木屐.(j ī) B. 嫉.妒(j í) 泯.然(m ǐn ) 环谒.(y è) 郝叟.(s ǒu) C. 祈.祷(q í) 炽.痛(zh ì) 谰.语(l án)红妆.(zhu ān ɡ) D. 日曛.(x ūn ) 迥.乎不同(ji ǒn ɡ) 运鬓.(b ìn) 骊.歌(l í) 3. 选出下边加点的字解释有误的一项:( )(2分)A.零落..:稀疏不集中 懊.恼:懊悔 阻抑.:抑制 哽.住:气流阻塞B.亘.古:延续不断 人迹罕.至:稀少 讪.笑:讥讽 畸.形:不正常的C.和蔼.:态度亲切 人声鼎沸.:开水 闯练.:锻炼 匿.名:隐藏D.家喻.户晓:明白 踱来踱.去:迈方步走 惨.白:凄惨 鉴.赏:鉴别 4. 根据语言环境,填入横线处恰当的一项是(C )(2分) 老师同学这样耐心地帮助他, 。

A. 他下决心改正错误。

B. 他不得不下决心改正错误。

C. 他怎能不下决心改正错误呢?D. 他真要下决心改正错误。

(二)依据原文默写下列各诗(每句2分)5.春潮带雨晚来急, 。

(《滁州西涧》韦应物)6. 峨眉山月半轮秋,。

(《峨眉山月歌》李白)7. 深林人不知,。

(《竹里馆》王维)8.故园东望路漫漫,。

(《逢入京使》岑参)9. ,青草池塘处处蛙。

(《约客》赵师秀)二. (15分)文言文阅读东市买骏马,西市买鞍鞯,南市买辔头,北市买长鞭。

旦辞爷娘去,暮宿黄河边,不闻爷娘唤女声,但闻黄河流水鸣溅溅。

人教版七年级下册数学期末复习试卷及答案

人教版七年级下册数学期末复习试卷及答案

人教版七年级下册数学期末复习试卷及答案一、选择题1.下列图形中,1∠与2∠是同旁内角的是( )A .B .C .D .2.在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程. A .①② B .②④ C .②③ D .③④ 3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限.A .一B .二C .三D .四4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( ) A .3个B .2个C .1个D .0个5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°6.下列说法正确的是( )A .a 2的正平方根是aB .819=±C .﹣1的n 次方根是1D .321a --一定是负数7.如图,已知直线//AB CD ,点F 为直线AB 上一点,G 为射线BD 上一点.若:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,HD 交BE 于点E ,则E ∠的度数为( )A .45°B .55°C .60°D .75°8.如图,点A (0,1),点A 1(2,0),点A 2(3,2),点A 3(5,1)…,按照这样的规律下去,点A 100的坐标为( )A .(101,100)B .(150,51)C .(150,50)D .(100,53)九、填空题9.已知 325.6≈18.044,那么± 3.256≈___________.十、填空题10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.十一、填空题11.如图,DB 是ABC 的高,AE 是角平分线,26BAE ∠=,则BFE ∠=______.十二、填空题12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .十三、填空题13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°十四、填空题14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.十五、填空题15.()2260a b ++-=,则(),a b 在第_____象限.十六、填空题16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.十七、解答题17.计算:(1)3981++- (2)23427(3)+--- (3)2(23)+ (4)353325-++十八、解答题18.求下列各式中x 的值: (1)(x +1)3﹣27=0 (2)(2x ﹣1)2﹣25=0十九、解答题19.完成下列证明过程,并在括号内填上依据.如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证AB ∥CD .证明:∵∠1=∠2(已知),∠1=∠4 ∴∠2= (等量代换), ∴ ∥BF ( ),∴∠3=∠ ( ). 又∵∠B =∠C (已知), ∴∠3=∠B ∴AB ∥CD ( ).二十、解答题20.在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (﹣2,2)、B (2,0),C (﹣4,﹣2).(1)在平面直角坐标系中画出△ABC ;(2)若将(1)中的△ABC 平移,使点B 的对应点B ′坐标为(6,2),画出平移后的△A ′B ′C ′;(3)求△A ′B ′C ′的面积.二十一、解答题21.已知23|49|7a b a a -+-+=0,求实数a 、b 的值并求出b 的整数部分和小数部分.二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?二十三、解答题23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPFα∠的平分线和∠=,PEA∠的平分线交于点G,用含有α的式子表示GPFC∠的度数.二十四、解答题24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.二十五、解答题25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.A【分析】根据同旁内角的定义去判断【详解】∵A选项中的两个角,符合同旁内角的定义,∴选项A正确;∵B选项中的两个角,不符合同旁内角的定义,∴选项B错误;∵C选项中的两个角,不符合同旁内角的定义,∴选项C错误;∵D选项中的两个角,不符合同旁内角的定义,∴选项D错误;故选A.【点睛】本题考查了同旁内角的定义,结合图形准确判断是解题的关键.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.解:∵点P 的坐标为P (3,﹣5), ∴点P 在第四象限. 故选D . 【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-). 4.A 【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案. 【详解】平面内,垂直于同一条直线的两直线平行;故①正确, 经过直线外一点,有且只有一条直线与这条直线平行,故②正确 垂线段最短,故③正确,两直线平行,同旁内角互补,故④错误, ∴正确命题有①②③,共3个, 故选:A . 【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 5.D 【分析】根据角的和差可先计算出∠AEF ,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】解:由题意可知AD//BC ,∠FEG=90°, ∵∠1=34°,∠FEG=90°, ∴∠AEF=90°-∠1=56°, ∵AD//BC ,∴∠2=180°-∠AEF=124°, 故选:D . 【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.D 【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可. 【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 9,错误;C :当n 是偶数时,()1=1n - ;当n 时奇数时,()1=-1n-,错误;D :∵210a --< ,∴【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键. 7.C 【分析】利用180ABG GBF ∠+∠=︒,及平行线的性质,得到180CDG GBF ∠+∠=︒,再借助角之间的比值,求出120BDE GBE ∠+∠=︒,从而得出E ∠的大小. 【详解】 解://AB CD ,ABG CDG ∴∠=∠, 180ABG GBF ∠+∠=︒,180CDG GBF ∴∠+∠=︒,:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,2222()1801203333HDG GBE CDG GBF CDG GBF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒,BDE HDG ∠=∠,120BDE GBE ∴∠+∠=︒,180()18012060E BDE GBE ∴∠=︒-∠+∠=︒-︒=︒,故选:C . 【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想.8.B 【分析】观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n (3n ,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1解析:B 【分析】观察图形得到偶数点的规律为,A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1),由100是偶数,A 100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1,则可求A 100(150,51). 【详解】解:观察图形可得,奇数点:A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n -1(3n -1,n -1),偶数点:A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1),∵100是偶数,且100=2n,∴n=50,∴A100(150,51),故选:B.【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.九、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】∵,∴,即 1.8044±.故答案为±1.8044十、填空题10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特3,2解析:()【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】A-关于x轴的对称点的坐标是(3,2).解:点(3,2)【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;十一、填空题 11.【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD 与∠FAD 互余,与∠BFE 是对顶角,故可求得∠BFE 的度数. 【详解】∵AE 是角平分线,∠BAE=26°, ∴∠FAD=∠B 解析:64【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD 与∠FAD 互余,与∠BFE 是对顶角,故可求得∠BFE 的度数. 【详解】∵AE 是角平分线,∠BAE=26°, ∴∠FAD=∠BAE=26°, ∵DB 是△ABC 的高,∴∠AFD=90°−∠FAD=90°−26°=64°, ∴∠BFE=∠AFD=64°. 故答案为64°. 【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.十二、填空题 12.48° 【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数. 【详解】 解:若AB//CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48° 【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数. 【详解】 解:若AB //CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF⊥MN,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.十三、填空题13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DE C、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC=1(180°-45°)=67.5°.2故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.十四、填空题14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.十五、填空题15.二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.十七、解答题17.(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3)2+;(4)【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式.【详解】解:(11-=3+2+1=6;(2=2-3-3=-4;(33)=2+;(4+=故答案为(1)6;(2)-4;(3)2+4)【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.十八、解答题18.(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=±5,x=3或x=-2.【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.十九、解答题19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.二十、解答题20.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.【详解】解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作;(3)△A′B′C′的面积=111 6426244210 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.二十一、解答题21.4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,解析:4214【分析】根据分母不等于0,以及非负数的性质列式求出a 、b 的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a -b =0,a 2-49=0且a +7>0,解得a =7,b =21,∵16<21<25, ∴44.【点睛】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二十二、解答题22.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm ,宽为cm ,根据题意列出方程,解方程比较4x 与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm ,宽为3x cm ,根据题意列出方程,解方程比较4x 与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm 2,∴cm ;()2根据题意设长方形长为4x cm ,宽为3x cm ,由题:43360x x ⋅= 则230x =0xx ∴=∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23.(1)90°;(2)∠PFC=∠PEA+∠P ;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.二十四、解答题24.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1APB ADB∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD=12∠ABN,即可求出结果;(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.二十五、解答题25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。

