计算机组成原理实验五参考
计算机组成原理实验报告
实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。
二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。
先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。
(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。
7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。
四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。
本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。
计算机组成原理实验报告
计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。
实验一,逻辑门电路实验。
在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。
逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。
在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。
实验二,寄存器和计数器实验。
在本次实验中,我们学习了寄存器和计数器的原理和应用。
寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。
通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。
实验三,存储器实验。
在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。
通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。
实验四,指令系统实验。
在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。
通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。
实验五,CPU实验。
在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。
通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。
实验六,总线实验。
在本次实验中,我们学习了计算机的总线结构和工作原理。
通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。
结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。
通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。
希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。
计算机组成原理实验报告_32位ALU设计实验
实验三32位ALU设计实验一、实验目的学生理解算术逻辑运算单元(ALU)的基本构成,掌握Logisim 中各种运算组件的使用方法,熟悉多路选择器的使用,能利用前述实验完成的32位加法器、Logisim 中的运算组件构造指定规格的ALU 单元。
二、实验原理、内容与步骤实验原理、实验内容参考:1、32位加法功能的原理与设计1)设计原理1,被加数A(32位),2,被加数B(32位),3,前一位的进位CIN(1位),4,此位二数相加的和S(32位),5,此位二数相加产生的进位COUT(1位)。
要实现32位的二进制加法,一种自然的想法就是将1位的二进制加法重复32次(即逐位进位加法器)。
这样做无疑是可行且易行的,但由于每一位的CIN都是由前一位的COUT提供的,所以第2位必须在第1位计算出结果后,才能开始计算;第3位必须在第2位计算出结果后,才能开始计算,等等。
而最后的第32位必须在前31位全部计算出结果后,才能开始计算。
这样的方法,使得实现32位的二进制加法所需的时间是实现1位的二进制加法的时间的32倍。
2)电路设计32位加法功能2、32位减法功能的原理与实现1)变减法为加法的原理1.在Y引脚处使用求补器(32位),即可变减法为加法2.用构造好的32位加法器。
Y各位取反,C0取1,即可达到减法变加法。
无符号数的减法溢出,带加减功能的ALU的进位取反后表示,有符号数的减法溢出,仍然用最高位和符号位是否相等来判断2)电路设计32位减法功能3、加减溢出检测的设计(不考虑乘除法)1)有符号数溢出的设计有符号数溢出的设计2)无符号数溢出的设计无符号数溢出的设计4、移位的原理与设计1)逻辑移位逻辑移位2)算术移位算术移位5、逻辑运算功能的原理与设计2)与、或、异或、或非逻辑6、大于、等于、小于功能设计大于、等于、小于功能设计7、AluOP的控制原理与设计1)原理:AluOP的控制原理与设计8、总电路设计图算术逻辑运算单元ALU三、实验结论及分析(实验完成功能情况、存在问题分析或改进思路、自己的心得体会等。
运算器实验实验报告(计算机组成原理)
