储罐内壁牺牲阳极阴极保护
储罐内壁牺牲阳极阴极保护设计方案及说明书_2019
河南汇龙合金材料有限公司编制刘珍技术部储罐内壁牺牲阳极阴极保护设计目前,防腐涂层与阴极保护系统相结合的防腐方法已在储罐防护中得到了广泛应用。
然而,在一些储罐进行大修时发现,罐内底板虽然采用了牺牲阳极阴极保护,但罐内底板仍然产生了严重的腐蚀,究其原因主要是因为牺牲阳极设计重量不足、罐底周边牺牲阳极安装量不足等。
储罐内壁阴极保护设计过程中,保护电流的需求量取决于储罐内保护面积的大小和内涂层质量的优劣。
为最大程度的降低保护电流的需求,罐内金属表面均应涂有有效的防腐涂层,包括耐蚀合金的内表面。
对于原油储罐内阴极保护系统设计,只有罐内沉积水区域内金属表面(带或不带涂层)接触水相时才应予以考虑。
进行储罐内壁阴极保护设计之前,应收集设计时所需的必要数据,包括:①在正常操作情况下的电解质特性:S、CO),电阻率、pH值、温度(平成分(溶解气体、O、H2均和变化)、压力、水位(最小、最大和平均水位),工作时的最大流速;②阴极保护系统的设计寿命;③罐内涂层类型、涂层厚度等④根据电解质的资料,选择裸钢的保护电流密度。
河南汇龙合金材料有限公司编制刘珍技术部储罐内阴极保护系统设计过程中,牺牲阳极材料的选择至关重要,具体设计中应当考虑以下2个主要方面:①与电解液(成分、温度)的兼容性;②可用的空间和在有限区域内的电流分布。
活化铝铟合金阳极、锌合金阳极、镁阳极应根据不同的条件和设备选用。
根据挪威船级社规范DNVRP IM01-2005,铝的效率将随温度的变化而改变。
当储罐服役温度超过5O℃时,必须选用铝基合金牺牲阳极。
若为饮用水,应使用镁合金牺牲阳极。
如果电解液为污水且S、可适用铝合金。
但硫化氢溶解量每增加20m g/I,含有H2铝合金的工作效率将减少。
对于容积较小的容器,应采用小梯形或扁平截面的镶装式阳极。
对于容积较大的储罐,阳极类型可以是镶装式或底部截面为梯形或半圆柱,或者采用带有梯形或圆柱截面的悬挂型阳极。
当采用镶装式阳极时,其面对罐或容器表面的阳极表面应涂以适当的涂层。
储罐内壁阴极保护铝阳极的安装(精)
储罐内壁阴极保护铝阳极的安装根据储罐内壁的介质不相同,可以选择不同的阴极保护保护方式。
如果介质中的氯离子含量很低,比如在淡水环境中,可以选择外加电流的阴极保护方式, 而且在这种情况下, 电流密度可以适当的调低一下。
如果是油田的污水罐或者是原油罐, 因为这种类型的设备中污水的氯离子含量比较大,如果有可能污水可以不停的流动或者更换, 在这种情况下可以考虑使用外加电流阴极保护的方式, 否则不能选用。
因为外加电流阴极保护中阳极发生反应的时候会产生氯气, 这有气体可以溶在水中形成盐酸, 对金属会产生很强的腐蚀性。
储罐内表面阴极保护电流密度的规定, 储罐内表面有防腐层的时候, 阴极保护的电流密度范围应该设定在十毫安每平方米到三十毫安每平方米; 如果储罐的内表面的防腐层质量非常好比如选用衬里等绝缘电阻比较高的防腐层时, 可以适当的降低阴极保护的电流密度。
如果储罐内表面没有涂防腐层或者防腐层质量非常差的时候, 阴极保护的电流密度应该定位三十毫安每平方米到一百五十毫安每平方米之间, 如果储罐内表面的防腐层无法确认掌握, 可以采用一百毫安每平方米来做标准。
在有水的环境中或者温度比较高的地方应该提高阴极保护电流密度, 因为水中含有去极化剂; 如果设备在海水中时应该采用的电流密度是七十毫安每平方米到 100毫安每平方米。
现在很多油田上的污水储罐大多采用牺牲阳极阴极保护的方式, 但是在选择阳极材料的时候一定要考虑温度的影响。
如果储罐中的污水的温度比较高的时候,例如高于 50摄氏度的时候就不能再选用锌阳极, 因为锌阳极在高温的影响下电位会变正。
镁阳极在这种污水罐的阴极保护中也是不经常使用的, 因为镁合金牺牲阳极的本身的电位比较低,消耗的速度比较快,而且发生过保护的情况也比较多,所以镁阳极也不是经常选用的材料。
在污水管罐的阴极保护中最长使用的还是铝阳极, 这其中最主要的原因是, 铝阳极需要的驱动电位比较小, 使用的寿命也相对比较长, 因此在众阳极材料中铝阳极已经被更多的选用。
储罐内壁牺牲阳极阴极保护方法
储罐内壁牺牲阳极阴极保护方法由于原油储罐、污水罐罐底内壁的腐蚀主要是缘于原油沉积污水引起的电化学腐蚀、细菌腐蚀,且罐底的原油沉积污水有着较高的含盐量(主要是S-2、Cl-、HCO-3、Na+、Ca+2等)和较高的温度,因此其腐蚀性较强。
目前普遍采用牺牲阳极法对储罐底板内壁进行阴极保护,这种方法对储罐安全可靠,无需专人管理,且保护效果好。
通常用作牺牲阳极的材料有镁和镁合金、锌合金、铝合金等。
阳极块在储罐内壁上均匀布置,钢板与阳极块直接焊接连接。
牺牲阳极保护法特点:①施工快速、简便,不会产生腐蚀干扰。
②投入成本较低,经济性强。
③安全可靠,无需专人管理。
④保护效果显著。
根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。
内壁采用牺牲阳极保护时,要注意温度的影响。
对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。
根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。
阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。
牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。
针对储罐内壁牺牲阳极的设计步骤:①计算阴极保护面积(罐内浸水面积)罐底内壁保护面积计算:S=πr2S-保护面积r-储罐半径②选定保护电流密度,计算保护电流保护电流计算:I=SIaS-保护面积Ia-保护电流密度③确定保护年限,计算所需阳极总量阳极使用寿命:T=0.85W/ωIT-阳极工作寿命a W-阳极净质量,kgω-阳极消耗率kg/(A.a)④根据阳极单支数量,计算阳极支数阳极数量:N=f.IA/IaN-阳极数量IA-所需保护电流A Ia-单支阳极输出电流AF-备用系数,取2-3倍牺牲阳极法是储罐内常用的阴极保护方法,它可以任意布置不必担心电源连接,它的电位有限,没有必要担心过保护为先,牺牲阳极可以做成任意形状。
根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。
内壁采用牺牲阳极保护时,要注意温度的影响。
储气罐阴极保护
储罐阴极保护一、阴极保护方法(1)牺牲阳极法储罐和管道内壁常用的阴极保护方法就是牺牲阳极法,牺牲阳极法可以不必担心电源的连接而可以任意布置;它的电位是有限的,就没有担心过保护危险的必要;可以做成任意形状的牺牲阳极。
(2)强制电流法从原则上讲用于设备外部的阴极保护所用的牺牲阳极也可以作为设备内部的牺牲阳极材料,但是因为内部的不易更换,也不易检测,因此,在管道内壁施加阴极保护时要选择那些体积小而又寿命长的阳极,这类阳极有铂、镀铂型阳极。
以前储罐内多采用牺牲阳极法来实现阴极保护,有的地方至今还保持这种方法。
但是使用惰性阳极的强制电流阴极保护法比牺牲阳极保护法更加灵活且具有优势。
其原理是在高腐蚀性的电解液中牺牲阳极极易受到局部电池的腐蚀,这样阳极的消耗速度就会很快,因此需要频繁的更替更新,这样牺牲阳极法就不是那么经济了。
使用强制电流对设备的内部实行阴极保护时,电流只会在设备的内部流动,但是不会对外部的设备形成干扰,但是会对内部与保护体电绝缘的构件产生干扰,因此在设计时就要考虑使用跨接电阻对此进行消除。
二、储罐内阴极保护(1)水罐内壁阴极保护像是大型水罐,比如高架水罐、电站的河水罐、海水储罐、锅炉的供水罐等,比较适合采用前置电流阴极保护,其辅助阳极材料有硅铁、石墨、铅、镀铂钛,在灌顶的适当位置悬挂下去,也可以通过罐壁钻孔的技术固定阳极。
在电阻率极高的水中,多采用铜芯连续式镀铂钛的线性阳极,就能获得电流的均匀分布。
(2)原油脱水罐的阴极保护脱水罐的液体常常分为三层比如水、乳化液、油等,水层中的含盐量高并且溶解有机酸、二氧化碳,腐蚀性特别强,都应该采用阴极保护。
在低含盐量及低温度(温度低于30℃)时多使用高活化铝阳极或者是镁阳极。
通常的情况下最为经济的是强制电流法,各类辅助阳极都可以使用,但是阳极和它的附件材料都要能承受油品的侵蚀。
三、原油储罐牺牲阳极保护(1)保护的方法原油储罐阴极保护多采用从罐顶打孔进入,然后将参比电极和平衡的重物放到内底板上,达到合适的水电卫,以保证良好状态。
储罐内壁牺牲阳极阴极保护
储罐内壁牺牲阳极阴极保护1、原油罐金属底板的腐蚀与防护地上钢质储油罐使用过程中经常遭受内外环境介质的腐蚀,其中罐底板腐蚀穿孔事故占储罐腐蚀事故比率最高,因此应对储油罐罐底板实施有效的防腐措施,减少泄漏事故的发生,以延长储油罐大修周期。
涂料防腐是用覆盖层将金属与介质隔开,从而对金属起到保护作用。
但由于覆盖层有微孔,老化后易出现龟裂.剥离等现象。
若因施工质量差而产生针孔,使裸露的金属形成小阳极,覆盖层部分成为大阴极而产生局部腐蚀电池,则会更快地破坏漆膜。
因此,采用单独的涂料保护效果不佳。
若采用涂料与阴极保护联合的保护方法,使裸露的金属获得集中的电流保护,弥补了覆盖层缺陷,是现阶段储罐罐底板防腐最为经济有效的方法。
储罐边缘板在罐结构中的作用十分重要,但却容易渗进水而遭受腐蚀。
目前在役的储罐均未采取有效的防腐措施,要全面控制罐底板的腐蚀,除了对罐底板主体进行防护外,还要对边缘板外露部分(以下边缘板均特指边缘板外露部分)采取有效的防腐措施。
2、腐蚀机理水是原油罐底板的腐蚀根源,原油和水中的硫化物与罐底板金属反应机理为:在碳钢表面的硫化物氧化皮或锈层有孔隙的情况下,原油罐底水中Cl-离子能穿过硫化物氧化皮或锈层到达金属表面,在金属表面的局部地点形成小蚀坑。
生成的H+离子对金属产生活化作用,使小蚀坑继续溶解,成为孔蚀源。
孔蚀源成长的最初阶段,溶解下来的金属离子发生水解,生成氢离子。
这样会使小蚀坑接触的溶液层的PH值下降,形成一个强酸性的溶液区,这反而加速了金属的溶解,使蚀坑继续扩大、加深。
腐蚀从开始到暴露经历一个诱导期,但长短不一,有些需几个月,有些则需一年至几年。
坑蚀的形成,使原油罐金属底板受到很大的侵蚀。
由于坑蚀的面积很小,加之随机性和高度局部化的特征以及诱导期很长,因此很难用物理方法检测出坑蚀的深度。
即使泄露发生后,再用测厚仪测厚,仍不会发现罐金属底板有明显的减薄倾向。
3、防止罐底板腐蚀的几点措施(1)在油罐金属底板的结构设计中,尽可能将罐底板铺平,并略向脱水口倾斜,以利原油罐底的水脱除干净。
