风机叶片材料的GL认证技术规范
TUV南德为中材叶片颁发风机叶片GL导则设计评估证书
T u V南 德 为 中材 叶片颁 飘 机1 = } G 工 则 设 计评 估证 书
近期 , T U V南 德意 志 集 团 ( 以 下简 称 “ T U V S U D ” )为 中材科 技风 电 叶片股 份 有 限公 司 ( 以下 简称 “ 中材 叶片 ” )
风电机组 , 主要应用于海上风 电。
机组 的总体设计和零部件 的详细设计 , 2 0 1 2年 6月完成样 机 吊装 , 但该计划 被一 再推迟。公司 2 0 1 3年 3月 2 3日公告 称 ,
计 划变更南 京兆 瓦 级风 电机 组 产业 化专 案 , 撤 销 南京 金 风
后, 回收的资金 约 2 6 9 0万元用 于 6 MW 直驱永磁机 组研 制专 案。 目前 , 国内已有华锐风 电、 联合 动力 、 湘 电股份和海 装风
力, T U V S U D是 D A k k S认可 的, 从事风机发 电机及其零 部件 认证 的认证机构 , 拥有近 2 0年 的专业经验 。
相关资料
则设计 评估证 书 。此次 认证 , 标 志着 此 型号 风 机 叶片 的设
计完 全满足 国际 标 准要 求 , 可 以顺 利 进军 国际 市场 。与 此 同时, 也有 力证 明 T U V S U D在 风机 、 零部 件 认 证方 面 的丰 富经 验和本 土支 持能 力 , 助 国 内风 电企 业 打入 国 际市 场 一
T U V南德意志集 团于 约 1 5 0年前在德 国成立 , 是全球领 先 的技术服 务公 司之 一 , 服务 范 围覆盖 测试 、 认证、 检验 、 资
讯及专 家指导等 多个 领域 。公 司在 全世 界拥 有 8 0 0多个代 表处 , 员 工约 2 0 , 0 0 0人 , 着 力为 客户提 供技 术 、 体 系及 实 际
风力发电机组产品认证技术规范编制说明
风力发电机组产品认证技术规范编制说明1我国风电标准的概况我国风电标准包括国家标准、行业标准(机械行业标准、电力行业标准、能源行业标准等)。
我国现行的风电国家标准52个,机械行业标准24个,电力行业标准8个,能源行业标准2个,如下表1。
除这些标准外还有部分地方标准,如:DB 65/T 2219-2005并网风力发电机组电能品质评估和测试方法等。
标准内容涉及风电场、风机整机、零部件等。
表1 风电标准从标准发布情况看,近年来,我国风电标准化进程明显加快,目前还有30多个标准在制定过程中或已经上报审批。
2并网型风力发电机组主要零部件标准情况风力发电机的样式虽然很多,但其原理和结构总的说来还是大同小异。
风力发电机组主要零部件有塔架(塔筒)、齿轮箱、控制器、发电机、偏航系统、轮毂、叶片、法兰、紧固件、主轴、润滑油、润滑脂、电缆、轴承等,标准情况如下:(1) 塔架(又称塔筒)现执行的标准为GB/T 19072-2010风力发电机组塔架,并将该标准作为产品认证的依据。
(2) 齿轮箱现执行的标准为GB/T 19073-2008风力发电机组齿轮箱,并将该标准作为产品认证的依据。
(3) 控制器现执行的标准为GB/T 19069-2003风力发电机组控制器技术条件,并将该标准作为产品认证的依据。
(4) 发电机现执行的标准为GB/T 25389-2010风力发电机组低速永磁同步发电机,并将该标准作为产品认证的依据。
(5) 偏航系统现执行的标准为JB/T 10425-2004风力发电机组偏航系统,并将该标准作为产品认证的依据。
(6) 轮毂轮毂为球墨铸铁铸造而成,其关键是对铸造性能的考核。
现执行的标准为GB/T 25390-2010风力发电机组球墨铸铁件,并将该标准作为产品认证的依据。
(7) 叶片现执行的标准为GB/T 25383-2010 风力发电机组风轮叶片,并将该标准作为产品认证的依据。
叶片原材料主要包括:竹材、树脂、增强材料、芯材、胶黏剂、涂料,目前均无国标,特制定相应技术规范如下:(a) 竹材已制定《风力发电机组叶片竹基复合材料性能试验方法》。
叶片认证实施规则-鉴衡认证中心
风力发电机组风轮叶片产品认证实施规则北京鉴衡认证中心编号:CGC-R46064:2014风力发电机组风轮叶片(全过程质量控制)认证实施规则北京鉴衡认证中心2014年06月目录1. 适用范围 (1)2. 认证模式 (1)3. 认证实施的基本要求 (1)3.1 认证申请 (1)3.2 设计评估 (1)3.3 型式试验 (2)3.4 初始工厂审查 (3)3.5 认证结果评价与批准 (3)3.6 认证时限 (3)3.7 获证后监督 (4)4. 认证证书 (4)4.1 认证证书的保持 (4)4.2 认证证书覆盖产品的扩展 (5)4.3 认证证书的暂停、注销和撤销 (5)5. 产品认证标志的使用规定 (5)5.1 准许使用的标志样式 (5)5.2 变形认证标志的使用 (5)5.3 加施方式 (5)5.4 加施位置 (6)6. 认证收费 (6)附件1 风力发电机组风轮叶片产品认证申请所需提交文件资料清单 (7)附件2 风力发电机组风轮叶片设计评估要求 (9)附件3 风力发电机组风轮叶片型式试验要求 (19)附件4 产品认证工厂质量保证能力要求 (23)附件5产品质量一致性控制能力检查要求 (27)附件6 关键质量记录核查表 (48)1. 适用范围本实施规则适用于风轮扫掠面积大于或等于200m2的水平轴风力发电机组风轮叶片产品(全过程质量控制标准化)认证。
2. 认证模式设计评估+ 型式试验+ 初始工厂审查+ 获证后监督3. 认证实施的基本要求3.1 认证申请3.1.1认证申请单元划分认证单元的划分按照产品型号、制造商、生产场地进行划分。
对于不同的申请单元,如具有相同的评估内容,经认证机构同意后可以缩减评估工作量。
3.1.2 申请时需要提交的文件资料产品认证申请所需提交的文件资料详见“风力发电机组风轮叶片产品认证申请所需提交文件资料清单”(附件1)。
3.2 设计评估认证机构依据GB/T 25383-2010 《风力发电机组风轮叶片》,并结合产品的设计条件和预定用途,对所收到的技术资料进行审查。
风电机组叶片涂装要求及质量控制
表面涂饰
Surface Finishing
表 1 涂料配套体系要求
层数 叶片 大灰 叶片 小灰 底漆 面漆 总膜厚 涂料名称 聚氨酯叶片大灰/ 环氧大灰 聚氨酯叶片小灰/ 环氧小灰 聚氨酯底漆/环氧底漆 聚氨酯面漆 80~140 µm/200~250 µm 80~140 µm 160~280 µm/280~390 µm(不含 大、小灰) 干膜厚度 0~6 mm
耐柔韧性/mm
4.2 叶片小灰
叶片小灰专门用于风电叶片基材表面以及叶片大灰 打磨后毛细孔和砂眼的批刮,用量较少,但对于叶片的保 护起着非常关键的作用。叶片行业对叶片小灰产品的要求 如表 3 所示。
耐冲击性/cm,≥ 耐磨性(1 000 r/ 1 000 g)/g,≤ 摆杆硬度,≥ 附着力/MPa,≥ 光泽(60°) 重涂性 吸水率(24 h 和 168 h)/%,≤ 人工加速老化 (2 000 h)
4.3 聚氨酯叶片底漆
叶片底漆的技术要求见表 4。
4.4 叶片面漆
鉴于风电叶片保护的持久性以及术与文摘 Coatings Technology & Abstracts
13
表面涂饰
Surface Finishing
5 涂层体系性能要求
叶片复合涂层的技术要求如表 6。
叶片小灰产品的技术指标项目技术指标检测方法物料状态灰色无异物无硬块易涂刮粘稠液体目测线形收缩率不挥发分96gbt17252007稠度1216与固化剂混合后gbt1749吸水率dineniso175可涂刮时间min叶片底漆的技术要求项目技术指标检测方法物料状态灰色无异物无硬块易搅拌成均匀液体目测50gbt1724摆杆硬度06astmd2240柔韧性mmgbt1748耐冲击性cm50gbt1732不挥发分65gbt17252007附着力拉开法mpa单个测试值6平均值8iso4624叶片面漆参考指标项目技术指标检测方法容器中的物料状态灰色无异物无硬块易搅拌成均匀液体目测不挥发物含量63gbt1725200735gbt1724干燥时间实干h24gbt1728耐柔韧性mmgbt1731耐冲击性cm50gbt1732耐磨性1000003iso7784摆杆硬度06gbt1730附着力mpaiso4624光泽60515gbt97541988重涂性重涂无障碍吸水率24dineniso175人工加速老化不起泡不开裂不脱层允许1级变色1级失光和1iso1134114涂料技术与文摘coatingstechnologyabstracts表面涂饰surfacefinishing涂层体系性能要求叶片复合涂层的技术要求如表6
第一章.风力发电机组认证指南
第⼀章.风⼒发电机组认证指南Table of contents⽬录1 Guideline for the Certification of Wind Turbines ...................................... 错误!未定义书签。
1 风机认证指南........................................................................................... 错误!未定义书签。
Symbols and Units ........................................................................................ 错误!未定义书签。
符号和单位................................................................................................... 错误!未定义书签。
