1996年全国统一高考数学试卷(理科)

合集下载

2014年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)(附详细答案)

2014年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)(附详细答案)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)?g(x)是偶函数B.|f(x)|?g(x)是奇函数C.f(x)?|g(x)|是奇函数D.|f(x)?g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)不等式组的解集记为D,有下列四个命题:p1:?(x,y)∈D,x+2y≥﹣2 p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)?g(x)是偶函数B.|f(x)|?g(x)是奇函数C.f(x)?|g(x)|是奇函数D.|f(x)?g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)?g(﹣x)=﹣f(x)?g(x),故函数是奇函数,故A错误,|f(﹣x)|?g(﹣x)=|f(x)|?g(x)为偶函数,故B错误,f(﹣x)?|g(﹣x)|=﹣f(x)?|g(x)|是奇函数,故C正确.|f(﹣x)?g(﹣x)|=|f(x)?g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|?|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,+cosα,即sinαcosβ=cosαsinβsin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:?(x,y)∈D,x+2y≥﹣2 p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:?(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,?(x,y)∈D,x+2y≥2,故p2:?(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:?(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:?(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3?+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20 .(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 A .【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC?(2+b)(a﹣b)=(c﹣b)c?2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc?b2+c2﹣bc=a2?b2+c2﹣bc=4?bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λSn﹣1,a n+1a n+2=λSn+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λSn=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λSn﹣1,a n+1a n+2=λSn+1﹣1,∴a n+1(a n+2﹣a n)=λan+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λSn=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO?平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

(详细解析)1996年普通高等学校招生全国统一考试数学试题及答案(理)

(详细解析)1996年普通高等学校招生全国统一考试数学试题及答案(理)

1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集I N =,集合{}{}2,,4,A x x n n N B x x n n N ==∈==∈||,则 A .B A I = B .B A I = C .B A I = D .B A I = 【答案】C【解析】由于B A Þ,所以AB I =.2.当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图像【答案】A【解析】当1a >时,函数xy a -=是减函数,且过点(0,1);而函数log a y x =为增函数,且过点(1,0).3.若22sin cos x x >,则x 的取值范围是 A .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ B .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ C .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ D .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ 【答案】D【解析】2221sin cos sin sin 22x x x x >⇒>⇒>或sin 2x <-,解得24k x ππ+< 32()4k k Z ππ<+∈或322()44k x k k Z ππππ-<<-∈,即(21)(21)4k x k πππ-+<<- 3()4k Z π+∈,所以x 的取值范围是⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ.4.复数54)31()22(i i -+等于A .i 31+B .i 31+-C .i 31-D .i 31--【答案】B44425(2)12()i ω===-+-.5.如果直线,l m 与平面,,αβγ满足:,//,l l m βγαα=⊂和m γ⊥,那么必有A .αγ⊥且l m ⊥B .αγ⊥且//m βC .//m β且l m ⊥D .//αβ且αγ⊥ 【答案】A 【解析】略. 6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是1-B .最大值是1,最小值是12-C .最大值是2,最小值是2-D .最大值是2,最小值是1- 【答案】D【解析】因为()sin 2sin()3f x x x x π==+,由已知5636x πππ-≤+≤.故当 32x ππ+=,即6x π=时,()f x 有最大值是2;当36x ππ+=-,即2x π=-时,()f x 有最小值是1-. 7.椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是A .(3,5),(3,3)---B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1),(1,1)--- 【答案】B【解析】消去参数可得直角坐标方程22(1)(3)1259y x +-+=,故焦点坐标是(3,3),(3,5)-.8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα-D .22πα--【答案】A【解析】解法一:由于已知sin 0,cos()02παα>+<,原式arcsin(sin )arccos(sin )arccos(sin )αααπααπ=-+-=-+-=-+arccos[cos()]()222πππααπα--=-+--=.解法二:当1x ≤时arcsin arccos 2x x π+=,而1sin 0α-<-<,∴原式arcsin(sin )arccos(sin )2παα=-+-=.9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .63aB .123a C .3123a D .3122a 【答案】D【解析】取AC 的中点O ,连接,BO DO ,如图所示.,ABC ADC ∆∆均为等腰直角三角形,22AC BO DO ===, ∴2BOD π∠=,则DO ⊥面ABC ,DO 就是三棱锥D ABC -的高,所以231132212D ABC V a -=⋅⋅=.10.等比数列{}n a 的首项11a =-,前n 项和为n S ,若3231510=S S 则n n S ∞→lim 等于 A .32 B .23- C .2 D .2- 【答案】B【解析】显然1q ≠,由3231510=S S 得10151(1)31(1)32a q a q -=-,则105323110q q --=,解得 5132q =-,得12q =-,所以12lim 13n n a S q →∞==--.11.椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是A .(3,0),(1,)π B.3)22ππ C .5(2,),(2,)33ππD .(2arctg )22π- 【答案】C【解析】将极坐标方程为θρcos 23-=化为直角坐标方程22(1)143x y -+=,在短轴上的两个顶点的直角坐标是,所以极坐标是5(2,),(2,)33ππ.12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .260 【答案】C【解析】由已知得230,100m m S S ==,则232,,m m m m m S S S S S --成等差数列,所以323()210m m m S S S =-=.13.设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(,0),(0,)a b 两点.已知原点到直线l 的距离为c 43,则双曲线的离心率为 A .2 B .3 C .2 D .332 【答案】A【解析】直线l 的方程为0bx ay ab +-=,原点到直线l 4c =,则22222316a b c a b =+,即22222()316a c a c c -=,解得2e =或e =0a b <<,所以e ==>,所以3e =不合题意.14.母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于 A .π322 B .π332 C .π2 D .π362 【答案】D15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5- 【答案】B【解析】(7.5)(5.52)(5.5)[(3.5)](3.5)(1.5)[(0.5)]f f f f f f f =+=-=--==-=---(0.5)0.5f =-=-.第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.16.已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则p = . 【答案】2【解析】圆的标准方程为22(3)16x y -+=,圆心和半径分别为(3,0),4,所以4312p=-=,则2p =.17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.(用数字作答) 【答案】32【解析】从7个点中取3个点有37C 种取法,3个点共线的有3种,三角形共有37332C -=个.18.tg20tg403tg20tg40++的值是 . 【答案】3【解析】∵tg20tg40tg(2040)31tg20tg40++==-,∴tg20tg403(1-tg20tg40)+=,tg20tg403tg20tg403++=.19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60的二面角,则异面直线AD与BF 所成角的余弦值是 .【答案】42 【解析】由于//AD BC ,所以CBF ∠即为异面直线AD 与BF 所成角,设正方形边长为a ,在CBF ∆中,,,BF BC a FC =====,222cos 24BF BC FC CBF BF BC +-∠==⋅.三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤. 20.(本小题满分11分)解不等式1)11(log >-xa .【解】本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.(Ⅰ)当1>a 时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为10a -<,所以0x <,∴101x a<<-. ——5分 (Ⅱ)当01a <<时,原不等式等价于不等式组:110,11.xa x⎧->⎪⎪⎨⎪-<⎪⎩——7分由①得,1x >或0x <, 由②得,101x a <<-,∴ax -<<111. ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111. ——11分 21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求 2cosCA -的值. 【解】本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分.解法一:由题设条件知60,120B A C =+=. ——2分∵cos 60=-22cos 1cos 1-=+CA .将上式化为C A C A cos cos 22cos cos -=+. 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+. ——6分 将21)cos(,2160cos 2cos-=+==+C A C A 代入上式得cos)22A C A C -=-. 将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分(2cos3)022A C A C ---+=,∵302A C -+≠,∴2cos 02A C-=.从而得cos2A C -=. ——12分 解法二:由题设条件知60,120B A C =+=.设2A Cα-=,则2A C α-=,可得60,60A C αα=+=-, ——3分 所以)60cos(1)60cos(1cos 1cos 1αα-++=+ C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα. ——7分 依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ,∴2243cos cos 2-=-αα.整理得22cos 0,αα+-= ——9分(2cos 3)0αα-+=,∵03cos 22≠+α,∴02cos 2=-α.从而得222cos=-C A . ——12分22.(本小题满分12分)如图1,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (Ⅰ)求证:1BE EB =;(Ⅱ)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ). (Ⅰ)证明:(如图2)在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.① ∵ ,∴EG ⊥侧面1AC ;取AC 的中点F ,连结,BF FG ,由AB BC = 得BF AC ⊥.② ∵ ,∴BF ⊥侧面1AC ;得//,,BF EG BF EG 确定一个平面,交侧面1AC 于FG .③ ∵ ,∴//BE FG ,四边形BEGF 是平行四边形,BE FG =. ④ ∵ ,∴11//,FG AA AAC FGC ∆∆,⑤ ∵ ,∴112121BB AA FG ==,即112BE BB =,故1BE EB =. (Ⅱ)解:【解】本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)①面1A EC ⊥侧面1AC , ——2分②面ABC ⊥侧面1AC , ——3分 ③//BE 侧面1AC , ——4分 ④1//BE AA , ——5分 ⑤//AF FC , ——6分 (Ⅱ)分别延长11,CE C B 交于点D ,连结1A D .∵1111111//,22EB CC EB BB CC ==,∴,21111111B A C B DC DB ===∵11111160B AC C B A ∠=∠=︒,1111111(180)302DA B A DB DB A ∠=∠=︒-∠=︒,∴111111190DAC DA B B AC ∠=∠+∠=︒, 即111DA AC ⊥. ——9分∵1CC ⊥面111AC B ,即11A C 是1A C 在平面11AC D 上的射影, 根据三垂线定理得11DA A C ⊥,所以11CAC ∠是所求二面角的平面角. ——11分 ∵11111111,90CC AA A B AC AC C ===∠=︒,∴1145CA C ∠=,即所求二面角为45. ——12分 23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)【解】本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M .——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x . ——7分 ∵103312210101.1(10.01) 1.110[1]10[1(10.010.01)]1.22 1.22C C ⨯+⨯-=⨯-⨯+⨯+⨯+3 1.110[1 1.1045] 4.11.22≈⨯-⨯≈. —— 9分 ∴4x ≤(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分 24.(本小题满分12分)已知12,l l 是过点)0,2(-P 的两条互相垂直的直线,且12,l l 与双曲线122=-x y 各有两个交点,分别为11,A B 和22,A B .(Ⅰ)求1l 的斜率1k 的取值范围;(Ⅱ)若1122A B B =,求12,l l 的方程.【解】本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.(I )依题设,12,l l 的斜率都存在,因为1l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分 有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k . ②若0121=-k ,则方程组①只有一个解,即1l 与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为2222211111)4(1)(21)4(31)k k k ∆=---=-.设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k . ④同理有)13(4,0122222-=∆≠-k k .又因为12l l ⊥,所以有121l l ⋅=-. ——4分于是,12,l l 与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k . ——7分 (Ⅱ)设),(),,(221111y x B y x A .由方程②知112,122212121212121--=⋅--=+k k x x k k x x . ∴22222111212112()()(1)()A B x x y y k x x =-+-=+-22112214(1)(31)(1)k k k +-=-. ⑤ ——9分 同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+= ⑥ 由22115B A B A =,得2211225A B A B =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+,解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分25.(本小题满分12分)已知,,a b c 是实数,函数2(),()f x ax bx c g x ax b =++=+,当11x -≤≤时,()1f x ≤. (Ⅰ)证明:1c ≤;(Ⅱ)证明:当11x -≤≤时,()2g x ≤;(Ⅲ)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .【解】本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当11x -≤≤时,()1f x ≤,取0x =得(0)1c f =≤,即1c ≤.——2分(Ⅱ)证法一:当0a >时,()g x ax b =+在[1,1]-上是增函数,∴(1)(0)(1)g g g -≤≤,∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c =+=-≤+≤,(1)(1)((1))2g a b f c f c -=-+=--+≥--+≥-,由此得()2g x ≤. ——5分 当0a <时,()g x ax b =+在[1,1]-上是减函数,∴(1)(0)(1)g g g -≥≥, ∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c -=-+=--+≤-+≤,(1)(1)((1))2g a b f c f c =+=-≥-+≥-,由此得()2g x ≤; ——7分当0a =时,(),()g x b f x bx c ==+.∵11x -≤≤,∴()(1)(1)2g x f c f c =-≤+≤.综上得()2g x ≤. ——8分证法二:由4)1()1(22--+=x x x ,可得221111()[()()]()2222x x x x g x ax b a b +-+-=+=-+- ])21()21([])21()21([22c x b x a c x b x a +-+--++++= 11()()22x x f f +-=-, ——6分当11x -≤≤时,有,0211,1210≤-≤-≤+≤x x 根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f ,即()2g x ≤. ——8分 (Ⅲ)因为0a >,()g x 在[1,1]-上是增函数,当1x =时取得最大值2,即(1)(1)(0)2g a b f f =+=-=. ①∵1(0)(1)2121f f -≤=-≤-=-,∴(0)1c f ==-. ——10分 因为当11x -≤≤时,()1f x ≥-,即()(0)f x f ≥,根据二次函数的性质,直线0x =为()f x 的图像的对称轴,由此得02ba-=,即0b =.由①得2a =.所以 2()21f x x =-. ——12分。