2024年人教版中学七7年级下册数学期末复习卷(含答案)

2024年人教版中学七7年级下册数学期末复习卷(含答案)

2024年人教版中学七7年级下册数学期末复习卷(含答案)一、选择题1.9的算术平方根是()A .3±B .9±C .3D .-32.在下面的四幅图案中,能通过图案(1)平移得到的是( )A .B .C .D . 3.下列各点中,在第三象限的点是( )A .()2,4B .()2,4-C .()2,4-D .()2,4-- 4.下列命题是假命题的是( )A .两个角的和等于平角时,这两个角互为补角B .内错角相等C .两条平行线被第三条直线所截,内错角相等D .对顶角相等5.如图,AB ∥CD ,∠EBF =∠FBA ,∠EDG =∠GDC ,∠E =45°,则∠H 为( )A .22°B .22.5°C .30°D .45° 6.若24,a =31b =-,则+a b 的值是( ) A .1 B .-3 C .1或-3 D .-1或3 7.如图,直线//a b ,三角板ABC 的直角顶点C 在直线b 上,126∠=︒,则2∠=( )A .26°B .54°C .64°D .66°8.如图所示,平面直角坐标系中,x 轴负半轴有一点()1,0A -,点A 先向上平移1个单位至()11,1A -,接着又向右平移1个单位至点()20,1A ,然后再向上平移1个单位至点()30,2A ,向右平移1个单位至点()41,2A ,照此规律平移下去,点A 平移至点2021A 时,点2021A 的坐标为( )A .()1008,1010B .()1010,1010C .()1009,1011D .()1008,1011九、填空题9.计算:﹣9=_____.十、填空题10.点()2,1M -关于y 轴的对称点的坐标为______.十一、填空题11.如图,已知OB 、OC 为△ABC 的角平分线,DE ∥BC 交AB 、AC 于D 、E ,△ADE 的周长为12,BC 长为5,则△ABC 的周长__.十二、填空题12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.十三、填空题13.如图,将一张长方形纸片沿EF 折叠后,点A ,B 分别落在A ′,B ′的位置.如果∠1=59°,那么∠2的度数是_____.十四、填空题14.对于正数x 规定1()1f x x =+,例如:11115(3),()11345615f f ====++,则f (2020)+f (2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 十五、填空题15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____.十六、填空题16.如图,在平面直角坐标系中:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A →……的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是________.十七、解答题17.计算:333|3-333 十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F . 证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( ).∴DB ∥EC ( ).∴∠C = ( ).∵∠C =∠D (已知),∴∠D = ( ).∴DF ∥AC ( ).∴∠A =∠F ( ).二十、解答题20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.二十一、解答题21.已知a 是77b 7(27a b 的平方根. 二十二、解答题22.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.(1)如图1,求证:HG⊥HE;(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.二十四、解答题24.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD(1)直接写出∠ACB与∠BED的数量关系;(2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB的度数;(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).二十五、解答题25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由【参考答案】一、选择题1.C解析:C【分析】根据一个非负数的正的平方根,即为这个数的算术平方根解答即可.【详解】解:9的算术平方根是3,故选C.【点睛】本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题解析:C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D 、对应点的连线相交,不能通过平移得到,不符合题意;故选:C .【点睛】本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型. 3.D【分析】应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标.【详解】解:∵第三象限的点的横坐标是负数,纵坐标也是负数,∴结合选项符合第三象限的点是(-2,-4).故选:D .【点睛】本题主要考查了点在第三象限内点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据内错角、对顶角、补角的定义一一判断即可.【详解】解:A 、两个角的和等于平角时,这两个角互为补角,为真命题;B 、两直线平行,内错角相等,故错误,为假命题;C 、两条平行线被第三条直线所截,内错角相等,为真命题;D 、对顶角相等,为真命题;故选:B .【点睛】本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题.5.B【分析】过E 作//EQ AB ,过H 作//HI AB ,利用平行线的性质解答即可.【详解】解:过E 作//EQ AB ,过H 作//HI AB ,//AB CD ,//////EQ AB CD HI ∴,180QEB ABE ∴∠+∠=︒,180QED EDC ∠+∠=︒,180IHD CDH ∠+∠=︒,180IHB ABH ∠+∠=︒,EBF FBA ∠=∠,EDG GDC ∠=∠,45BED ∠=︒,2245FBA GDC BED ∴∠-∠=∠=︒,1180(180)22.52BHD CDH ABH GDC FBA FBA GDC BED ∴∠=∠-∠=︒-∠-︒-∠=∠-∠=∠=︒.故选:B .【点睛】此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.6.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可.【详解】解:24,a =31,b =-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=.故选:C .【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键. 7.C【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2.【详解】解:如图,∵∠1=26°,∠ACB =90°,∴∠3=90°-∠1=64°,∵直线a ∥b ,∴∠2=∠3=64°,故选:C .【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.8.C【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可.【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2解析:C【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可.【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),……,A2n-1(-2+n,n),∵2021101121=⨯-,∴A2021(1009,1011),故选:C.【点睛】本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】﹣3.故答案是﹣3.考点:算术平方根.十、填空题10.