Table of contents .. (1)⽬录 (1)1.1 Scope (7)1.1范围 (7)1.1.1General (7)1.1.1概述 (7)1.1.2 Transition periods (8)1.1.2过渡期 (8)1.1.3 Deviations (9)1.1.3偏差 (9)1.1.4 National requirements (10)1.1.4 国家要求 (10)1.1.4.1International guidelines (10)1.1.4.1国际指导⽅针 (10)1.1.5 Assessment documents (10)1.1.5评估⽂件 (10)1.2Extent of Certification (11)1.2认证的范围 (11)1.2.1 Subdivision of the certification (11)1.2.1认证的细节 (11)1.2.1.1 C-Design Assessment (11)1.2.1.1 C –设计评审 (11)1.2.1.2 A-and B-Design Assessment of the type of a wind turbine (11)1.2.1.2 风机的A型和B型设计评审 (11)1.2.1.3 Site-specific Design Assessment (12)1.2.1.3 风场的设计评审 (12)1.2.1.4 Type Certificate for the type of a wind turbine (12)1.2.1.4 对风机型号的类型认证 (12)1.2.1.5 Project Certificate (13)1.2.1.5 项⽬证书 (13)1.2.2Assessment of prototypes(C-Design Assessment) (14)1.2.2样机评估(C设计评审) (14)1.2.2.1 General (14)1.2.2.1 概述 (14)1.2.2.2 Scope and validity (14)1.2.2.2 范围和有效性 (14)1.2.2.3 Documents to be submitted (15)1.2.2.3 要提交的⽂件 (15)1.2.2.4 Scope of assessment (17)1.2.2.4 评估范围 (17)1.2.3 A-and B-Design Assessment (18)1.2.3 A-和B-设计评审 (18)1.2.3.1 Scope and validity (18)1.2.3.1 范围和有效性 (18)1.2.3.2 Assessment of the design documentation (20)1.2.3.2设计⽂件的评估 (20)1.2.3.3 Witnessing and Tests (21)1.2.3.3证明和测试 (21)1.2.4Site-specific Design Assessment (22)1.2.4风场设计评审 (22)1.2.4.1 Scope (22)1.2.4.1 范围 (22)1.2.4.2 Site-specific assessment (22)1.2.4.2风场评审 (22)1.2.5Type Certificate (23)1.2.5.1 Scope and validity (23)1.2.5.1 范围和有效性 (23)1.2.5.2 Quality management system (24)1.2.5.2 质量管理系统 (24)1.2.5.3 Implementation of the design-related requirements in production and erection (24) 1.2.5.3 机组⽣产和树⽴中与设计相关的要求的实施 (24)1.2.5.4 Prototype test (27)1.2.5.4 样机测试 (27)1.2.6.1 Scope and validity (29)1.2.6.1 范围和有效性 (29)1.2.6.2 Surveillance during production (29)1.2.6.2 ⽣产期间的监督 (29)1.2.6.3 Surveillance during transport and erection (30) 1.2.6.3 运输和树⽴时的监督 (30)1.2.6.4 Surveillance of commissioning (33)1.2.6.4 试运转监督 (33)1.2.6.5 Periodic Monitoring (34)1.2.6.5 定期监控 (34)1.3Basic Principles for Design and Construction (37) 1.3设计和建造的基本原理 (37)1.3.2Definitions (39)1.3.2定义 (39)1.3.2.2 Limit states (39)1.3.2.2 极限状态 (39)1.3.2.2.1Ultimate limit state (39)1.3.2.2.1最⼤极限状态 (39)1.3.2.2.2 Serviceability limit state (40)1.3.2.2.2 使⽤极限状态 (40)1.3.2.3 Partial safety factors for loads (40)1.3.2.3载荷部分安全系数 (40)1.3.3分析程序 (43)1.3.4Mathematical model (44)1.3.4数学模型 (44)Appendix1.A National Requirements in Germany (45)附录1.A 德国标准 (45)1.A.1General (45)1.A.1概述 (45)1.A.1.1 Material requirements (45)1.A.1.1材料要求 (45)1.A.1.2 Requirements for manufacturers (46)1.A.1.2对⼚商的要求 (46)1.A.1.3 Analysis (46)1.A.1.3分析 (46)1.A.1.4 Guidelines for measurements (47)1.A.1.4 测量指南 (47)1.A.2Analysis concept (48)1.A.2分析理念 (48)1.A.2.1 Towers (48)1.A.2.1塔架 (48)1.A.2.2 Foundations (48)1.A.2.2基础 (48)1.A.3Wind conditions (49)1.A.3风况 (49)1.A.3.1 General (49)1.A.3.1概述 (49)1.A.3.2 Wind zones (49)1.A.3.2风⼒区域 (49)1.A.3.3 Reference wind speeds (50)1.A.3.3基准风速 (50)(10) and reference value of the 50-year gustTable 1.A.1 Reference wind speed Vrefe50表1.A.1基准风速Vref (10) 50-年⽓流基准值Ve50(10) (51)Appendix 1.B National Requirements in Denmark (53)附录1.B丹麦标准 (53)1.B.1General (53)1.B.1概述 (53)1.B.2Regulations and standards (54)1.B.2规格和标准 (54)Appendix 1.C National Requirements in France (56)附录1.C法国标准 (56)1.C.1General (56)1.C.1概述 (56)1.C.2Building permission procedure (56)1.C.2营建许可程序 (56)Appendix 1.D National Requirements in the Netherlands (59)附录1.D荷兰国家标准 (59)1.D.1General (59)1.D.1概述 (59)1.D.2Preliminary standard NVN 11400-0 (60)1.D.2初步标准NVN 11400-0 (60)Appendix 1.E National Requirements in India (63)印度标准 (63)1.E.1General (63)1.E.1概论 (63)1.E.2Certification categories (63)1.E.2认证类型 (63)1.E.2.1 Category I (64)1.E.2.1 种类I (64)1.E.2.2 Category II (64)1.E.2.2 种类II (64)1.E.2.3 Category III (65)1.E.3TAPS-2000 requirements (65)1.E.3TAPS-2000要求 (65)1.E.3.1 Category I and II (65)1.E.3.1 种类I 和II (65)1.E.3.2 Category III (65)1.E.3.2 种类III (65)1.E.3.3 External conditions for India(corresponding to TAPS-2000, Appendix 2) (66)1.E.3.3印度的外来条件(根据TAPS-2000,附录2) (66)Appendix 1.F IEC and CENELEC Standards (68)附录1.FIEC和CENELEC标准 (68)IV Industrial Services ................................................................................. 错误!未定义书签。
风力发电机叶片设计规范材料制作工艺结构强度雷电保护认证规范.