1996年普通高等学校招生全国统一考试理科数学-推荐下载

1996年普通高等学校招生全国统一考试理科数学-推荐下载

(B) (3,3),(3,-5)
(D) (7,-1),(-1,-1)
arccos[sin(
(9) 将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D-ABC 的
体积为
a3
(A)
6
(10) 等比数列 an
2
(A)
3
a3
(B)
12
的首项 a1=-1,前 n 项和为 S n ,若 S10 31
(13)

(A) 130
x2
设双曲线
a2

y2 b2
(B) 170
(C) 210
1(0 a b) 的半焦距为 c,直线 l 过 (a,0)(0, b) 两点,已知原点到
线 l 的距离为 3 c ,则双曲线的离心率为 4
(A) 2
(B) 3
(14) 母线长为 1 的圆锥体积最大时,其侧面展开图圆心角 等于
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡
皮擦干净后,再选涂其它答案,不能答在试题卷上. 3.考试结束,监考人将本试卷和答题卡一并收回. 一.选择题:本大题共 15 小题,第 1—10 题每小题 4 分,第 11—15 题每小题 5 分,共 65
分.在每小题给出的四个选项中,只有一项是符合题目要求的 新疆 王新敞 奎屯
(C) -2 2
(C) 3 a3 12
(C) 2
3 , ),(
2
7 , arctg
)] 等于
2
3 , 3 )
3
),(
2
(D) 1 3i

(D)


(D) 2 a3 12

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

1996年普通高等学校招生全国统一考试数学试卷(全国卷.文)

1996年普通高等学校招生全国统一考试数学试卷(全国卷.文)

1996年全国普通高等学校招生统一考试(文史类)数学第I卷一、选择题:本大题共15小题;第1-10题每小题4分,第11-15题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集I={1,2,3,4,5,6,7},集合A={1,3,5,7},B={3,5}.则(2)当a>1时,在同一坐标系中.函数y=a-x与y=log a x的图象是(3)若sin2x>cos2x,则x的取值范围是(5)6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有(A)720种 (B)360种 (C)240种 (D)120种(A)α⊥γ且l⊥m (B)α⊥γ且m∥β(C)m∥β且l⊥m (D)α∥β且α⊥γ(C)最大值是2,最小值是-2 (D)最大值是2,最小值是-1(10)圆锥母线长为1,侧面展开图圆心角为240°,该圆锥的体积是(11)椭圆25x2-150x+9y2+18y+9=0的两个焦点坐标是(A)(-3,5),(-3,-3) (B)(3,3),(3,-5)(C)(1,1),(-7,1) (D)(7,-1),(-1,-1)(12)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积为(13)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为(A)130 (B)170(C)210 (D)260(15)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7,5)等于(A)0.5 (B)-0.5(C)1.5 (D)-1.5第Ⅱ卷二、填空题:本大题共4小题;每小题4分,共16分。

把答案填在题中横线上。

(16)已知点(-2,3)与抛物线y2=2px(p>0)的焦点的距离是5,则p=(17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有个.(用数字作答)(19)如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是 .三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)(本小题满分11分)解不等式log a(x+1-a)>1.(21)(本小题满分12分)设等比数列{a n}的前n项和为S n.若S3+S6=2S9,求数列的公比q.(22)(本小题满分12分)(23)(本小题满分12分)【注意:本题的要求是,参照标号①的写法,在标号②、③、④、⑤的横线上填写适当步骤,完成(Ⅰ)证明的全过程;并解答(Ⅱ).】(Ⅰ)求证:面AEF⊥面ACF;(Ⅱ)求三棱锥A1-AEF的体积.(Ⅰ)证明:①∵BE=a,CF=2a,BE∥CF,延长FE与CB延长线交于D,连结AD.∴△DBE∽△DCF③∴DB=AB.④∴DA⊥AC.⑤∴FA⊥AD.∴面AEF⊥面ACF.(24)(本小题满分10分)某地现有耕地10000公顷.规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(25)(本小题满分12分)各有两个交点,分别为A1、B1和A2、B2.(Ⅰ)求l1的斜率k1的取值范围;(Ⅱ)若A1恰是双曲线的一个顶点,求│A2B2│的值.。

2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

<1 的解集为( )
A.{x|0<x<1}∪{x|x>1}
A.
B.
C.
D.
A.
B.2
C.
D.3
二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)(x﹣y)10 的展开式中,x7y3 的系数与 x3y7 的系数之和等于 . 14.(5 分)设等差数列{an}的前 n 项和为 Sn,若 S9=81,则 a2+a5+a8= . 15.(5 分)直三棱柱 ABC﹣A1B1C1 的各顶点都在同一球面上,若 AB=AC=AA1=2,∠BAC=120°,则此
球的表面积等于 .
16.(5 分)若
,则函数 y=tan2xtan3x 的最大值为 .
第 1 页(共 12 页)
三、解答题(共 6 小题,满分 70 分)
20.(12 分)在数列{an}中,a1=1,an+1=(1+ )an+ .
17.(10 分)在△ABC 中,内角 A、B、C 的对边长分别为 a、b、c,已知 a2﹣c2=2b,且 sinAcosC=3cosAsinC, (1)设 bn= ,求数列{bn}的通项公式;
6.(5 分)设 、 、 是单位向量,且
,则

的最小值为( )
,则| |=( )
A.﹣2
B. ﹣2
C.﹣1
D.1﹣
7.(5 分)已知三棱柱 ABC﹣A1B1C1 的侧棱与底面边长都相等,A1 在底面 ABC 上的射影 D 为 BC 的 中点,则异面直线 AB 与 CC1 所成的角的余弦值为( )
(I)求甲获得这次比赛胜利的概率; (Ⅱ)设 ξ 表示从第 3 局开始到比赛结束所进行的局数,求 ξ 的分布列及数学期望.