汇龙储罐内壁牺牲阳极阴极保护方法
腐蚀原理:原油罐的罐底板是腐蚀最严重的部位。
腐蚀最严重的部位集中在底板最外圈等沉积水较多的浮盘支柱下面,底板腐蚀穿孔基本发生在该部位,罐底板其它部位主要表现为坑蚀,钢板表面存在大小、深浅不一的腐蚀坑。
腐蚀类型主要为均匀腐蚀、坑蚀等,破坏形式主要为腐蚀穿孔。
原油沉积水的腐蚀随着炼油规模的不断扩大,加工高硫原油数量逐年增加,使得原油中H2S、硫醇等活化硫含量提高,再加上原油开采或运输过程中混入的污水,造成原油储罐沉积水腐蚀性增加。
(1)Cl-对腐蚀的影响。
在原油储罐底板最外圈等沉积水较多的部位,底板表面涂层由于长时间浸泡,在针孔或施工缺陷等部位出现局部鼓包、脱落。
Cl-具有直径小、穿透性强等特点,优先有选择地吸附在涂层缺陷部位,与金属结合成可溶性氯化物,在罐底板表面形成点蚀核,逐步发展长大,形成孔蚀源。
孔蚀处的金属与孔外金属形成大阴极小阳极的微电池,阳极腐蚀电流加大,发生电化学反应,阳极溶解金属产生大量的金属正离子。
由于罐底污泥、锈层及点蚀坑造成的闭塞作用,在蚀坑口形成氯离子闭塞原电池,使阴阳离子移动受到限制,造成点蚀坑内阳离子多于阴离子,导致Cl-向坑内移动浓缩酸化,进一步加速腐蚀,使蚀坑逐渐加深、扩大。
(2)S2-对腐蚀的影响。
不同品种的原油含硫比例不一,但都以硫化氢、硫醇和其它硫化物等形式存在于原油中。
S2-的存在不但使阳极反应受到催化,而且还使溶液中的亚铁离子的浓度大大降低,从而使阳极反应的起始电位更负及阳极极化曲线向负方向运动,造成阴极控制过程的腐蚀电流有较显著的增加,最终导致罐底板腐蚀的加剧。
(3)电导率的影响。
根据腐蚀电化学原理,某一腐蚀体系的腐蚀电流等于该体系阴、阳极反应的平衡电位差除以总电阻。
罐底板沉积水的电导率越大,即沉积水溶液的电阻越小,则该体系的腐蚀电流越大,由此表明罐底板沉积水的高电导率,会加剧罐底板的腐蚀。
(4)细菌腐蚀。
在原油罐底沉积水中存在着多种微生物,这些微生物诱发的腐蚀中最复杂的是由硫酸盐还原菌(简称SRB)引起的腐蚀。
牺牲阳极的阴极保护原理
牺牲阳极的阴极保护原理
牺牲阳极的阴极保护原理是一种通过将一个更容易腐蚀的金属(称为阳极)与被保护金属(称为阴极)连接在一起,使阳极在电化学反应中被优先腐蚀,从而保护阴极免受腐蚀的方法。
该原理基于电池的工作原理。
当阳极和阴极连接并浸泡在一个电解质溶液中时,电解质中的阳离子会被阳极上的腐蚀物所吸引,从而在阳极上发生氧化反应。
这个过程会产生电子和阳离子。
同时,阴极上的金属会被电子吸引,并与阳离子在电解质溶液中发生还原反应。
这个过程被称为阴极保护。
因为阳极比阴极更容易腐蚀,所以阳极上的金属会被逐渐耗损,这也是为什么称之为“牺牲阳极”。
但是,由于阳极的存在,阴极的金属将不会被腐蚀。
整个系统会像一个电池一样工作,电子从阳极流向阴极,形成一个闭合的电路。
牺牲阳极的阴极保护原理在许多领域得到应用,例如船舶和海洋设备、管道和储罐、以及冷却系统等。
常用的牺牲阳极材料包括锌、铝和镁等。
选择适合的阳极材料,对防止阴极腐蚀非常重要。
储罐内壁牺牲阳极阴极保护
储罐内壁牺牲阳极阴极保护
由于原油储罐、污水罐罐底内壁的腐蚀主要是缘于原油沉积污水引起的电化学腐蚀、细菌腐蚀,且罐底的原油沉积污水有着较高的含盐量(主要是S、Cl、HCO、Na、Ca等)和较高的温度,因此其腐蚀性较强。
目前普遍采用牺牲阳极法对储罐底板内壁进行阴极保护,这种方法对储罐安全可靠,无需专人管理,且保护效果好。
通常用作牺牲阳极的材料有镁和镁合金、锌合金、铝合金等。
阳极块在储罐内壁上均匀布置,钢板与阳极块直接焊接连接。
牺牲阳极保护法特点:①施工快速、简便,不会产生腐蚀干扰。
②投入成本较低,经济性强。
③安全可靠,无需专人管理。
④保护效果显著。
根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。
内壁采用牺牲阳极保护时,要注意温度的影响。
对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。
根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。
阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。
牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。
原油储罐可动式牺牲阳极阴极保护
原油储罐可动式牺牲阳极阴极保护
李根照
【期刊名称】《炼油技术与工程》
【年(卷),期】2018(048)008
【摘要】介绍一种油罐内部采用可动式牺牲阳极进行阴极保护的方法,可避免现有技术中油罐排水后牺牲阳极因脱离水层而失去阴极保护的问题.可动式牺牲阳极贴近罐内底板安装,始终保持与被保护罐底板的最近距离,随着时间的推移牺牲阳极表面消耗后,可在自重作用下沿固定柱向下移动,使油罐排水后也能在油罐残存水的作用下对罐底板的内表面起到阴极保护作用,使油罐在排水前或排水后以及应用若干年牺牲阳极大量消耗后仍能始终如一地处于良好保护状态.该阳极是针对油罐这种特定的阴极保护环境所设计,可使油罐内部阴极保护效果提升至少1倍以上.
