【精品】土工格栅设计度的确定

【精品】土工格栅设计度的确定
【精品】土工格栅设计度的确定

【关键字】精品

土工格栅加筋设计强度的确定

张庆明

(湖北力特土工材料有限公司总工程师)

摘要:目前很多设计人员在采用土工格栅做加筋陡坡和加筋挡土墙设计时,由于专业局限,对如何较准确地确定土工格栅的设计强度这一问题感到棘手。本文从高分子材料的特性和土工应用要求两方面,介绍了土工格栅的质控强度、蠕变强度以及在应用过程中强度的折减等的试验方法,通过这些方法最后确定不同材质的土工格栅的设计强度。本文中还对不同材质的土工格栅的应用给出了建议。

关键词:质控抗拉强度蠕变强度加筋推导折减系数

概述

目前在市面上我们能看到应用的土工格栅,从材料的不同主要有聚酯(PET)、高密度聚乙烯(HDPE)、聚丙烯(PP)和玻璃纤维等几种(由于玻璃纤维的拉伸变形量很小,一般小于3%,显示刚性,不适于允许一定变形的柔性结构的加筋土工程,故本文后面不涉及此种材料的土工格栅);从加工方法的不同主要有挤板-冲孔-拉伸型、挤出平网拉伸型、纤维织带经编型、以及挤出条带焊接型等四种。

刚开始很多设计人员在采用土工格栅做加筋陡坡和加筋挡土墙设计时,普遍对选择何种材质、何种加工方式的土工格栅没有概念,当然在进行设计安全性验算时,对采用的设计强度如何转化为材料的质控要求更感棘手。所以大部分情况下,就是参照国外相关资料和一些厂家提供的质控强度指标进行折算,具体折算是否合理并不清楚,所以这时大家对材料的质控强度和断裂伸长率很重视(因为很多设计人员就是用这个强度指标的折算,来进行设计安全性验算的)。随着大家对土工格栅在土体中的作用机理认识的加深,土工格栅在恒定荷载下的蠕变性能逐步引起大家的重视。在对同种质控抗拉强度的不同材质、不同加工方式的土工格栅分别进行蠕变尝试后,发现不同的格栅显示不同的尝试结果,所以又开始对土工格栅在一定的应变要求范围内、一定的温度下、在一定长的时间内所能承受的恒定荷载的蠕变强度高度重视,因为蠕变强度比质控抗拉强度更直观地体现了土工格栅的实际使用要求。但蠕变尝试只是考虑了长期负载时格栅强度的衰减,而实际使用过程中施工、填料、环境等也会对格栅的强度产生影响,所以,实际使用填料的施工破坏、土壤酸碱度的影响、土壤微生物的影响、土工格栅连接件的影响等,也必须考虑。考虑了这些因素以后,最终才能确定我们的设计强度,然后用这个设计强度来进行加筋结构体设计,设计是否安全也是用这个设计强度来验算,看其内部稳定、外部稳定及总体安全系数是否满足要求,来确保加筋结构体的安全。

本文将逐一对与土工格栅加筋设计强度相关的因素进行阐述,并提出笔者的一些看法。

质控抗拉强度

质控抗拉强度就是土工格栅在生产制造时用于控制产品质量的强度指标,也就是材料试样在一定的温度环境下,快速拉伸时的屈服强度。该强度值一般用于生产制造、或选购材料时,判断产品是否合格。所以,生产厂家对每种产品一般会提供一个标准值(T标),而产品在实际检验时,会有一个实测的最大(极限)抗拉强度(Tult)。目前国内厂家的标准要求是实测Tult必须≥T标;而国外厂家(Tensar、Tenax等)的标准要求是实测Tult 针对T标的置信度为95%,意即实测Tult100个样,最多允许有5个样不满足T标要求。

由于目前常见的加筋材料大部分是高分子合成材料(HDPE、PP、PET等),而高分

子合成材料对试验条件,如温度、拉伸速率(拉伸应变率)等特别敏感,所以在选购材料时,采用相同试验方法(同等试验条件)来优选产品就非常重要。

目前,典型的用于土工格栅质控抗拉强度尝试的尝试方法主要有:国际标准ISO10319 - 1996;美国ASTM D6637 - 01;美国GRI – GG1 - 87;中国国家标准GB/T17689-1999等(见表一)。由于这四个标准对试验温度、试验拉伸速率、和试样检测宽度要求不一样,而这三个试验条件对高分子合成材料的影响又很大,故用不同方法,测出的结果将会有很大出入,所以首先应该统一尝试方法。

10±3%/min;

** 我国目前用于加筋的土工格栅的两个节距一般在90mm ~ 500mm之间,所以其拉伸速率在10% ~ 56%/min之间。

从高分子材料本身的特性来说,一般试验环境的温度越低,测出的强度越高,拉伸变形量越小;而试验拉伸速率越小,测出的拉伸强度越小,拉伸变形量越大;另外,试样宽度的不同,影响也不一样,试样越宽,测出的强度越大,拉伸变形量越小。从我们在实际工作中测量的数据分析来看,一般温度差距在5℃范围内,测出强度值变化在2%以内,如果差距达到10℃,则测出强度值变化会超过10%;一般拉伸速率在20%/min和50%/min 时测出的结果,其变化值也在5%以上;试样宽度200mm(相当于10根筋)尝试比单根筋尝试,强度值一般增加6% ~ 10%,变形量小20%左右。如果这三种条件同时变化,其累积变化值将更大。这也是我国目前由于在土工格栅的生产、采购过程中,由于采用技术水平的不一样,未采用统一的尝试标准,而导致在产品质量验收过程中,经常产生合同纠纷的原因。

从表一可以看出,GRI—GG1和GB/T17689的试验条件变数多一些,这也是为什么美国在2001年前用GRI—GG1标准,而之后用ASTM D6637代替的原因,而欧洲普遍采用ISO10319标准。因此,在我国要想在统一的标准基础上,研究讨论材料的质控强度指标,必须尽快修改GB/T17689 – 1996,以力争做到既与国际标准同步,亦统一认识、避免误区的产生。

蠕变强度

我们都知道,土工格栅在实际加筋应用中,所受到的作用力并不是逐渐加大的快速拉伸作用力,而是一个相对变化很小、近似恒定的长期作用力。那么土工格栅在这种力的作用下,随着时间的推移,其表现出的抗拉强度值,是否与我们在快速拉伸试验时所表现出的强度值(质控抗拉强度值)一致呢?对高分子合成材料而言,答案是否定的,而且不同材质所表现出的结果有很大的不同。那这种不同,我们能通过试验得出其与质控抗拉强度

的大致相关关系吗?答案是肯定的,前提条件是材质、配方、加工方法、工艺条件等影响产品性能的相关因素都不发生变化时,是可以找到这种大致相互关系。这样材料的蠕变试验就提出来了。

蠕变试验就是将土工格栅在某一特定温度下,在要求的变形量范围内,尝试其承受某恒定荷载所能持续的时间;然后通过对三种以上荷载的试验结果,来推导在某一长期时间内,在要求的变形量范围内,其能承受的恒定荷载,这个荷载就是我们所说的蠕变强度。目前被普遍采用的土工格栅蠕变试验方法主要有:国际标准ISO13431 – 1999、美国ASTM D5262 –97和英国标准BS6909:Part5:1991等(见表二),尝试方法基本差不多,不像尝试质控抗拉强度的标准那样,存在很多影响结果的变化因素。

一般只要求同一个厂家生产的至少一种同材质、同配方、同加工工艺的产品(“三同”产品)第一次蠕变试验(40%Tult荷载以下的试验)的时间要做足10,000小时,而后该生产厂家的本种产品及该产品的“三同”系列产品只要做足1,000小时即可。

蠕变试验的结果只是一个试验报告,报告产生的是在一相对较短(针对应用而言)时间内在几种荷载下的产品随时间的应变图和具体数据,并不是我们设计时所需要的120年或50年以后产品变形量不超过10%的蠕变强度。如何得到这个蠕变强度,就要借助一定的数理方法进行推导。目前,各种标准没有规定用什么具体的推导方法,所以各生产厂家和研究部门都各自采用自己认为较合理的方法,至于谁的推导更精确,不是本文要阐述的内容。目前用得比较多的推导方法如下:

1、根据蠕变试验得出的以时间对数为横坐标的时间—应变关系图,分别做出在四种

荷载时,1h,10h,100h,1000h,以及10000h的等时曲线图,即横坐标为应变,纵坐标为荷载(取Tult的%数);

2、根据各时段四种荷载的应变所连成的曲线,等时推导出5个时间段应变为10%时

的荷载值;图一为某产品在恒温20℃时的四个时段的推导曲线;