Structural collapse of a wind turbine blade. Part A: Static test and equivalent single layered modelsComposites Part A: Applied Science and ManufacturingThe overall objective is a top-down approach to structural instability phenomena in wind turbine blades, which is used to identify the physics governing the ultimate strength of a generic wind turbine blade under a flap-wise static test. The work is concerned with the actual testing and the adoption of a phenomenological approach, and a discussion is conducted to assess and evaluate the wind turbine blade response during loading and after collapse by correlating experimental findings with numerical model predictions. The ultimate strength of the blade studied is governed by instability phenomena in the form of delamination and buckling. Interaction between both instability phenomena occurs causing a progressive collapse of the blade structure.Linear vibration analysis of rotating wind-turbine bladeCurrent Applied PhysicsIn the wind-turbine design, linear vibration analysis of the wind-turbine blade should be performed to get vibratory characteristics and to avoid structural resonance. EOM (equations of motion) for the blade are derived and vibratory characteristics of a rotating blade are observed and discussed in this work. Linear vibration analysis requires the linearized EOM with DOF (degree of freedom). For the system with large DOF, the derivation and linearization of EOM are very tedious and difficult. Constrained multi-body technique is employed to derive EOM’s to alleviate this burden. It is well known that natural frequencies and corresponding modes vary as rotating velocity changes. At the operating condition with relatively high rotating velocity, almost all commercial programs cannot predict the blade frequencies accurately. Numerical problems were solved to verify the accuracy of the proposed method. Through the numerical problems, this work shows that the proposed method is useful to predict the vibratory behavior of the rotating blade. Furthermore, a numerical problem was solved to check the numerical accuracy of commercial program results within operating region.Aero-elastic behavior of a flexible blade for wind turbine application: A 2D computational studyEnergyThis paper presents a computational study into the static aeroelastic response of a 2D wind turbine airfoil under varying wind conditions. An efficient and accurate code that couples the X-Foil software for computation of airfoil aerodynamics and the MATLAB PDE toolbox for computation of the airfoil deformation is developed for the aero-elastic computations. The code is validated qualitatively against computational results in literature. The impact of a flexibility of the airfoil is studied for a range of design parameters including the free stream velocity, pitch angle, airfoil thickness, and airfoil camber. Static aero-elastic effects have the potential to improve lift and the lift over drag ratio at off-design wind speedconditions. Flexibility delays stall to a large pitch angle, increasing the operating range of a flexible blade airfoil. With increased thickness the airfoil deformation decrease only linearly.Technical cost modelling for a generic 45-m wind turbine blade producedby vacuum infusion (VI)Renewable EnergyA detailed technical cost analysis has been conducted on a generic 45-m wind turbine blade manufactured using the vacuum infusion (VI) process, in order to isolate areas of significant cost savings. The analysis has focused on a high labour cost environment such as the UK and investigates the influence of varying labour costs, programme life, component area, deposition time, cure time and reinforcement price with respect to production volume. A split of the cost centres showed the dominance of material and labour costs at approximately 51% and 41%, respectively. Due to the dominance of materials, it was shown that fluctuations in reinforcement costs can easily increase or decrease the cost of a turbine blade by up to 14%. Similarly, improving material deposition time by 2 h can save approximately 5% on the total blade cost. However, saving 4 h on the cure cycle only has the potential to provide a 2% cost saving.A cost and performance comparison of LRTM and VI for the manufacture of large scale wind turbine bladesRenewable EnergyLight resin transfer moulding (LRTM) has been developed as an alternative to vacuum infusion (VI) but a direct comparison between the two processes is needed to quantify any advantages. This paper uses a technical cost model and an empirical study to show the potential financial and performance benefits of LRTM for manufacture of a generic 40 m wind turbine blade shell. The use of LRTM when compared to VI demonstrated a possible 3% cost saving, improved dimensional stability (5.5%), and reductions in resin wastage (3%) and infusion time (25%). A decrease in internal void formation (0.9%) resulted in an increase in mechanical performance (<4%) for LRTM moulded parts.Power curve control in micro wind turbine designIn this work, a micro wind turbine will be designed and built for a series of wind tunnel tests (rotor dynamics and Wind Turbine (WT) start-up velocity). Its design stems from an original numerical code, developed by the authors, based on the Blade Element Momentum (BEM) Theory.From classic design criteria, having evaluated all the geometric characteristics, an innovative methodology will be shown for controlling the power curve of the wind turbine. Indications will be supplied in order to modify various sections of the power curve and so as to design the turbine according to its practical application.