2008年全国统一高考数学试卷(理科)(全国卷二)及答案

2008年全国统一高考数学试卷(理科)(全国卷二)及答案

2008年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,0,1,2}2.(5分)设a,b∈R且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b23.(5分)函数f(x)=﹣x的图象关于()A.y轴对称B.直线y=﹣x对称 C.坐标原点对称D.直线y=x对称4.(5分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a5.(5分)设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣86.(5分)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为()A.B.C.D.7.(5分)(1﹣)6(1+)4的展开式中x的系数是()A.﹣4 B.﹣3 C.3 D.48.(5分)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为()A.1 B.C.D.29.(5分)设a>1,则双曲线的离心率e的取值范围是()A.B.C.(2,5) D.10.(5分)已知正四棱锥S﹣ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为()A.B.C.D.11.(5分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.12.(5分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,若向量与向量共线,则λ=.14.(5分)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=.15.(5分)已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.16.(5分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6小题,满分70分)17.(10分)在△ABC中,cosB=﹣,cosC=.(1)求sinA的值(2)设△ABC的面积S=,求BC的长.△ABC18.(12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(12分)如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.(Ⅰ)证明:A1C⊥平面BED;(Ⅱ)求二面角A1﹣DE﹣B的大小.20.(12分)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;(Ⅱ)若a n≥a n,n∈N*,求a的取值范围.+121.(12分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若,求k的值;(Ⅱ)求四边形AEBF面积的最大值.22.(12分)设函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.2008年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅱ)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n ≤3},则M∩N=()A.{0,1}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,0,1,2}【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选B.2.(5分)(2008•全国卷Ⅱ)设a,b∈R且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b2【分析】复数展开,化为a+bi(a、b∈R)的形式,虚部为0即可.【解答】解:(a+bi)3=a3+3a2bi﹣3ab2﹣b3i=(a3﹣3ab2)+(3a2b﹣b3)i,因是实数且b≠0,所以3a2b﹣b3=0⇒b2=3a2故选A.3.(5分)(2008•全国卷Ⅱ)函数f(x)=﹣x的图象关于()A.y轴对称B.直线y=﹣x对称 C.坐标原点对称D.直线y=x对称【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选C.4.(5分)(2008•全国卷Ⅱ)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【分析】根据函数的单调性,求a的范围,用比较法,比较a、b和a、c的大小.【解答】解:因为a=lnx在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选C5.(5分)(2008•全国卷Ⅱ)设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选D.6.(5分)(2008•全国卷Ⅱ)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为()A.B.C.D.【分析】由题意知本题是一个古典概型,试验发生的所有事件从30名同学中任选3名参加体能测试共有C303种结果,而满足条件的事件是选到的3名同学中既有男同学又有女同学共有C201C102+C202C101种结果.代入公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验发生的所有事件从30名同学中任选3名参加体能测试共有C303种结果,满足条件的事件是选到的3名同学中既有男同学又有女同学共有C201C102+C202C101种结果,∴由古典概型公式得到,故选D.7.(5分)(2008•全国卷Ⅱ)(1﹣)6(1+)4的展开式中x的系数是()A.﹣4 B.﹣3 C.3 D.4【分析】展开式中x的系数由三部分和组成:的常数项与展开式的x的系数积;的展开式的x的系数与的常数项的积;的的系数与的的系数积.利用二项展开式的通项求得各项系数.【解答】解:的展开式的通项为∴展开式中常数项为C60,含x的项的系数为C62,含的项的系数为﹣C61的展开式的通项为∴的展开式中的x的系数为C42,常数项为C40,含的项的系数为C41故的展开式中x的系数是C60C42+C62C40﹣C61C41=6+15﹣24=﹣3故选项为B8.(5分)(2008•全国卷Ⅱ)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为()A.1 B.C.D.2【分析】可令F(x)=|sinx﹣cosx|求其最大值即可.【解答】解:由题意知:f(x)=sinx、g(x)=cosx令F(x)=|sinx﹣cosx|=|sin(x﹣)|当x﹣=+kπ,x=+kπ,即当a=+kπ时,函数F(x)取到最大值故选B.9.(5分)(2008•全国卷Ⅱ)设a>1,则双曲线的离心率e的取值范围是()A.B.C.(2,5) D.【分析】根据题设条件可知:,然后由实数a 的取值范围可以求出离心率e的取值范围.【解答】解:,因为是减函数,所以当a>1时,所以2<e2<5,即,故选B.10.(5分)(2008•全国卷Ⅱ)已知正四棱锥S﹣ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为()A.B.C.D.【分析】由于是正方体,又是求角问题,所以易选用向量量,所以建立如图所示坐标系,先求得相关点的坐标,进而求得相关向量的坐标,最后用向量夹角公式求解.【解答】解:建立如图所示坐标系,令正四棱锥的棱长为2,则A(1,﹣1,0),D(﹣1,﹣1,0),S(0,0,),E,=,=(﹣1,﹣1,﹣)∴cos<>=故选C.11.(5分)(2008•全国卷Ⅱ)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.【分析】利用原点在等腰三角形的底边上,可设底边方程y=kx,用到角公式,再借助草图,选项判定结果即可.【解答】解:l1:x+y﹣2=0,k1=﹣1,,设底边为l3:y=kx 由题意,l3到l1所成的角等于l2到l3所成的角于是有,解得k=3或k=﹣,因为原点在等腰三角形的底边上,所以k=3.k=,原点不在等腰三角形的底边上(舍去),故选A.12.(5分)(2008•全国卷Ⅱ)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅱ)设向量,若向量与向量共线,则λ=2.【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解.【解答】解:∵a=(1,2),b=(2,3),∴λa+b=(λ,2λ)+(2,3)=(λ+2,2λ+3).∵向量λa+b与向量c=(﹣4,﹣7)共线,∴﹣7(λ+2)+4(2λ+3)=0,∴λ=2.故答案为214.(5分)(2008•全国卷Ⅱ)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=2.【分析】根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再根据两直线垂直建立等式关系,解之即可.【解答】解:∵y=e ax∴y′=ae ax∴曲线y=e ax在点(0,1)处的切线方程是y﹣1=a(x﹣0),即ax﹣y+1=0∵直线ax﹣y+1=0与直线x+2y+1=0垂直∴﹣a=﹣1,即a=2.故答案为:215.(5分)(2008•全国卷Ⅱ)已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.【分析】先设点A,B的坐标,求出直线方程后与抛物线方程联立消去y得到关于x的一元二次方程,求出两根,再由抛物线的定义得到答案.【解答】解:设A(x1,y1)B(x2,y2)>x2)由,,(x∴由抛物线的定义知故答案为:16.(5分)(2008•全国卷Ⅱ)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;三、解答题(共6小题,满分70分)17.(10分)(2008•全国卷Ⅱ)在△ABC中,cosB=﹣,cosC=.(1)求sinA的值(2)设△ABC的面积S=,求BC的长.△ABC【分析】(Ⅰ)由cosB,cosC分别求得sinB和sinC,再通过sinA=sin(B+C),利用两角和公式,进而求得sinA.(Ⅱ)由三角形的面积公式及(1)中的sinA,求得AB•AC的值,再利用正弦定理求得AB,再利用正弦定理进而求得BC.【解答】解:(Ⅰ)由,得,由,得.所以.(Ⅱ)由得,由(Ⅰ)知,故AB×AC=65,又,故,.所以.18.(12分)(2008•全国卷Ⅱ)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【分析】(1)由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为ξ,由题意知ξ服从二项分布一投保人在一年度内出险的对立事件是没有一个人出险.(2)写出本险种的收入和支出,表示出它的盈利期望,根据为保证盈利的期望不小于0,列出不等式,解出每位投保人应交纳的最低保费.【解答】解:由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为ξ,由题意知ξ~B(104,p).(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则发生当且仅当ξ=0,=1﹣P(ξ=0)=1﹣(1﹣p)104,又P(A)=1﹣0.999104,故p=0.001.(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.支出10000ξ+50000,盈利η=10000a﹣(10000ξ+50000),盈利的期望为Eη=10000a﹣10000Eξ﹣50000,由ξ~B(104,10﹣3)知,Eξ=10000×10﹣3,Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.Eη≥0⇔104a﹣104×10﹣5×104≥0⇔a﹣10﹣5≥0⇔a≥15(元).∴每位投保人应交纳的最低保费为15元.19.(12分)(2008•全国卷Ⅱ)如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.(Ⅰ)证明:A1C⊥平面BED;(Ⅱ)求二面角A1﹣DE﹣B的大小.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C与平面BED内两条相交直线BD,EF都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG是二面角A1﹣DE﹣B的平面角,然后解三角形,求二面角A1﹣DE﹣B的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出平面DA1E和平面DEB的法向量,求二者的数量积可求二面角A1﹣DE﹣B的大小.【解答】解:解法一:依题设知AB=2,CE=1.(Ⅰ)连接AC交BD于点F,则BD⊥AC.由三垂线定理知,BD⊥A1C.(3分)在平面A1CA内,连接EF交A1C于点G,由于,故Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE与∠FCA1互余.于是A1C⊥EF.A1C与平面BED内两条相交直线BD,EF都垂直,所以A1C⊥平面BED.(6分)(Ⅱ)作GH⊥DE,垂足为H,连接A1H.由三垂线定理知A1H⊥DE,故∠A1HG是二面角A1﹣DE﹣B的平面角.(8分),,.,.又,..所以二面角A1﹣DE﹣B的大小为.((12分))解法二:以D为坐标原点,射线DA为x轴的正半轴,建立如图所示直角坐标系D﹣xyz.依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).,.(3分)(Ⅰ)因为,,故A1C⊥BD,A1C⊥DE.又DB∩DE=D,所以A1C⊥平面DBE.(6分)(Ⅱ)设向量=(x,y,z)是平面DA1E的法向量,则,.故2y+z=0,2x+4z=0.令y=1,则z=﹣2,x=4,=(4,1,﹣2).(9分)等于二面角A1﹣DE﹣B的平面角,所以二面角A1﹣DE﹣B的大小为.(12分)20.(12分)(2008•全国卷Ⅱ)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;(Ⅱ)若a n≥a n,n∈N*,求a的取值范围.+1=2S n+3n,由此可知S n+1﹣3n+1=2(S n﹣3n).所以b n=S n 【分析】(Ⅰ)依题意得S n+1﹣3n=(a﹣3)2n﹣1,n∈N*.(Ⅱ)由题设条件知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,a n=S n﹣S n﹣=,由此可以求得a的取值范围是[﹣9,+∞).1【解答】解:(Ⅰ)依题意,S n﹣S n=a n+1=S n+3n,即S n+1=2S n+3n,+1﹣3n+1=2S n+3n﹣3n+1=2(S n﹣3n).(4分)由此得S n+1因此,所求通项公式为b n=S n﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅱ)由①知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,a n=S n﹣S n﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,a n+1﹣a n=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)21.(12分)(2008•全国卷Ⅱ)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若,求k的值;(Ⅱ)求四边形AEBF面积的最大值.【分析】(1)依题可得椭圆的方程,设直线AB,EF的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2满足方程(1+4k2)x2=4,进而求得x2的表达式,进而根据求得x0的表达式,由D在AB上知x0+2kx0=2,进而求得x0的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D在AB上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E与F关于原点对称可知y2=﹣y1>0,故四边形AEBF的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2===,当x2=2y2时,上式取等号.所以S的最大值为.22.(12分)(2008•全国卷Ⅱ)设函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)令g(x)=ax﹣f(x),根据导数研究单调性的方法,即转化成研究对任何x ≥0,都有g(x)≥0恒成立,再利用分类讨论的方法求出a的范围.【解答】解:(Ⅰ).(2分)当(k∈Z)时,,即f'(x)>0;当(k∈Z)时,,即f'(x)<0.因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)(Ⅱ)令g(x)=ax﹣f(x),则==.故当时,g'(x)≥0.又g(0)=0,所以当x≥0时,g(x)≥g(0)=0,即f(x)≤ax.(9分)当时,令h(x)=sinx﹣3ax,则h'(x)=cosx﹣3a.故当x∈[0,arccos3a)时,h'(x)>0.因此h(x)在[0,arccos3a)上单调增加.故当x∈(0,arccos3a)时,h(x)>h(0)=0,即sinx>3ax.于是,当x∈(0,arccos3a)时,.当a≤0时,有.因此,a的取值范围是.(12分)。