3、读取各时间段10%应变值时的荷载值,做荷载—时间对数对应曲线,根据趋势推

导出我们所要求时间段的承受荷载水平,这个荷载水平就是我们设计时所要求时

间段的蠕变强度。如果我们希望推导的数据要更精确,除做不同荷载蠕变试验外,还应做恒定高温加速蠕变试验,这种试验的成本就相对高多了。图二为某产品在

20℃环境下的荷载—时间对数推导曲线;

从上述推导结果,可以得到:如果某产品RS50HDPE的实测Tult= 52.5kN/m,则其在120年时的蠕变强度为:52.5KkN/m×40.02%= 21kN/m。如果用蠕变折减系数(fc)来表示的话,fc= 52.5/21= 2.5。

图一:RS50HDPE在20℃环境下的等时曲线图

图二:RS50HDPE在20℃环境下1,000,000h的蠕变强度推导图值得说明的是,我们通过蠕变试验得出的蠕变强度,如想简化为Tult的蠕变折减系数来推广使用的话,必须建立在产品为同材质、同配方、同加工工艺的基础上,因为到目前为止所做的实际蠕变试验结果显示,“三不同”产品的蠕变结果相差很大,而“三同”产品的结果非常接近。美国联邦公路局曾主持做过HDPE、PP两种挤板冲孔拉伸格栅和PET编织格栅的蠕变联合试验,其结果建议见表三。从表三我们可以看出,相对而言HDPE、PET 材质的格栅的长期蠕变衰减较小,而PP材质的长期蠕变衰减较大,这个结果跟我们已做过的蠕变试验结果类似。所以,仅从蠕变的角度考虑,建议做长期使用的加筋结构体,最好用PET和HDPE材质的,而只有临时加筋结构体方可考虑PP材质的。

土工格栅在实际加筋应用过程中,除了考虑蠕变的衰减以外,不同生产过程的影响、不同的环境、填料、施工过程中的机械损伤、连接件引起的连接强度衰减等都要考虑,一般用折减系数来表达。目前,设计必须考虑的折减系数有四个,生产稳定性可信度(fm)、在不同填料里使用时的施工损伤(fd)、环境-酸碱-微生物影响(fe)、连接强度的影响(fj)。

fm—与生产厂家的技术水平和对产品质量控制的能力有关,一般如果生产厂家对其产品的质控抗拉强度符合性的控制,能达到3σ以上水平,同时有实实在在的完善的ISO9000质量保证体系,则fm可取1.0;否则取1.05~1.10。

fd—主要与填料的颗粒大小有关,不同的填料在压实过程中,对土工格栅的伤害不一样,而同种填料用不同的格栅,格栅的强度损失也不一样。具体每种格栅对应不同填料的折减系数,一般要通过试验得出。试验方法也很简单,就是将格栅在现场按要求埋设并压实后,然后再挖出格栅,进行质控抗拉强度的对比尝试(埋设前和埋设后的),两个结果值相除即得该折减系数。表四为英国Tensar公司在取得BBA认证时,试验得出的该折减系数推荐值。

响越小,所以低强度的薄格栅在大粒径的填料中使用,强度衰减非常明显,这也是为什么在有些应用时,对填料有严格要求的原因之一。而对于纤维经编型格栅,由于纤维比板、条带更易受到伤害,所以其折减系数更大,更应避免在有大粒径填料的场合使用。

fe—主要与格栅产品的材质有关,从目前土工格栅所用的三种主要材料来说,HDPE、

PP对任何土体中的酸、碱、微生物呈惰性,此折减系数可取1.0;而PET对酸、碱、微生物都会发生一定程度的化学降解,随着PET的不断改性,这些影响也在逐步变小。表五为美国某公司PET经编格栅的fe推荐值。从表中可以看出,对于土壤9<pH值<3的场合,不推荐使用PET格栅,当然,这类土壤在实际应用中,是很难碰到的。

裹覆式无面板加筋挡土墙都有一个连接问题。对于无面板挡墙而言,其反包连接件处的强度必须大于90%的质控抗拉强度;而对有面板加筋挡土墙而言,格栅预制在面板里或嵌固在拼装面板里,其与混凝土结合处强度会在施工过程中受到一定影响,由于预制和拼装面板的形式很多,所以一般都是在现场进行简单试验后得出具体折减系数,另外格栅与格栅的连接与无面板加筋挡土墙一样有1.1折减。因此,综合考虑,一般无面板挡墙的fj取1.10~1.15,有面板挡墙的fj取1.15~1.25。

土工格栅加筋设计强度的确定

阐述到这里,我们很容易得出土工格栅加筋设计强度的计算公式:

(1)

式中:Td —设计强度kN/m

Tc —蠕变强度kN/m

在Tult的尝试方法(标准)与Tc的尝试方法(标准)及推导方法相一致时,对于“三同”产品,我们有如下公式:

(2)

式中:Tult —实测质控抗拉强度kN/m

fc —蠕变折减系数

在此需要说明的是,公式(2)只有“三同”产品才可以套用,而且质控抗拉强度的检测方法也必须和蠕变试验方法相对应,如不对应,也是不能套用的。目前,国外利用此公式的对应标准是:ISO10319 – 1996与ISO13431 – 1999相对应;ASTM D6637 – 01与ASTM D5262 – 97相对应;在采用标准对应的基础上,我们可得到公式(3):

(3)

所以,只要我们进行了必要的试验,根据公式(3),计算土工格栅的加筋设计强度就非常容易了。

例:如果我们现有三种土工格栅,即HDPE、PP挤板拉伸格栅和PET纤维经编格栅,假如按ISO10319 – 1996测得三种格栅的T ult均为52.5kN/m,同时按ISO13431 – 1999试验并推导120年的蠕变折减系数为表二值,生产厂家都是高水准的取得ISO9001 – 2000版认证的企业,那么我们将其用在填料粒径小于37.5mm、土壤pH为5的无面板加筋挡土墙中的设计强度分别为多少呢?表六可以清楚地给出答案。从表六可以看出,如果我们的设计人员,只是简单的要求加筋格栅的质控抗拉强度多少,延伸率多少,我们的材料采购员会至少买回我们举例的三种土工格栅,而这三种土工格栅对结构体所起到的加筋作用可能

会是天壤之别。

表六:计算土工格栅加筋设计强度示例

1、我们在用土工格栅做加筋设计时,首先要对厂家提供的产品的材质、配方、加工

方式、加工工艺一定要有一个初步了解,对厂家提供的各种强度指标,除了看重

指标以外,更要注意所采用的测试方法。

2、我国应尽快统一测试标准,尤其是快速拉伸试验方法与蠕变测试方法的相互对应,

同时也要尽量与国际标准接轨。

3、由于目前土工格栅采用的蠕变试验都是在无约束的情况下做出的,并不能真实表

现格栅在土体结构里的蠕变状态,有很多国内外专家指出,土工格栅在有约束情

况下的蠕变要大大小于无约束状态,由此认为目前的设计强度过于保守,但目前

仍未见具体的实体试验验证,因此,这项工作我们有待进一步研究。

4、随着科学技术的不断进步,新材料或改性材料会不断涌现,本文涉及的一些材料

不排除改性的可能,如有厂家号称有改进,设计人员应要求厂家提供足够的试验

验证材料,否则,不要盲目采用。

5、除土工格栅以外,还有其它加筋材料,譬如加筋带、编织土工布、土工格室等,

其加筋设计强度的确定,可以借用本文的方法分别进行试验、推导。如要进行相

互间的对比分析,切记采用试验标准的统一性。

参考文献

[1]Tensar RE Geogrids for Reinforced Soil Retaining Wall and Bridge Abutment Systems. BBA Roads and Bridges Agreement Certificate No99/R109, 1999

[2]Tenax Geogrid Soil Reinforcement and Stabilisation System. Technical Agreement Certificate N. 580/02, 2002

[3]Specification for Mechanically Stabilized Earth Slope Retention System. Tensar Earth Technologies Inc, 2002

[4]ISO13431-1999 Geotextiles and geotextile-related products – Determination of tensile creep and rupture behaviour.

[5]ISO10319-1996 Geotextile—Wide-width tensile test.

[6]ASTM D5262-97 Standard Test Method for Evaluating the Unconfined Tension Creep Behavior of Geosynthetics.

[7]ASTM D6637-01 Standard Test Method for Determining Tensile Properties of Geosynthetics by the Single or Multi-Rib Tensile Method.

[8]GRI GG1-87 Standard Test Method for Geogrid Rib Tensile Strength.

[9]GB/T17689-1999 土工合成材料塑料土工格栅

[10]王钊主编. 国外土工合成材料的应用研究[M]. 香港: 现代知识出版社, 2002.