【总页数】4页(P43-46)
【作者】李根照
【作者单位】中石化炼化(集团)股份有限公司洛阳技术研发中心,河南省洛阳市471003
【正文语种】中文
【相关文献】
1.钢质石油储罐罐底外壁牺牲阳极阴极保护 [J], 秦健;廖良兵
2.10万m3原油储罐罐底内底板腐蚀与牺牲阳极阴极保护 [J], 梁成浩;吕升忠
3.外加电流与牺牲阳极阴极保护技术在原油储罐的应用 [J], 王金福;陈志强
4.钢制储罐内牺牲阳极阴极保护设计及应用 [J], 刘佳;郑安升;廖煜熠;王杰;丁杰;潘
怀良
5.储罐内底板牺牲阳极阴极保护电流分布的有限元模拟 [J], 周冰;韩文礼;张盈盈因版权原因,仅展示原文概要,查看原文内容请购买。
阴极保护工程技术手册
阴极保护工程技术手册实例应用篇一、钢质管道阴极爱护方法与设计1、钢质管道牺牲阳极阴极爱护:①设计运算:管道表面积运算:S=2πrLS—管道表面积 r —管道半径 L—管道长度管道爱护电流运算:I =S IaI—管道爱护电流S—管道表面积Ia—管道爱护电流密度)阳极输出电流:Ia=△E/RIa—阳极输出电流A △E—阳极有效电位差VR—回路总电阻R阳极数量:N=f.IA/IaN—阳极数量IA—所需爱护电流A Ia—单支阳极输出电流A F—备用系数,取2-3倍阳极使用寿命:T=0.85 W/ωIT —阳极工作寿命a W—阳极净质量,kgω—阳极消耗率kg/(A.a) I—阳极平均输出电流,A②设计、安装说明:1、一样牺牲阳极工程采纳镁合金牺牲阳极,规格通常为22公斤/支,也有采纳14公斤、11公斤、8公斤的规格,一样安装时单支焊接或两支阳极并联为一组安装。
2、假如是并联焊接,相邻阳极组最好分布在管道两侧。
阳极组距管道外壁约2.0m左右,距管道外壁最少不小于300mm;最小埋深部不小于1m。
可依照现场实际情形,按照有关标准规范适当调整阳极位置。
3、假如阳极采纳4支一组,同侧阳极组间距最低不小于2米。
4、阳极钢芯与电缆连接,采纳焊锡灌注,以减少接触电阻,同时应保持连接处的绝缘密封,需包覆环氧树脂玻璃布,然后再采纳热收缩套管,加以密封和绝缘,阳极的钢芯一端阳极端面,须涂环氧树脂,确保该端面不起作用,其他五面要清洁洁净,放入盛有阳极填充料的棉布口袋中。
5、阳极电缆可用10mm2电缆,可用vv-1kv/1x10mm2。
6、牺牲阳极与钢管可采纳铝热焊剂直截了当将阳极电缆焊接于钢管上,安装前,第一在管道防腐层上切割出一个100mm*100mm 的焊接口,或依照焊接施工情形对焊接口大小进行相应调整。
并清理焊接口保持表面干燥和清洁,以保证焊接质量。
焊接完成后采纳补伤片补伤,认真修复焊接处的防腐层,保证该处密封绝缘。
7、阳极安装在阳极坑后进行回填,在回填土中不应含有砖、石等,若坑内较干燥时,应在阳极外的布袋上盖上一层薄土后,向坑内灌水,使阳极布袋内的填料饱和吸满水,然后再回填并夯实,复原地坪。
储罐罐底板牺牲阳极法阴极保护
储罐罐底板牺牲阳极法阴极保护河南汇龙合金材料有限公司1. 工程概况大庆石化分公司炼油厂有各类储油罐、储水罐近400座,由于储罐常年运行,使罐的基础边缘高于罐底板,雨水直接顺着罐壁进入罐底板内,造成罐底脚腐蚀破坏,影响生产。
2. 牺牲阳极法阴极保护设计被保护的设备原料水罐V402、V403容积均为5000m3,规格为:Φ20m*15m,底板厚9mm。
最小保护电位:-0.85V(CSE);当土壤中含有硫酸盐还原菌,且硫酸根含量大于0.5%时,保护电位应达到-0.95V(CSE)或更负;最大保护电位:-1.5V(CSE),保护电流密度:7mA/m2;牺牲阳极使用寿命:大于20a;土壤电阻率:20Ω·m。
3. 牺牲阳极阴极保护系统的竣工牺牲阳极距罐壁2.5m,且在罐周均布垂直埋设。
每台原料水罐58支镁阳极(单重14.5kg),平均分成6组(9只/组)与罐体相连接,阳极平均间距为1.5m。
在原料水罐进出管道两侧的阳极组为11只。
按此原则将阳极埋设点测量定位。
4. 牺牲阳极保护效果2005年5月至2008年5月V402、V403储罐下面外壁阴极保护罐周保护电位测量结果表明,V402储罐底板最小保护电位为-0.973V (CSE),最大保护电位为-1. 85V(CSE)。
V403储罐底板最小保护电位为-1.14V(CSE),最大保护电位为-1.23V(CSE),符合SY/T 0088-2006给出的规定。
实践证明,牺牲阳极法阴极保护可以避免罐底板下面的金属腐蚀,特别是对焊缝腐蚀的保护更加有效。
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
消防水罐牺牲阳极阴极保护措施_2019
实践证明,在消防水罐内壁采取涂层防护和阴极保护联合保护的方式可以有效消除消防水罐内壁的腐蚀,但是由于消防系统因其承担的社会职责还要保证供水短缺地区的临时供水任务,这就要求消防水罐所采取的涂层和牺牲阳极必须是安全无毒的,因此就必须对牺牲阳极成分进行严格的把控和检测,我公司研发的消防水罐专用牺牲阳极就是针对这一特殊需求研发的,获得了广大客户的一致认可。