运算器实验实验报告(计算机组成原理)西安财经学院信息学院《计算机组成原理》实验报告实验名称运算器实验实验室实验楼 418实验日期第一部分8 位算术逻辑运算实验一、实验目的 1、掌握算术逻辑运算器单元 ALU(74LS181)的工作原理。
2、掌握简单运算器的数据传送通路组成原理。
3、验证算术逻辑运算功能发生器 74LSl8l 的组合功能。
4、按给定数据,完成实验指导书中的算术/逻辑运算。
二、实验内容 1 、实验原理实验中所用的运算器数据通路如图 1-1 所示。
其中运算器由两片 74LS181以并/串形成 8 位字长的 ALU 构成。
运算器的输出经过一个三态门 74LS245(U33)到内部数据总线 BUSD0~D7 插座 BUS1~2 中的任一个(跳线器JA3 为高阻时为不接通),内部数据总线通过 LZD0~LZD7 显示灯显示;运算器的两个数据输入端分别由二个锁存器 74LS273(U29、U30)锁存,两个锁存器的输入并联后连至内部总线BUS,实验时通过 8 芯排线连至外部数据总线 E_D0~D7 插座E_J1~E_J3 中的任一个;参与运算的数据来自于 8 位数据开并KD0~KD7,并经过一三态门 74LS245(U51)直接连至外部数据总线 E_D0~E_D7,通过数据开关输入的数据由 LD0~LD7 显示。
图 1-1 中算术逻辑运算功能发生器 74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M 并行相连后连至 6 位功能开关,以手动方式用二进制开关 S3、S2、S1、S0、CN、M 来模拟74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M;其它电平控制信号 LDDR1、LDDR2、ALUB`、SWB`以手动方式用二进制开关 LDDR1、LDDR2、ALUB、SWB 来模拟,这几个信号姓名学号班级年级指导教师李芳有自动和手动两种方式产生,通过跳线器切换,其中ALUB`、SWB`为低电平有效,LDDR1、LDDR2 为高电平有效。
计算机组成原理第五版实验报告
实验报告1实验名称运算器组成:实验微程序控制器方式和独立方式实验地点实验日期成绩实验目的1. 熟悉逻辑测试笔的使用方法。
2. 熟悉TEC-8模型计算机的节拍脉冲T1、T2、T3;3. 熟悉双端口通用寄存器组的读写操作;4. 熟悉运算器的数据传送通路;5. 验证74LS181的加、减、与、或功能;6. 按给定的数据,完成几种指定的算术、逻辑运算运算。
7. 按照表中提供的功能自行验证其中几种即可。
(独立方式)双端口寄存器组由1片EPM7064(U40)(图2.2中用虚线围起来的部分)组成,内部包含4个8位寄存器R0 R1、R2、R3, 4选1选择器A, 4选1选择器B和1个2-4译码器。
根据信号RD1 RD0的值,4选1选择器A从4个寄存器中选择1个寄存器送往ALU的A端口。
根据信号RS1 RS0的值,4选1选择器B从4个寄存器中选择1个寄存器送往ALU的B端口。
2-4译码器对信号RD1 RD0进行译码,产生信号LR0 LR2、LR3 LR4,任何时刻这4个信号中只有一个为1, 其它信号为0。
LR3~LR0指示出被写的寄存器。
当DRW言号为1时,如果LR0为1,则在T3的上升沿,将数据总线DBUS上的数写入R0寄存器,余类推。
数据开关SD7~SD0是8个双位开关。
用手拨动这些开关,能够生成需要的SD7~SD0的值。
数据开关驱动器SWD是1片74 LS 244(U50)。
在信号SBUS为1时,SD7~SD0通过SWD送往数据总线DBUS在本实实验原理验中,使用数据开关SD7~SD0设置寄存器R0 R1、R2和R3的值。
ALU 由2 片74LS181(U41 和U42)、1 片74LS74、1 片74 LS 244、1片74 LS 245禾口1片74LS30构成。
74LS181完成算术逻辑运算,74 LS245禾口74 LS 30产生Z标志,74 LS 74保存标志C和标志Z。
ALU对A7~A0和B7~B0上的2个8位数据进行算术逻辑运算,运算后的数据结果在信号ABUS为1时送数据总线DBUS(D7~D0,运算后的标志结果在T3的上升沿保存进位标志位C和结果为0标志位Z。
计算机组成原理 实验报告
计算机组成原理实验报告计算机组成原理实验报告引言计算机组成原理是计算机科学与技术专业中的一门重要课程,通过实验学习可以更好地理解和掌握计算机的基本原理和结构。
本实验报告将介绍我在学习计算机组成原理课程中进行的实验内容和实验结果。
实验一:二进制与十进制转换在计算机中,数据以二进制形式存储和处理。
通过这个实验,我们学习了如何将二进制数转换为十进制数,以及如何将十进制数转换为二进制数。
通过实际操作,我更深入地了解了二进制与十进制之间的转换原理,并且掌握了转换的方法和技巧。
实验二:逻辑门电路设计逻辑门电路是计算机中的基本组成部分,用于实现不同的逻辑运算。
在这个实验中,我们学习了逻辑门的基本原理和功能,并通过电路设计软件进行了实际的电路设计和模拟。
通过这个实验,我深入理解了逻辑门电路的工作原理,并且掌握了电路设计的基本方法。
实验三:组合逻辑电路设计组合逻辑电路是由多个逻辑门组合而成的电路,用于实现复杂的逻辑功能。
在这个实验中,我们学习了组合逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了多个逻辑门的组合。
通过这个实验,我进一步掌握了逻辑电路设计的技巧,并且了解了组合逻辑电路在计算机中的应用。
实验四:时序逻辑电路设计时序逻辑电路是由组合逻辑电路和触发器组合而成的电路,用于实现存储和控制功能。