微小型风力发电机组的输出电能能源曲线控制Performance effects of attachment on blade on a straight-bladed vertical axis wind turbine直线型垂直轴风力发电机叶片工作效能及其附件选配Current Applied PhysicsRecently, many straight-bladed vertical axis wind turbines (SB-VAWT) are installed in community, urban and high mountain areas as an independent power supply. However, in cold climates, icing, snow and other attachments on the blade surface may affect turbine performance. In this study, the condition of rime-type icing on the leading edge of blade surface was simulated by clay, and the effects on the rotation and power performance were measured by wind tunnel tests and discussed. The results show that the attachment reduced the steady revolution and power coefficient of the SB-VAWT, and the reduction rate increased as the weight of the attachment and wind speed increased.A methodology for the structural analysis of composite wind turbine blades under geometric and material induced instabilitiesComputers & StructuresThe objective of this work is to develop a modeling strategy for the structural analysis of large three-dimensional laminated composite structures undergoing geometric and material induced instability.A sub-modeling approach is used with multiple mixed-mode linear-softening cohesive elements and linear-elastic solid-shell elements through the thickness. A localized sub-plane control strategy is adopted for tracking multiple crack formations and the propagation of multiple delamination fronts. Simple element and solver benchmarks are used to demonstrate the adopted methods. Finally, the adopted methods are demonstrated in an engineering case study of a generic laminated composite wind turbine blade.Structural collapse of a wind turbine blade. Part B: Progressive interlaminar failure modelsComposites Part A: Applied Science and ManufacturingThe objective of this paper is to present a geometrical nonlinear and interlaminar progressive failure finite element analysis of a generic wind turbine blade undergoing a static flap-wise load and comparisons with experimental findings. It is found that the predictive numerical models show excellent correlation with theexperimental findings and observations in the pre-instability response. Consequently, the ultimate strength of the wind turbine blade studied is governed by a delamination and buckling coupled phenomenon, which results in a chain of events and sudden structural collapse with compressive fibre failure in the delaminated flange material. Finally, a parametric study of the critical load factors with respect to various delamination sizes and positions inside the compressive flange of the wind turbine blade is presented.An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbinesExpert Systems with ApplicationsThis paper introduces an adaptive neuro-fuzzy inference system (ANFIS) model to predict the tip speed ratio (TSR) and the power factor of a wind turbine. This model is based on the parameters for LS-1 and NACA4415 profile types with 3 and 4 blades. In model development, profile type, blade number, Schmitz coefficient, end loss, profile type loss, and blade number loss were taken as input variables, while the TSR and power factor were taken as output variables. After a successful learning and training process, the proposed model produced reasonable mean errors. The results indicate that the errors of ANFIS models in predicting TSR and power factor are less than those of the ANN method.Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning bladeEnergy Conversion and ManagementDue to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at λ = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions.The inception of OMA in the development of modal testing technology for wind turbinesMechanical Systems and Signal ProcessingWind turbines are immense, flexible structures with aerodynamic forces acting on the rotating blades at harmonics of the turbine rotational frequency. These harmonics are comparable to the modal frequencies of the structure. Predicting and experimentally measuring the modal frequencies of wind turbines have been important to their successful design and operation. Performing modal tests on wind turbine structures over 100 m tall is a substantial challenge, which has inspired innovative developments in modal test technology. For wind turbines, a further complication is that the modal frequencies are dependent on the turbine rotation speed. The history and development of a new technique for acquiring the modal parameters using output-only response data, called the Natural Excitation Technique (NExT), will be reviewed, showing historical tests and techniques. The initial attempts at output-only modal testing began in the late 1980s with the development of NExT in the 1990s. NExT was a predecessor to Operational Modal Analysis (OMA), developed to overcome these challenges of testing immense structures excited with natural environmental inputs. We will trace the difficulties and successes of wind turbine modal testing from 1982 to the present.Optimization of Savonius turbines using an obstacle shielding the returning bladeDue