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点2,1解析:()【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数M-关于y轴的对称点的坐标为()2,1.∴点()2,12,1故答案为:()【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.十一、填空题11.17【详解】∵0B、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,解析:17【详解】∵0B、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,EC=OE,∴DE=OD+OE=BD+EC;∵△ADE的周长为12,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,∵BC=7,∴△ABC的周长为:AB+AC+BC=12+5=17.故答案为17.十二、填空题12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.十三、填空题13.62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁解析:62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.【详解】解:∵将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,∠1=59°,∴∠EFB′=∠1=59°,∴∠B′FC=180°−∠1−∠EFB′=62°,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠B′FC=62°,故答案为:62°.【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC 的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.十四、填空题14.5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】 由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=. 【详解】 解:1()1f x x=+, 111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 十五、填空题15.(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐解析:(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.十六、填空题16.【分析】先求出四边形ABCD 的周长为12,再计算,得到余数为5,由此解题.【详解】解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),四边形ABCD 的周长为2+4+2+4=解析:()1,2--【分析】先求出四边形ABCD 的周长为12,再计算2021121685÷=,得到余数为5,由此解题.【详解】 解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),∴四边形ABCD 的周长为2+4+2+4=12,2021121685÷=2AB =∴细线另一端所在位置的点在B 点的下方3个单位的位置,即点的坐标(1,2)-- 故答案为:(1,2)--.【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题十七、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.垂直的定义;同位角相等,两直线平行;∠DBA ;两直线平行,同位角相等;∠DBA ;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB ∥EC ,得∠C =∠DBA ,再证∠D =∠DB解析:垂直的定义;同位角相等,两直线平行;∠DBA ;两直线平行,同位角相等;∠DBA ;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB ∥EC ,得∠C =∠DBA ,再证∠D =∠DBA ,得DF ∥AC ,然后由平行线的性质即可得出结论.【详解】解:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°(垂直的定义),∴DB ∥EC (同位角相等,两直线平行),∴∠C =∠DBA (两直线平行,同位角相等),∵∠C =∠D (已知),∴∠D =∠DBA (等量代换),∴DF ∥AC (内错角相等,两直线平行),∴∠A =∠F (两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA ,两直线平行,同位角相等;∠DBA ,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键. 二十、解答题20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 二十一、解答题21.【分析】先进行估算的范围,确定a ,b 的值,再代入代数式即可解答.【详解】解:∵,∴的整数部分为2,小数部分为,且.∴的整数部分为4.∴,∴.【点睛】本题考查了估算无理数的大小,解析:4±【分析】a,b的值,再代入代数式即可解答.【详解】解:∵23<,∴2,小数部分b2,且475<.∴7a为4.∴(22a b=⨯=,4216∴=±.4【点睛】的范围.二十二、解答题22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=1∠AFE,2即1(18010)132x x ︒-=, 解得:x =5°,∴∠BGH =10x =50°,∵HP ∥AB ,HP ∥CD ,∴∠BGH =∠GHP =50°,∠PHE =∠HED ,∵∠GHE =90°,∴∠PHE =∠GHE ﹣∠GHP =90°﹣50°=40°,∴∠HED =40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.二十四、解答题24.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.二十五、解答题25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.。

部编人教版七年级下册语文期末复习试卷 4套(含答案+解析)

部编人教版七年级下册语文期末复习试卷 4套(含答案+解析)

部编人教版七年级下册语文期末复习试卷11.下列加粗的字注音完全正确的一项是()A.烧灼(zhuó)毡鞋(zhān)炽热(zhì)迟钝(dùn)B.暴涨(zhàng)鲁莽(mǎng)拖拽(zhuài)臆断(yì)C.模拟(nǐ)凛冽(lín)合拢(lǒng)辜负(gū)D.溯流(sù)吞噬(shì)俯瞰(kàn)拍摄(shè)2.下列词语中有错别字的一项是()A.遗孀海市蜃楼毛骨悚然五脏六腑B.羸弱天崖海角耀武扬威千钧重负C.拯救不期而至广阔无垠耐人寻味D.闲暇心有灵犀风餐露宿坚持不懈3.下列加粗成语使用不恰当的一项是()A.路上,一棵棵盘虬卧龙般的大树为我们遮挡了毒辣的太阳。

B.“六一”文艺会演中;小明滑稽的表演让大家忍俊不禁地大笑起来。

C.在沙漠里经历了整整四天的苦苦挣扎之后,他终于发现了一片水源,这对于他来说,真可以说是仙露琼浆啊。

D.不求高官厚禄,但求清正廉洁;不求轰轰烈烈,但求坦坦荡荡。

4.依次填入下面一段文字横线处的语句,衔接最恰当的一组是()要说梅,我最偏爱的是白梅,它冷艳洁白,一尘不染,清香浓郁。

白得超凡脱俗,白得素雅纯净,白得如冰似雪。

_________________①但写梅写得最绝的还是林逋的“疏影横斜水清浅,暗香浮动月黄昏”。

②王冕也在《白梅》中写道:“冰雪林中著此身,不同桃李混芳尘。

忽然一夜清香发,散作乾坤万里春。

”③他的诗中不见一个梅字,却把梅的影子和暗香写得入木三分,写得俏丽可人,引起人们无数的联想。

④卢梅坡曾在《雪梅》中写道:“梅须逊雪三分白,雪却输梅一段香。

”A.③①②④B.④①②③C.④②①③D.②④①③5.诗文名句默写。

(1)可怜夜半虚前席,__________________。

(李商隐《贾生》)(2)__________________,青草池塘处处蛙。

2022-2023学年青岛新版七年级下册数学期末复习试卷(含答案)