在这个实验中,我们学习了时序逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了存储和控制功能。
通过这个实验,我进一步了解了时序逻辑电路的工作原理,并且掌握了时序逻辑电路的设计和调试技巧。
实验五:计算机指令系统设计计算机指令系统是计算机的核心部分,用于控制计算机的操作和运行。
在这个实验中,我们学习了计算机指令系统的设计原理和方法,并通过实际的指令系统设计和模拟,实现了基本的指令功能。
通过这个实验,我深入了解了计算机指令系统的工作原理,并且掌握了指令系统设计的基本技巧。
实验六:计算机硬件系统设计计算机硬件系统是由多个模块组成的,包括中央处理器、存储器、输入输出设备等。
计算机组成原理综合实验报告
计算机组成原理综合实验报告一、实验目的本次计算机组成原理综合实验旨在深入理解计算机组成的基本原理,通过实际操作和设计,巩固所学的理论知识,并培养实践动手能力和创新思维。
二、实验设备本次实验所使用的设备包括计算机硬件实验平台、数字逻辑实验箱、示波器、万用表等。
三、实验内容1、运算器实验设计并实现一个简单的运算器,能够完成加法、减法、乘法和除法运算。
通过实验,深入理解运算器的工作原理,包括数据的输入、运算过程和结果的输出。
2、控制器实验构建一个基本的控制器,实现指令的读取、译码和执行过程。
了解控制器如何控制计算机的各个部件协同工作,以完成特定的任务。
3、存储系统实验研究计算机的存储系统,包括主存和缓存的工作原理。
通过实验,掌握存储单元的读写操作,以及如何提高存储系统的性能。
4、输入输出系统实验了解计算机输入输出系统的工作方式,实现与外部设备的数据传输。
四、实验步骤1、运算器实验步骤(1)确定运算器的功能和架构,选择合适的逻辑器件。
(2)连接电路,实现加法、减法、乘法和除法运算的逻辑。
(3)编写测试程序,输入不同的数据进行运算,并观察结果。
2、控制器实验步骤(1)分析控制器的工作流程和指令格式。
(2)设计控制器的逻辑电路,实现指令的译码和控制信号的生成。
(3)编写测试程序,验证控制器的功能。
3、存储系统实验步骤(1)连接存储单元,设置地址线、数据线和控制线。
(2)编写读写程序,对存储单元进行读写操作,观察数据的存储和读取情况。
(3)通过改变缓存策略,观察对存储系统性能的影响。
4、输入输出系统实验步骤(1)连接输入输出设备,如键盘、显示器等。
(2)编写程序,实现数据的输入和输出。
(3)测试输入输出系统的稳定性和可靠性。
五、实验结果1、运算器实验结果通过测试程序的运行,运算器能够准确地完成加法、减法、乘法和除法运算,结果符合预期。
2、控制器实验结果控制器能够正确地译码指令,并生成相应的控制信号,使计算机各个部件按照指令的要求协同工作。
国开电大计算机组成原理形考任务5参考答案
国开电大计算机组成原理形考任务5参考
答案
答案】:读出信息、写入信息、清除信息、转移信息
1.在以下设备中,CPU的寄存器具有最快的存取速度。
2.对于容量为1K×8位的SRAM芯片,最少需要引出20根线,包括电源和接地线。
3.Cache被添加到主存和CPU之间,其目的是解决两者之间的速度不匹配问题。
4.RAM芯片串联的目的是增加存储单元数量和存储器字长。
5.主存储器的特点是容量小、速度快、成本高。
6.虚拟存储器的目的是为用户提供比主存更大的逻辑编程空间。
7.静态存储器、动态存储器和高速缓存存储器在停电后会丢失存储的信息。
8.对主存储器的基本操作包括读出信息、写入信息、清除信息和转移信息。
计算机组成原理实验报告
计算机组成原理实验报告实验⼀静态随机存取存贮器实验⼀.实验⽬的了解静态随机存取存贮器的⼯作原理;掌握读写存贮器的⽅法。
⼆.实验内容实验仪的存贮器MEM单元选⽤⼀⽚静态存贮器6116(2K×8bit)存放程序和数据。
CE:⽚选信号线,低电平有效,实验仪已将该管脚接地。
OE:读信号线,低电平有效。
WE:写信号线,低电平有效。
A0..A10: 地址信号线。
I/O0..I/O7:数据信号线。
SRAM6116存贮器挂在CPU的总线上,CPU通过读写控制逻辑,控制MEM的读写。
实验中的读写控制逻辑如下图:读写控制逻辑M_nI/O⽤来选择对MEM还是I/O读写,M_nI/O = 1,选择存贮器MEM;M_nI/O = 0,选择I/O设备。
nRD = 0为读操作;nWR = 0为写操作。
对MEM、I/O的写脉冲宽度与T2⼀致;读脉冲宽度与T2+T3⼀致,T2、T3由CON单元提供。
存贮器实验原理图存贮器数据信号线与数据总线DBus相连;地址信号线与地址总线ABus相连,6116的⾼三位地址A10..A8接地,所以其实际容量为256字节。
数据总线DBus、地址总线ABus、控制总线CBus与扩展区单元相连,扩展区单元的数码管、发光⼆极管上显⽰对应的数据。
IN单元通过⼀⽚74HC245(三态门),连接到内部数据总线iDBus上,分时提供地址、数据。
MAR由锁存器(74HC574,锁存写⼊的地址数据)、三态门(74HC245、控制锁存器中的地址数据是否输出到地址总线上)、8个发光⼆极管(显⽰锁存器中的地址数据)组成。
T2、T3由CON单元提供,按⼀次CON单元的uSTEP键,时序单元发出T1信号;按⼀次uSTEP键,时序单元发出T2信号;按⼀次uSTEP键,时序单元发出T3信号;再按⼀次uSTEP键,时序单元⼜发出T1信号,……按⼀次STEP键,相当于按了三次uSTEP键,依次发出T1、T2、T3信号。