to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. In Germany, wind energy is becoming particularly important. Although considerable progress has already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a Savonius turbine with either two or three blades. In addition, the improved design leads to a better self-starting capability. To achieve these objectives, the position of an obstacle shielding the returning blade of the Savonius turbine and possibly leading to a better flow orientation toward the advancing blade is optimized. This automatic optimization is carried out by coupling an in-house optimization library (OPAL) with an industrial flow simulation code (ANSYS-Fluent). The optimization process takes into account the output power coefficient as target function, considers the position and the angle of the shield as optimization parameters, and relies on Evolutionary Algorithms. A considerable improvement of the performance of Savonius turbines can be obtained in this manner, in particular a relative increase of the power output coefficient by more than 27%. It is furthermore demonstrated that the optimized configuration involving a two-blade rotor is better than the three-blade design.Acoustic measurement for 12% scaled model of NREL Phase VI wind turbine by using beamformingCurrent Applied PhysicsWind tunnel test for the 12% scaled model of NREL Phase VI wind turbine was conducted at Korea Aerospace Research Institute (KARI) low speed wind tunnel. Test condition for the scaled model was decided to match the blade tip mach number with real scale model test which was conducted at NASA Ames (80′ ×120′) Tunnel. Aerodynamic performance represented by torque of the blades was measured by using the torque sensor installed in rotating shaft and compared with real scale model test results. Acoustic noise for scaled model was also measured at closed type test section with acoustic array of 144 microphones. Time based beamforming method to identify the rotating noise source position was applied to analyze the test results. 1/3 octave band was used in post processing for various wind speeds. Test results shows that the main acoustic noise source position moves toward the blade tip as frequency increases and the noise level at low frequency below 2 kHz has much higher when the blade is in stall condition.低温天气情况下,结冰对于曲面叶片的影响衡量与评估Measurement method and results of ice adhesion force on the curved surface of a wind turbine bladeExperimental adhesion force measurements were conducted on accumulated ice on the leading edge of a scaled wind turbine blade in both glaze and rime icing regimes. An apparatus was first designed for specifically measuring the adhesion force of ice on a curved surface at climatic temperature where a vertical force was applied to the mounted structure in the test apparatus. Adhesion force measurements were measured and adhesion pressure calculated for plain and ice-mitigated test specimens. Results are presented for the increase in force of ice adhesion over a curved surface area in proportion to degree centigrade decrease in temperature.Optimization of wind turbine energy and power factor with an evolutionary computation algorithm结合风电场个性化特殊设计法的叶片的优化设计通用算法An evolutionary computation approach for optimization of power factor and power output of wind turbines is discussed. Data-mining algorithms capture the relationships among the power output, power factor, and controllable and non-controllable variables of a 1.5 MW wind turbine. An evolutionary strategy algorithm solves the data-derived optimization model and determines optimal control settings. Computational experience has demonstrated opportunities to improve the power factor and the power output by optimizing set points of blade pitch angle and generator torque. It is shown that the pitch angle and the generator torque can be controlled to maximize the energy capture from the wind and enhance the quality of the power produced by the wind turbine with a DFIG generator. These improvements are in the presence of reactive power remedies used in modern wind turbines. The concepts proposed in this paper are illustrated with the data collected at an industrial wind farm.Review of state of the art in smart rotor control research for wind turbines Progress in Aerospace SciencesThis article presents a review of the state of the art and present status of active aeroelastic rotor control research for wind turbines. Using advanced control concepts to reduce loads on the rotor can offer great reduction to the total cost of wind turbines. With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for locally distributed aerodynamic control systems with build-in intelligence on the blades. Such concepts are often named in popular terms ‘smart structures’ or ‘smart rotor control’. The review covers the full span of the subject, starting from the need for more advanced control systems emerging from the operating conditions of modern wind turbines and current load reduction control capabilities. An overview of available knowledge and up-to date progress in application of active aerodynamic control is provided, starting from concepts, methods and achieved results in aerospace and helicopter research. Moreover, a thorough analysis on different concepts for smart rotor control applications for wind turbines is performed, evaluating available options for aerodynamic control surfaces, actuators (including