其具体做法如下:在水罐的内部涂防腐涂层,用以将金属与电介质环境电绝缘隔离,在水罐的内部均匀安装若干块镁合金阳极作为牺牲阳极、罐体铁板本身作为阴极,利用水作为电解质,使整个结构极化,形成一个二次腐蚀电池。
阴极保护技术和涂层的联合应用,阴极保护可有效地防止涂层破损处产生的腐蚀,延长涂层使用寿命,而涂层又可大大减少保护电流的需要量,改善保护电流分布,增大保护半径,使阴极保护变得更为经济有效,整个过程安全无害,有效的解决了消防水罐焊接处渗水的不足,操作简单、安全性好、稳定可靠,便于推广和应用。
储罐阴极保护方法
储罐阴极保护方法储罐的阴极保护方法主要有以下几种:1. 外加电流阴极保护:对于大型石油储罐,当土壤组成的电解液率非常高时,通常会采用外加电流阴极保护。
这种方法通过外部电源提供电流,使储罐成为阴极,从而防止腐蚀。
2. 牺牲阳极阴极保护:对于小型石油储罐或土壤电阻率不高的环境,通常会采用牺牲阳极阴极保护。
这种方法通过在储罐周围埋设比储罐金属更活泼的金属(如镁、锌等),使其作为阳极被腐蚀,从而保护储罐不被腐蚀。
3.罐底线形阳极阴极保护:在储罐底部铺设线形阳极,通过外加电流使线形阳极成为阴极,保护储罐底部不受腐蚀。
4. 罐周深井阳极外加电流阴极保护:在储罐周围设置深井阳极,通过外加电流使深井阳极成为阴极,保护储罐周围土壤中的金属结构不受腐蚀。
5. 罐周浅埋阳极外加电流阴极保护:在储罐周围浅埋阳极,通过外加电流使浅埋阳极成为阴极,保护储罐周围土壤中的金属结构不受腐蚀。
以上方法各有优缺点,选择哪种方法取决于储罐的大小、土壤电阻率、环境条件等因素。
在实际应用中,需要根据具体情况进行综合考虑和选择。
当然,我可以为您提供关于储罐阴极保护方法的更多信息。
6. 涂层与阴极保护结合:为了提高储罐的防腐性能,通常会在储罐表面涂覆一层防腐涂料,如环氧树脂、聚氨酯等。
这些涂料能有效隔绝储罐与腐蚀环境的接触,减缓腐蚀速率。
在此基础上,再结合阴极保护技术,可以进一步提高储罐的防腐效果。
7. 监测与维护:为了确保阴极保护系统的有效性,需要定期对储罐进行监测和维护。
监测内容包括阴极保护电流的分布、土壤电阻率的变化等。
一旦发现异常情况,应及时采取措施进行调整和维护,确保阴极保护系统的正常运行。
在选择储罐阴极保护方法时,还需要考虑以下因素:* 储罐材质:不同材质的储罐对腐蚀的敏感性不同,因此需要根据储罐材质选择合适的阴极保护方法。
* 土壤条件:土壤的电阻率、湿度、含盐量等因素都会影响阴极保护效果,因此在选择阴极保护方法时需要考虑土壤条件。
埋地储罐镁合金牺牲阳极包 阴极保护镁阳极
镁阳极通常是加入铝、锌、锰的镁合金。
必须保持非常低的镍、铁、铜的含量,因为它们促进自腐蚀。
如果镍的含量超过百分之0.001,就损坏阳极特性。
铜的影响不是太明显。
铜会增加自腐蚀,当含量达到百分之0.05时,如有百分之0.3的锰,则没有有害影响。
铁含量大概在百分之0.01时,假如锰含量超过百分之0.3,不会增加自腐蚀。
加入锰时,由于锰的覆盖而形成铁的晶体,这样铁从熔融状态沉淀下来固化时不会产生有害影响。
加入锌可以使腐蚀性侵蚀更均匀,而且抑制了其他杂志的敏感性。
镁合金阳极电位负,单位质量发生电量大,是理想的牺牲阳极材料。
适用于土壤、淡水及海水等介质中的金属构筑物的阴极保护。
镁合金牺牲阳极按国标GB/T17731-2004镁合金牺牲阳极生产,用于管道的阳极同时符合SY/T0019-97埋地钢质管道牺牲阳极阴极保护设计规范。
成套镁牺牲阳极,由镁牺牲阳极锭1支,一根VV-10㎜2电缆3米,填包料50kg,棉布口袋1条,塑料编织袋1条组成。
即棉布口袋内有镁牺牲阳极锭1支其铁芯上焊VV-10㎜2电缆3米1根,焊接处做绝缘处理,并套有热缩管。
镁牺牲阳极锭周围均匀分布50kg填包料。
棉布口袋外套塑料编织袋1条。
牺牲阳极阴极保护与外加电流阴极保护
牺牲阳极阴极保护与外加电流阴极保护电化学腐蚀防护是工业装置防腐中极其重要的一环。
相对纯化学腐蚀,电化学腐蚀速率快,危害性更大。
为保证工业设备、设施的使用安全,延缓在强腐蚀环境下的使用寿命,必要的情况下应采取阴极保护。
牺牲阳极和外加电流阴极保护。
牺牲阳极:在被保护金属上连接电位更低的金属牺牲阳极,优先腐蚀牺牲阳极,保护高电位金属。
外加电流:保护回路中连接直流电源,使被保护金属成为阴极。
外加电流阴极保护系统包括:被保护机构、恒电位仪(阴极保护电源)、辅助阳极(包括深井阳极、浅埋阳极、柔性阳极、网状阳极等)、电位测试系统(参比电极)以及相关的电缆等。
深井阳极埋深大,此时土壤电阻率低,可降低外加电流阴极保护的能耗。
但深井阳极对地质条件、地下水位等要求高,对构筑物、地下管网有干扰,且需要钻深孔,施工复杂且费用高。
柔性阳极目前应用越来越广泛,包括导电聚合物线性阳极和混合金属氧化物阳极(MMO)。
施工方便,适应性广,对其他构筑物干扰小。
如何选择阴极保护方式综合考虑外界腐蚀条件,土壤电阻率,技术方案,工程规模,两种阴极保护方式的特点,经济性等,再结合工程实例。