2022-2023学年青岛新版七年级下册数学期末复习试卷(含答案)

2022-2023学年青岛新版七年级下册数学期末复习试卷一.选择题(共12小题,满分36分,每小题3分)1.下列四个图形中,∠1与∠2是对顶角的是( )A.B.C.D.2.如图,已知直线a∥b,把三角尺的顶点放在直线b上.若∠1=42°,则∠2的度数为( )A.138°B.132°C.128°D.122°3.方程组的解是( )A.B.C.D.4.如图,在△ABC中,AD⊥BC于点D,点A到直线BC的距离是( )A.线段AC的长B.线段BC的长C.线段AD的长D.线段AB的长5.(﹣3)0+(﹣)﹣2=( )A.9B.C.10D.6.计算(x2)3÷x2的结果是( )A.x3B.x4C.x6D.x87.若m>n>0,则下列代数式的值最大的是( )A.4mn B.m2+4n2C.4m2+n2D.(m﹣n)28.等腰三角形一边长为3,另一边长为6,则其周长是( )A.12B.15C.12或15D.以上答案都不对9.下列说法正确的是( )A.同旁内角互补B.两边长分别为2、4的等腰△ABC周长是8或10C.三角形一外角等于两内角的和D.八边形的外角和是360°10.在以下四点中,哪一点与点(﹣3,4)所连的线段与x轴和y轴都不相交( )A.(﹣5,1)B.(3,﹣3)C.(2,2)D.(﹣2,﹣1)11.如图,△ABC中,点E是BC上的一点,EC=3BE,点D是AC中点,若S△ABC=36,则S△ADF﹣S△BEF的值为( )A.9B.12C.18D.2412.若|a|=5,b2=16,且点M(a,b)在第二象限,则点M的坐标是( )A.(5,4)B.(﹣5,4)C.(﹣5,﹣4)D.(5,﹣4)二.填空题(共5小题,满分15分,每小题3分)13.如图,直线AB与CD相交于点O.(1)若∠AOC= ,则AB⊥CD;(2)若AB⊥CD,则∠AOC的度数是 .14.在平面直角坐标系中,点(m2+1,1)一定在第 象限.15.正八边形的每一个内角是 ,每一个外角是 .16.一个多边形的内角和是四边形的内角和的2倍,并且这个多边形的各个内角都相等,这个多边形每个外角等于 .17.如果∠α的两边与∠β的两边分别平行,且2∠β﹣∠α=30°,则∠α的度数为 .三.解答题(共8小题,满分69分)18.(4分)解方程组:(1);(2).19.(12分)计算:(1)(x﹣2y)2+4y(x﹣y);(2)[(2ab+1)(ab﹣4)﹣(ab+2)(ab﹣2)]÷ab.20.(12分)因式分解:(1)8﹣2x2;(2)2x3y+4x2y2+2xy3.21.(6分)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”22.(8分)填空完成推理过程:如图,已知AE平分∠BAD,CF平分∠BCD,∠BAD=∠BCD,且AE∥CF,求证:AD∥BC.证明:∵AE平分∠BAD,CF平分∠BCD∴∠1=∠BAD,∠2=∠BCD ∵∠BAD=∠BCD∴∠1=∠2∵AE∥CF(已知)∴∠2= ∴∠1= ∴ ∥ .23.(8分)如图,在△ABC中,∠B=50°,∠C=70°,AD是∠BAC的角平分线,AE 是高,求∠EAD的度数.24.(9分)如图所示的直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),(1)求四边形ABCD的面积.(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形有什么变化?如下变化:纵坐标不变,横坐标减2,并所得的图案与原来相比有什么变化?面积又是多少?(不画图直接回答)25.(10分)我们将(a+b)2=a2+2ab+b2进行变形,如:a2+b2=(a+b)2﹣2ab,a2+b2=(a﹣b)2+2ab.请同学们根据以上变形解决下列问题:(1)已知a2+b2=8,(a+b)2=20,则ab= ;(2)若x满足(2023﹣x)2+(x﹣2020)2=2021,求(2023﹣x)(x﹣2020)的值;(3)如图,在长方形ABCD中,AB=10,AD=6,点E、F分别是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,①CF= ,CE= ;(用含x的式子表示)②若长方形CEPF的面积为40,求图中阴影部分的面积和.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:A、∠1的两边不是∠2的两边的反向延长线,不是对顶角,不合题意;B、∠1的两边不是∠2的两边的反向延长线,不是对顶角,不合题意;C、∠1的两边是∠2的两边的反向延长线,是对顶角,符合题意;D、∠1与∠2没有公共顶点,不是对顶角,不合题意;故选:C.2.解:∵∠1=42°,∴∠3=180°﹣∠1﹣90°=180°﹣42°﹣90°=48°,∵a∥b,∴∠2=180°﹣∠3=132°.故选:B.3.解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.故选:A.4.解:根据点到直线的距离定义:点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离,得:点A到直线BC的距离为过A做BC的垂线,即图中的线段AD 的长.故选:C.5.解:(﹣3)0+(﹣)﹣2=1+=1+9=10,故选:C.6.解:(x2)3÷x2=x6÷x2=x4.故选:B.7.解:∵m>n>0,∴设m=2,n=1,将m=2,n=1代入选项A,4nm=4×2×1=8;代入选项B,m2+4n2=22+4×12=8;代入选项C,4m2+n2=4×22+12=17;代入选项D,(m﹣n)2=(2﹣1)2=1;故选:C.8.解:∵如果腰长为3,则3+3=6,不符合三角形三边关系,所以腰长只能为6.∴其周长6+6+3=15.故选:B.9.解:A、直线平行,同旁内角互补,所以选项不符合题意;B、腰是2,底边是4时,2+2=4,不满足三角形的三边关系,因此舍去;当底边是2,腰长是4时,能构成三角形,则其周长=2+4+4=10,所以选项不符合题意;C、角形的一个外角等于与之不相邻的两个内角的和,所以选项不符合题意;D、八边形的外角和为360°,所以选项符合题意.故选:D.10.解:点(﹣3,4)在第二象限,点(﹣5,1)也在第二象限,两点的连接线段与x轴,y轴都不相交.故选:A.11.解:∵S△ABC=36,EC=3BE,点D是AC的中点,∴S△ABE=S△ABC=9,S△ABD=S△ABC=18,∴S△ABD﹣S△ABE=S△ADF﹣S△BEF=18﹣9=9.故选:A.12.解:∵点M(a,b)在第二象限,∴a<0,b>0,又∵|a|=5,b2=16,∴a=﹣5,b=4,∴点M的坐标是(﹣5,4).故选:B.二.填空题(共5小题,满分15分,每小题3分)13.解:(1)若∠AOC=90°,则AB⊥CD,故答案为:90°;(2)若AB⊥CD,则∠AOC的度数是90°,故答案为:90°.14.解:∵m2≥0,∴m2+1≥1,∴点(m2+1,1)一定在第一象限.故答案为:一.15.解:正八形的内角和为:(8﹣2)×180°=1080°,内角:1080°÷8=135°,外角:180°﹣135°=45°.故答案为:135°,45°.16.解:设这个多边形的边数为n,则有(n﹣2)•180°=360°×2,解得n=6.∵这个多边形的每个内角都相等,∴它每个外角的度数为360°÷6=60°.答:这个多边形每个外角等于60°.故答案为:60°.17.解:∵∠α与∠β的两边分别平行,∴∠α=∠β或∠β=180°﹣∠α,∴2∠α﹣∠α=30°或2(180°﹣∠α)﹣∠α=30°,解得∠α=30°或∠α=110°,∴∠α的度数是30°或110°.故答案为:30°或110°.三.解答题(共8小题,满分69分)18.解:(1)由②﹣①×3,得x=5,将x=5代入①,得2×5﹣y=5,∴y=5,∴原方程组的解是:;(2)原方程组可化为,由①×3+②,得16x=10,∴,将代入①,得,∴,故原方程组的解是:.19.解:(1)(x﹣2y)2+4y(x﹣y)=x2﹣4xy+4y2+4xy﹣4y2=x2;(2)[(2ab+1)(ab﹣4)﹣(ab+2)(ab﹣2)]÷ab =(2a2b2﹣8ab+ab﹣4﹣a2b2+4)÷ab=(a2b2﹣7ab)÷ab=ab﹣7.20.解:(1)原式=2(4﹣x2)=2(2﹣x)(2+x);(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2;21.解:设每头牛值x两银子,每只羊值y两银子,依题意得:,解得:,答:每头牛值3两银子,每只羊值2两银子.22.证明:∵AE平分∠BAD,CF平分∠BCD,∴∠1=∠BAD,∠2=∠BCD(角平分线的定义).∵∠BAD=∠BCD,∴∠1=∠2.∵AE∥CF(已知),∴∠2=∠3.∴∠1=∠3.∴AD∥BC.故答案是:(角平分线的定义);∠3;∠3;AD;BC.23.解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是角平分线,∴∠CAD=∠BAC=×60°=30°.∵AE是高,∴∠CAE=90°﹣∠C=90°﹣70°=20°,∴∠EAD=∠CAD﹣∠CAE=30°﹣20°=10°.24.解:(1)四边形ABCD的面积为:×3×6+(6+8)×11+×2×8=94;(2)因为原来四边形ABCD各个顶点纵坐标保持不变,横坐标增加2,就是把四边形ABCD向右平移2个单位,所以,所得的四边形面积不变;当纵坐标不变,横坐标减2,并所得的图案与原来相比形状大小都不变,面积是:94.25.解:(1)∵a2+b2=8,(a+b)2=20,∴==6;故答案为:6.(2)∵[(2023﹣x)+(x﹣2020)]2=(2023﹣x+x﹣2020)2=9,(2023﹣x)2+(x﹣2020)2=2021,∴(2023﹣x)(x﹣2020)==﹣1006,(3)∵AB=10,BC=6,BE=DF=x,∴CF=10﹣x,CE=6﹣x,∴[(10﹣x)﹣(6﹣x)]2=(10﹣x﹣6+x)2=16,∵长方形CEPF的面积为40,∴(10﹣x)(6﹣x)=40,解得x=8+2(舍)x=8﹣2.∴CF=10﹣x=10﹣8+2=2+2,CE=6﹣x=6﹣8+2=2﹣2.故答案为:2+2,2﹣2.∴S阴影=S正方形CFGH+S正方形CEMN=(10﹣x)2+(6﹣x)2=[(10﹣x)﹣(6﹣x)]2+2(10﹣x)(6﹣x)=16+2×40=96.。

