高中数学必修4 三角函数的图像与性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的图像和性质

1.“五点法”描图

(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为

(0,0),)1,2

,(π,0),)

1,23(

-π,(2π,0).

(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为

(0,1),)0,2(π,(π,-1),)0,23(π

,(2π,1).

2.三角函数的图象和性质

(1)周期性

函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π

|ω|,y=tan(ωx+φ)的最小正周

期为π

|ω|.

(2)奇偶性

三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式.

三种方法

求三角函数值域(最值)的方法:

(1)利用sin x、cos x的有界性;

(2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;

(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.

双基自测

1.函数)3cos(π

+=x y ,x ∈R ( ).

A .是奇函数

B .是偶函数

C .既不是奇函数也不是偶函数

D .既是奇函数又是偶函数 2.函数)

4

tan(

x y -=π

的定义域为( ). A .

}

,4

|{Z k k x x ∈-

≠π

π

B .},4

2|{Z k k x x ∈-≠π

π

C .},4

|{Z k k x x ∈+

≠π

π

D .},4

2|{Z k k x x ∈+

≠π

π

3.)4sin(π

-=x y 的图象的一个对称中心是( ).

A .(-π,0)

B .)0,4

3(π-

C .)0,2

3(

π

D .)0,2

4.函数f (x )=cos )6

2(π

+

x 的最小正周期为________.

考向一 三角函数的周期

【例1】►求下列函数的周期: (1))

2

3

sin(

x y π

π

-

=;(2))6

3tan(π

-=x y

考向二 三角函数的定义域与值域

(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.

(2)求解三角函数的值域(最值)常见到以下几种类型的题目:

①形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);

②形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).

【例2】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x )4

|(|π

≤x 的最大值与最小值.

【训练2】 (1)求函数y =sin x -cos x 的定义域;

(2)

)

1cos 2lg(sin )4

tan(--

=

x x

x y π

的定义域

(3)已知)(x f 的定义域为]1,0[,求)(cos x f 的定义域.

考向三 三角函数的单调性

求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,若ω为负则要先把ω化为正数. 【例3】►求下列函数的单调递增区间.

(1))23cos(x y -=π

,(2))324sin(21x y -=π,(3))3

3tan(π

-=x y .

【训练3】 函数f (x )=sin )3

2(π

+-x 的单调减区间为______.

考向四 三角函数的对称性

正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用. 【例4】►(1)函数y =cos )3

2(π

+

x 图象的对称轴方程可能是( ).

A .x =-π6

B .x =-π12

C .x =π6

D .x =π

12

(2)若0<α<π2,)42sin()(απ

++=x x g 是偶函数,则α的值为________.

【训练4】 (1)函数y =2sin(3x +φ))2

|(|π

ϕ<

的一条对称轴为x =

π

12,则φ=________.

(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.

难点突破——利用三角函数的性质求解参数问题

含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用

相关文档
最新文档