(1)储罐内壁宜采用牺牲阳极,外壁宜采用外加电流阴极保护;(2)恶劣腐蚀条件下或土壤电阻率高的环境,优选外加电流保护,因为驱动电压恒定,阴极保护电流控制灵活;(3)工程规模大、需要保护整个罐区或者大范围的长输管道,优选外加保流保护方式;(4)邻近的金属构筑物不能被干扰时,优选牺牲阳极保护;(5)因外加电流阴极保护一次投资大,长期耗电且需要人员维护,消耗资金多,须进行经济性比选。
引用:GB50393钢质石油储罐防腐蚀工程技术标准GB/T21448埋地钢质管道阴极保护技术规范。
埋地储罐牺牲阳极阴极保护-汇龙_2019
1储罐的腐蚀加油站、储气站等易燃易爆油、气的储罐一般都设在地下小容积的储罐,并使用细沙回填,并采取防雷静电接地。
早期填埋在沙池中的储罐防腐设计是不用阴极保护的,地下储罐直接受到细沙中水和空气的腐蚀,土壤电阻率通常被作为衡量介质腐蚀性强弱的一种重要依据。
一般将电阻率大于50Ω·m划分为弱腐蚀介质质,但实际介质条件往往是不均匀的。
各种影响因素相互关联,比如储罐的钢体在干燥的沙介质中不具备产生电化学腐蚀的条件。
因为干沙的电阻率极大,但在潮湿渗水的状态下,沙的电阻率急剧下降,局部腐蚀的电池的阴、阳极区通过介质中的水及其杂质盐类的传导使腐蚀得以持续进行。
钢体在沙介质中的腐蚀电位与沙的含水量有着密切的关系,腐蚀电位随着沙中水含量的增加负移,腐蚀倾向变化从不腐蚀到强腐蚀。
随着国家对安全事故的越来越重视,阴极保护作为简单的安全保障措施也越来越受人们的重视,埋地储罐阴极保护才得到逐步地推广。
由于地下储罐体积比较小,结构简单,需要保护的部分包括储罐罐体和、罐体相连的少量埋地管道以及储罐的静电接地系统。
单个地下储罐大多采用牺牲阳极阴极保护,如果大量的地下储罐集中在一起,也可以采用强制电流阴极保护。
目前应用阴极保护比较多的是液化气加气站、天然气加气站、加油站的地下储罐。
2储罐的防腐措施2.1外涂层储罐填埋前应按SHJ22-90《石油化工设备与管道涂料防腐设计与施工规范》进行防腐处理,涂料为环氧煤沥青,缠绕材料为玻璃布,每层涂料厚度必须大于等于0.2mm,每层玻璃布缠绕厚度为1.5mm。
每涂一层涂料,缠一层玻璃布,直至防腐层总厚度大于5.5mm为止。
2.2镁合金牺牲阳极阴极保护根据小范围区域特点和介质高电阻率,选用镁合金牺牲阳极,它具有较负的工作电位和较大的驱动电压。
为使阳极输出电流分布均匀,减小阳极溶解电阻,阳极四周有10mm 厚的填料,其组分为工业硫酸钠、石膏和澎润土,按比例搅拌均匀,与阳极一起装入Ø200×1100mm的棉布袋,即为阳极包。
储油罐内底板阴极保护牺牲阳极布置方式探讨
. 1 ’
. 7 f /
v
表实际所需保护的面积, 单位为m ; 代表设计所需 H
\’ 位 hK 所 牺 阳 的 论 电 护 间 单 为 ;为 选 牲 极 理 发
\ : ::二 r = ,/
-
要兰 的质为3 ! 论 的牲极总量 式算以 一般设 牺阳 竺 6  ̄ 再根据 6 计斤 4
( 宁波市象山防腐工程有限公 司,浙江 宁波 35 1 ; . 1 . 100 2浙江龙驰防腐技术有限公司,浙江 宁波 35 1) 1 0 0
摘
要 :本文 以某 ̄
17m3 0Y 储罐的牺牲 阳极设计方案为例 ,对 比分析 了储油罐 内底板牺牲 阳
极不同布置方式的阴极保护 效果 ,结果表明阳极数量随半径增大而增加布置方式,中心和边缘 区域 阳
2 Z e a g o g e o oi o t l eh o g o, t, igo3 5 1 , h a . hj n nk y r s nC nr cn l y . d N n b 10 0 C i ) i L C o oT o C L n AbtatT i ae ksh cic ln d ei f rjc f1000m3aka xmpet s c: hs prae es r i oeds no poet , n a ea l r p t t a f aa i g a o 0 0 t sn o
处
、 ’ =多 二 =: _ :二 / 三
图3
4 1 支
,
3
处
半径4 m处安装 4 支 。该防腐 结构 中,离储 0 7
…
一… ~
牺牲 阳极布置图 … … … 。 一
极 质没 与 保 的积 比如 图 的 量 有所 护 面成 ,图、
钢制储罐内牺牲阳极阴极保护设计及应用
钢制储罐内牺牲阳极阴极保护设计及应用阳极、阴极是储存物质的重要部分,在钢制储罐中也是一样,所以保护阳极、阴极正确的使用是必不可少的。
本文将讨论一种特殊的钢制储罐内阳极、阴极保护设计及应用。
1、储罐内部阳极阴极保护的分类储罐内阳极、阴极保护的方式可分为无阳极保护、牺牲阳极保护两种。
无阳极保护是指阳极和阴极不直接接触,而是由一定对抗力维持一定距离,溶液中金属元素不能进入阴极,只能够在阳极上进行电解腐蚀,从而实现阴极的保护。
牺牲阳极保护是指装有一个牺牲阳极,使牺牲阳极及它部分继电器直接接触溶液,从而使得牺牲阳极及它的部分继电器先腐蚀,确保阴极的安全性。