smart materials), sensors and control techniques. Next, feasibility studies for wind turbine applications, preliminary performance evaluation and novel computational and experimental research approaches are reviewed. The potential of load reduction using smart rotor control concepts is shown and key issues are discussed. Finally, existing knowledge and future requirements on modeling issues of smart wind turbine rotors are discussed. This study provides an overview of smart rotor control for wind turbines, discusses feasibility of future implementation, quantifies key parameters and shows the challenges associated with such an approach.Horizontal axis wind turbine working at maximum power coefficient continuously水平轴大型叶片在满载/最大输出条件下的连续工作效率The performance of a horizontal axis wind turbine continuously operating at its maximum power coefficient was evaluated by a calculation code based on Blade Element Momentum (BEM) theory. It was then evaluated for performance and Annual Energy Production (AEP) at a constant standard rotational velocity as well as at a variable velocity but at its maximum power coefficient.The mathematical code produced a power coefficiency curve which showed that notwithstanding further increases in rotational velocity a constant maximum power value was reached even as wind velocity increased.This means that as wind velocity varies there will always be a rotational velocity of the turbine which maximises its coefficient. It would be sufficient therefore to formulate the law governing the variation in rotational velocity as it varied with wind velocity to arrive at a power coefficient that is always the same and its maximum.This work demonstrates the methodology for determining the law governing the rotational velocity of the rotor and it highlights the advantages of a wind turbine whose power coefficient is always at maximum rather than very variable in line with the variation of wind velocity.。
风力发电机组风轮叶片型式试验方案要求-鉴衡认证
风力发电机组风轮叶片产品认证实施规则北京鉴衡认证中心编号:CGC-R46002:2012风力发电机组风轮叶片产品认证实施规则北京鉴衡认证中心2012年06月目录1. 适用范围 (1)2. 认证模式 (1)3. 认证实施的基本要求 (1)3.1 认证申请 (1)3.3 型式试验 (1)3.4 工厂审查 (2)3.5认证结果评价与批准 (3)3.6获证后监督 (4)4. 认证证书 (5)4.1 认证证书的保持 (5)4.2 认证证书覆盖产品的扩展 (5)4.3认证证书的暂停、注销和撤销 (6)5. 产品认证标志的使用规定 (6)5.1 准许使用的标志样式 (6)5.2 变形认证标志的使用 (6)5.3 加施方式 (6)5.4 加施位置 (6)6. 认证收费 (6)附件1 风力发电机组风轮叶片产品认证申请所需提交文件资料清单 (7)附件2 风力发电机组风轮叶片设计文档要求 (9)附件3 风力发电机组风轮叶片型式试验方案要求 (10)附件4 产品认证工厂质量保证能力要求 (12)附件5 评估资料企业代管申请表 (16)附件6 代管资料证明书 (17)1. 适用范围本规则适用于风轮扫掠面积等于或大于200m2的水平轴风力发电机组风轮叶片产品认证。
2. 认证模式设计评估+ 型式试验+ 工厂审查+ 获证后监督3. 认证实施的基本要求3.1 认证申请3.1.1认证申请单元划分认证单元的划分按照产品型号进行划分。
同一制造商、同一产品型号,不同生产场地生产的产品应作为不同的申请单元。
但不同生产场地生产的相同产品可只做一次型式试验。
3.1.2 申请时需要提交的技术文件资料产品认证申请所需提交的图纸和文件资料见“风力发电机组风轮叶片产品认证申请所需提交文件资料清单”(附件1)。
3.1.3 评估资料企业代管申请(适用时)对于附件1“风力发电机组风轮叶片产品认证申请所需提交文件资料清单”的部分文件资料,如果申请认证的单位出于“技术保密”的理由,不方便移交我方带走封存的,可以由申请认证的单位提出认证评估资料代管申请(见附件5)“评估资料企业代管申请表”,并列出代管资料清单,经过我方审批申请、审查资料、加盖审批章/备查章以及加封(贴封条)后,由申请认证的单位保管、出具代管资料证明书(见附件6)“代管资料证明书”。
GL风机认证规范中文版
This Guideline was compiled by Germanischer Lloyd WindEnergie GmbH in cooper ation with the Wind Energy Committee. The Wind Energy Committee consists of re presentatives from manufacturers, universities, insurance companies, associations, e ngineering offices, authorities and institutes. The current members of the Wind Ener gy Committee are named on our website: 本指南由德国劳埃德船级社风能股份有限公司在风能委员会的协助下编辑完成。
风能委员会由制造商,大学,保险公司,行业协会,工程部门,权威人士和学院的代表组成。
风能委员会的现有成员在我们的网址:中列出。
This Guideline comes into force on 1st November 2003.本指南于2003年11月1日正式实施。
Interpretation of the Guideline is the exclusive prerogative of Germanischer Lloyd W indEnergie GmbH. Any reference to the application of this Guideline is permitted on ly with the consent of Germanischer Lloyd WindEnergie GmbH.本指南的解释权归德国劳埃德船级社风能股份有限公司。
所有涉及本指南的运用必须得到德国劳埃德船级社风能股份有限公司的同意。
第三章 .风力发电机组认证指南
Rules and Guidelines规则和指南IV Industrial ServicesIV 工业用途1 Guideline for the Certification of Wind Turbines1.风力发电机组认证指南3 Requirements for Manufacturers, Quality Management, Materials and Production3 对制造商、品质管理、材料、产品的要求Table of Contents目录错误!未定义书签。
3.1Requirements for Manufacturers (10)3.1制造要求 (10)3.1.1General (10)3.1.1概述 (10)3.1.2Works equipment (11)3.1.2加工设备 (11)3.1.3Personnel (12)3.1.3人员 (12)3.1.4 Shop approval (12)3.1.4车间认证 (12)3.1.4.1 General (12)3.1.4.1概述 (12)3.1.4.2 Application for approval (13)3.1.4.2认证申请表 (13)3.1.4.3 Approval procedure, period of validity (13)3.1.4.3认证程序,有效期 (13)3.1.4.4 hange in approval conditions (14)3.1.4.4认证条件的变更 (14)3.2Quality Management (15)3.2质量管理 (15)3.2.1 General (15)3.2.1概论 (15)3.2.3Requirements for the quality management system (17)3.2.3质量管理系统要求 (17)3.2.4Certification of the QM system (18)3.2.4质量管理体系认证 (18)3.3 Materials (20)3.3 材料 (20)3.3.1 General requirements (20)3.3.1 总体要求 (20)3.3.1.1 General (20)3.3.1.1 概述 (20)3.3.1.2 Material tests (21)3.3.1.2 材料的测试 (21)3.3.1.3 Corrosion protection (24)3.3.1.3 防腐蚀 (24)3.3.1.3.1General (24)3.3.1.3.1概述 (24)3.3.1.3.2Design for corrosion protection (25)3.3.1.3.2防腐蚀的设计 (25)3.3.1.3.3 Material selection (26)3.3.1.3.3材料选择 (26)3.3.1.3.4 Coatings (26)3.3.1.3.4 涂覆 (26)3.3.2 Metallic materials (27)3.3.2 金属材料 (27)3.3.2.1 Structural steels (28)3.3.2.1结构钢 (28)3.3.2.2 Cast steel (28)3.3.2.2铸钢 (28)3.3.2.3 Stainless steels (30)3.3.2.3不锈钢 (30)3.3.2.4 Forging steels (31)3.3.2.4锻钢 (31)3.3.2.4.1 Standards (32)3.3.2.4.1标准 (32)3.3.2.4.3 Delivery condition, heat treatment (33)3.3.2.4.3交货条件,热处理 (33)3.3.2.4.4 General forging quality (34)3.3.2.4.4 一般锻件质量 (34)3.3.2.4.5 