[11]李广信、王育人土工合成材料的联合测试结果初探. 第一届全国土工合成材料测试技术研讨会论文集, 2001 [12]The Design of Reinforced Soil Structures using Tensar Geogrids. Netlon Limited, 1996

[13]Wrigley,N E, Durability and long-term performance of Tensar polymer grids for soil reinforcement, Materials Science and Technology,V ol3, 1987

此文档是由网络收集并进行重新排版整理.word可编辑版本!

土工格栅施工技术方案

第一章编制说明 r编制依据 2、编制原则 第二章工程概况 r主要技术标准 2.工程概况、主要工程项目及数量 第三章施工总体安排 r施工便道 2.材料准备 3.施工技术准备 4、施工任务划分 5.人员配备 6.施工工期 第五章施工工艺-施工方法及注意事项 1、土工格柳方法槪述 2、土工格柵施工工艺 3.土工格栅施工方法 4.土工格栅施工注意事项第六章施工质 量要求 10

第一章编制说明 《公路工程施工安全技术规范》JTGF90-2015: (20)结合我项U 实际情况,现有机械设备、施工能力及同类工程施工经验 和机械化作业水平。 1、土工格柳材料要求 10 2. 土工格栅施工过程质g 控制 10 3、土工格棚质量要求 11 第七章施工安全要求 12 第八章雨季施工措施 13 第九章环保.文明施工措施 13 r 环境保护措施 13 2.文明施工措施 15 1、编制依据 (1) 《公路工程质量检验评定标准》JTG F80/1-2004; (2) 《公路路基施工技术规范》JTG F10-2006; 《公路路基设计规范》JTG D30-2015; (4) 《公路土工合成材料应用技术规范》JTG/T D32-2012; 《公路土工合成材料试验规程》JTG E5Q-2006; (6) 重庆九龙坡至永川高速公路(成渝高速公路扩能)两阶段施工图设计 文件; (7) 《重庆市高速公路施工标准化指南》(试行); (9)

2.编制原则 (1)符合国家有关工程建设法律、法规和技术标准,符合行业有关规范、 规程、规定,符合招标文件和工程合同文件中的相关要求与规定。 (2)按照合同要求和工程条件,优化配置生产要素,充分利用企业及社会 现有设备资源,合理安排施工进度。 <3)从技术、经济、安全、质量、工期、社会效应等方面开展多方案比选, 按综合且最有效方案编制防护工程施工方案。 (4)贯彻“因地制宜、就地取材、永临结合”的原则,充分利用当地资源, 有效利用永久征地,减少临时用地,凡有条件利用的主体工程内容,均优先安排施工和使用。 (5)根据项目施工特点、地质、水文、气象、人文环境制定针对性的环境 保护、水上保持和文物保护措施。 第二章工程概况 1、主要技术标准 双向钢塑土工格栅极限抗拉强度>50KN/m, 2%伸长率时的抗拉强度M 20KN/m,极限伸长率W3%,连接点极限分离力不小于300N。开孔尺寸不大于200*200mmo 2、工程概况、主要工程项目及数量 我分部是頃庆九龙坡至永川高速公路(成渝高速公路扩能)YJ2合同段,起讫桩号为K6+120-K11+160,全长5.04公里。主线及来凤互通高填深挖路基、陡坡路堤、桥头路基处理及填挖交界处采用路基铺设土工格栅。因此我分部将 ZK7+636-ZK7+650段路基作为土工格栅工程。 表2-1主要工程量

土工格栅施工方法

施工方法 开挖基床,设置砂垫层(高差不大于10cm),碾压成平台,铺设格栅,纵轴向应与主要受力方向一致,纵向搭接15-20cm,横向10cm,搭接处用塑料带绑扎,并在铺设的格栅上,每隔1.5-2m用U型钉固定于地面,铺设的土工格栅应及时回填土料,铺设的土工格栅层数视技术要求。 土工格栅的施工工艺要求 土工格栅的铺筑面应较为平整,铺筑层经验收合格后,为防纵向歪斜现象,先按幅宽在铺筑层划出白线或挂线,即可开始铺筑,然后用铁钉固定格栅的端部(每米宽用钉8根,均匀距离固定)。 固定好格栅端部后,用铺筑机将格栅缓缓向前拉铺,每铺10米长进行人工拉紧和调直一次,直至一卷格栅铺完,再铺下一卷,操作同前。 铺完一卷后用6T-10T的压路机从起始点开始向前进方向碾压一遍即可。(如铺筑在中面层上和找平层上,用钢辊压路机为宜;如格栅直接铺在混凝土路面上,用胶辊压路机为宜。) 接铺:以卷长为单位作为铺设的段长,在应铺格栅的段长铺满以后,再整体检查一次铺筑质量,然后接着铺筑下一段。下一段铺筑时,

格栅与格栅可以用10-15CM的搭接长度,并用铁钉或木楔固定后继续向前进方向铺第二段。依次类推,操作要求同前。 一、土工网、土工格栅 A.在公路上主要用于软地基处理、路基增强、边坡防护、桥台加固、翼墙、挡土墙、隔离以及夹筋土工程等。 (1)在公路软地基中铺设土工网或土工格栅,可提高路基承载能力,延长使用寿命,防止路面裂痕; (2)在公路边坡上铺设土工网,可防止滑坡,并可保持水土,美化环境; (3)在公路桥台地基中铺设土工网或土工格栅,可提高承载能力,稳固桥台,防止桥梁出现裂纹,并可避免跳车; (4)用土工网或土工格栅作夹筋土翼墙,面板薄,基础尺寸小,可大量节省土石方,降低成本; (5)在公路挡墙中使用土工网或土工格栅,可提高挡墙承载能力,防止滑坡,并可大量节省土石方,大幅度缩减施工周期,降低工程造价; (6)土工网或土工格栅用作路面增强,可以分散载荷,有效防止路面裂纹; B.在铁路上使用土工网或土工格栅可避免软土地基上的铁路过早地产生沉降和破坏 (1)在铁路路基中铺设土工网或土工格栅,使它们与路面材料形成刚性较大的地基,可有效分配荷载,防止路基变形,提高其稳定性;

土工格栅施工方案

土工格栅施工方案 一、工程概况 全长5.774Km,其中路基长度2.553Km。全线需铺设土工隔栅的陡坡路堤处理1处;填挖交界处理17处。铺设96区范围内。共需铺设铺设土工隔栅32261.3m2。 二、主要安排 根据设计施工桩号本项工程作业一、二、三队均有。本项工程现场负责人: 三、施工方法 1、土工格栅工作机理: 土工格栅的抗拉强度大,可增加路堤的稳定性;格栅网眼的存在制约了土的横向移动,形成了良好的嵌锁作用,使土体具有较好的整体抗剪能力;土工格栅有一定的刚度使上面的负荷得到扩散,提高了地基的承载力。 2、土工格栅的要求: 土工格栅采用双向拉伸(GSL)土工格栅,极限抗拉强度不小于80KN/m,断裂延伸率≤5%;土工格栅网孔尺寸为30mm×40mm,肋条截面为矩形。

3、铺设准备工作: 1.1 地基处理:首先对下层进行整平、碾压,要求平整度不大于15㎜,压实度达到设计要求,表面严禁有碎石、块石等坚硬凸出物。如路堤有其他配套处置措施(普夯、冲击碾压等),则需完成这些措施并整平压实后再进行土工隔栅施工。 1.2 铺设环境:室外气温5℃以上,风力4级以下,无雨、雪。(环境或特殊要求除外)。 4、土工格栅的铺设 4.1、底层土工格栅铺设 用竹桩(或木桩)标示出土工格栅铺设的范围,然后进行铺设。铺设要求:土工格栅平整、顺直;隔栅的纵横向接缝可采用尼龙绳或涤纶先缝接或U型钉连接使隔栅连成整体,隔栅相互搭接不小于 20cm。 土工格栅铺设完成后,应及时(48小时内)进行路基填土。每层填筑应按“先两边,后中间”的原则对此填筑,严禁先填中部。填料不允许直接卸在土工隔栅上,必须卸在摊铺完毕的土面上。一切机械不得直接在铺好的土工隔栅上行走。 4.2、上层土工格栅铺设 土方填筑碾压合格后,铺设上层土工格栅,铺设要求及连接方式与底层土工格栅铺设要求相同,只是宽度应与填土层顶宽一致。上层土工格栅铺设完成后,应尽快在其上再填筑一层土,以防被破坏或丢失。该层土方严格按照路基土方填筑厚度和碾压要求进行填筑,松铺