2、特点及应用无阳极保护的特点是不会将阴极产生的热量引出,适用于温度低、电解腐蚀时间长的储罐。
牺牲阳极保护的特点是具有高的抗腐蚀性能,可用来抵抗湿热度比较高的情况,如储罐物料含水量高,温度高的情况。
3、技术要求无论使用无阳极保护还是牺牲阳极保护,都应符合以下技术要求。
1)储罐内阳极阴极应安装定要求的位置,以确保正确的运行。
2)阳极阴极的表面应平整,质地要求。
3)牺牲阳极的规格要满足物料储存要求。
4)阳极阴极安装需要考虑溶液密度和性质,以及湿热情况。
4、极、阴极保护安装实施1)确定储罐内阳极阴极的位置,确保它们之间的间距,以最大限度地保护阴极不被腐蚀。
2)做好焊接前的准备工作,将阳极阴极放置在需要被焊接的部位,保护阴极。
3)在特定位置安装阳极阴极保护装置,包括电解液的添加、检查阳极阴极的连接,确保无误。
4)检查阳极阴极的电连接,检查线路的正确连接,以确保正确的使用。
5)对检查后的储罐进行放电,确保储罐内没有残留电流,避免腐蚀和污染造成不必要的损失。
综上所述,钢制储罐内阳极、阴极保护不仅能够确保物料的储存安全,而且能够有效地提供长久稳定的性能,有效地保护钢制储罐,是一项重要的技术。
钢质储罐阴极保护牺牲阳极保护方法与设计安装
钢质储罐阴极保护牺牲阳极保护方法与设计安装公司服务范围:埋地管道、储油罐、地埋储罐、电厂接地网、循环水管道、油水分离器、轮船、码头钢管桩、钻井平台等阴极保护工程,防腐蚀调查、管道定位、管道防腐层检测等管道检测工程。
河南汇龙合金材料有限公司技术部:刘珍编制:2018年8月内部资料请勿外传钢质储罐根据用途不同分为:原油罐,污水罐,消防水罐等,需要注意的是在原油罐内壁中禁止使用镁阳极,在原油储罐内壁通常使用铝阳极。
由于原油罐内壁的底部有一层积水层,采用阴极保护在技术上是可行的,但如果进行设计,要确定积水层的厚度。
从安全的角度考虑,以采用牺牲阳极保护为佳,保护的范围是罐壁下部1米,罐底板全部。
因为含油污水的腐蚀性较强,所以对于原油储罐内壁阴极保护的电流密度需要取120mA/m2。
对于罐底板外壁阴极保护来说,重要的参数是保护电流密度,大量的资料证明保护电流密度为10mA/m2是可取的,对于新罐,这一指标可能偏高,不过到后期就适中了。
在有些条件下,5mA/m2是个合适的指标。
通常保护电流密度的选取应通过馈电实验来确定,这里给出几条特殊的准则:在透气性差的粘土中,阴极保护电位应取-950mv。
温度在60℃以上时,阴极保护电位应为-950mv。
当电阻率大于500Ω.m的砂质环境中,阴极保护准则可取-750mv当罐中心电位无法测量时,如直径40m的罐,应在确保电流密度的前提下,罐周电位应不小于-1.2v。
1、钢质储罐内壁牺牲阳极阴极保护:①参数计算:罐底内壁保护面积计算:S=πr2S—保护面积r—储罐半径保护电流计算:I=SIaS—保护面积Ia—保护电流密度阳极输出电流:Ia=△E/RIa—阳极输出电流A△E—阳极有效电位差VR—回路总电阻R阳极数量:N=f.IA/IaN—阳极数量IA—所需保护电流A Ia—单支阳极输出电流AF—备用系数,取2-3倍阳极使用寿命:T=0.85W/ωIT—阳极工作寿命a W—阳极净质量,kgω—阳极消耗率kg/(A.a)I—阳极平均输出电流,A②牺牲阳极内壁设计、施工说明:1、阳极进入施工现场后,首先对阳极体进行入场检查,观察阳极体的外形及工艺,保证阳极体外形不翘曲,表面无毛刺、飞边、裂纹,无氧化渣和加杂物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储罐内壁牺牲阳极阴极保护
1、原油罐金属底板的腐蚀与防护
地上钢质储油罐使用过程中经常遭受内外环境介质的腐蚀,其中罐底板腐蚀穿孔事故占储罐腐蚀事故比率最高,因此应对储油罐罐底板实施有效的防腐措施,减少泄漏事故的发生,以延长储油罐大修周期。
涂料防腐是用覆盖层将金属与介质隔开,从而对金属起到保护作用。
但由于覆盖层有微孔,老化后易出现龟裂.剥离等现象。
若因施工质量差而产生针孔,使裸露的金属形成小阳极,覆盖层部分成为大阴极而产生局部腐蚀电池,则会更快地破坏漆膜。
因此,采用单独的涂料保护效果不佳。
若采用涂料与阴极保护联合的保护方法,使裸露的金属获得集中的电流保护,弥补了覆盖层缺陷,是现阶段储罐罐底板防腐最为经济有效的方法。
储罐边缘板在罐结构中的作用十分重要,但却容易渗进水而遭受腐蚀。
目前在役的储罐均未采取有效的防腐措施,要全面控制罐底板的腐蚀,除了对罐底板主体进行防护外,还要对边缘板外露部分(以下边缘板均特指边缘板外露部分)采取有效的防腐措施。
2、腐蚀机理
水是原油罐底板的腐蚀根源,原油和水中的硫化物与罐底板金属反应机理为:
在碳钢表面的硫化物氧化皮或锈层有孔隙的情况下,原油罐底水中Cl-离子能穿过硫化物氧化皮或锈层到达金属表面,在金属表面的局部地点形成小蚀坑。
生成的H+离子对金属产生活化作用,使小蚀坑继续溶解,成为孔蚀源。
孔蚀源成长的最初阶段,溶解下来的金属离子发生水解,生成氢离子。