其余信号由开关区单元的拨动开关模拟给出,其中M_nI/O应为⾼(即对MEM 读写操作)电平有效,nRD、nWR、wMAR、nMAROE、IN单元的nCS、nRD 都是低电平有效。
指导-组成原理DICE-CP226实验一至五
实验指导DICE-CP226系统概述1.1 DICE-CP226特点1、采用总线结构DICE-CP226实验系统使用三组总线即地址总线ABUS、数据总线DBUS、指令总线IBUS和控制信号,CPU、主存、外设和管理单片机等部件之间通过外部数据总线传输,CPU内部则通过内部数据总线传输信息。
各部件之间,通过三态缓冲器作接口连接。
2、计算机功能模块化设计DICE-CP2226为实验者提供运算器模块ALU,众多寄存器模块(A,W,IA ,ST,MAR,R0…R3等),程序计数器模块PC,指令部件模块IR,主存模块EM,微程序控制模块〈控存〉uM,微地址计数器模块UPC,组合逻辑控制模块及I/O等控制模块。
各模块间的电源线、地线、地址总线和数据总线等已分别连通,模块内各芯片间数据通路也已连好,各模块的控制信号及必要的输出信号已被引出到主板插孔,供实验者按自己的设计进行连接。
3、智能化控制系统在单片机监控下,管理模型机运行和读写,当模型机停机时,实验者可通过系统键盘,读写主存或控存指定单元的内容,使模型机实现在线开发。
模型机运行时,系统提供单步一条微指令(微单步)、单步一条机器指令(程单步),连续运行程序及无限止暂停等调试手段,能动态跟踪数据,流向、捕捉各种控制信息。
4、提供两种实验模式①手动运行“Hand……”:通过拨动开关和发光二极管二进制电平显示,支持最底层的手动操作方式的输入/输出和机器调试。
②自动运行:通过系统键盘及液晶显示器或PC机,直接接输入或编译装载用户程序<机器码程序和微程序>,实现微程序控制运行。
5、开放性设计运算器采用了EDA技术设计,随机出厂时,已提供一套已装载的方案,能进行加、减、与、或、带进位加、带进位减、取反、直通八种运算方式,若用户不满意该套方案,可自行重新设计并通过JTAG 口下载。
用户还可以设计自己的指令/微指令系统。
系统中已带三套指令/微程序系统,用户可参照来设计新的指令/微程序系统。
计算机组成原理实验报告
计算机组成原理实验报告计算机组成原理实验报告姓名:专业:计算机科学与技术学号:计算机组成原理实验(⼀)实验题⽬:时标系统的设置和组合成绩:⼀、实验⽬的1、了解时标系统的作⽤2、会设计、组装简单的时标发⽣器⼆、实验内容参照时标系统的设计⽅法,⽤组合逻辑⽅法设计⼀个简单的节拍脉冲发⽣器,产⽣图1-6所⽰的节拍脉冲,并⽤单脉冲验证设计的正确性。
在实验报告中画出完整电路,写出1W 、0W 和1N 的表达式。
图1-6 简单的节拍脉冲发⽣器⼀周期的波形设计提⽰:1、由波形图求出节拍脉冲1W 和0W 的表达式,进⽽组合成1N 的表达式。
2、注意节拍电平1T 和0T 的翻转时刻应在0M 下降沿与M 的上升沿同时出现的时刻。
3、注意D 触发器的触发翻转要求。
三、实验仪器及器材1、计算机组成原理实验台和+5V 直流稳压电源2、集成电路由附录A “集成电路清单”内选⽤四、实验电路原理(实验电路原理图)时标系统主要由时钟脉冲发⽣器、启停电路和节拍脉冲发⽣器三部分组成成,结构如图1-1所⽰。
图1-1 时标系统组成1、时钟脉冲发⽣器主要由振荡电路、分频电路组成,其作⽤是产⽣⼀定频率的时钟脉冲,作为计算机中基准时钟信号。
如图1-2所⽰。
图1-2 时钟脉冲发⽣器组成2、启停电路计算机是靠⾮常严格的节拍脉冲,按时间的先后次序⼀步⼀步地控制各部件⼯作的,所以,机器启停的标志是有⽆节拍脉冲,⽽控制节拍脉冲按⼀定的时序发⽣和停⽌,不能简单地⽤电源开关来实现。
如图1-3所⽰。
图1-3 简单的启停电路为了使机器可靠地⼯作,要求启停电路在机器启动或停机时,保证每次从规定的第⼀个脉冲开始启动,到最后⼀个脉冲结束才停机,并且必须保证第⼀个和最后⼀个脉冲的波形完整。
如图1-4所⽰。
图1-4 利⽤维持阻塞原理的启停电路3、节拍脉冲发⽣器节拍脉冲发⽣器的作⽤是产⽣⼀序列的节拍电平和⼯作脉冲。
节拍电平是保证计算机微操作的时序性,⼯作脉冲是各寄存器数据的打⼊脉冲。
TEC-5计算机组成原理实验20060310
R2
R3 R0 R1 R2、R3 RAM[R1]
60H
61H
05H
06H 07H 08H 09H TEC-5
SUB R0,R3
STA R0,[R1] OUT R0 OUT R1 STP
1CH
34H 70H 74H 60H
运行结果
计算机科学与技术学院系统结构实验室
42
数据通路总体图
TEC-5
计算机科学与技术学院系统结构实验室
TEC-5
计算机科学与技术学院系统结构实验室
29
实验任务
分别将RAM的0AAH单元数据写入R0,
55H单元数据写入R1,0F0H单元数据 写R2, 0FH单元数据写入R3。然后 将R0-R3中的数据读出,验证数据的 正确性,并记录数据。演示
TEC-5
计算机科学与技术学院系统结构实验室
30
实验要求
注意:接线表中TJ是时序电路中的TJ,不
是控制器中的TJ(该TJ由控制器产生,不 能接输入信号),千万不要接错。
计算机科学与技术学院系统结构实验室
45
TEC-5
实验任务
观察时序信号的波形 置DP=0, DB=0。先按CLR#按钮复位,再按
QD按钮。则时序部分开始不停地运动,直 到按CLR#按钮为止。用双踪示波器观察 MF, T1-T4, W1-W3信号。观察的方法是 同时观察两路信号,以便于比较相位。可 按下述顺序进行观察:MF和T1,T1和T2, T2和T3, T3和T4, T1和W1, W1和W2, W2 和W3。根据观察的结果,可绘出波形图。