Mechanico-technological testing (35)3.3.2.4.5机械试验 (35)3.3.2.4.6 Non-destructive testing (37)3.3.2.4.6 非破坏性试验 (37)3.3.2.6 Aluminium alloys (43)3.3.2.6 铝合金 (43)3.3.2.6.1 Wrought alloys (44)3.3.2.6.1 精炼合金 (44)3.3.2.6.2 Cast alloys (44)3.3.2.6.2 铸造合金 (44)3.3.3Fibre-reinforced plastics (FRP) (45)3.3.3纤维增强材料 (45)3.3.3.1 Definitions (45)3.3.3.1 定义 (45)3.3.3.2 General (46)3.3.3.2 概述 (46)3.3.3.3 Reaction resin compounds (47)3.3.3.3反应树脂混合物 (47)3.3.3.4 Reinforcing materials (49)3.3.3.4增强材料 (49)3.3.3.5 Core materials (51)3.3.3.5核心材料 (51)3.3.3.6 Prepregs (52)3.3.3.6预浸料 (52)3.3.3.7 Adhesives (52)3.3.3.7粘合剂 (52)3.3.3.8 Approval of materials (53)3.3.3.8材料的批准 (53)3.3.4 木材 (54)3.3.4.1 Types of wood (54)3.3.4.1木材的类型 (54)3.3.4.2 Material testing and approval (54)3.3.4.2材料测试和批准 (54)3.3.4.3 Glues and adhesives (55)3.3.4.3 胶水和添加剂 (55)3.3.4.4 Surface protection (55)3.3.4.4表面防护 (55)3.3.4.5 Wood preservatives (56)3.3.4.5木材防腐剂 (56)3.3.4.6 Mechanical fasteners (56)3.3.4.6机械固定件 (56)3.3.5 Reinforced concrete and prestressed concrete (56)3.3.5 钢筋混凝土和预应力混凝土 (56)3.3.5.1 General (56)3.3.5.1 概述 (56)3.3.5.2 Standards (57)3.3.5.2标准 (57)3.3.5.3 Raw materials for concrete (58)3.3.5.3混凝土原材料 (58)3.3.5.3.1 Cement types (58)3.3.5.3.1 水泥型号 (58)3.3.5.3.2 Concrete aggregate (58)3.3.5.3.2混凝土沙石 (58)3.3.5.3.3 Added water (59)3.3.5.3.3 添加水 (59)3.3.5.3.4 Admixtures (59)3.3.5.3.4附加剂 (59)3.3.5.3.5 Additives (60)3.3.5.4 Building materials (60)3.3.5.4 建筑材料 (60)3.3.5.4.1 Concrete (60)3.3.5.4.1 混凝土 (60)3.3.5.4.2 Concrete-reinforcing steel (61)3.3.5.4.2 钢筋混凝土 (61)3.3.5.4.3 Prestressing steel and prestressing procedure (62)3.3.5.4.3 预加强筋和预加强工艺 (62)3.3.5.4.4 Grouting mortar (63)3.3.5.4.4 水水泥砂浆 (63)3.3.5.5 Durability of the concrete (64)3.3.5.5 混凝土的耐久性 (64)3.4Production and Testing (67)3.4 生产和测试 (67)3.4.1General (67)3.4.1 概述 (67)3.4.2Welding (67)3.4.2 焊接 (67)3.4.2.1 Prerequisites of the works (67)3.4.2.1 工作前提 (67)3.4.2.2 Welders, welding supervision (68)3.4.2.2 焊工,焊接监督 (68)3.4.2.3 Welding method, welding procedure tests (69)3.4.2.3 焊接方法,焊接工艺试验 (69)3.4.2.4 Welding fillers and auxiliary materials (70)3.4.2.4焊接填充物和辅助材料 (70)3.4.2.5 Weld joint design (70)3.4.2.5 焊缝设计 (70)3.4.2.6 Execution and testing (72)3.4.2.6 执行和测试 (72)3.4.3Laminating fibre-reinforced plastics (75)3.4.3 复合纤维增强塑料 (75)3.4.3.1 Requirements for manufacturers (75)3.4.3.1 制造商要求 (75)3.4.3.2 Laminating workshops (75)3.4.3.2 层压车间 (75)3.4.3.3 Store-rooms (77)3.4.3.3 储藏室 (77)3.4.3.4 Processing requirements (78)3.4.3.4 工艺要求 (78)3.4.3.5 Building-up the laminate (80)3.4.3.5 铺层 (80)3.4.3.6 Curing and tempering (81)3.4.3.6 固化和回火 (81)3.4.3.7 Sealing (82)3.4.3.7 密封 (82)3.4.4Adhesive bonding (83)3.4.4 胶接 (83)3.4.4.1 Adhesive joints (83)3.4.4.1 胶粘接合 (83)3.4.4.2 Assembly process (84)3.4.4.2 组合过程 (84)3.4.5Manufacturing surveillance for FRP (86)3.4.5 FRP制造监督 (86)3.4.5.1 General (86)3.4.5.1 概述 (86)3.4.5.2 Incoming inspection (87)3.4.5.2 来料检验 (87)3.4.5.3 Production surveillance (88)3.4.5.3 生产监督 (88)3.4.5.4 Component checks (89)3.4.5.4 部件检查 (89)3.4.6W ood processing (90)3.4.6 木材加工 (90)3.4.6.1 Manufacture of wooden rotor blades (90)3.4.6.1 木制叶片的制造 (90)3.4.6.1.1General (90)3.4.6.1.1 概述 (90)3.4.6.1.2Mould requirements (91)3.4.6.1.2 模具要求 (91)3.4.6.1.3Preparing the wood (91)3.4.6.1.3 木材准备 (91)3.4.6.1.4Layer build-up and bonding (92)3.4.6.1.4 层的建立和粘结 (92)3.4.6.1.5Wood preservation (94)3.4.6.1.5 木材防腐剂 (94)3.4.6.1.6Surface protection (94)3.4.6.1.6 表面保护 (94)3.4.6.1.7Blade connections (94)3.4.6.1.7 叶片连接 (94)3.4.6.2 Manufacturing surveillance of wooden rotor blades (95)3.4.6.2 木制叶片的制造监测 (95)3.4.6.2.1General (95)3.4.6.2.1 概述 (95)3.4.6.2.2Incoming inspection (96)3.4.6.2.2 进厂检查 (96)3.4.6.2.3Visual checks (96)3.4.6.2.3 视觉检查 (96)3.4.7Making and working the concrete (96)3.4.7混凝土的制作和工作 (96)3.4.7.1 Proportioning and mixing he raw materials (96)3.4.7.1 原材料的配料和混合 (96)3.4.7.2 Transport, pouring and compacting (97)3.4.7.2 运输,浇注和压实 (97)3.4.7.3 Curing (97)3.4.7.3 固化 (97)3.4.7.4 Concreting in cool or hot weather (98)3.4.7.4 在冷或热天气情况下的凝固 (98)3.4.7.5 Formwork and its supports (98)3.4.7.5 模板及其支撑 (98)3.4.7.5.1Forms (98)3.4.7.5.1 窗体 (98)3.4.7.5.2Stripping (99)3.4.7.5.2 脱模 (99)3.4.7.6 Quality control (99)3.4.7.6 质量控制 (99)3.4.7.6.1General (99)3.4.7.6.1 概述 (99)3.4.7.6.2Tests during construction (101)3.4.7.6.2 建造过程中的测试 (101)3.4.7.6.3 Conformity checks (103)3.4.7.6.3 一致性检查 (103)3.4.7.6.4 Inspection and maintenance of the completed structure (104)3.4.7.6.4 整个结构的检查和维护 (104)3.1Requirements for Manufacturers3.1制造要求3.1.1General3.1.1概述(1)Manufacturers shall be suitable for the work to be carried out as regards their workshop facilities, manufacturing processes as well as training and capabilities of the personnel. Proof of this may be provided by means of a documented and certified quality management system (see Section 3.2). If required (see Section3.4.2.1, para 1, and Section 3.4.4.1, para 1), GL Wind will issue a shop approval on request of a manufacturer, provided the approval conditions are fulfilled.(1)制造商的工厂设施,制造工艺以及人员的培训与能力都要能胜任所承担的工作。
GL风力机传动系动力学认证分析标准
GL风力机传动系动力学认证分析标准[根据GL风机认证2010版翻译]7.A.1综述本文介绍了风机传动系统的分析目的,分析类型和分析内容,以及详细规定了风机动力学的建模要求。
用户可以针对不同的任务需求,选择合适的分析范围和风机传动系动力学建模的详细程度。
7.A.1.1摘要(1)本文的目的在于,为使用多体动力学仿真软件进行风机传动系的仿真分析,指定标准的仿真规范。
(2)本文旨在为风机动力学仿真提供各种使用的建模和分析方法,以及对计算结果的诠释。
(3)本文主要针对传动的风机传动系统,即采用增速齿轮箱作为传动装置。
对于采用特殊传动装置的风机,例如直驱型风机,需要根据实际情况做出调整。
总的来说,风机传动分析主要包含以下步骤:A 将复杂的风机传动系模型简化成为等效的动力学模型B 确定建模时需要输入的刚度,质量,惯性矩和阻尼值C 建立分析模型D 执行分许E 验证模型F 评价,评估和记录结果7.A.2 风机传动系统建模传动系部件供应商提供的相关技术数据可以用来进行传动系统的建模工作。