这样会使小蚀坑接触的溶液层的PH值下降,形成一个强酸性的溶液区,这反而加速了金属的溶解,使蚀坑继续扩大、加深。
腐蚀从开始到暴露经历一个诱导期,但长短不一,有些需几个月,有些则需一年至几年。
坑蚀的形成,使原油罐金属底板受到很大的侵蚀。
由于坑蚀的面积很小,加之随机性和高度局部化的特征以及诱导期很长,因此很难用物理方法检测出坑蚀的深度。
即使泄露发生后,再用测厚仪测厚,仍不会发现罐金属底板有明显的减薄倾向。
3、防止罐底板腐蚀的几点措施
(1)在油罐金属底板的结构设计中,尽可能将罐底板铺平,并略向脱水口倾斜,以利原油罐底的水脱除干净。
(2)新建原油罐应采用埋地牺牲阳极的阴极保护措施,该方法比在原油罐内设牺牲阳极更有效。
(3)原油罐内主要是水相腐蚀,原油罐内底部水层的厚度最高时为800mm左右,因此,应在罐底板上1m的圈板范围内涂刷保护性涂料。
(4)在原油罐内使用WF-50防腐蚀涂料加阴极保护的方案可有效地防止原油罐金属底板腐蚀。
4、罐底板上表面的腐蚀防止
1)阴极保护
对罐底板上表面的阴极保护推荐采用牺牲阳极的阴极保护。
对于阳极品种的选择,由于温度影响,不宜选用锌阳极,由于安全因素,不宜选用镁阳极,所以多选用铝合金阳极。
牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可在清罐时进行更换。
2)涂料防腐
对罐底内防腐覆盖层的基本要求是:遇到存储产品不变质,耐潮,抗渗透,对金属表面有很好的附着性能,抗冲击,抗阴极剥离,易修补,耐老化性能好,耐存储温度。
由于输送过程中油品和管壁的摩擦,流经泵和过滤器等都会产生静电,在管路末端,未被消散的静电进入油罐,
在油罐内,油品和油罐接管内壁的摩擦油品之间的相对运动也会产生静电,若采用普通的绝缘覆盖层,其电阻率多在109~1013欧姆之间,阻断原油储运中产生的静电高压,可能会放电击穿油气层,发生事故。
因此,要求使用电阻率在108欧姆以下的防静电涂料。
由于罐底板安装了牺牲阳极,静电可通过阳极导出(因为阳极直接焊在底板上),因此,推荐采用重型玻璃鳞片涂料,该涂料具有优良的抗渗透性、抗冲击性能、良好的粘结力和耐磨性、耐化学介质浸泡、溶剂少、固体含量高、可作厚涂等优点。
若考虑清罐困难,不采用牺牲阳极保护,则推荐以下防腐方案:
采用T521聚氨酯防静电涂料作面漆,以炭黑为导电填料的E544环氧防静电涂料作中间漆,以无机富锌T588防静电涂料为底漆。
若只采用无机富锌涂料,则由于锌是两性金属,既能溶于酸,又能溶于碱,因此,以上涂料选择方案可避免富锌涂料过早失效。
3)边缘板的防腐
由于罐内的牺牲阳极无法对边缘板的外露部分提供保护,而外露部分所处的环境又很恶劣,所以推荐采用热喷涂铝防腐。
喷涂层可经受典型的高温考验,可有效地隔绝腐蚀介质的渗透,防止钢板在介质中的电化学腐蚀,铝覆盖层还可起到牺牲阳极的作用。
若喷涂其它电位比EF 正的金属,则存在形成大阴极小阳极的危险。
普通的涂料防腐应定期进行除锈更新,以上作法虽然一次性投资较高,但可一劳永逸。
澳大利亚的防腐公司的论文通过比较两种典型防腐层的整体寿命和目前的净费用,认为对长寿命设施使用高性能的防腐体系更为经济。
5、罐底板下表面的保护
土壤腐蚀储罐基础以砂层和沥青砂为主要构造,罐底板座落在沥青砂面上。
由于罐中满载和空载交替,冬季和夏季温度及地下水的影响,使得沥青砂层上出现裂缝,致使地下水上升,接近罐的底板,造成腐蚀。
当油罐的温度较高时,罐底板周围地下水蒸发,使盐分浓度增加,增大了腐蚀程度。
氧浓差电池腐蚀罐底板与砂基础接触不良,易产生氧浓差,如满载和空载比较,空载时接触不良R 再由于罐周与罐中心部位的透气性有差别,也会引起氧浓差电池,这时中心部位成为阳极而被腐蚀。
杂散电流的腐蚀罐区是地中电流较为复杂的区域$当站内管网有阴极保护而储罐未受保护时,则可能形成杂散电流干扰影响R 当周围有电焊机施工、电气化铁路、直流用电设备时则可能产生杂散电流。
底板下表面防腐覆盖层必须是可焊的,焊接时不能破坏覆盖层的结构,并要求涂料的有效防腐时间长。
若不采用阴极保护,则无机富锌涂料是优先选择,它具有优良的耐热、耐老化性能,极强的粘结力,优良的硬度和耐磨性、耐溶剂、防锈性能,漆膜有阴极保护作用,属水性涂料,无毒无臭,施工简单,使用方便等特点。
4、边缘板的保护
由于圈梁的阻隔,边缘板部位是阴极保护的盲区。
储罐装油后,边缘板微上翘,雨水很容易流入边缘板与基础的缝隙中。
为了阻止雨水进入缝隙,一般采用石棉绳填塞在缝隙中,再用防水胶与玻璃纤维布混合结构密封。
该处理方法的弊端很大,起不到良好的防水作用。
还可以采用一种“切削环梁外露角,于边缘板外下焊一圈圆钢”的结构,具体做法是切削环梁外露角,对已建储罐,在边缘板的外下沿,焊一圈D6的圆钢,焊完后再用防水密封胶密封并填平焊接处。
这种结构能有效地控制水分进入边缘板与基础的缝隙中,减少了因边缘板上翘而造成的积水,且施工方便,效果好。
(若担心连续焊对罐体与底板焊缝的影响,可采用点焊),此结构已在储罐中进行了试验,取得了很好的应用效果。