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

人教版三年级下册数学期末复习卷(七)含答案

人教版三年级下册数学期末复习卷(七)含答案

人教版三年级下册数学期末复习卷(七)一、填空(共10题;共24分)1.早上,面对太阳升起的地方,你的前面是________,后面是________,左面是________,右面是________.2.26平方分米=________平方厘米;3600平方分米=________平方米.3.在横线上里填上“>”、“<”或“=”。

9.9元________10元 3.6分米________6.3分米0.5米________0.8米4.564÷□,要使商是两位数,□里最小填________;要使商是三位数,□里最大填________.5.一列火车14:40从北京出发,17:45到达石家庄,这列火车行了________小时________分.6.四个小朋友,互通一次电话,一共要通________次电话;如果互发一条短信,一共要发________条短信.7.早上起来,面向太阳,前面是________,后面是________,右面是________,左面是________.8.用0、5、3、7四张数字卡片,可以组成________个没有重复数字的两位数.9.如图是用四个1平方厘米的正方形拼成的图形,它的面积是________平方厘米,它的周长是________厘米.10.小方在18时吃饭,是下午________时,她晚上10时睡觉,用24时记时法表示是________时.二、判断(共3题;共6分)11.晚上7时15分用24时计时法表示是20时15分.)12.0乘以任何数都得0。