41
设计验收程序
RAM地 址 00H 01H 02H 机器指令 LDA R0,[R2] LDA R1,[R3] ADD R0,R1 机器码 RAM地址 48H 4DH 04H 60H 61H 寄存器 预置数据 24H 60H
计算机组成原理实验指导书
目录目录 (1)实验一寄存器实验 (2)实验内容1:A,W寄存器实验 (2)实验内容2:R0,R1,R2,R3寄存器实验 (4)实验内容3:MAR地址寄存器,ST堆栈寄存器,OUT输出寄存器实验 (7)实验二运算器实验 (9)实验三数据输出和移位实验 (11)实验四存储器EM实验 (15)实验内容1: PC/MAR输出地址选择 (15)实验内容2:存储器EM写实验 (16)实验内容3:存储器EM读实验 (17)实验五微程序存储器uM实验 (18)实验内容1:使用试验仪小键盘输入uM (18)实验内容2:微程序存储器uM读出 (19)实验一寄存器实验实验要求:利用CPTH实验仪上的K16‥K23开关作为DBUS的数据,其他开关作为控制信号,讲数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据寄存器组R0‥R3,地址寄存器MAR,地址寄存器ST,输出寄存器OUT。
实验目的:了解模型机各种寄存器结构,工作原理及其控制方法。
实验电路:实验内容1:A,W寄存器实验实验步骤:(1)照下表连接线路(2)系统清零和手动状态设定:K23~K16开关置零,按RST钮,按TV/ME键三次,进入手动状态(液晶屏幕上有“Hand……”显示)。
注意:后面的实验中实验模式为手动的操作方法不再详述,如此相同。
(3)将55H写入A寄存器置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据55H被写入A寄存器。
(4)将66H写入W寄存器二进制开关K23~K16用于DBUS【7…0】的数据输入,设置数据66H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器W的黄色选择指示灯亮,表明选择W寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据66H被写入W寄存器。
请仔细观察实验结果,并回答以下问题:1.数据是何时打入的?是按下STEP键还是放开STEP键后?2.WEN,AEN为高时,CK有上升沿,寄存器数据会不会改变?实验内容2:R0,R1,R2,R3寄存器实验实验步骤:(2)系统清零和手动状态设定:K23~K16开关置零,按RST钮,按TV/ME键三次,进入手动状态(液晶屏幕上有“Hand……”显示)。
淮海工学院计算机组成原理实验五
淮海工学院计算机工程学院实验报告书课程名《计算机组成原理》题目:微控制器实验班级:计算机131学号:2013122699姓名:李健伟一、实验目的1、掌握时序信号发生电路组成原理。
2、掌握微程序控制器的设计思想和组成原理。
3、掌握微程序的编制、写入,观察微程序的运行。
二、实验原理实验所用的时序电路原理如图2.6.1所示,可产生4个等间隔的时序信号TS1~TS4 ,其中SP为时钟信号,由实验机上时钟源提供,可产生频率及脉宽可调的方波信号。
学生可根据实验要求自行选择方波信号的频率及脉宽。
为了便于控制程序的运行,时序电路发生器设计了一个启停控制触发器UN1B,使TS1~TS4信号输出可控。
图中“运行方式”、“运行控制”、“启动运行”三个信号分别是来自实验机上三个开关。
当“运行控制”开关置为“运行”,“运行方式”开关置为“连续”时,一旦按下“启动运行”开关,运行触发器UN1B的输出QT一直处于“1”状态,因此时序信号TS1~TS4将周而复始地发送出去;当“运行控制”开关置为“运行”,“运行方式”开关置为“单步”时,一旦按下“启动运行”开关,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机。
利用单步方式,每次只运行一条微指令,停机后可以观察微指令的代码和当前微指令的执行结果。
另外,当实验机连续运行时,如果“运行方式”开关置“单步”位置,也会使实验机停机。
⑴微程序控制电路微程序控制器的组成如图2.6.2,其中控制存储器采用3片E2PROM 2816芯片,具有掉电保护功能,微命令寄存器18位,用两片8D触发器74LS273(U23、U24)和一片4D 触发器74LS175(U27)组成。
微地址寄存器6位,用三片正沿触发的双D触发器74LS74(U14~U16)组成,它们带有清“0”端和预置端。
在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令地址。
当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。
计算机组成原理实验项目及实验报告
计算机组成原理实验项目实验一运算器组成(2学时)验证性实验内容:使用181四位算术逻辑芯片实现八位算术逻辑运算实验。
基本要求:1、掌握简单运算器的数据传送通路;2、验证运算功能发生器(74LS181)的组合功能。
实验二存储器原理(2学时)验证性实验内容:通过总线系统验证存储器的存储功能。
基本要求:1、掌握静态随机存储器RAM工作特性及数据的读写方法;2、掌握存储器读/写电路的设计方法。
实验三寄存器实验(2学时)验证性实验内容:使用八位寄存器验证寄存器的存储功能。
基本要求:1、掌握寄存器操作时序。
2、掌握寄存器电路的连接方法。