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

1996年全国高考数学(理科)试题

1996年全国高考数学(理科)试题

1996年全国统一高考数学试卷(理科数学)一、选择题: 本大题共15小题:第1-10题每小题4分,第11-15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集I N =,集合{}2,A x x n n N ==∈,{}4,B x x n n N ==∈,则 A.I A B = B.()I I C A B = C.()I I A C B = D.()()I I I C A C B =2.当1a >时,在同一坐标系中,函数x y a -=与log a y x =的图象3.若22sin cos x x>,则x 的取值范围是A. 322,44x k x k k z ππππ⎧⎫-<<+∈⎨⎬⎩⎭ B. 522,44x k x k k z ππππ⎧⎫+<<+∈⎨⎬⎩⎭C. ,44x k x k k z ππππ⎧⎫-<<+∈⎨⎬⎩⎭D. 3,44x k x k k z ππππ⎧⎫+<<+∈⎨⎬⎩⎭44等于 A.1+ B. 1-+ C. 1- D. 1- 5.如果直线,l m 与平面,,αβγ满足:l βγ=,l ∥α,m α⊂和m γ⊥,那么必有A.αγ⊥且l m ⊥B.αγ⊥且m ∥βC.m ∥β且l m ⊥D.α∥β且αγ⊥ 6.当22x ππ-≤≤时,函数()sin f x x x =的A. 最大值是1,最小值是1-B. 最大值是1,最小值是12-C. 最大值是2,最小值是2-D. 最大值是2,最小值是1-7.椭圆33cos 15sin x y θθ=+⎧⎨=-+⎩(θ为参数)的两个焦点坐标是A.(3,5)-,(3,3)-B. (3,3),(3,5)-C. (1,1),(7,1)-D. (7,1),(1,1)-- 8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于 A.2πB. 2π-C. 22πα-D. 22πα--9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A.36aB. 312aC. 312D. 31210.等比数列{}n a 的首项11a =-,前n 项和为n S ,若1053132S S =,则lim n n S →∞等于A.23 B . 23- C. 2 D. 2- 11.椭圆的极坐标方程为32cos ρθ=-,则它在短轴上的两个顶点的极坐标是A.(3,0),(1,)πB.(3,)2π,3)2πC.(2,)3π,5(2,)3πD. )2,2arctan )2π- 12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A.130 B. 170 C. 210 D. 26013.设双曲线22221x y a b-=(0a b <<)的半焦距为c ,直线l 过(,0),(0,)a b 两点,已知原点到直线l的距离为4,则双曲线的离心率为 A.214.母线长为l 的圆锥体积最大时,其侧面展开图圆心角ϕ等于A.315.设()f x 是(,)-∞∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时()f x x =, 则(7.5)f 等于A. 0.5B. 0.5-C. 1.5D. 1.5- 二、填空题(共4小题,每小题4分,满分16分)16.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p =__ . 17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答).18.求值:tan 20tan 403tan 20tan 40++=_______ .19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60的二面角,则异面直线AD 与BF 所成角的余弦值是 ____ . 三、解答题:本大题共6小题,共65分.解答应写出文字说明、证明过程或推演步骤.20.(本小题满分11分)解不等式1log (1)1a x ->.21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:2A C B +=,11cos cos cos A C B+=-,求cos2A C-的值. 22.(本小题满分12分)如图,在正三棱柱111ABC A B C -中,E 在1BB 上, 截面1A EC ⊥侧面11AAC C .(1)求证:1BE EB =;注意:在下面横线上填写适当内容,使之成为(1)的完整证明,并解答(2). (1)证明:在截面1A EC 内,过E 作1EG A C ⊥,G 是垂足. ①∵ _________ABCD E FABCEA 1B 1C 1∴EG ⊥侧面1AC ;取AC 的中点F ,连接,BF FG ,由AB BC =,得BF AC ⊥, ②∵ _________∴BF ⊥侧面1AC ;得BF ∥EG ,BF 、EG 确定一个平面,交侧面1AC 于FG . ③∵ _________∴BE ∥FG ,四边形BEFG 是平行四边形,BE FG =, ④∵ _________∴FG ∥1AA ,1AA C ∆∽FGC ∆,⑤∵ _________∴111122FG AA BB ==,112BE BB =,故1BE EB =(2)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)(粮食单产=总产量/耕地面积,人均粮食占有量=总产量/总人口数) 24.(本小题满分12分)已知1l ,2l 是过点(P 的两条互相垂直的直线,且1l ,2l 与双曲线221y x -=,各有两个交点,分别为1A ,1B 和2A ,2B . (1)求1l 的斜率1k 的取值范围;(2)若1122A B B =,求1l ,2l 的方程. 25.(本小题满分12分)已知,,a b c R ∈,函数2()f x ax bx c =++,()g x ax b =+,当11x -≤≤时,()1f x ≤. (1)证明:1c ≤;(2)证明:当11x -≤≤时,()2g x ≤;(3)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .。

2018年全国统一高考数学试卷(理科)(新课标ⅱ)含答案

2018年全国统一高考数学试卷(理科)(新课标ⅱ)含答案

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)=()A.i B. C. D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C 的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