()13.上半年和下半年的天数是相等的.()三、选择(共6题;共12分)14.下图的涂色部分可以用0.2表示的是()A. B. C. D .15.进入夏季,学校改为下午3:10上课,在校3小时,放学的时刻是()A. 6:10B. 18:10C. 下午18:1016.下列年份中是闰年的是()A. 1900年B. 2000年C. 2100年 D. 2022年17.在□÷6=32 …○中,余数不可能是()A. 4B. 5C. 718.下面的小数只读一个零的是()A. 20.5B. 2.05C. 20.050D. 2.00519.挖一条长40米的水渠,每天挖8米,如果从7月29日开工,()可以完工.A. 8月1日B. 8月2日C. 8月3日D. 8月4日四、计算.(共3题;共32分)20.直接写出得数.540÷6= 5.6+3.7= 1.4﹣0.8=432÷7≈80×500= 5.30﹣3.05=15×20=687÷9≈505÷5=8+4.7=125×6=322÷4≈21.脱式计算.(1)(601﹣246)÷5 (2)32×21﹣139 (3)960÷6÷8 (4)32×(34﹣19)22.用竖式计算.(带★的题目要验算)①25.9+13.6 ②402÷6 ③22×33④27×58⑤37.2﹣13.5 ⑥★538÷5五、操作题.(共1题;共4分)23.如图是森林公园示意图,小动物们住的位置如图所示.(1)小马住在小猴的________面,小兔住在小猴的________面.(2)小牛住在森林公园的________角.(3)小熊住在小猴的________方向.六、解决问题(共5题;共22分)24.下面是某校三(1)班和(2)班学生的一次数学测试成绩统计表:(1)这次数学成绩在________范围的人数最多;三(1)班在________和________范围的人数最少.(2)如果85分以上为优秀,三(1)班有________人达到优秀,(2)班有________人达到优秀.(3)如果60分以上(含60分)为及格,两个班有________人达到及格.25.星星幼儿园每天运来水果6箱,每箱10千克.照这样计算,2022年二月份共运来水果多少千克?26.幸福小学开展节约用电活动.27.张老师买了3箱图画纸,每箱有6捆,每捆有45张,这些图画纸一共有多少张?28.一列火车从甲地开往乙地,上午8时出发,下午2时到达,甲乙两地相距810千米,这列火车平均每小时可行多少千米?答案解析部分一、填空(共28分)1.【答案】东;西;北;南2.【答案】2600;363.【答案】<;<;<4.【答案】6;55.【答案】3;56.【答案】6;127.【答案】东;西;南;北8.【答案】99.【答案】4;1010.【答案】6;22二、判断(共5分)11.【答案】错误12.【答案】正确13.【答案】错误三、选择(共5分)14.【答案】A15.【答案】B16.【答案】B17.【答案】C18.【答案】B19.【答案】B四、计算.20.【答案】540÷6=90 5.6+3.7=9.3 1.4﹣0.8=0.6 432÷7≈6080×500=40000 5.30﹣3.05=2.25 15×20=300 687÷9≈70 505÷5=101 8+4.7=12.7 125×6=750 322÷4≈80 21.【答案】(1)解:(601﹣246)÷5=355÷5=71(2)解:32×21﹣139=672﹣139=533(3)解:960÷6÷8=160÷8=20(4)解:32×(34﹣19)=32×15=48022.【答案】①25.9+13.6=39.5②402÷6=67③22×33=726④27×58=1566⑤37.2﹣13.5=23.7⑥★538÷5=107 (3)验算:。

2020青岛版数学六年级下册期末复习知识点考试测试卷共七套 附答案

2020青岛版数学六年级下册期末复习知识点考试测试卷共七套 附答案
声的多多少人?
2.一辆汽车油箱内储油99升,行驶了56千米正好耗油8升。照这样计算,剩下的有还可以行驶多少千米?(4分)
3.书店运来一批故事书,第一天卖了 ,第二天卖了30%,第一天比第二天多卖60本,书店运来的这批故事书一个有多少本?(4分)
4.一个近似于圆锥形状的野营帐篷,它的底面半径是3米,高是2.4米,帐篷里的空间有多大?(4分)
4.85×3 -3.6+6.15×3 55×66÷(11×11) 7.63×9.9+0.763
3. 求未知数。(6分)
4X-7×1.3=9.9 4X-25%X=18.75 : = 1 :X
五、动手我能行。(9分)
1. 画出图A的另一半,使它成
为一个轴对称图形。
2. 画出图B向右平移6个格。
3. 把图C绕O点顺时针旋转90°。
3.一个圆柱,它的高增加1CM,它的侧面积就增加9.42平方厘米。这个圆柱的底面半径是( )。
A.3CM B.1.5CM C.1CM
4.一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱高的3倍,圆锥的体积是45立方分米,圆柱的体积是( )立方分米。
A.135 B.45 C.15
5.如果甲数的20%等于乙数的80%(甲乙两数均不为0),那么甲数与乙数的比为( )。
五、略。
六、1、 42÷6=7米,(7-1.5)×6÷2=16.5平方米;
七、1、(1)200×(1-25%-30%-10%-15%)=40(人);(2)200×(15%-10%)=10(人);
2、 56÷8=7(千米),7×(99-8)=637(千米);
3、 60÷( -30%)=60÷20%=300(本);
4: =1:200
=800
800厘米=8米

2024-2025学年第一学期甘肃省武威第二十七中学九年级语文部编版期末复习卷(含答案)

2024-2025学年第一学期甘肃省武威第二十七中学九年级语文部编版期末复习卷(含答案)

2024-2025学年第一学期甘肃省武威第二十七中学九年级语文部编版期末复习卷一、单选题(共36分)阅读下面的诗歌选段,回答问题。

那轻,那pīng tíng,你是,鲜妍/百花的冠冕你带着,你是/天真,庄严,你是夜夜的月圆。

雪化后那片鹅黄,你像;新鲜/初放芽的绿,你是;喜悦/水光浮动着你梦期待中白莲。

你是一树一树的花开,是燕/在粱间ní nán,——你是爱,是暖,/是希望,你是人间的四月天!1.(4分)根据拼音写汉字或给加点字注音。

pīng tíng ní nán 鲜妍 柔嫩 2.(4分)选段中有两个错别字,请找出来并改正。

改为 改为 3.(1分)请写出选段中破折号的作用。

4.(3分)下列各组词语中,加点字的注音不完全正确的一项是( )A.慰藉(jiè)海峡(xiá)相机调控(xiàng)锐不可当(dāng)B.卖弄(nong)坟墓(fén)外溢效应(yì)一气呵成(hē)C.栅栏(zhà)哺育(fǔ)重足而立(chóng)心无旁骛(wù)D.骸骨(hái)一枚(méi)给水系统(jǐ)参差不齐(cēn)5.(3分)依次填入下面横线处的词语,最恰当的一项是( )“腹有诗书气自华”,儒雅之人,能把传统文化中的诗词、典故、格言,巧妙运用于自己所要表达的意思当中,素养之________,情感之细腻,爱心之________,听者为之动心,为之魂牵,________让美好的情愫绵延不绝,让感动的涟漪缓缓扩散,________被看作是有文化、有修养的表现。

A.深沉深厚不但而是B.深厚深沉不仅还C.深厚深沉不但而是D.深沉深厚不仅还6.(3分)下列加下划线成语使用不正确的一项是( )A.小王的男中音和老张的手风琴的伴奏相得益彰,极富艺术感染力。