土工合成材料-宽条拉伸试验

土工合成材料-宽条拉伸试验方法 单项选择题(共10 题) 1、土工合成材料宽条拉伸试验方法中湿态试样在取出()min内完成测试。 (A) ?A,3 ?B,4 ?C,5 ?D,6 答题结果: 正确答案:A 2、《土工合成材料宽条拉伸试验方法》(GB/T 15788-2017)标准实施日期 是()。 (D) ?A,43098 ?B,43101 ?C,43221 ?D,43282 答题结果: 正确答案:D 3、土工合成材料宽条拉伸试验方法中抗拉强度的单位:()。 (A) ?A,kN/m ?B,MPa ?C,N ?D,N/m 答题结果: 正确答案:A 4、测定土工织物拉伸性能的试验是()。 (A)

?A,宽条拉伸试验 ?B,窄条拉伸试验 ?C,条带拉伸试验 ?D,接头/接缝宽条拉伸 答题结果: 正确答案:A 5、对于单向土工格栅的宽条拉伸试验,每个试样的宽度不小于(),并具有 足够长度满足夹钳隔距不小于100mm。 (D) ?A,100mm ?B,150mm ?C,300mm ?D,200mm 答题结果: 正确答案:D 6、土工合成材料宽条拉伸试验要求每组有效试样()块。 (B) ?A,3 ?B,5 ?C,6 ?D,10 答题结果: 正确答案:B 7、对于伸长率超过5%的土工合成材料,设定试验机的拉伸速率,使试样的 伸长速率为隔距长度的()%/min。 (D) ?A,10±2 ?B,20±2 ?C,10±1 ?D,20±5 答题结果:

正确答案:D 8、预负荷伸长是在相当于()最大负荷的外加负荷下所测的隔距长度(mm) 的增加值。 (B) ?A,2% ?B,1% ?C,3% ?D,4% 答题结果: 正确答案:B 9、土工合成材料宽条拉伸试验用引伸计的测试精度应为显示器读数的()。 (B) ?A,±1% ?B,±2% ?C,±4% ?D,±6% 答题结果: 正确答案:B 10、土工合成材料宽条拉伸试验方法中用于进行湿态试验的样品应浸入温度为 ()的水中,浸泡时间应至少(),且足以使试样完全润湿,即在浸泡更长的时间后最大负荷或伸长率无显著差异。 (B) ?A,(20±5)℃,12h ?B,(20±2)℃,24h ?C,(20±2)℃,12h ?D,(20±5)℃,24h 答题结果: 正确答案:B 多项选择题(共4 题)

土工格栅施工方法及工艺

土工格栅施工方法及工艺 土工格栅施工要点 1、施工场地:要求压实平整、呈水平状、清除尖刺突起物。 2、格栅铺设:在平整压实的场地上,安装铺设的格栅其主要受力方向(纵向)应垂直于路堤轴线方向,铺设要平整,无皱折,尽量张紧。用插钉及土石压重固定,铺设的格栅主要受力方向最好是通长无接头,幅与幅之间的连接可以人工绑扎搭接,搭接宽度不小于10cm。如设置的格栅在两层以上,层与层之间应错缝。大面积铺设后,要整体调整其平直度。当填盖一层土后,未碾压前,应再次用人工或机具张紧格栅,力度要均匀,使格栅在土中为绷直受力状态。 3、填料的选择:填料应按设计要求选取。实践证明,除冻结土、沼泽土、生活垃圾、白垩土、硅藻土外均可用做填料。但砾类土和砂类土力学性能稳定,受含水量影响很小,宜优先选用。填料粒径不得大于15cm,并注意控制填料级配,以保证压实重量。 4、填料的摊铺和压实:当格栅铺设定位后,应及时填土覆盖,裸露时间不得超48小时,亦可采取边铺设边回填的流水作业法。先在两端摊铺填料,将格栅固定,再向中部推进。碾压的顺序是先两侧后中间。碾压时压轮不能直接与筋材接触,未压实的加筋体一般不允许车辆在上面行驶,以免筋材错位。分层压实度为20-30cm。压实度必须达到设计要求,这也是加筋土工程的成败关键。 5、防排水措施:在加筋土工程中,一定要作好墙体内外的排水处理;要做好护脚,防冲刷;在土体内要设置滤、排水措施,必要时,应设置土工布、透水管(或盲沟)。采取疏导的方式排水,不能堵塞,否则产生隐患。

土工格栅施工工艺 (1)首先精确放出路基边坡线,为了保证路基宽度,每侧各加宽0.5m,把晾晒好的基底土进行整平后用25T振动压路机静压两遍,再用50T震压四遍,不平整的地方人工配合整平。 (2)铺垫0.3m厚的中(粗)砂,人工配合机械整平后,25T的振动压路机静压两遍。 (3)铺设土工格栅,土工格栅铺设时底面应平整、密实,一般应平铺,拉直、不得重叠,不得卷曲、扭结,相邻的两幅土工格栅需搭接0.2m,并沿路基横向对土工格栅搭接部分每隔1米用8号铁丝进行穿插连接,并在铺设的格栅上,每隔1.5-2m用U型钉固定于地面。 (4)第一层土工格栅铺好后,开始填设第二层0.2m厚的中(粗)砂,其方法:汽车运砂到工地卸于路基一侧,而后用推土机向前赶推,先把路基两侧2米范围内填筑0.1m后,把第一层土工格栅折翻上来再填上0.1米的中(粗)砂,禁止两侧向中间填筑和推进,禁止各种机械在没有填筑中(粗)砂的土工格栅上通行作业,这样能保证土工格栅平整,不起鼓,不起皱,待第二层中(粗)砂平整后,要进行水平测量,防止填筑厚度不均匀,待抄平无误后用25T振动压路机静压两遍。 (5)第二层土工格栅施工方法同第一层方法一样,最后再填筑0.3m的中(粗)砂,填筑方法同第一层一样,用25T压路机静压两遍后,这样路基基底加固就处理完毕。 (6)在第三层中(粗)砂碾压好后,沿线路纵向在边坡两侧各铺设土工格栅两幅,搭接0.16m,并用同样方法连接好,然后开始土方施工作业,铺设土工格栅进行边坡防护,必须每层测量出铺设的边线,每侧要保证边坡整修后土工格栅埋于边坡内0.10m。 (7)边坡土工格栅每填筑两层土,即厚度0.8m时就需两侧同时铺设一层土工格栅,然后以此类推,直至铺到路肩表面土下。

土工格栅施工工艺

土工格栅施工工艺 1、为了减少填挖交界处的差异沉降,对纵横向填挖交界处的地基进行处理。对填挖交界处挖方路床(80cm)进行超挖回填碾压,并在上路堤顶面和底面设置土工格栅,填方部分路 堤除严格按照《路基填料设计图》中的技术要求处理外,其基底上下路堤压实度相应提高1%,即清表处理后地基为91%,下路堤为94%,上路堤为95%,交界面开挖不小于2米宽 台阶,并设置向内2%横坡。纵向填挖交界处填方一端进行强夯处理,处理范围为2倍填 土高度,对挖方一端10米范围进行超挖回填夯实,并在超挖回填的顶部和底部设置土工格栅,界面两侧不小于5米,对填方部分基底采用换填80厘米8%灰土垫层进行处治。2、 填挖交界处理施工方法及要点 ⑴清除表土:将填方、挖方路段表层不小于30㎝种植土、草皮土、树根和含有腐圬物质 的土清出,集中堆放于弃土场。 ⑵测量放样:按批复的导线点、水准点恢复线路中线,钉出中、边桩,并将边桩外引至用 地红线桩处加以固定,用水准仪测量并计算放出纵、横向下路堤顶、上路堤顶填挖交界线(下层,上层土工格栅中心线),钉桩撒线标记,边线外设桩固定。 ⑶挖台阶:填前碾压前半填半挖沿路线纵向,填方段与挖方段交界沿横向用推土机或挖掘 机开挖宽度不小于2m的台阶,台阶设2%-4%向内倾斜的横坡。 ⑷填前碾压:用≥18T的振动压路机进行碾压,碾压时对交界面(包括台阶)多压两遍, 压实度检测不低于91%。 ⑸80厘米厚8%灰土垫层施工:施工要点同高路堤8%灰土垫层相同。只是压实度检测不 得低于94%。 ⑹填方路基施工:填方路基施工填料与施工方法与3%掺灰路基施工相同。只是压实度检 测不得低于95%。⑺土工格栅铺设 ①底层土工格栅铺设:路基填筑至下路堤顶后,开挖填挖交界挖方段台阶时,开挖宽度不 小于7m,台阶面碾压压实度不小于91%,交界面碾压成型后,人工对土工格栅铺设面进行 清理干净,土工格栅以钉桩标记的交界线为轴线,纵、横向全断面铺设,铺设土工格栅应 均匀、平整,不使其出现扭曲、折皱、重叠,并要注意避免过量拉伸从而避免超过其强度 和变形的极限而产生破坏或撕裂、局部顶破等。 ②上层土工格栅铺设:上层土工格栅铺设位置为上路堤顶面。3%灰土填方路基填筑至上 路堤顶后,与路床处理底标高平齐,人工整理格栅铺设面,铺设方法与底层格栅铺设相同。 ③中间层土工格栅铺设:中间层土工格栅铺设于上路堤填筑层中,上路堤填筑分三层施工,下层填筑层填筑完成后,整理碾压土工格栅铺设面,其摊铺宽度伸入挖方段5m,土工格栅铺设方法底层铺设相同。八土工格栅铺设质量控制要点 ①路基纵向填挖交界处的土工格栅沿路基横向铺设,铺设长度为沿路基横断面方向铺至填 方边坡外30㎝处,待边坡修整时将露出部分剪去。路基横向填挖交界处的土工格栅沿路基纵向铺设,铺设长度为超出半填半挖路基断面30㎝处。②土工格栅,其性能参数均符合 国标的相应要求。 ③两幅土工格栅之间的搭接宽度为30cm,搭接部分采用聚乙烯绳呈“之”字形穿绑。并 采用U型钉将土工格栅固在土中并张紧,间距为1.5m*1.5m。 ④在铺设完成的土工格栅上继续填筑路基时,将拌合好的填料推摊时,应先提铲高推将土 工格栅全部覆盖后再按松铺厚度推摊,辅以人工检清硬质块料,以防土工格栅扭曲、移位。 土工格栅施工工艺 土工格栅施工工艺流程:检测、清理下承层→人工铺设土工格栅→搭接、绑扎、固定→摊