1996年普通高等学校招生全国统一考试数学试卷(理)及答案

1996年普通高等学校招生全国统一考试数学试卷(理)及答案

1996年普通高等学校招生全国统一考试数 学(理工农医类)第 Ⅰ 卷一.选择题:本大题共15小题,1—10小题每小题4分,11—15小题每小题5分,共65分。

在每一小题给出的四个结论,只有一个结论是满足条件的。

1.已知全集I =N ,集合A ={ x |x =2n , n ∈N }, B ={ x |x =4n , n ∈N },则 A .I =A B B .I =B A C .I =B A D .I =B A2.当a >1时,在同一坐标系中,函数y =x a -与y =x log a 的图象是 A B C D 3.若x cos x sin 22>,则x 的取值范围是A .},412432|{Z k k x k x ∈+-ππππ<< B .},452412|{Z k k x k x ∈++ππππ<<C .},4141|{Z k k x k x ∈+-ππππ<<D .},4341|{Z k k x k x ∈++ππππ<<4.复数54)31()22(i i -+等于A .1+3iB .-1+3iC .1-3iD .-1-3i5.如果直线l 、m 与平面γβα、、满足:l =γβ ,l ∥α,m α⊂和m ⊥γ,那么必有 A .α⊥γ且l ⊥m B .α⊥γ且m ∥βC .m ∥β且l ⊥mD .α∥β且α⊥γ 6.当22ππ≤≤x -时,函数f (x )=sin x +3cos x 的A .最大值是1,最小值是-1B .最大值是1,最小值是-21C .最大值是2,最小值是-2D .最大值是2,最小值是-1 7.椭圆{ϕϕsin y cos x 5133+-+== 的两个焦点坐标是A .(-3,5),(-3,-3)B .(3,3),(3,-5)C .(1,1),(-7,1)D .(7,-1),(-1,-1) 8.若0<α<2π,则arcsin [cos (απ+2)]+arccos [sin (απ+)]等于A .2πB .-2πC .απ22- D .-απ22-9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为 A .361a B .3121a C .3123a D .3122a 10.等比数列的首项为-1,前n 项和为n S ,若3231510=S S ,则n n S lim ∞→=A .32 B .-32C .2D .-2 11.椭圆的极坐标方程为θρcos -23=,它在短轴上的两个顶点的极坐标是A .(3,0),(1,π)B .)233()23(ππ,,,C .)352()32(ππ,,, D .)232,7(),23,7(arctg arctg -π 12.等差数列的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .26013.设双曲线2222by a x -=1(0<a <b )的半焦距为c ,直线l 过(a , 0), (0, b )两点。

【高考数学试题】1996年普通高等学校招生全国统一考试.文科数学试题及答案

【高考数学试题】1996年普通高等学校招生全国统一考试.文科数学试题及答案

【高考数学试题】1996年普通高等学校招生全国统一考试数学(文史类)第Ⅰ卷(选择题共65分)注意事项:1.答案Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集I={1,2,3,4,5,6,7},集合A={1,3,5,7},B={3,5}.则(A)I=A∪B(B)I=∪B(C)I=A∪(D)I=∪(2)当a>1时,在同一坐标系中.函数y=a-x与y=logax的图象是(3)若sin2x>cos2x,则x的取值范围是(A){x|2kπ-3π/4<x<2kπ+π/4,k∈Z}(B){x|2kπ+π/4<x<2kπ+5π/4,k∈Z}(C){x|kπ-π/4<x<kπ+π/4,k∈Z}(D){x|kπ+3π/4<x<kπ+3π/4,k∈Z}(4)复数(2+2i)4/(1-i)5等于(A)1+i (B)-1+i (C)1-i (D)-1-i(5)6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有(A)720种(B)360种(C)240种(D)120种(6)已知α是第三象限角且sinα=-24/25,则tgα=(A)4/3 (B)3/4 (C)-3/4 (D)-4/3(7)如果直线l、m 与平面α、β、γ满足l=β∩γ,l∥α,m =α,m⊥γ,那么必有(A)α⊥γ且l⊥m(B)α⊥γ且m∥β(C)m∥β且l⊥m (D)α∥β且α⊥γ(8)当-π/2≤x≤π/2时,函数f(x)=sinx+cosx的(A)最大值是1,最小值是-1 (B)最大值是1,最小值是-1/2(C)最大值是2,最小值是-2 (D)最大值是2,最小值是-1(9)中心在原点,准线方程为x=±4,离心率为1/2的椭圆方程是(A)x2/4+y2/3=1 (B)x2/3+y2/4=1(C)x2/4+y2=1 (D)x2+y2/4=1(10)圆锥母线长为1,侧面展开图圆心角为240°,该圆锥的体积是(A)2π/81 (B)4π/81 (C)10π/81 (D)8π/81(11)椭圆25x2-150x+9y2+18y+9=0的两个焦点坐标是(A)(-3,5),(-3,-3) (B)(3,3),(3,-5)(C)(1,1),(-7,1) (D)(7,-1),(-1,-1)(12)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC 的体积为(A)a3/6 (B)a3/12 (C)a3/12 (D)a3/12(13)等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为(A)130 (B)170 (C)210 (D)260(14)设双曲线x2/a2+y2/b2=1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线的距离为c/4,则双曲线的离心率为(A)2 (B)(C)(D)2/3(15)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7,5)等于(A)0.5 (B)-0.5 (C)1.5 (D)-1.5第Ⅱ卷(非选择题共85分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.(16)已知点(-2,3)与抛物线y2=2px(p>0)的焦点的距离是5,则p=______.(17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有______个.(用数字作答)(19)如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是______ .三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)(本小题满分11分) 解不等式loga(x+1-a)>1.21)(本小题满分12分)设等比数列{an }的前n项和为Sn.若S3+S6=2S9 ,求数列的公比q.(22)(本小题满分11分)已知三角形ABC的三个内角A,B,C满足A+C=2B,1/cosA+1/cosC=-/cosB,求cos{(A-C)/2}.(23)(本小题满分12分)【注意:本题的要求是,参照标号①的写法,在标号②、③、④、⑤的横线上填写适当步骤,完成(Ⅰ)证明的全过程;并解答(Ⅱ).】如图:在正三棱柱ABC-A1B1C1中,AB=AA1/3=a,E,F分别是BB1,CC1上的点,且BE=a,CF=2a.(Ⅰ)求证:面AEF⊥面ACF;(Ⅱ)求三棱锥A1-AEF的体积.(Ⅰ)证明:①∵BE=a,CF=2a,BE∥CF,延长FE与CB延长线交于D,连结AD.∴△DBE∽△DCF________________________________________________。

1999年全国统一高考数学试卷(理科)及其参考考答案

1999年全国统一高考数学试卷(理科)及其参考考答案

1999年全国统一高考数学试卷(理科)及其参考考答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至8。

共150分。

考试时间120分钟。

第I 卷(选择题 共60分)注意事项:l .答第I 卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后。

再选涂其它答案,不能答在试题卷上。

3.考试结束。

监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-正棱台、圆台的侧面积公式:1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.球的体积公式:343V r π=球,其中R 表示球的半径.台体的体积公式:h S S S S V )31'++=‘台体(,其中'S ,S 分别表示上下底面积,h表示高。

一、选择题:本大题共14小题;第1—10题每小题4分,第11—14题每小题5分,共60分在每小题给出的四个选顶中,只有一顶是符合题目要求的。

(1)如图,I 是全集,M 、P 、S 、是I 的3个子集,由阴影部分所表示的集合是 ( )(A ))(N M ⋂S ⋂ (B )S P M ⋃⋂)((C )S P M ⋂⋂)( (D )S P M ⋃⋂)((2)已知映射f:A 中中的元素都是集合其中,集合A B A B },,3,2,1,1,2,3{,---=→ 元素在映射f 下的象,且对任意的a ∈A 中则集合中和它对应的元素是在B {a},B ,元 素的个数是 ( )(A )4 (B )5 (C )6 (D )7(3)若函数y=f(x)的反函数是y=g(x),f(a)=b,ab 等于则)(,0b g ≠ ( ) (A )a(B )1a -(C )b (D )1b -(4)函数f(x)=Msin(在区间)0)(>+ωϕωx [a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(上在],[)b a x φω+ ( )(A)是增函数 (B )是减函数 (C )可以取得最大值M (D )可以取得最小值-M (5)若f(x)sinx 是周期为π的奇函数,则f(x)可以是(A )sinx (B)cosx (C)sin2x (D)cos2x (6)在极坐标系中,曲线关于)3sin(4πθρ-= ( )(A)直线3πθ=对称(B )直线πθ65=轴对称 (C )点(2,)3π中心对称 (D )极点中心对称(7)若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是 ( )(A)cm 36 (B )cm 6 (C )2(D )3(8)2312420443322104)(),)32(a a a a a x a x a x a x a a x +-++++++=+则(若 的值为 ( )(A)1 (B)-1 (C)0 (D)2(9)直线为得的劣弧所对的圆心角截圆4032322=+=-+y x y x ( )(A )6π (B)4π (C)3π (D)2π(10) 如图,在多面体ABCDEF中 , 已知面ABCD是边长为3的正方形EF∥ABEF=EF ,23与面AC的距离为2,则该多面体的体积 ( ) (A )29 (B)5 (C)6 (D)215(11)若sin (αααctg tg >>∈<<-απαπ则),22( )(A))4,2(ππ--(B) )0,4(π- (C) )4,0(π (D) )2,4(ππ (12)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1∶2,那么R =( )(A )10 (B )15 (C )20 (D )25(13)已知丙点M (1,),45,4()45--N 、给出下列曲线方程:4x+2y-1=0 ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足MP P N =的所有曲线方程是 (A )①③ (B )②④ (C )①②③ (D )②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘。