B.他们两人的关系一直亲如兄弟,难怪人们说他们两人间不容发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上语文期末复习题一文学、文化、文体常识填空参考答案1、儒道释(佛)儒家道家墨家法家2、夷吾《管子》3、道家《道德经》周《南华经》《秋水》4、丘仲尼儒家《论语》仁5、轲儒家亚圣《四书》义民贵性善6、武《孙子兵法》7、法8、子长纪传体本纪世家列传书评论9、介甫半山北宋临川荆国公王文公中国十一世纪时的改革家10、子瞻东坡苏洵苏辙《黄州快哉亭记》黄庭坚《登快阁》念奴娇·赤壁怀古11、宋代诗余长短句词牌小令小令慢柳永李清照苏轼辛弃疾12、耆卿柳七柳屯田凡有井饮处《八声甘州》13、少游淮海黄庭坚14、美成清真词中老杜15、易安《潄玉词》易安体16、小令套曲四折科正末女主角末本旦本17、《窦娥冤》马致远白朴《赵氏孤儿》郑光祖白朴马致远《牡丹亭》《桃花扇》洪昇18、已斋叟《窦娥冤》19、东篱《汉宫秋》20、希孟曲调曲牌21、实甫《长亭送别》崔莺莺牵线搭桥或中间媒介22、《呐喊》《彷徨》《朝花夕拾》《野草》23、舒庆春舍予《骆驼祥子》《茶馆》24、英《哈姆雷特》《威尼斯商人》等意大利《神曲》文艺复兴印度《吉檀迦利》《飞鸟集》《园丁集》等日本《雪国》《古都》《伊豆的舞女》等美《老人与海》《战地钟声》《永别了武器》等25、经、史、子、集高二上语文期末复习题三参考答案一、阅读下文,完成1—13题1、贾平凹《浮躁》、《秦腔》、《废都》等书信体散文2、B3、书给作者的苦难少年以精神慰藉4、①带妹妹在偏僻处玩耍时的读书情景(读书)②以劳动作交换借书阅读(借书)③将姨家的书偷带回家被当作贼而蒙羞(偷书)5、A6、①忌妒(贬义)②羡慕(“眼红”贬义褒用)7、①赞成。

要点:A、作者亲身经历,B、意在劝勉小妹,C、人性的弱点——富则图安逸。

②反对。

要点:把读书与富裕截然对立,水火不容,既然道理上在失片面,所论也就不合事理。

(将来生活普遍富裕了,难道就没有人读书了吗?)③辩证观点,既有合理性,又有不合理之处。

8、意义条件①位卑未敢忘忧国②安贫乐道③爱惜光阴9、即是有针对性地读书,反复地品味。

(例):小时读《红楼梦》也许因为里面的谜语很有意思;然后,发现里面有许多诱人的食品;再大一点,为其中的爱情故事所吸引;再后来,才渐渐品味出内中深厚的思想内蕴。

10、①读书万万不能狭窄②读书不要忘了精读③要知其长晓其短,师精神而皮毛弃11、A、“虚无主义可笑,但全然跪倒来读,他可以使你得益,也可能使你受损,永远在他的屁股后了。

” B、不要永远俯倒在别人的脚下,要有所超越,敢于摆脱权威的束缚,这一点很重要,要好好记住。

12、有钱却叫穷13、起到呼应的作用。

首先,文章开篇写“七月十七日,是你十八生日”点题,结尾以“小妹生日”与开头呼应,同时照应标题。

其次,以生动的生活细节再现深切的手足之情,从情感上与前文照应。

二、阅读下文,完成1-15题1、《白莽作<孩儿塔>序》鲁迅《为了忘却的记念》租界2、一切所谓圆熟简练,静穆幽远之作3、乍暖还寒的阴冷的雨夜来渲染(烘托)作者凄凉惆怅的心情,情景交融。

4、C5、兄弟二人走的人生道路不同,但都被国民党政府关押。

6、外貌语言坚定、乐观7、①呼应上文所说的“我简直不懂诗,也没有诗人的朋友”,似乎不敢评价。

②因为当时黑暗的时局,国民党政府实行的血腥政策。

8、收存亡友的遗文的焦灼迫切的心情形象地表达了对白莽和《孩儿塔》的赞赏之情,高度肯定了思想价值和爱憎分明的诗歌风格具有新思想,代表着未来和希望,具有极大的鼓动力量9、①微光、曙光:曙光是阳光已经显露,在太阳云层之间;微光是天空刚刚显露亮点,所以微光更能符合作者当时所处的黑暗时代。

②响箭、利箭:利箭是视觉所见,而响箭是听觉感受;作者将视觉转化为听觉,更能使读者感受到革命力量的惊心动魄。

10、我的记忆上,早又蒙上许多新鲜的血迹11、相同。

具体指共产党领导的无产阶级革命世界。

12、C(不仅仅是自谦,更是暗示环境的严酷,作者不能自由地表达心志。

)13、B、E14、对亡友白莽的深切怀念,对其诗集意义的展望和对革命者未来的信心。

15、作者因身患重病、春寒雨冷、感时伤怀而惆怅,又因一封来信回忆起年轻战友(包括白莽)不断惨遭杀害而更加惆怅,也因白色恐怖下不能详加评析白莽的诗稿而更加惆怅。

高二上语文期末复习题四参考答案阅读下文,完成1-12题1、子长纪传体本纪世家列传书评论2、因为作者在本文中主要强调的是太史公文章笔法的“奇气”使她产生了强烈共鸣,着眼点在后者,是从文学而不是史学的角度来加以评论的。

(所以只引后一句“无韵之离骚”作为本文的标题)3、王昌龄不教胡马渡阴山别有幽愁暗恨生白居易4、“通篇没有雕琢的形容词,也极少激昂慷慨的议论”,(没有“庄子的汪洋恣肆一泻千里,战国纵横家的辩才和词锋,苏东坡的豪放潇洒”和“六朝文章的华丽铺陈”,)而感觉叙事平淡。

作者经历了“四人帮”横行的特殊历史时代,对司马迁的遭遇更有了一种感同身受的共鸣,真正感受到那强压在字里行间的满腔悲愤之情。

5、衬托司马迁的《史记》有着真正的“奇气”。

6、使读者不知不觉跟着作者去爱、去恨,是其所是,非其所非7、A“爱”的是像李广那样的身先士卒、大智大勇、廉洁朴实、 B“恨”的是像汉家天子那样的刻薄寡恩、残酷无情、像书笔吏那样的为虎作伥、像卫青那样的挟怀私心8、简练、含蓄①以简练的文字囊括时空②生动地刻画了众多人物③以含蓄笔法表达了深沉的感情④以省略来表达对汉武帝的怨怼⑤把当朝开国皇帝的败将写成英雄9、①句中“冷冷”一词是指太史公克制、含蓄的笔法。