土工格栅

二秦高速公路康保至沽源段(K27+800-K62+200) 首件土工格栅施工技术方案 编制:_____________ 复核:_____________ 审批:_____________ 龙建路桥股份有限公司二秦L3项目部 二〇一五年八月

一、编制依据 1、二连浩特至秦皇岛高速公路康保(冀蒙界)至沽源(张承高速)段第L3标段两阶段施工图设计; 2、《公路工程质量检验评定标准》(JTGF80/1-2004); 3、《公路路基施工技术规范》(JTGF10—2006); 二、工程概况 1、工程简介 本项目位于河北省康保县境内,利用已建成的二十顷村至张油坊段作为本路段的左半幅,旧路右侧新建13m宽作为高速公路右幅并与旧路衔接成为整体,全长34.4KM。二秦高速公路采用设计速度100km/h,双向四车道高速公路标准。共设置桥梁10座,涵洞51座,通道24座,路基填方171万方,挖方28万方。 段为右侧拼宽路基,填方最大填筑深度10米,根据设计图纸,对该段路基路床范围内设置双层双向拉伸土工格栅。 2、段落选择 根据设计图纸要求,铺设段落K0+570-K0+610,全长40米。该段路基为右侧拼宽路基,填方为石方填筑,填方近期将填至设计铺设高程。该段路基设计格栅铺设长度40m,宽度8m,能在短期内完成施工,对后续施工有较好的指导作用。 3、施工进度计划 该铺设路段准备安排路基队施工,计划开工时间为2014年4月22日,完成时间为2014年4月42日。。 三、施工工艺及方法 1、施工准备 1.1技术准备 开工之前,测量人员已仔细复核施工段落的施工放样数据,为施工奠定基础。在项目部总工程师的组织下,集中项目部有关技术人员已仔细审阅图纸。项目总工向技术人员和施工班组交底,组织技术人员熟悉施工技术规范,质量检验评定标准和有关安全、环保、文明施工等文件。

土工格栅施工方案

北京师范大学江津附属学校(一期)工程 土工格栅加筋地基 施工方案 审批: 审核: 编制: 重庆市海昆实业有限公司 北京师范大学江津附属学校工程项目部 二0一五年五月

目录 一、工程概况 (1) 二、土工格栅加筋地基处理技术要求 (2) 三、土工格栅施工方案 (2) 四、施工进度安排及人员设备配置 (5) 五、工期控制措施 (7) 六、质量控制措施 (7) 七、安全措施 (9) 八、环保控制措施 (9) 九、其他注意事项 (10) 十、土工格栅加筋地基平面图 (10) 附:土方格栅加筋地基施工进度计划

一、工程概况 北京师范大学江津附属学校位于重庆市江津区北部滨江新城(德感片区),该项目总用地面积233358.24 m2,总建筑面积268271.9m 2。工程重要等级为一级,工程建设范围主要在填方区内,填方区厚度一般在20~30m之间,局部达40m,填土松散,地基从下至上采用强夯地基+压实回填地基+土工格栅加筋土地基处理,经过处理后,建筑基础采用筏板基础或柱下条形基础,以土工格栅加筋土地基及压实回填土地基作持力层,处理后的强夯地基作为下卧层,并采用增加上部建筑的整体刚度措施确保工程质量安全。 该项目一期建筑面积126090.32 m2,由1#幼儿园,2#、3#小学教学楼、4#小学宿舍、5#食堂、6#综合楼、车库以及集会广场等组成。其中: 1#幼儿园建筑面积9912.44m2,层数4层,建筑高度17.7m,筏板基础,框架结构;地基处理方式:强夯+压实回填+3层1m厚土工格栅加筋地基; 2#小学教学楼建筑面积:12774.86m2,层数:4F/吊1F,建筑高度:22.5m,筏板基础,框架结构;地基处理方式:强夯+压实回填+3层1m厚土工格栅加筋地基; 3#小学教学楼建筑面积:12909.4m2,层数:4F/吊1F,建筑高度:22.5m,筏板基础,框架结构;地基处理方式:强夯+压实回填+3层1m厚土工格栅加筋地基; 4#小学宿舍建筑面积:27415.88m2,层数6F,建筑高度21m,筏板基础,框架结构;地基处理方式:强夯+压实回填+3层1m厚土工格栅加筋地基; 5#小学食堂建筑面积:13337.63m2,层数4F/吊1F,建筑高度19.2m,采用桩基础,框架结构;地基采用天然地基; 6#综合楼建筑面积:36230.19m2,层数8层,建筑高度37.8m,筏板基础,框架结构;地基处理方式:强夯+压实回填+4层1.3m厚土工格栅加筋地基; 车库建筑面积:12754.53m2,层数-1F,柱下条形基础,框架结构;地基处理方式:强夯+压实回填+2层0.7m厚土工格栅加筋地基; 风雨操场建筑面积:755.39m2。地基处理方式:强夯+压实回填+2层0.7m厚土工格栅加筋地基; 二、土工格栅加筋地基处理技术要求

土工格栅施工方法

三、施工方法 1、土工格栅工作机理: 土工格栅得抗拉强度大,可增加路堤得稳定性;格栅网眼得存在制约了土得横向移动,形成了良好得嵌锁作用,使土体具有较好得整体抗剪能力;土工格栅有一定得刚度使上面得负荷得到扩散,提高了地基得承载力。 2、土工格栅得要求: 土工格栅采用双向拉伸(GSL)土工格栅,极限抗拉强度不小于80KN/m,断裂延伸率≤5%;土工格栅网孔尺寸为30mm×40mm,肋条截面为矩形。 3、铺设准备工作: 1、1 地基处理:首先对下层进行整平、碾压,要求平整度不大于15㎜,压实度达到设计要求,表面严禁有碎石、块石等坚硬凸出物。如路堤有其她配套处置措施(普夯、冲击碾压等),则需完成这些措施并整平压实后再进行土工隔栅施工。 1、2 铺设环境:室外气温5℃以上,风力4级以下,无雨、雪。(环境或特殊要求除外)。 4、土工格栅得铺设 4、1、底层土工格栅铺设 用竹桩(或木桩)标示出土工格栅铺设得范围,然后进行铺设. 铺设要求:土工格栅平整、顺直;隔栅得纵横向接缝可采用尼龙绳或

涤纶先缝接或U型钉连接使隔栅连成整体,隔栅相互搭接不小于20cm. 土工格栅铺设完成后,应及时(48小时内)进行路基填土。每层填筑应按“先两边,后中间"得原则对此填筑,严禁先填中部。填料不允许直接卸在土工隔栅上,必须卸在摊铺完毕得土面上。一切机械不得直接在铺好得土工隔栅上行走. 4、2、上层土工格栅铺设 土方填筑碾压合格后,铺设上层土工格栅,铺设要求及连接方式与底层土工格栅铺设要求相同,只就是宽度应与填土层顶宽一致。上层土工格栅铺设完成后,应尽快在其上再填筑一层土,以防被破坏或丢失。该层土方严格按照路基土方填筑厚度与碾压要求进行填筑,松铺厚度不应超过30cm,施工工艺、施工方法按路基土方填筑方案进行施工. 4、3、质量要求 6、施工注意事项 6、1、应使格栅最大强度方向与受最大应力方向一致。 6、2、应尽量避免重车直接在铺好得土工格栅上行驶。 6、3、尽量减少土工格栅得切割量与缝合量,避免浪费. 6、4、寒冷季节施工时,土工格栅变硬,易割手擦膝,要注意