实验四时序生成电路实验(2学时)设计性实验内容:验证控制器所需要的T1~T4的生成。
基本要求:1、掌握模型机时序特征;2、设计时序生成电路。
3、通过示波器验证T1~T4的状态周期。
实验五微程序控制器(2学时)验证性实验内容:使用模型机验证微指令与微操作的关系,验证微程序执行时序。
基本要求:1、掌握时序产生器的工作原理和组成原理;2、掌握微程序的编制、写入、观察微程序的执行;3、掌握硬布线控制器的组成原理、设计方法;4、了解硬布线控制器和微程序控制器的各自优缺点。
掌握简单运算器的数据传送通路。
三、主要仪器设备计算机、Proteus仿真软件、模型机仿真软件计算机硬件实验室实验报告课程名称:姓名学号班级成绩设备名称及软件环境实验名称实验日期一.实验内容题目及要求二.理论分析或算法分析芯片功能以及芯片真值表三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)电路图及相关说明四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)结果真值表,运行态抓图,以及相关的说明五.结论验证了什么?和题目要求对应报告提交日期(注意:内容写不下时可另附页。
)。
计组实验报告5
本次实验锁存器相当于寄存器,起到缓冲数据的作用。第一组实验中数据开关设置的
是(01H),使数据直接存入锁存器中。将数据开关设置成(02H),数据也直接存入锁存 器中,此时,数据总线和锁存输出显示(02H)。
七、实验总结
本次实验主要掌握了输入/输出的硬件电路,对锁存器的功能有了进一步的体会。实验 步骤简单易懂,实验过程顺利。
设置数据开关,具体操作步骤如下:
数据开关
(00000001)
三态门 CBA=000
CE=0 SW-B=1
寄存器DR2
(00000001)
LDDR1=0 LDDR2=1 按单步建
寄存器DR1
(00000001)
LDDR1=1 LDDR2=0 按单步建
结果分析:
运算单元的 DR1、DR2 与数据总线都显示(01H)。
(1)按单步键后,数据总线显示(00H),内存显示(11H),地址总线显示(00H)。 再按单步键后,数据总线显示(11H)。
(2)按单步键后,数据总线显示(01H),内存显示(12H),地址总线显示(01H)。 再按单步键后,数据总线显示(12H)。
(3)按单步键后,数据总线显示(02H),内存显示(13H),地址总线显示(02H)。
(4)寄存器判零
在保持带进位减法运算所设置的状态下,令AR=1,按【单步】,若零标志灯Z“亮”, 表示当前运算结果为零,反之表示结果不为零。
结果分析:
这个实验结果Z灯亮。因为带进位减法运算的结果是(00H)。所以,当 Z 灯亮时结
果为零。
六、实验总结
(1)通过这个实验,熟悉了判零实验的硬件,基本了解了判零实验的原理,加深了 对寄存器判零的理解。
LDAR 为高电平有效,而 WE 为读/写(W/R)控制信号,当 WE=0 时进行读操作,当 WE=1 时进行写操作。
计算机组成原理实验
1. 采用 Cache-Memory 存储层次。 2. 地址长度为 16 位,数据寄存器长度 16 位,存储字长是 8 位,采用小端存储模式。 3. Cache 采用二路组相联,Cache 大小为 1KB,每个字块 4 个字,字长为 2B。 4. 能根据有效地址读 Cache 和内存,把数据读入数据寄存器中;能根据有效地址把
1、 运算器由 ALU,状态寄存器,通用寄存器组成。 2、 ALU 能够进行加、减、乘、除等四则运算,与、或、非、异或等逻辑运算以及移
位求补等操作。其中乘除法要实现原码 1 位乘、补码 1 位乘(Booth)、原码加减 交替除法、补码加减交替除法 4 种算法。选作原码/补码 2 位乘算法。 3、 通用寄存器组用于保存参加运算的操作数和运算结果。 4、 状态寄存器用于记录算术、逻辑运算的结果状态。程序设计中,这些状态通常用 作条件转移指令的判断条件,所以又称为条件码寄存器。一般均设置如下几种状 态位:零标志位(Z),负标志位(N),溢出标志位(v),仅为或借位标志(C)。 【输入】从 ins_input.txt 读入。每行有一个操作码和两个操作数,用空格分开,操作数用原 码表示。 e.g. Add 0.110111 1.101110 Sub 0.100111 0.101011 Mul 1.101110 0.110111 【输出】将运算过程和结果输入到 output.txt 例如: ori_onebit_times [x]ori=1.101110 [y]ori=0.110111 x*=0.101110 y*=0.110111 0.000000 110111 + 0.101110 -------------------------------0.101110 0.010111 0 11011 + 0.101110 -------------------------------1.000101 0 0.100010 10 1101 + 0.101110 -------------------------------1.010000 10 0.101000 010 110 0.010100 0010 11 + 0.101110 -------------------------------1.000010 0010 0.100001 00010 1 + 0.101110 --------------------------------
计算机组成原理全部实验