2018年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C 的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

【高考数学试题】1996年普通高等学校招生全国统一考试.理科数学试题及答案

【高考数学试题】1996年普通高等学校招生全国统一考试.理科数学试题及答案

【高考数学试题】1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集I=N,集合A={x│x=2n,n∈N},B={x│x=4n,n∈N},则(A)I=A∪B (B)I=∪B(C)I=A∪(D)I=∪(2)当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是(3)若sin2x>cos2x,则x的取值范围是(A){x|2kπ-3/4π<x<2kπ+1/4π,k∈Z} (B){x|2kπ+1/4π<x<2kπ+5/4π,k∈Z}(C){x|kπ-1/4π<x<kπ+1/4π,k∈Z} (D){x|kπ+1/4π<x<kπ+3/4π,k∈Z}(4)复数(2+2i)4/(1-i)5(A)1+ i (B)-1+ i (C)1- i (D)-1- i(5)如果直线l、m与平面α、β、γ满足:l=β∩γ,l∥α,mα和m⊥γ(A)α⊥γ且l⊥m (B)α⊥γ且m∥β(C)m∥β且l⊥m (D)α∥β且α⊥γ(6)当-π/2≤x≤π/2,函数f(x)=sinx+cosx的(A)最大值是1,最小值是-1(B)最大值是1,最小值是1/2(C)最大值是2,最小值是-2(C)最大值是2,最小值是-1(7)椭圆的两个焦点坐标是(A)(-3,5),(-3,-3)(B)(3,3),(3,-5)(C)(1,1),(-7,1)(D)(7,-1),(-1,-1)(8)若0<a<π/2,则arcsin[cos(π/2+a)]+arccos[s in(π+a)]等于(A)π/2(B)-π/2(C)π/2-2a(D)-π/2-2a(9)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积为(A)a3/6(B)a3/12(C)(/12)a3(D)(/12)a3(10)等比数列{a n}的首项a1=-1,前n项和为S n,若S10/S5=31/32,则limS n等于(A)2/3(B)-2/3(C)2(D)-2(11)椭圆的极坐标方程为ρ=3/(2-cosθ),则它在短轴上的两个顶点的极坐标是(A)(3,0),(1,π)(B)(,π/2),(,3π/2)(C)(2,π/3),(2,5π/3)(D)(,arctg(/2)),(,2π-arctg(/2))(12)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为(A)130 (B)170 (C)210 (D)260(13)设双曲线x2/a2-y2/b2=1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为/4c,则双曲线的离心率为(A)2 (B)(C)(D)2/3(14)母线长为1的圆锥体积最大时,其侧面展开图圆心角ψ等于(A)2 /3 π(B)2/3π(C)π(D)2/3π(15)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于(A)0.5 (B)-0.5(C)1.5 (D)-1.5第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(16)已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则P= (17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答) (18) 40tg 20tg 340tg 20tg ++的值是(19)如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)解不等式1)11(log >-x a . (21)已知△ABC 的三个内角A ,B ,C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求2c os C A -的值.22.如图,在正三棱柱ABC -A 1B 1C 1中,E ∈BB 1,截面A 1EC ⊥侧面AC 1.(Ⅰ)求证:BE =EB 1;(Ⅱ)若AA 1=A 1B 1;求平面A 1EC 与平面A 1B 1C 1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(右下图)(Ⅰ)证明:在截面A 1EC 内,过E 作EG ⊥A 1C ,G 是垂足.① ∵∴EG ⊥侧面AC 1;取AC 的中点F ,连结BF ,FG ,由AB =BC 得BF⊥AC ,② ∵∴BF ⊥侧面AC 1;得BF ∥EG ,BF 、EG 确定一个平面,交侧面AC 1于FG .③ ∵∴BE ∥FG ,四边形BEGF 是平行四边形,BE =FG ,④ ∵∴FG ∥AA 1,△AA 1C ∽△FGC ,⑤ ∵ ∴112121BB AA FG ==,即11,21EB BE BB BE ==故 23.某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量) 24.已知l 1、l 2是过点)0,2(-P 的两条互相垂直的直线,且l 1、l 2与双曲线122=-x y 各有两个交点,分别为A 1、B 1和A 2、B 2.(Ⅰ)求l 1的斜率k 1的取值范围;(Ⅱ)若12211,5l B A B A 求=、l 2的方程25.已知a 、b 、c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时,│f (x )│≤1. (Ⅰ)证明:│c │≤1;(Ⅱ)证明:当-1≤x ≤1时,│g (x )│≤2;(Ⅲ)设a >0,当-1≤x ≤1时,g (x )的最大值为2,求f (x ).1996年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1996年全国统一高考数学试卷(理科)一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)已知全集I=N ,集合A={x|x=2n ,n ∈N},B={x|x=4n ,n ∈N},则( )A . I =A ∪B B . I =∪BC .D .2.(4分)(2010•兰州一模)当a >1时,在同一坐标系中,函数y=a ﹣x 与y=log a x 的图象( )A .B .C .D .3.(4分)若sin 2x >cos 2x ,则x 的取值范围是( )A .B .C .D .4.(4分)复数等于( )A .B .C .D .5.(4分)(2015•广东模拟)如果直线l 、m 与平面α、β、γ满足:l=β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有( )A . α⊥γ且l ⊥mB . α⊥γ且m ∥βC . m ∥β且l ⊥mD . α∥β且α⊥γ6.(4分)当时,函数f (x )=sinx+cosx 的( )A . 最大值是1,最小值是﹣1B . 最大值是1,最小值是﹣C . 最大值是2,最小值是﹣2D . 最大值是2,最小值是﹣17.(4分)椭圆(θ为参数)的两个焦点坐标是( )A . (﹣3,5),(﹣3,﹣3)B . (3,3),(3,﹣5)C . (1,1),(﹣7,1)D . (7,﹣1),(﹣1,﹣1)8.(4分)若,则等于( )A .B . ﹣C . ﹣2αD . ﹣﹣2α9.(4分)(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.10.(4分)等比数列{a n}的首项a1=﹣1,前n项和为S n,若则等于()A.B.﹣C.2D.﹣211.(5分)椭圆的极坐标方程为,则它在短轴上的两个顶点的极坐标是()B.(,),(,)A.(3,0),(1,π)C.(2,),(2,D.(,),(,))12.(5分)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.26013.(5分)设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为()A.2B.C.D.14.(5分)母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于()A.B.C.D.15.(5分)设f(x)是(﹣∞,+∞)上的奇函数,f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f (7.5)等于()A.0.5 B.﹣0.5 C.1.5 D.﹣1.5二、填空题(共4小题,每小题4分,满分16分)16.(4分)(2010•柳州三模)已知圆x2+y2+4x+3=0与抛物线y2=2px(p>0)的准线相切,则P=_________.17.(4分)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有_________个(用数字作答).18.(4分)求值:tan20°+tan40°+tan20°tan40°=_________.19.(4分)如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD 与BF所成角的余弦值是_________.三、解答题(共6小题,满分69分)20.(7分)解不等式.21.(10分)已知△ABC的三个内角A,B,C满足:,求的值.22.(12分)如图,在正三棱柱ABC﹣A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.(1)求证:BE=EB1;(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.①∵_________∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,②∵_________∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.