土工格栅方案

大海则煤矿进场道路(路面)工程二标段 土工格栅 (K28+539-K28+559段及波纹管涵顶面路基) 专 项 施 工 方 案 陕西建工机械施工集团有限公司 大海则煤矿进场道路(路面)工程二标段项目部 2017.07.30

土工格栅施工方案 一、编制依据 1.《公路工程技术标准》(JTB01-2003); 2.《公路路基施工技术规范》(JTGF10-2006)。 二、工程概况 中煤陕西榆林能源化工有限公司大海则煤矿进场道路(路面)工程(二标段)主线起点位于陕西省榆林市巴拉素镇榆横矿区大海则煤矿,大海则煤矿位于榆林榆阳区,道路为新建沙漠公路。道路起点接巴拉素镇东侧的榆补公路,其中一般公路(K0+000-K27+700):路基宽度12m,路面宽度11.4m,市政路段(K27+700-K28+559.282):路基宽度36.0m,其中两侧人行道宽度2×3.0m,非机动车道2×4.0m,行车道双向四车道4×3.5m,两侧硬路肩2×1.25m,两侧路缘带2×0.5m,绿化带2×2.0m 其中起点K0+000至K21+660段北向与大海则煤矿铁路专用线并行,K21+660至终点K28+559.282段西折到达终点大海则煤矿副井工业场地的东侧大门,道路沿线地貌均为固定,半固定的沙丘,路线长度为28.559公里,本标段工程内容为本道路起点K8+000至终点K28+559.282段。 三、土工格栅铺设原因 1、涵洞顶面路基铺设土工格栅原因 由于村民强烈要求在K21+928处﹑K25+365处﹑K25+660处﹑K26+460处﹑K27+160处﹑K27+950处增加波纹管涵。因为在原有路基上进行基坑开挖施工后,基坑周围路基稳定性遭到破坏,而且原有路床填料为风积沙,在开挖过程中塌方现象比较严重,实际基坑边坡坡率在1:1.5至1:2之间,导致实际开挖宽度远远大于设计开挖宽度,这样势必会造成涵洞施工周边一定范围内的路基产生不均匀沉降现象,从而对路面结构层的稳定性产生严重影响,造成路面开裂现象。为了防止开裂现象发生,在水泥稳定碎石底基层施工前,在涵洞顶面路基上铺设土工格栅,从而增加路基的稳定性。 2、K28+359-K28+559段铺设土工格栅原因

土工格栅施工方案

土工格栅施工技术方案 一、工程概况 本标段起点桩号为RK154+270,终点桩号为RK161+600,全段位于灵宝市境内,长7.33公里,采用单侧加宽方式设计。标段内多为湿陷性黄土,湿陷等级一般为II~III 级,局部为I~II级,地形起伏较大、沟壑遍布,填挖交错。根据图纸设计,使用铺设土工格栅的方式减少路基不均匀沉降。 二、主要工程数量表 根据图纸设计要求,土工格栅主要用于路基填挖交界处、特殊地基处理、涵洞通道基底,详细工程量见下表。 三、总体安排 1、投入机械设备 见下一页《投入机械设备一览表》 2、投入本工程的人员 工程负责人:王刚技术负责人:李家亮

安全负责人:李魏红施工负责人:王江峰 质检负责人:宋顺利试验负责人:郭兵 测量负责人:卢明广保通负责人:王庆宏 机械负责人:张学民协调负责人:杨晓 另配备劳务工人95人 四、土工格栅施工工艺 施工流程:施工准备→施工放样→铺设土工格栅→搭接、绑扎、固定→摊铺上层路基土→碾压→检测 1、施工准备 土工格栅应提前进场,经过试验检验合格后方可用于现场施工。尽量选用幅宽较宽的产品,减少搭接、方便施工。 铺设前应先将场地清理干净,清除养生膜、浮土、突出的硬物等,保证下承面的平整,要求平整度不大于15mm。使用压路机对工作面进行稳压,施工死角使用人工夯实。 对铺设区域进行准确放样,并报请监理检验合格后方可进入下一道工序。为防纵向歪斜现象,先按幅宽在铺设层划出白线或挂线。

铺设环境:室外气温5℃以上,风力4级以下,无雨、雪。(环境或特殊要求除外) 2、施工放样 使用仪器精确放样,并使用白灰撒出参考线。 3、铺设土工格栅 将土工格栅运至铺设起始位置,参照参考线进行铺设,其实位置用插钉及土石压重固定,然后用人工方法将格栅缓缓向前拉铺,每铺10米长进行人工调直一次,直至一卷格栅铺完,再铺下一卷。铺设时应拉直、平顺,紧贴下承层,不得出现扭曲、褶皱、重叠,并要注意避免过量拉伸从而避免超过其强度和变形的极限而产生破坏或撕裂、局部顶破等操作同前。大面积铺设后,要整体调整其平直度。铺设应平铺,拉直、不得重叠,不得卷曲、扭结。 接铺:以卷长为单位作为铺设的段长,应铺格栅的段长内铺满以后,再整体检查一次铺设质量,然后接着铺设下一段,下一段铺设时,格栅与格栅应按照规范要求进行搭接,然后使用8号铁丝呈“之”字形穿绑固定后继续向前进方向铺第二段。 如果土工格栅为双层,则上、下层接缝应错开,错开长度应大于500mm。 4、搭接、绑扎、固定 铺筑坡度,包括纵向和横向,应与路面平行搭接处用铁丝呈“之”字形穿绑,搭接宽度应满足规范要求。 使用U形钢筋锚钉进行锚固,间距1m,呈正方形布设。锚钉采用φ8钢筋弯制而成,尺寸为宽10cm,锚固深度不小于20cm。 土工格栅铺设完成后首先进行自检,其质量要求见下表:

土工格栅施工方案 (修复的)

土工格栅施工方案 一、编制依据 1、本工程的招标文件、补遗书; 2、现行施工技术规范; ⑴、《公路路基施工技术规范》(JTG F10—2006) ⑵、《公路工程质量检验评定标准》(土建工程) (JTG F80/1—2004) ⑶、《公路土工合成材料应用技术规范》(JTJ/T019-98) 3、本合同施工设计图纸及技术交底; 4、自然地理及气候特征,施工现场实地踏勘调查资料。 二、工程概况及土工格栅施工范围 青临高速公路第八标段,起止桩号为K57+200-K67+750,长10.55 km。为防止路基的不均匀沉降,按照设计图纸,所有横向地面坡度陡于1:5的填挖交界处,及全部纵向填挖交界处均需要埋设土工格栅。土工格栅每个段落共需要铺设两层,第一层铺设于路床顶面下1.5m处,第二层铺设于路床顶面。半填半挖段落的挖方侧应在路槽下超挖80cm后再回填,以减小路基横向不均匀沉降。纵向填挖交界处应向挖方侧超挖150cm深,不小于10m过渡段后为超挖80cm再回填。我标段根据实际地形核实了需铺设土工格栅的具体段落和面积,详见土工格栅数量表。 三、施工准备: 1、技术准备 ⑴、由项目总工组织工程技术人员对《规范》和图纸进行了学习,并进行了施工技术交底。由专职安全工程师组织参建人员对施工安全规程进行了学习,并进行了安全技术交底。 ⑵、对施工管理人员及机械操作手进行了上岗前的岗位培训,保证人人掌握施工工艺、操作方法,特殊工种做到持证上岗。对劳务队全体人员进行进场前安全、文明施工及管理宣传、动员。 ⑶、测量人员根据设计单位提供的导线点坐标位置及水准点高程,进行了复测,符合测量精度要求,并已批复。 ⑷、认真了解该处地质情况及周围环境情况,明确其具体位置和深(高)度。 ⑸、施工便道已贯通,并达到晴雨通车的条件。

土工格栅施工方法

土工格栅施工方法 一、玻璃纤维土工格栅的层位 (1)路面面层 a.对新建沥青混凝土道路路面,玻纤格栅可置于半刚性基层与下封层之间,也可置于下封层与沥青面之间。 b.对新建水泥混凝土道路路面,玻纤格栅应置于半刚性基层与刚性水泥混凝土封层之间。 c. 对旧沥青路面维修,可采用喷油法,锚固法,自粘法,在原路面上铺设玻纤格栅。也可在原路面上做20mm-30mm细粒式沥青混凝土找平层,再铺设玻纤格栅,然后加铺沥青混凝土面层,厚度宜为60-100mm。 d.对旧水泥路面维修,可采用自粘法与喷油法,在原路面上铺设玻纤格栅,也可在原路面上做20mm-30mm 细粒式沥青混凝土找平层,再铺设玻纤格栅,然后加铺沥青混凝土面层,厚度宜为60-100mm。 e.新建路面面层均可采用锚固法,自粘法进行施工。 玻纤土工格栅 路面施工示意图

(2)基础层 基础层采用玻纤格栅,铺设位置宜放在基础层的底部,采用锚固法施工。 (3)下层路基层 a.玻纤格栅必须放在下层基础层较低的1/3处。 b.亦可放在下层路基层底部,玻纤格栅下面至少放20mm厚的砂垫层或铺设土工布。 c. 采用锚固法施工.