计算机科学技术系王玉芬2012年11月3日基础实验部分该篇章共有五个基础实验组成,分别是:实验一运算器实验实验二存储器实验实验三数据通路组成与故障分析实验实验四微程序控制器实验实验五模型机CPU组成与指令周期实验实验一运算器实验运算器又称作算术逻辑运算单元(ALU),是计算机的五大基本组成部件之一,主要用来完成算术运算和逻辑运算。
运算器的核心部件是加法器,加减乘除运算等都是通过加法器进行的,因此,加快运算器的速度实质上是要加快加法器的速度。
机器字长n位,意味着能完成两个n位数的各种运算。
就应该由n个全加器构成n位并行加法器来实现。
通过本实验可以让学生对运算器有一个比较深刻的了解。
一、实验目的1.掌握简单运算器的数据传输方式。
2.掌握算术逻辑运算部件的工作原理。
3. 熟悉简单运算器的数据传送通路。
4. 给定数据,完成各种算术运算和逻辑运算。
二、实验内容:完成不带进位及带进位的算术运算、逻辑运算实验。
总结出不带进位及带进位运算的特点。
三、实验原理:1.实验电路图图4-1 运算器实验电路图2.实验数据流图图4-2 运算器实验数据流图3.实验原理运算器实验是在ALU UNIT单元进行;单板方式下,控制信号,数据,时序信号由实验仪的逻辑开关电路和时序发生器提供,SW7-SW0八个逻辑开关用于产生数据,并发送到总线上;系统方式下,其控制信号由系统机实验平台可视化软件通过管理CPU来进行控制,SW7-SW0八个逻辑开关由可视化实验平台提供数据信号。
(1)DR1,DR2:运算暂存器,(2)LDDR1:控制把总线上的数据打入运算暂存器DR1,高电平有效。
(3)LDDR2:控制把总线上的数据打入运算暂存器DR2,高电平有效。
(4)S3,S2,S1,S0:确定执行哪一种算术运算或逻辑运算(运算功能表见附录1或者课本第49页)。
(5)M:M=0执行算术操作;M=1执行逻辑操作。
(6)/CN :/CN=0表示ALU运算时最低位加进位1;/CN=1则表示无进位。
计算机组成原理实训报告
计算机组成原理实训报告计算机组成原理实训是计算机科学与技术专业的一门重要课程,通过实践操作,对计算机硬件的组成、工作原理以及指令系统等进行深入的了解。
以下是我完成计算机组成原理实训报告的相关参考内容:1. 实验目的:明确实验的目的,例如加深对计算机硬件组成和工作原理的理解,掌握计算机指令集的设计与实现方法等。
同时也可以陈述实验的重要性和意义。
2. 实验环境:介绍实验所使用的硬件平台和软件环境,例如使用的开发板型号、使用的集成开发环境等。
3. 实验原理:详细阐述实验所涉及的计算机组成原理和相关的理论知识。
例如,介绍计算机硬件的基本组成,包括中央处理器(CPU)、内存、输入输出设备等,并说明它们的工作原理和相互之间的关联。
4. 实验步骤:清晰地描述实验过程中的步骤,包括实验前的准备工作、实验中的具体操作以及实验后的总结。
5. 实验结果:展示实验的结果,可以包括实验中产生的数据、实验过程中观察到的现象以及实验中得到的实验数据等。
同时还可以对实验结果进行分析和讨论,与相关的理论知识进行对比和验证。
6. 实验总结与分析:对实验过程和结果进行总结和分析,总结实验的亮点和不足之处,提出改进的方案和建议。
同时可以思考和讨论实验内容的实际应用和发展趋势。
7. 实验心得体会:个人对本次实验的感受和体会,可以包括实验中遇到的问题和解决方法,以及自己对计算机组成原理课程的理解和认识。
8. 参考文献:列出参考过的相关文献或教材,注意不要出现链接,需按照规范格式进行引用。
以上是关于计算机组成原理实训报告的参考内容,通过详细的实验步骤描述、实验结果展示和深入的分析讨论,可以有效地展现实验的过程和结果,以及对计算机组成原理的理解和应用。
同时,也可以提出自己的思考和思考问题,以展示对实验内容的深入思考和学习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五CPU组成与机器指令执行实验
第一步,对机器指令系统组成的简单程序进行译码。
第二步,接线
本实验的接线比较多,需仔细。
1.将跳线开关J1用短路子短接。
时序发生器的输入TJI接控制存储器的输出TJ。
控制器的输入C接运算器ALU的C。
控制器的输入IR7、IR6、IR5、IR4依次指令寄存器IR的输出IR7、IR6、IR5、IR4。
共6条线。
2.控制器的输出LDIR(CER)、LDPC(LDR4)、PC_ADD、PC_INC、M4、LDIAR、LDAR1(LDAR2)、AR1_INC、M3、LDER、IAR_BUS#、SW_BUS#、RS_BUS#、ALU_BUS、CEL#、LRW、WRD、LDDR1(LDDR2)、M1(M2)、S2、S1、S0 依次与数据通路的对应信号连接。
共27条线。
3.指令寄存器IR的输出IR0接双端口寄存器堆的RD0、WR0,IR1接RD1、WR1,IR2接RS0,IR3接RS1。
共6条线。
合上电源。
按CLR#按钮,使实验系统处于初始状态。
第三步,利用控制台微程序KLD设置通用寄存器R2、R3的值
在本操作中,我们打算使R2 = 60H,R3 = 61H。
1.令DP = 0,DB = 0,DZ =0,使实验系统处于连续运行状态。
令SWC = 0、SWB = 1、SWA = 1,使实验系统处于寄存器加载工作方式KLD。
按CLR#按钮,
使实验系统处于初始状态。
2.在SW7—SW0上设置一个存储器地址,该存储器地址供设置通用寄存器使用。
该存储器地址最好是不常用的一个地址,以免设置通用寄存器操作破坏重要的存储
器单元的内容。
例如可将该地址设置为0FFH。
按一次QD按钮,将0FFH写入AR1