③∵_________∴BE∥FG,四边形BEGF是平行四边形,BE=FG,④∵_________∴FG∥AA1,△AA1C∽△FGC,⑤∵_________∴,即.23.(12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)(粮食单产=,人均粮食占有量=)24.(12分)已知l1、l2是过点P(﹣,0)的两条互相垂直的直线,且l1、l2与双曲线y2﹣x2=1各有两个交点,分别为A1、B1和A2、B2.(1)求l1的斜率k1的取值范围;(2)若|A1B1|=|A2B2|,求l1、l2的方程.25.(16分)已知a,b,c∈R,函数f(x)=ax2+bx+c,g(x)=ax+b,当﹣1≤x≤1时,|f(x)|≤1,求证:①|c|≤1.②当﹣1≤x≤1时,|g(x)|≤2.1996年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则()A.I=A∪B B.I=∪B C.D.考点:集合的包含关系判断及应用.分析:根据题意,分析A是正偶数的集合,而B是4的正整数倍组成的集合,易得B⊂A,做出图示,分析可得答案.解答:解:根据题意,A是正偶数的集合,而B是4的正整数倍组成的集合.易得B⊂A,根据题意,做出图示可得,由图示可得,故选C.点评:本题考查集合间的关系,图示法简单直观的方法.2.(4分)(2010•兰州一模)当a>1时,在同一坐标系中,函数y=a﹣x与y=log a x的图象()A.B.C.D.考点:函数的图象与图象变化.专题:数形结合.分析:先将函数y=a﹣x化成指数函数的形式,再结合函数的单调性同时考虑这两个函数的单调性即可判断出结果.解答:解:∵函数y=a﹣x可化为函数y=,其底数小于1,是减函数,又y=log a x,当a>1时是增函数,两个函数是一增一减,前减后增.故选A.点评:本题考查函数的图象,考查同学们对对数函数和指数函数基础知识的把握程度以及数形结合的思维能力.3.(4分)若sin2x>cos2x,则x的取值范围是()A.B.C.D.考点:余弦函数的单调性;二倍角的余弦.专题:计算题.分析:sin2x>cos2x化为cos2x﹣sin2x<0,就是cos2x<0,然后求解不等式即可得到x的取值范围.解答:解:因为sin2x>cos2x,所以cos2x﹣sin2x<0,就是cos2x<0解得:2kπ+<2x<2kπk∈Z所以x的取值范围是故选D.点评:本题考查余弦函数的单调性,二倍角的余弦,考查计算能力,是基础题.4.(4分)复数等于()A.B.C.D.考点:复数代数形式的混合运算.分析:利用1的立方虚根的性质化简,然后求得答案.解答:解:复数==.故选B.点评:复数代数形式的混合运算,同时应用1的立方虚根的性质化简;本题是中档题.5.(4分)(2015•广东模拟)如果直线l、m与平面α、β、γ满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么必有()A.α⊥γ且l⊥m B.α⊥γ且m∥β C.m∥β且l⊥m D.α∥β且α⊥γ考点:空间中直线与平面之间的位置关系.分析:m⊂α和m⊥γ⇒α⊥γ,l=β∩γ,l⊂γ.然后推出l⊥m,得到结果.解答:解:∵m⊂α和m⊥γ⇒α⊥γ,∵l=β∩γ,l⊂γ.∴l⊥m,故选A.点评:本题考查空间直线与平面之间的位置关系,画出图形,帮助分析,考查逻辑思维能力和分析判断能力,基础题.6.(4分)当时,函数f(x)=sinx+cosx的()A.最大值是1,最小值是﹣1 B.最大值是1,最小值是﹣C.最大值是2,最小值是﹣2 D.最大值是2,最小值是﹣1考点:三角函数中的恒等变换应用.分析:首先对三角函数式变形,提出2变为符合两角和的正弦公式形式,根据自变量的范围求出括号内角的范围,根据正弦曲线得到函数的值域. 解答: 解:∵f (x )=sinx+cosx=2(sinx+cosx ) =2sin (x+), ∵,∴f (x )∈[﹣1,2], 故选D 点评: 了解各公式间的内在联系,熟练地掌握这些公式的正用、逆用以及某些公式变形后的应用.掌握两角和与差的正弦、余弦、正切公式及其推导,本题主要是公式的逆用和对三角函数值域的考查.7.(4分)椭圆(θ为参数)的两个焦点坐标是( )A . (﹣3,5),(﹣3,﹣3)B . (3,3),(3,﹣5)C . (1,1),(﹣7,1)D . (7,﹣1),(﹣1,﹣1)考点: 椭圆的参数方程.专题: 计算题.分析: 由题意将椭圆先化为一般方程坐标,然后再计算两个焦点坐标.解答:解:∵椭圆,∴5x ﹣15=15cos φ,3y+3=15sin φ,方程两边平方相加, ∴(5x ﹣15)2+(3y+3)2=152∴,∴椭圆的两个焦点坐标是(3,3),(3,﹣5), 故选B . 点评:此题考查椭圆的性质和焦点坐标,还考查了参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.8.(4分)若,则等于( ) A .B . ﹣C . ﹣2αD . ﹣﹣2α考点:反三角函数的运用. 专题: 计算题. 分析: 利用诱导公式化简,然后根据﹣sin α∈[﹣1,1],反三角函数的运算法则求出结果即可. 解答: 解:=arcsin[﹣sinα]+arccos[﹣sinα]因为﹣sinα∈[﹣1,1]所以,上式=故选A.点评:本题考查反三角函数的运用,诱导公式,是基础题.9.(4分)(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:取AC的中点O,连接DO,BO,求出三角形DOB的面积,求出AC的长,即可求三棱锥D ﹣ABC的体积.解答:解:O是AC中点,连接DO,BO,如图,△ADC,△ABC都是等腰直角三角形,DO=B0==,BD=a,△BDO也是等腰直角三角形,DO⊥AC,DO⊥BO,DO⊥平面ABC,DO就是三棱锥D﹣ABC的高,S△ABC=a2三棱锥D﹣ABC的体积:,故选D.点评:本题考查棱锥的体积,是基础题.10.(4分)等比数列{a n}的首项a1=﹣1,前n项和为S n,若则等于()A.B.﹣C.2D.﹣2考点:等比数列的前n项和;极限及其运算.专题:计算题.分析:根据q5=得到q5,进而求出q.根据等比数列的求和公式,求得S n,最后令n趋近无穷取极限可得到答案.解答:解:∵∴q5===﹣∴q=∴==()•[1﹣()n﹣1]=﹣故选B点评:本题主要考查了等比数列的求和公式的应用.本题巧妙利用了在同一等比数列中项数相等的几组数列仍是等比数列的性质.11.(5分)椭圆的极坐标方程为,则它在短轴上的两个顶点的极坐标是()A.(3,0),(1,B .(,),(,)π)D.(,),(,)C.(2,),(2,)考点:简单曲线的极坐标方程.专题:计算题.分析:利用圆锥曲线统一的极坐标方程,求出圆锥曲线的短轴上的两个顶点位置,从而确定它们的极坐标.解答:解:将原极坐标方程为,化成:极坐标方程为ρ=,对照圆锥曲线统一的极坐标方程得:e=,a=2,b=,c=1.∴它在短轴上的两个顶点的极坐标(2,),(2,).故选C.点评:本题主要考查了圆锥曲线的极坐标方程,属于基础题.12.(5分)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:利用等差数列的前n项和公式,结合已知条件列出关于a1,d的方程组,用m表示出a1、d,进而求出s3m;或利用等差数列的性质,s m,s2m﹣s m,s3m﹣s2m成等差数列进行求解.解答:解:解法1:设等差数列{a n}的首项为a1,公差为d,由题意得方程组,解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{a n}为等差数列,∴s m,s2m﹣s m,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.点评:解法1为基本量法,思路简单,但计算复杂;解法2使用了等差数列的一个重要性质,即等差数列的前n项和为s n,则s n,s2n﹣s n,s3n﹣s2n,…成等差数列.13.(5分)设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为()A.2B.C.D.考点:双曲线的简单性质.专题:计算题;压轴题.分析:直线l的方程为,原点到直线l的距离为,∴,据此求出a,b,c间的数量关系,从而求出双曲线的离心率.解答:解:∵直线l的方程为,c2=a2+b2∴原点到直线l的距离为,∴,∴16a2b2=3c4,∴16a2(c2﹣a2)=3c4,∴16a2c2﹣16a4=3c4,∴3e4﹣16e2+16=0,解得或e=2.0<a<b,∴e=2.故选A.点评:若,则有0<b<a.14.(5分)母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于()A.B.C.D.考点:基本不等式在最值问题中的应用;旋转体(圆柱、圆锥、圆台).专题:计算题;压轴题.分析:利用母线长得到底面半径与高的关系,利用圆锥的体积公式将体积表示成底面半径的函数,将函数凑成乘积为定值的形式,利用基本不等式求函数的最值.解答:解:设圆锥底面半径为r,高为h,则圆锥体积V=πr2•h又∵r2+h2=1∴h=∴圆锥体积V=πr2•=•∵=,当且仅当时,即当时圆锥体积V取得最大值∴侧面展开图圆心角ϕ=2πr=2π•故选择D点评:本题考查利用基本不等式求函数的最值:需要注意满足的条件:一正;二定;三相等.15.(5分)设f(x)是(﹣∞,+∞)上的奇函数,f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于()A.0.5 B.﹣0.5 C.1.5 D.﹣1.5考点:奇函数.专题:计算题;压轴题.分析:题目中条件:“f(x+2)=﹣f(x),”可得f(x+4)=f(x),故f(7.5)=f(﹣0.5)=﹣f(0.5)=﹣0.5.解答:解:∵f(x+2)=﹣f(x),∴可得f(x+4)=f(x),∵f(x)是(﹣∞,+∞)上的奇函数∴f(﹣x)=﹣f(x).∴故f(7.5)=f(﹣0.5)=﹣f(0.5)=﹣0.5.故选B.点评:本题考查函数的奇偶性、周期性等,抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.二、填空题(共4小题,每小题4分,满分16分)16.(4分)(2010•柳州三模)已知圆x2+y2+4x+3=0与抛物线y2=2px(p>0)的准线相切,则P=2或6.考点:直线与圆的位置关系;抛物线的简单性质.专题:计算题.分析:先求出准线方程为x=﹣,因为准线与圆相切,得到圆心到准线的距离等于半径,再根据对称性得到,列出方程求出P即可.