(玻纤土工格栅路基施工示意图)

2)对加筋路面的要求 玻璃纤维土工格栅加筋混凝土路面。其路面应符合下列要求: (1)纵向平整度,横向路拱的坡度与平顺性均应符合设计标准,若达不到标准,应在加铺之前作处理。

(2)加铺前对路面承载能力进行平定,若承载能力不足,达不到标准,或水泥混凝土路面有板底脱空现象,均应作增强处理。水泥混凝土路面的接逢与裂缝应事先清理,填充。 (3)原有路面及基层表面有局部松散,抗洞及扩散型裂缝,应事先修补,填充,以保持表面完好。 (4)原有路面表面应冲洗干净,清除尘土。松散颗料及杂物。 (二)玻璃纤维土工格栅沥青路面层施工方法 (1)锚固法 不带自粘胶的玻璃纤维土工格栅增强沥青混凝土路面和防止路面与路面反射裂缝,可采用锚固法施工,但宜先铺设玻纤土工格栅,再洒布热沥青作粘曾油,施工人员必须戴手套,施工方法如下: a.粘层油选用AH-70或AH-90重油热沥青,粘层油的规格及质量应符合《公路沥青路面施工技术规范》JTJ032-94,采用专用车辆喷洒。粘层油每平方米用量约0.4kg-0.6kg。 b.铺设玻璃纤维土工格栅时,应保持铺设平顺,拉紧,横向搭接长度宜为50-100mm,纵向搭接长度宜为150-200mm,并根据摊铺方向,将后一端压在前一端之下。 c.用胶轮压路机碾压。 d. 50×50×0.3mm的固定铁皮,要求平整不翘角,周边宜倒角处理,2英寸钢钉(优质水泥钉) e 钉子固定法铺设玻纤土工格栅时,先将一端用固定铁皮和钉子固定在已洒布粘层沥青的下层结构上,钉子可用锤击或射枪射入。再将格栅纵向拉紧时玻纤横向均处于挺直张紧状态。 f.钉子固定时,格栅搭接距离为:纵向接头搭接距离不小于15cm,横向搭接距离不小于5cm。纵向搭接应根据沥青摊铺方向将前一幅置于后一幅之上。 . g.固定时不能将钉子钉玻纤上,也不能用锤子直接敲击玻纤。固定后如发现钉子断裂或铁皮松动,则需予重新固定。 h.为防止施工车辆的轮胎将玻纤格栅和粘油粘起来。和沥青混凝土摊铺机机轮打滑的现象,应在粘层油表面撒石屑,石屑用量为3m3/1000m2-5m3/1000m2。 i.大气温度低于10摄氏度或路面潮湿时不得施工。 j.沥青面层施工方法与普通沥青路面面层施工方法一致,但应注意施工车辆不得在玻纤格栅表面表面急转弯,急刹车。 (2)自粘式玻璃纤维土工格栅直铺法 自粘式玻璃纤维土工格栅是我集团的专利产品,其施工方法便捷,质量稳定。施工方法如下: a.对旧沥青混凝路面和旧水泥混凝路面,做20mm-30mm厚的调平层,使用真空车或洒水车保证路表面清洁干净。 b.喷洒AH-70或AH-90重油热沥青,用量宜为0.3kg-0.4kg/m2。 c.采用我集团提供的专用摊铺车,铺设自粘式玻纤格栅,铺设应平顺,拉紧。 d.横向搭接长度宜为50mm-100mm,纵向搭接长度宜为150mm-200mm,搭接重叠方向与沥青混凝土摊铺机运行的方向一致。 e.使用胶轮压路机碾压(胶轮压路机需有洒水装置)。 f.罩面。 (三)玻璃纤维土工格栅增强基础及下层路基层施工方法 玻璃纤维土工格栅增强基础层及下层路基层均采用锚固法施工具体条款同路面层锚固法施工方法 基本相同,但不需喷洒粘层油,铺设要求压实,平整,符合相关设计规范。

土工格栅指导书

土工格栅作业指导书 1 适用范围 本作业指导书适用于渝黔铁路扩能改造工程土工格栅施工。适用于非硬质岩填料填筑且路堤边坡高度H≥6m边坡加固、与既有线并行帮宽地段H≥3m的边坡加固。 2 作业准备 2.1技术准备 1 阅读、审核施工图纸。澄清有关技术问题,制定施工安全保证措施,提出应急预案。 2 熟悉规范、技术标准和施工工艺。 3 制定施工安全保证措施,对施工人员进行技术交底,对参加施工人员进行上岗前技术培训,考核合格后持证上岗。 2.2现场准备 1 保证人员、设备进场,路通、电通、信息通,场地需平整完成。 2 现有料场内临时道路通往料场、施工现场,交通方便,且距离近,能满足施工要求。

3技术要求 1技术要求 3.1 新建地段:当边坡高度6m≤H<8m时,全坡面铺设幅宽2.5m的双向土工格栅;H≥8m时,全坡面铺设幅宽5.0m的双向土工格栅,且当H≥12m时间隔3.0m需全断面满铺设幅宽4~5m的土工格栅,边坡土工格栅各层间距离均匀0.6m,铺设后格栅边缘距坡面垂直距离为0.6m。 3.2 与既有线并行帮宽地段:当帮宽宽度小于2m时,于每一台阶面处铺设双向土工格栅。边坡高度3m≤H<6m时,铺设幅宽2.5m的双向土工格栅;H≥6m时,铺设幅宽4~5m的双向土工格栅。边坡土工格栅各层间距离为0.6m。 3.3 土工格栅主要技术指标: 3.3.1 土工格栅采用整体拉伸型塑料土工格栅,不得使用粘贴型土工格栅,严禁使用玻璃纤维格栅及钢塑格栅。 3.3.2 幅宽2.5m、5.0m。 3.3.3 纵、横向拉伸强度≥30kn/m。 3.3.4 纵、横向屈服伸长率均≤10%。 3.3.5 网孔直径8~12cm。 a)斜坡地面,为便于铺设土工格栅,须在边坡坡脚处地面挖设3.5~4.5m宽平台。

土工格栅的施工规范

土工格栅的施工规范 1?铺设准备工作: 1.1地基处理:首先对下层进行整平、碾压,要求平整度不大于1 5伽,压实度达到设计要求,表面严禁有碎石、块石等坚硬凸出物。 1.2铺设环境:室外气温5 C以上,风力4级以下,无雨、雪。(环境或 特殊要求除外) 2?铺设及搭接方法: 2.1在平整好的下承层上按设计宽度铺设土工格栅,摊铺时应拉直、平 顺,紧贴下承层,不得出现扭曲、褶皱、重叠,搭接处用U 形钉或联接件固定. 2.2 土工格栅在铺设时,将筋材主强度高的方向垂直路堤轴线方向,每幅 叠合长度(纵向)不小于15 cm,并用U形钉或联接件固定,间距1.0m, 横向搭接长度30?90 cm,搭接位置用U形钉或尼龙绳固定。 3.铺设搭接后的质量检测: 3.1 土工格栅铺设完成后首先进行自检,其质量要求见下表: 4.回填: 4.1 土工格栅材料摊铺到位后应及时填筑填料,以免其受到阳光过长时间