7.A.2.1 模型离散(1)仿真模型应该包含所有的传动系部件。
每一个独立的部件都被细分并用刚体来表示。
齿轮和轴承作为独立的子部件,推荐使用更加细化的轴和叶片建模。
部件间的相互作用通过力元来实现。
对于轴和复杂构件,推荐使用其的弹性体模型。
表7.A.1列出了需要独立建模的传动系部件。
(2)所有与传动系有关的特征频率都需要考虑。
因此,建模时需要考虑部件的物理属性,包括质量,刚度和惯性矩等。
(3)传动系主要部件的有限元离散需要切合其具体的形状,而且需要包含该部件的所有固有频率信息,或者至少包含低于最高激励频率二次谐波的所有固有频率。
详细信息请见表7.A.1。
表7.A.1转动系主要部件建模明细(4)(5)(4) 根据不同激励来源,针对不同的部件,需要设定其合适的自由度数目。
一般来说,扭转,轴向和弯曲自由度必须要考虑。
(5)仅包含扭转自由度的计算模型,其计算结果必须得到实测数据的认证,才能作为认证模型使用。
GL认证
图 9. 证书样本
参考文献 1. “Rules for Classification and Construction II Materials and Welding-Non-metallic Materials”, Germanischer Lloyd, Ediition 2006. 2. / 3. Adhesives for bounding wind turbine blades, Reinforced Plastics, 2009, p.26-29 4.
关键词:风力叶片 复合材料 质量管理 测试
引言 国际上, 发展可再生能源正式被很多国家提升为新 能源战略,目前中国是以风能,太阳能,核能为新 能源主要发展思路, 而风能以其成本低,见效快而 在可再生能源中被中国乃至世界发展最为迅速的新 能源。中国政府在能源中长期发展规划中明确提 出:2020 年可再生能源在能源构成中要达到 15% 左右,这也正印证了最新报告中预测“风能将在未 来 12 年内提供世界总能源 12%, 这个比例极有 可能在 2050 年变为 30%”。据不完全推算,每 kW 使用在叶片的复合材料为 10kg,由此可看出复合 材料在风电市场中的巨大潜力,因此复合材料在很 长时期内保持巨大的市场。
6. 油漆(涂料) 风力叶片多在气候恶劣的周围环境下运行,比如紫 外线照射强烈,昼夜温差大,风沙侵蚀严重,沿海
滩涂。因此叶片表面防护用油漆承担着保护作用, 在使用类别上也定为 CM-5 级 参照 ISO12944-2。 另外根据一些国家的法律, 超过一定高度的”建筑” 必须以颜色来起警视作用,因此叶片有时漆成颜色, 如红色. (图 9, 图 10)
德国劳氏集团(GL Group)非金属材料认证中 对风电叶片材料的认证技术规范要求(续)
大型风电叶片的结构分析和测试
大型风电叶片的结构分析和测试闫文娟;韩新月;程朗;印厚飞【摘要】文章使用FOCUS软件对某兆瓦级叶片进行建模和结构分析,并与试验叶片的重量、模态、静力结果进行对比.结果表明,叶片重量的计算值与实测值偏差0.1%,频率的计算值与实测值最大偏差-4.6%,位移的计算值与实测值最大偏差5.08%,应变的计算值与实测值最大偏差-7.61%,均符合GL2010规范中的要求.叶片重量、频率、位移、应变的计算值和试验值高度吻合,验证了本方法的可靠性.【期刊名称】《可再生能源》【年(卷),期】2014(032)008【总页数】4页(P1140-1143)【关键词】风机叶片;结构分析;测试;模态;变形【作者】闫文娟;韩新月;程朗;印厚飞【作者单位】国电联合动力技术有限公司,北京 100039;国电联合动力技术有限公司,北京 100039;国电联合动力技术(连云港)有限公司,江苏连云港222000;国电联合动力技术(连云港)有限公司,江苏连云港222000【正文语种】中文【中图分类】TK831 引言风力发电机的叶片(下文简称叶片)是风电设备将风能转化为机械能的关键部件,其制造成本约占风机总成本的15%~30%。
大型风力发电机的叶片基本由复合材料制成,叶片设计与制造是风电机组的技术关键[1]-[4]。
目前,国内多家叶片生产企业都在自主开发新型号叶片,设计中所用的工具也不尽相同[5],[6]。
FOCUS软件是用于风电机组及组件(如叶片)快速设计分析的软件工具,在国际风电设备工业有超过10年的应用史。
相对于使用三维建模软件和有限元计算软件结合的设计路线,使用FOCUS软件更为便捷。
本文通过使用FOCUS软件对某型号叶片直接完成建模,对其进行了模态和结构静力学分析,并与实际叶片的模态和静力试验结果进行了对比分析。
2 模型建立FOCUS拥有独特的对叶片进行详细设计的交互式建模工具。
在对叶片进行逐步定义的同时,三维的交互式显像会对设计变化给出直接反馈。
风力发电机组风轮叶片标准
风力发电机组风轮叶片标准1 概述“风力发电机组风轮叶片”标准是适用于并网型风力发电机组风轮叶片的标准,规定了其风轮叶片通用技术条件。
2 依据所摘要的“风力发电机组风轮叶片”标准是中华人民共和国机械工业局于2000-04-24批准的,自2000-10-01实施。
主要起草人:田野、石海增、鲁金华、田卫国、陈余岳。
3设计要求3.1.1总则叶片气动设计是整个机组设计的基础,为了使风力发电机组获得最大的气动效率,建议所设计的叶片在弦长和扭角分布上采用曲线变化;设计方法可采用GB/T13981-1992《风力机设计通用要求》中给定的方法。
可采用专门为风力发电机组设计的低速翼型。
3.1.2 额定设计风速叶片的额定设计风速按A中表A1 中规定的等级进行选取。
3.1.3 风能利用系数Cp为了提高机组的输出能力,降低机组的成本,风能利用系数Cp应大于等于0.44。
3.1.4 外形尺寸叶片气动设计应提供叶片的弦长、扭角和厚度沿叶片径向的分布以及所用翼型的外形数据。
3.1.5气动载荷根据气动设计结果,考虑有关适用标准给定的载荷情况,计算作用在叶片上的气动载荷。
3.1.6 使用范围叶片的气动设计应明确规定叶片的适用功率范围。
无论是定桨距叶片还是变桨距叶片,都要求其运行风速范围尽可能宽。
对于变桨距叶片,要给出叶片的变距范围。
3.2结构设计3.2.1总则叶片结构设计应根据3.1.5 中的载荷,并考虑机组实际运行环境因素的影响,使叶片具有足够的强度和刚度。
保证叶片在规定的使用环境条件下,在其使用寿命期内不发生损坏。
另外,要求叶片的重量尽可能轻,并考虑叶片间相互平衡措施。
叶片强度通常由静强度分析和疲劳分析来验证。
受压部件应校验稳定性。
强度分析应在足够多的截面上进行,被验证的横截面的数目取决于叶片类型和尺寸,至少应分析四个截面。
在几何形状和(或)材料不连续的位置应研究附加的横截面。
强度分析既可用应变验证又可用应力验证,对于后者,应额外校验最大载荷点处的应变,以证实没有超过破坏极限。
风机叶片材料的GL认证技术规范
风机叶片材料的GL认证技术规范作者:德国劳氏集团吴强赵国彬纤维增强复合材料(FRP)在风电机组叶片中的应用越来越广泛,德国劳氏集团(GL roup)根据其在船舶和风电领域多年的积累编写了非金属材料的认证规范和要求,德国劳氏可再生能源风能部(中国)的吴强和朱国简单介绍了该规范中的一些相关内容,并对于第二部分“非金属材料的检验要求和试验标准”进行了详细的叙述。
纤维增强复合材料(FRP)从上世纪40年代问世以来,在航空、航天、船舶、汽车、化工、医学和机械等工业领域得到了广泛的应用。
近年来,FRP又以其高强、轻质、耐腐蚀、耐久性等优点,成为大型风电机组叶片材料的首选。
叶片是风力发电机组有效捕获风能的关键部件,约占整个风电机组25%的成本。
在发电机功率确定的条件下,捕风能力的提高将直接提高发电效率,而捕风能力则与叶片的形状、长度和面积有着密切关系,叶片尺寸的大小(上述参数)则主要依赖于制造叶片的材料。
叶片的材料越轻、强度和刚度越高,叶片抵御载荷的能力就越强,叶片就可以做得越大,它的捕风能力也就越强,发电效率也就会相应得到提高。
在复合材料风力发电机组的叶片研究开发过程中,德国、丹麦、美国、荷兰等风能资源利用较好的国家针对大型叶片的材料体系、外形设计、结构设计、制造工艺、质量检验、在线实时监测和废弃物处理等作了大量的研究开发工作,并取得了丰硕的成果。
德国劳氏集团更是结合在船舶和风能行业的几十年经验编写了一本完整的技术规范《德国劳氏船级社非金属材料技术规范要求》,在规范中对于叶片原材料的生产控制和成品检验提出了基本的要求。
GL非金属材料认证技术规范《德国劳氏船级社非金属材料技术规范要求》一共分为三个部分,第一部分是关于原料和产品的生产品质要求的规定,第二部分是关于复合增强材料的检验要求及实验标准,第三部分是关于产品的修补。
在第一部分中,涉及到几种主要非金属材料的生产工艺以及产品的质量控制的相关要求。
GL颁发的非金属材料认证证书的有效期限一般为4年,那么对于生产工厂,GL希望工厂可以在证书的有效期内长期稳定的生产出符合GL规范要求的产品,那么就需要对于产品的生产过程质量进行控制。
GL风机认证2010正文翻译
《Guideline for the Certification of Wind Turbines Edition 2003》德国劳氏船级社风力发电机组设计的指导文件撰文/郑家鑫如需获得《GL风机认证指南》中文翻译文本,请联系:郑家鑫先生,电邮:atkepp@。
德国劳氏船级社(GL)于2010年7月1日发布了其最新的风机认证指南,主要内容包括:审批的一般条件;安全系统、保护和监测装置;对制造商的要求、质量管理、材料和生产;负荷假设;强度分析;机械部件;电气安装;作业手册;风机测试;定期监测。
本文将主要对审批的一般条件进行介绍,包括:指南应用范围、认证类别、设计和建造的基本原则。
1.指南应用范围该指南适用于风力发电机的设计、审批和认证。
是对其2003年版本的修订和扩充。
在进行认证时,要对风机的整体概念进行评价。
认证涵盖了风机安装的各个部件要素,包括安全、设计、建造、可用性、工艺和质量等。
风机的实际运行寿命可以偏离设计寿命,一般要更长。
对于没有达到设计寿命的磨损件、冷却剂、润滑油等,风机制造商应规定定期替换周期。
在设计风机时,可以考虑职业卫生和安全,遵循标准是DIN EN50308《风机保护措施——设计和运维要求》以及各国的具体要求。
该指南针对不同情况设定了过渡期,在过渡期内依然可以使用2003版指南,具体情况如下:——新风机或新风场过渡期为1年——对于已经由GL根据其2003指南评价或认证的风机的设计的修改,在和GL协商后,可以有5年的过渡期——在由GL根据其2003指南颁发的型式证书到期后,可以有5年的过渡期或两次再认证。
对于本指南的偏离只有在获得GL同意的情况下才允许。
在个别情况下,认证可以包括当地适用的规定和规范。
即便是国家或地区法律法规要求的安全级别低于本指南,本指南的安全级别要求也应被视为是最低安全要求。
对于无法适用本指南的设计,GL保留权利依据本指南精神开展工作。
总的来说,本指南涵盖了各国的有关要求。
风电叶片原材料检测认证流程分享
4
整机设计评估 整机设计认证
整机测试 Design Evaluation and Certification –功率特性 Power –机械载荷 Load –电能品质Power Quality –噪声测试Noise Test –安全功能试验 整机型式认证 专有认证检测 小风机认证检测
风电设备
风电场服务 Wind Farm Service –风电场后评价 –功率曲线验证 –特定场址评估 –海上基础设计评估 –质保期满验收 –尽职调查 –风电场差异化配置 –风电场标准化管理 评价 金融服务 –尽职调查 –投保风险咨询 –事故保险定损 –…下游
CGC cooperated deeply with the material and blade manufacturing enterprise and university and formed a complete system for raw material test and certification in the project (863 plan)applied by Sinoma named nationalization of blade raw material for MW wind turbine.
增强材料 Reinforcing
Material
夹芯材料 Core Material
胶黏剂 Adhesives
涂料 Coating
玻璃纤维碳纤维
天然纤维
PVC泡沫 轻木
环氧胶黏剂 聚氨酯胶黏剂等
聚氨酯漆等
承载载荷
增加结构刚度,防止 局部失稳
粘结叶片腹板与壳体, 以及上下壳体 保护叶片表面
6
2. 叶片原材料认证背景