“冷”具体表现在:太史公的原句只叙述李广“赎为庶人”的经过,没有任何激昂慷慨的议论,但从这“貌似平淡的叙事之中”让人感受到“极大的感染力”,感受到太史公的愤激不平。

②因为太史公为一个颇有争议的失败者、而且是当朝开国皇帝手下败将立传,还冠以“本纪”,把他抬高到和当朝开国皇帝并列的地位。

“再”表达了作者对太史公“不阿世,不迎俗,不以成败论英雄,不以荣辱定是非”的旷世气魄、无私胸怀的钦佩之情,同时也表达了对中国历史上少有像太史公这样的人物的感慨之情。

10、两处引文是说李广受到的不公平待遇和悲惨的结局,引用的意图是让读者从太史公的表述中得到更真实的感受,也更能为李广身世叹息,给读者以强烈的震撼,从而在“克制、含蓄”叙述中体会太史公笔法的“奇气”。

11、本义:桃李树不招引人,但因其花艳丽,其果甘美,人们争相前往观赏品尝,树下自然走出路来。

后来比喻:人只要真诚、忠实,就能感动别人。

A:指李广身经百战、屡立奇功、身先士卒而廉洁朴实、不事张扬的品质,深受士兵、百姓的爱戴和怀念。

B:指司马迁以克制、含蓄的笔法实录历史,给读者以极大的感染力,开创了中国“正史”的先河,为后人所传颂,对后世产生了深远影响。

12、赞同:这样修改后,更简练。

不赞同:司马迁在这段话中连用四个“石”字正是为了说明李广射入的不是虎而是“石”,这样写更符合当时的情景,《史记》的文章不仅仅是为了简练的记录(历史),而且为摹写更传神(文学)。

(王若虚只是从语言的角度去修改,修改后,虽然更简练了,却没有感染力了。

)高二上语文期中复习题五参考答案一、阅读下文(《秋水》),完成1—10题1、周道南华经2、望洋兴叹贻笑大方(大方之家、方家)3、①掉转、转变、改变②曾经③危险④束缚、限制、局限⑤被、受⑥什么⑦通“萃”,聚集、汇聚⑧推辞、拒绝4、D5、C6、①(于是)在这个时候,河伯高兴极了,认为天下美好的东西全都在自己身上。

②俗语有这样的说法,‘听到了不少的道理,便认为天下再没有谁能比得上自己’的,说的就是我这样的人了。

②我会永远被有学识的人耻笑。

7、先扬后抑、欲抑先扬8、地域/空间时代/时间教育9、参考:虽然河伯身上有着沾沾自喜的虚荣心,骄傲自满,但他的知错能改、不放弃前进、学习的精神,却显得更加可贵。

他东行来到北海这件事本身,就证明了他不管在成功与否之时,没有停止过探索。

也正是在这样的探索中,他才明白了山外有山,人外有人。

(认为何伯“狂妄无知”者,不得分)10、“感悟”略。

道理如——①宇宙无限,人的认识有限。

②齐生死,齐物我。

③事物大小是相对的。

④山外有山,天外有天,人贵有自知明。

⑤知耻近于勇。

⑥谦受益,满招损。

⑦克服主观主义,防止主观片面。

⑧自大由于无知。

⑨有比较才有鉴别。

……二、阅读下文,完成1-12题1、子瞻东坡苏洵苏辙《黄州快哉亭记》黄庭坚《登快阁》念奴娇·赤壁怀古2、纵一苇之所如,凌万顷之茫然渺沧海之一粟渔樵于江渚之上,侣鱼虾而友糜鹿羡长江之无穷则天地曾不能一瞬则物于我皆无尽也3、十六曹操《短歌行》4、①同“凭”,乘着②使……哭泣③当、正当④满、充满⑤最终、终于⑥依靠5、C(A①表被动;②在。

B①的;②取消主谓句独立性。

D①句中助词表停顿或想当于代词“那”;②发语词,表议论)6、D7、①如果不是我应当拥有的东西,即使是一丝一毫也不占取。

②这是大自然的无穷宝藏。

8、人生无常(须臾、短暂)“变”与“不变”9、与自然相比,人生既渺小又短暂(沧海浩大,人生渺小,江月无穷,人生短暂)10、本文第①段的语言以整句为主,整散结合。

四字或六字的整句成对出现(有的还是对偶句),使人读来音韵和谐,其间又穿插少量散句,使节奏富于变化。

整散结合,使全段文字充满音乐感,有回环往复之妙。

11、情感变化(乐—悲—喜)表达他对人生乐观旷达的情怀12、参考:作者在本文中由泛舟赤壁起笔,写描写了水色天光、清风明月之景,借此抒发了欢愉之情。

然后由“扣舷而歌”,引出“悲”。

通过客陈述“悲”的原因,过渡到主客问答,展开说理,对宇宙(具体的象征物是水和月)、人生的消长进行理性的思考。

最后又由理回到情和景。

全篇文章,写景使哲理呈现生动可感的形象,议论使景物具有精妙的哲理内蕴,而抒情又成了文章的内在脉络,三者相映成趣,相得益彰,浑然一体。

三、阅读下文,完成1-9题1、介甫半山北宋临川荆国公王文公中国十一世纪时的改革家《答司马谏议书》、《伤仲永》等2、①将要②大概③……之后责怪④能够那⑤收获⑥帮助⑦谁、哪一个人⑧尽⑨的原因3、①筑舍定居,名词作动词②命名,名词作动词③从侧面,名词作状语④深度,形容词作名词走到尽头,形容词作动词⑤看到的(景象),动词作名词⑥到达的地方,动词作名词⑦照亮,形容词作动词⑧艰险、遥远的地方,形容词作名词⑨弄错,形容词作动词流传的文字,动词作名词4、①那。

代词,指代慧褒禅筑舍的地方②它。

代词,代仆碑③自己。

代词,称代作者④他们。

代词,指代“古之人”⑤相当于“难道”。

语气副词,表反问5、①现在将“华”读为“华实”的“华”,大概是(因字同而产生的)读音上的错误。

②对此我有所感慨。

③尽了自己的主观努力而未能达到,便可以无所悔恨,难道谁还能讥笑他吗?④我对于那座倒地的石碑,又感叹古代刻写的文献未能存留,后世讹传而无人弄清其真相的事,哪能说得完呢?⑤这就是学者不可不深入思考而谨慎地援用资料的缘故。

相关文档
最新文档