的直接曝晒,一般情况下,间隔时间不超过48H。 4.2填料要求:在距土工格栅层8 cm以内的路堤填石路堤料其最大 料径不得大于6 cm,土工格栅第一层填土摊铺应采用轻型推土机或 前置式装载机,沿路堤的轴线方向行驶进行压实,填筑压实厚度大 于60 cm。 一、施工测量和放样 根据原始导线点及加密导线点,用全站仪恢复 K18+ ~K18+路段的路线中桩,并放出路基用地边桩和路堤坡脚,复核路基横断面原地表高程,如与设计图纸提供的数据有太大出入,及时报监理工程师复测,并由监理工程师认可。 二、清表 清除路基范围内杂草、树木等有害于路堤稳定的杂物,对于地表积水或水塘地段,先将水抽干,清除淤泥,并用合格土方进行回填,并进行压实。 三、原地表压实 四、平整场地,对原地表用冲击压路机进行压实,具体压实方案根据路基冲击碾压施工方案执行。 四、土工格栅的铺设 (一)、土工格栅工作机理:土工格栅的抗拉强度大,可增加路堤的稳定性;格栅网眼的存在制约了土的横向移动,形成了良好的嵌锁作用,使土体具有较好的整体抗剪能力;土工格栅有一定的刚度使上面的负荷得到扩

土工格栅施工方法

施工方法 开挖基床,设置砂垫层(高差不大于10cm),碾压成平台,铺设格栅,纵轴向应与主要受力方向一致,纵向搭接15-20cm,横向10cm,搭接处用塑料带绑扎,并在铺设的格栅上,每隔1.5-2m用U型钉固定于地面,铺设的土工格栅应及时回填土料,铺设的土工格栅层数视技术要求。 土工xx的施工工艺要求 土工格栅的铺筑面应较为平整,铺筑层经验收合格后,为防纵向歪斜现象,先按幅宽在铺筑层划出白线或挂线,即可开始铺筑,然后用铁钉固定格栅的端部(每米宽用钉8 根,均匀距离固定)。 固定好格栅端部后,用铺筑机将格栅缓缓向前拉铺,每铺 1 0米长进行人工拉紧和调直一次,直至一卷格栅铺完,再铺下一卷,操作同前。 铺完一卷后用6T-10T的压路机从起始点开始向前进方向碾压一遍即可。(如铺筑在中面层上和找平层上,用钢辊压路机为宜;如格栅直接铺在混凝土路面上,用胶辊压路机为宜。) 接铺:以卷长为单位作为铺设的段长,在应铺格栅的段长内铺满以后,再整体检查一次铺筑质量,然后接着铺筑下一段。下一段铺筑时,格栅与格栅可以用10-15CM的搭接长度,并用铁钉或木楔固定后继续向前进方向铺第二段。依次类推,操作要求同前。 一、土工网、土工xx A.在公路上主要用于软地基处理、路基增强、边坡防护、桥台加固、翼墙、挡土墙、隔离以及夹筋土工程等。 (1)在公路软地基中铺设土工网或土工格栅,可提高路基承载能力,延长使用寿命,防止路面裂痕; (2)在公路边坡上铺设土工网,可防止滑坡,并可保持水土,美化环境; (3)在公路桥台地基中铺设土工网或土工格栅,可提高承载能力,稳固桥台,防止桥梁出现裂纹,并可避免跳车;

(4)用土工网或土工格栅作夹筋土翼墙,面板薄,基础尺寸小,可大量节省土石方,降低成本; (5)在公路挡墙中使用土工网或土工格栅,可提高挡墙承载能力,防止滑坡,并可大量节省土石方,大幅度缩减施工周期,降低工程造价; (6)土工网或土工格栅用作路面增强,可以分散载荷,有效防止路面裂纹; B.在铁路上使用土工网或土工格栅可避免软土地基上的铁路过早地产生沉降和破坏 (1)在铁路路基中铺设土工网或土工格栅,使它们与路面材料形成刚性较大的地基,可有效分配荷载,防止路基变形,提高其稳定性;(2)在铁路边坡 上铺设土工网,可防止岩块滑落,对人或车辆造成危害,保持铁路畅通; (3)用土工网或土工格栅包裹住道碴,可防止道碴流失和路基变形,提高其稳定性 (4)利用土工网或土工格栅夹筋陡坡增加一条铁路线,只需增加极少或不需增加占地面积; (5)铁道挡墙中使用土工网或土工格栅可增强挡墙承载能力,延长使用寿 (6)在地铁隧道中使用土工网或土工格栅可提高隧道的结构强度,防止塌方 C.土工网或土工格栅还可应用于-堤、坝、河、渠、围海造堤、水库除险加固等水利工程 (1)在水库或河流边坡上铺设土工网可防止水流冲刷造成的泥土流失; (2)在水库坝底或库底铺设土工网或土工格栅可防止坝底发生沉降; (3)将土工网做成石笼可加固水库、河流边坡或海岸,防止水流冲刷,用石笼沉床可避免水下作业; (4)在水库工程中使用土工网或土工格栅设置垂直挡墙,既减少用地,又可增大库容量; D.用土工网或土工格栅增强机场地基可大大提高跑道的承载能力,保证飞机起降

在空气中土工格栅的蠕变试验规程

21 蠕变试验 21.1 目的和适用范围 21.1.1本试验用于测定土工合成材料的拉伸蠕变变形及拉伸蠕变破坏强度。 21.1.2本试验适用于各类土工合成材料。 21.2 引用标准 ASTMD5262—95《土工合成材料无侧限条件下的拉伸蠕变特性试验》。 21.3 试验设备及用具 21.3.1试验装置: 1试验仪器应安装在无振动的地方。 2当有多台试验仪时,每台试验仪应是独立的,互不干扰的,当对一台仪器的试样加荷,或某一台仪器的试样发生断裂而引起的颤抖或振动对周边试验应无影响。 3试验室的室温应保持为(20±2)℃,相对湿度为(60±10)%。 21.3.2夹具:应符合本规程9.3.2规定。 9.3.2夹具:一对可夹持试样的夹具、钳日面应能防止试样在钳日内打滑,并能防止试样在钳日内被夹坏。两个夹具中的一个支点应能自由转动或为万向接头保证两夹具在一个平面内。 1宽条试样有效宽度200mm,夹具实际宽度应不小于210rnm。 2窄条试样有效宽度50mm,夹具实际宽度应不小于60mm。 21.3.3加荷装置:可采用砝码、杠杆或气压方式,加荷要求迅速而乎稳,并在试验过程中保持不变。荷载精确度应控制在所加荷载的±1%范围内。 21.3.4伸长计:用以测定伸长量,读数应精确至0.003mm。 21.4 试样制备 21.4.1按本规程3.3.1规定裁剪试样。 3.3.1制样原则: 1每项试验的试样应从样品的长度和宽度两个方向上随机剪取,距样品的边缘应等于或大于100mn,送检样品应不小于1延长米(或2平方米 ) 。

2试样应不含有灰尘、折痕、孔洞、损伤部分和可见疵点。 3对同一项试验剪取两个以上的试样时,应避免它们位于同一纵向和横向位置上,即采用梯形取样法,如不可避免(如卷装,幅宽较窄),应在试验报告中注明情况。 4剪取试样时应满足精度要求。 5剪取试样前,应先有剪裁计划,然后再剪。 6对每项试验所用全部试样,应予以编号。 21.4.2试样尺寸: 1应采用宽条试样,应符合本规程9.4.3规定。 9.4.3试样尺寸: 1宽条试样:裁剪试样宽度200mn,长度至少200mm,实际长度视夹具而定,必须有足够的长度使试样仲出夹具,试样计量长度为100mm。对于编织型土工织物,裁剪试样宽度210rnm,在两边抽去大约相同数量的边纱,使试样宽度达到200mm。 2窄条试样:裁剪试样宽度50mm,长度至少200mm必须有足够长度的试样仲出夹具,试样计量长度为100mm。对编织型土工织物,裁剪试样宽度60mm,在两边抽去大约相同数量的边纱,使试样宽度达到50mm。 3除测干态抗拉强度外,还需测湿态强度时,应裁剪两倍的长度,然后一剪为二,一块测十强度;另一块测湿强度。 2 对于断裂强度大于100kN/m的高强土工织物,如受到设备限制,可用宽100mm 的试样替代宽200mm的试样。 3对于土工格栅,试样至少应包含3根纵向筋条及1根横向肋条。 21.4.3分别剪取纵向及横向试样。试样数量根据试验需要决定。 1当设计需要不同荷载水平的蠕变特性时,可采用4级荷载,分别为20%、30%、40%、60%极限荷载。 2如只需要设计荷载下的蠕变特性时,可采用2级荷载,一级为设计荷载;另一级大于设计荷载,荷载大小由设计人员规定。 3当需要了解温度对蠕变特性的影响时,则除了进行上面标准温度(20±2℃)下的试验外,可分别在(1O±2)℃和(40±2)℃两种温度下进行试验。也可按照现场条件而定。 21.5 操作步骤 21.5.1将室温度调至20±2℃和湿度为60±10%,试样在此环境下至少应静置24h。

相关文档
最新文档