和AR2。
3.在SW7—SW0上设置02H,作为通用寄存器R2的寄存器号。
按一次QD按钮,则将02H写入IR。
4.在SW7—SW0设置60H,作为R2的值。
按一次QD按钮,将60H写入IR 指定的R2寄存器。
5.在SW7—SW0上设置03H,作为通用寄存器R3的寄存器号。
按一次QD按钮,将03H写入IR。
6.在SW7—SW0设置61H,作为R3的值。
按一次QD按钮,将61H写入R3。
7.设置R2、R3结束,按CLR#按钮,使实验系统恢复到初始状态。
演示
第四步,利用控制台微程序KWE存程序机器代码
本操作中,我们从00地址开始存10个机器代码:58H,5DH,04H,95H,3EH,1BH,4BH,24H,60H,84H。
在60H存入24H,用于给R0置初值;在61H 存入83H,用于给R0置初值。
1.令DP = 0,DB = 0,DZ =0,使实验系统处于连续运行状态。
令SWC = 0、SWB = 1、SWA = 0,使实验系统处于写双端口存储器工作方式KWE,如图所示。
按CLR#按钮,使实验系统处于初始状态。
2.置SW7—SW0为00H,按QD按钮,将00H写入AR1。
3.置SW7—SW0 为58H,按QD按钮,将58H写入存储器00H单元。
AR1自动加1,变为01H。
4.置SW7—SW0为5DH,按QD按钮,将5DH写入存储器01H单元。
AR1自动加1,变为02H。
5.按QD按钮,使AR1+1。
AR1此时为02H。
6.重复进行下去,一直到将84H写入存储器09H单元。
按CLR#按钮,使实验系统恢复到初始状态。
7.置SW7—SW0为60H,按QD按钮,将60H写入AR1。
8.置SW7—SW0 为24H,按QD按钮,将24H写入存储器60H单元。
AR1自动加1,变为61H。
9.置SW7—SW0 84H,按QD按钮,将83H写入存储器61H单元。
按CLR#按钮,使实验系统恢复到初始状态。
第五步,用单拍(DP)方式执行一遍程序。
在单拍执行过程中,首先要随时监测AR2的值和IR的值,以判定程序执行到何处,正在执行哪条指令。
监测微地址指示灯和判断字段指示灯,对照微程序流程图,可以判断出微指令的地址和正在进行的微操作。
程序执行的结果如下:
初值:R0未定,R1未定,R2 = 60H,R3 = 61H。
存储器60H单元的内容是24H,61H单元的内容是83H。
执行结果R2 = 60H,R0 = 24H。
演示
2.LDA R1,[R3]
执行结果R3 = 61H,R1 = 83H。
3.ADD R0,R1
执行结果R0 = 0A7H,R1 = 83H,C = 0。
4.JC +5
执行结果转移到03H,因为C = 0。
5.AND R2,R3
执行结果R2 =60 H,R3 =61H。
6.SUB R3,R2
执行结果R2 = 60H,R3 = 01H
7.STA R3,[R2]
执行结果R2 = 60H,R3 = 01H,存储器60单元的内容为01H。
执行结果R0 = 15H,R1 = 83H
9.STP
执行结果:无变化
10.JMP [R1]
执行结果转移到83H。
第一遍执行结束。
执行结果是R0 = 15H,R1 = 83H,R2 = 60H,R3 = 01H,存储器60H单元的内容是01H,61H单元的内容是83H。
第六步,用单指(DZ)方式执行一遍程序。
初值: R0 = 15H,R1 = 83H,R2 = 60H,R3 = 01H,存储器60H单元的内容是01H,61H单元的内容是83H。
1.LDA R0,[R2]
执行结果R2 = 60H,R0 = 01H。
2.LDA R1,[R3]
执行结果R3 = 01H,R1 = 5DH。
执行结果R0 = 5EH,R1 = 5DH,C = 0
4.4.JC +5
执行结果转移到03H,因为C = 0。
5.AND R2,R3
执行结果R2 =00 H,R3 =01H。
6.SUB R3,R2
执行结果R2 = 00H,R3 = 01H
7.STA R3,[R2]
执行结果R2 = 00H,R3 = 01H,存储器00单元的内容为01H。
8.MUL R0,R1
执行结果R0 = 0B6H,R1 = 5DH
9.STP
执行结果:无变化
10.JMP [R1]
执行结果转移到5CH
第二遍执行结束。
执行结果是R0 = 9CH,R1 = 5CH,R2 = 00H,R3 = 01H,存储器60H单元的内容是01H,61H单元的内容是83H,00H单元的内容为01H。
第七步,用连续方式执行一遍程序
由于00单元的内容已被修改,因此在执行前应首先恢复00H单元的内容58H。
初值:R0 = 0B6H,R1 = 5DH,R2 = 00H,R3 = 01H,存储器60H单元的内容是01H,61H单元的内容是83H,00H单元的内容为58H。
1.LDA R0,[R2]
执行结果R2 = 00H,R0 = 58H。
2.LDA R1,[R3]
执行结果R3 = 01H,R1 = 5DH。
3.ADD R0,R1
执行结果R0 = 0B5H,R1 = 5DH,C = 0
4.4.JC +5
执行结果转移到03H,因为C = 0。
5.AND R2,R3
执行结果R2 =00 H,R3 =01H。
6.SUB R3,R2
执行结果R2 = 00H,R3 = 01H
7.STA R3,[R2]
执行结果R2 = 00H,R3 = 01H,存储器00单元的内容为01H。
8.MUL R0,R1
执行结果R0 = 41H,R1 = 5DH
9.STP
执行结果:无变化。