解答:解:由圆的方程得到圆心坐标为(﹣2,0),半径为1;由抛物线的方程得:准线方程为x=﹣,因为准线与圆相切,所以圆心到准线的距离d=圆的半径r得:d===r=1,解得p=2,p=﹣2(舍去),所以p=2;得到准线方程为x=﹣1,根据对称性得:x=﹣3也和圆相切,所以﹣=﹣3,解得p=6.所以p=2或6.故答案为2或6点评:考查学生掌握直线与圆相切时得到圆心到直线的距离等于圆的半径,以及灵活运用抛物线的简单性质解决数学问题,此题有两种情况,学生容易漏解.17.(4分)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有32个(用数字作答).考点:组合及组合数公式.专题:计算题.分析:正六边形的中心和顶点共7个点,选3个点的共有的方法减去在一条直线上的三点的个数即可.解答:解:正六边形的中心和顶点共7个点,选3个点的共有的方法是:C73=35在一条直线上的三点有3个符合题意的三角形有35﹣3=32个故答案为:32点评:本题考查组合及组合数公式,考查计算能力,逻辑思维能力,是基础题.18.(4分)求值:tan20°+tan40°+tan20°tan40°=.考点:两角和与差的正切函数.专题:计算题;压轴题.分析:利用60°=20°+40°,两角和的正切公式,进行变形,化为所求式子的值.解答:解:tan60°=tan(20°+40°)==tan20°+tan40°+tan20°tan40故答案为:点评:本题考查两角和的正切函数公式的应用,考查计算化简能力,观察能力,是基础题.19.(4分)如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是.考点:异面直线及其所成的角.专题:计算题;作图题;压轴题.分析:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即是EF⊥CE.进而求出CF、FB、BC,即可求出异面直线AD与BF所成角的余弦值.解答:解:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即三角形CEF为直角三角形和三角形CBE为等边三角形;即是EF⊥CE.设AB=1,则CE=1,CF=,FB=,利用余弦定理,得.故异面直线AD与BF所成角的余弦值是.点评:此题主要考查异面直线的角度及余弦值计算.三、解答题(共6小题,满分69分)20.(7分)解不等式.考点:其他不等式的解法.专题:计算题;分类讨论;转化思想.分析:先由对数函数的单调性转化不等式分a>1时,原不等式等价于不等式组:,0<a<1时,原不等式等价于不等式组:求解.解答:解:①当a>1时,原不等式等价于不等式组:由此得.因为1﹣a<0,所以x<0,∴.②当0<a<1时,原不等式等价于不等式组:解得:综上,当a>1时,不等式的解集为;当0<a<1时,不等式的解集为点评:本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.最后两种结果分开来写.既不取并集也不能取交集.21.(10分)已知△ABC的三个内角A,B,C满足:,求的值.考点:三角函数中的恒等变换应用;三角函数的积化和差公式.专题:计算题.分析:先根据A,B,C的关系求出B的值,再代入到中得到cosA,cosC的关系,根据和差化积及积化和差公式化简,再将cos,cos(A+C)的值代入整理后因式分解,即可求出的值.解答:解:由题设条件知B=60°,A+C=120°.∵,∴将上式化为利用和差化积及积化和差公式,上式可化为将代入上式得将代入上式并整理得,∵,∴从而得点评:本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.22.(12分)如图,在正三棱柱ABC﹣A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.(1)求证:BE=EB1;(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.①∵面A1EC⊥侧面AC1∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,②∵面ABC⊥侧面AC1∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.③∵BE∥侧面AC1∴BE∥FG,四边形BEGF是平行四边形,BE=FG,④∵BE∥AA1∴FG∥AA1,△AA1C∽△FGC,⑤∵AF=FC∴,即.考点:与二面角有关的立体几何综合题;棱柱的结构特征.分析:本题考查的知识点是棱柱的结构特征及二面角及其度量,(1)要证BE=EB1;即证E为BB1的中点;由截面A1EC⊥侧面AC1.我们可以在截面A1EC内,过E作EG⊥A1C,G是垂足,则易证FG=BE,我们可转化为FG=,由中位线性质,我们易得答案.(2)分别延长CE、C1B1交于点D,连接A1D.我们易得∠CA1C1是平面A1EC与平面A1B1C1所成锐二面角的平面角,解三角形CA1C1即可得到答案.解答:解:(Ⅰ)①面A1EC⊥侧面AC1②面ABC⊥侧面AC1③BE∥侧面AC1④BE∥AA1⑤AF=FC(Ⅱ)解:分别延长CE、C1B1交于点D,连接A1D.∵EB1∥,∴,∵∠B1A1C1=∠B1C1A1=60°,∠DA1B1=∠A1DB1=(180°﹣∠DB1A1)=30°,∴∠DA1C1=∠DA1B1+∠B1A1C1=90°,即DA1⊥A1C1∵CC1⊥面A1C1B1,即A1C1是A1C在平面A1C1D上的射影,根据三垂线定理得DA1⊥A1C,所以∠CA1C1是所求二面角的平面角.∵CC1=AA1=A1B1=A1C1,∠A1C1C=90°,∴∠CA1C1=45°,即所求二面角为45°点评:本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠CA1C1为所求二面角的平面角,通过解∠CA1C1所在的三角形求得∠CA1C1.其解题过程为:作∠CA1C1→证∠CA1C1是二面角的平面角→计算∠CA1C1,简记为“作、证、算”.23.(12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)(粮食单产=,人均粮食占有量=)考点:二项式定理的应用;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:利用公式粮食单产=,人均粮食占有量=分别求出现在和10 年后的人均粮食占有量再利用已知条件人均粮食占有量比现在提高10%.列出不等式解得.解答:解:设耕地平均每年至多只能减少x公顷,又设该地区现有人口为P人,粮食单产为M吨/公顷.依题意得不等式化简得∵=≈4.1∴x≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷.点评:本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.24.(12分)已知l1、l2是过点P(﹣,0)的两条互相垂直的直线,且l1、l2与双曲线y2﹣x2=1各有两个交点,分别为A1、B1和A2、B2.(1)求l1的斜率k1的取值范围;(2)若|A1B1|=|A2B2|,求l1、l2的方程.考点:直线与圆锥曲线的关系;直线的斜率;斜率的计算公式.专题:计算题;综合题;压轴题.分析:(1)显然l1、l2斜率都存在,设l1的斜率为k1,得到l1、l2的方程,将直线方程与双曲线方程联立方程组,消去y得到关于x的二次方程,再结合根的判别即可求得斜率k1的取值范围;(2)利用(1)中得到的关于x的二次方程,结合根与系数的关系,利用弦长公式列关于k的方程,解方程即可求得k值,从而求出l1、l2的方程.解答:解:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+).联立得y=k1(x+),y2﹣x2=1,消去y得(k12﹣1)x2+2k12x+2k12﹣1=0.①根据题意得k12﹣1≠0,②△1>0,即有12k12﹣4>0.③完全类似地有﹣1≠0,④△2>0,即有12•﹣4>0,⑤从而k1∈(﹣,﹣)∪(,)且k1≠±1.(2)由弦长公式得|A1B1|=.⑥完全类似地有|A2B2|=.⑦∵|A1B1|=|A2B2|,∴k1=±,k2=.从而l1:y=(x+),l2:y=﹣(x+)或l1:y=﹣(x+),l2:y=(x+).点评:本题主要考查了直线与圆锥曲线的交点,直线和圆锥曲线的位置是解析几何中的一个重点内容,也是一个难点,在高考试题中占有一席之地,属于中档题.25.(16分)已知a,b,c∈R,函数f(x)=ax2+bx+c,g(x)=ax+b,当﹣1≤x≤1时,|f(x)|≤1,求证:①|c|≤1.②当﹣1≤x≤1时,|g(x)|≤2.考点:简单线性规划.专题:压轴题;分类讨论.分析:①中因为C为函数解析式的常数项,则C=f(0),由些证明C的范围可转化为f(0)的范围②中由于a值不确定,因此要对a进行分类讨论,分类标准为a与0的关系;在每种情况中结合g(x)的单调性与①中结论不难给出结论.注意:分类讨论后一定要有总结的过程,此步骤虽无实际作用,但不可缺少.解答:证明:①∵当﹣1≤x≤1时,|f(x)|≤1,令x=0得|c|=|f(0)|≤1,即|c|≤1.②当a>0时,g(x)=ax+b在[﹣1,1]上是增函数,∴g(﹣1)≤g(x)≤g(1),又∵|f(x)|≤1(﹣1≤x≤1),|c|≤1,∴g(1)=a+b=f(1)﹣c≤|f(1)|+|c|≤2,g(﹣1)=﹣a+b=﹣f(﹣1)+c≥﹣(|f(﹣1)|+|c|)≥﹣2,由此得|g(x)|≤2;同理当a<0时,g(x)=ax+b在[﹣1,1]上是减函数,∴g(﹣1)≥g(x)≥g(1),又∵|f(x)|≤1(﹣1≤x≤1),|c|≤1,∴g(﹣1)=﹣a+b=﹣f(﹣1)+c≤|f(﹣1)|+|c|≤2,g(1)=a+b=f(1)﹣c≥﹣(|f(1)|+|c|)≥﹣2,由此得|g(x)|≤2;当a=0时,g(x)=b,f(x)=bx+c.∵﹣1≤x≤1,∴|g(x)|=|f(1)﹣c|≤|f(1)|+|c|≤2.综上得|g(x)|≤2.点评:在高中阶段由于研究函数的角度与初中阶段相比有所变化,因此同样对二次函数来说,高中研究的主要是二次函数性质的应用,如单调性、对称性等,因此解决此类问题的关键是熟练掌握二次函数的图象和性质,并注意和方程思想、分类讨论思想、转化思想、数形结合思想等高中重要数学思想之间的紧密联系.。

相关文档
最新文档