java介绍外文翻译
Java编程语言外文翻译、英汉互译、中英对照
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
外文翻译原文及译文学院计算机学院专业计算机科学与技术班级学号姓名指导教师负责教师Java(programming language)Java is a general-purpose, concurrent, class-based, object-oriented computer program- -ming language that is specifically designed to have as few implementation dependencies as possible. It is intended to let application developers "write once, run anywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to run on another. Java applications are typically compiled to byte code (class file) that can run on any Java virtual machine(JVM) regardless of computer architecture. Java is, as of 2012, one of the most popular programming languages in use, particularly for client-server web applications, with a reported 10 million users. Java was originally developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems' Java platform. The language derives much of its syntax from C and C++, but it has fewer low-level facilities than either of them.The original and reference implementation Java compilers, virtual machines, and class libraries were developed by Sun from 1991 and first released in 1995. As of May 2007, in compliance with the specifications of the Java Community Process, Sun relicensed most of its Java technologies under the GNU General Public License. Others have also developed alternative implementations of these Sun technologies, such as the GNU Compiler for Java and GNU Classpath.Java is a set of several computer software products and specifications from Sun Microsystems (which has since merged with Oracle Corporation), that together provide a system for developing application software and deploying it in across-platform computing environment. Java is used in a wide variety of computing platforms from embedded devices and mobile phones on the low end, to enterprise servers and supercomputers on the high end. While less common, Java appletsare sometimes used to provide improved and secure functions while browsing the World Wide Web on desktop computers.Writing in the Java programming language is the primary way to produce code that will be deployed as Java bytecode. There are, however, byte code compilers available forother languages such as Ada, JavaScript, Python, and Ruby. Several new languages have been designed to run natively on the Java Virtual Machine (JVM), such as Scala, Clojure and Groovy.Java syntax borrows heavily from C and C++, but object-oriented features are modeled after Smalltalk and Objective-C. Java eliminates certain low-level constructs such as pointers and has a very simple memory model where every object is allocated on the heap and all variables of object types are references. Memory management is handled through integrated automatic garbage collection performed by the JVM.An edition of the Java platform is the name for a bundle of related programs from Sun that allow for developing and running programs written in the Java programming language. The platform is not specific to any one processor or operating system, but rather an execution engine (called a virtual machine) and a compiler with a set of libraries that are implemented for various hardware and operating systems so that Java programs can run identically on all of them. The Java platform consists of several programs, each of which provides a portion of its overall capabilities. For example, the Java compiler, which converts Java source code into Java byte code (an intermediate language for the JVM), is provided as part of the Java Development Kit (JDK). The Java Runtime Environment(JRE), complementing the JVM with a just-in-time (JIT) compiler, converts intermediate byte code into native machine code on the fly. An extensive set of libraries are also part of the Java platform.The essential components in the platform are the Java language compiler, the libraries, and the runtime environment in which Java intermediate byte code "executes" according to the rules laid out in the virtual machine specification.In most modern operating systems (OSs), a large body of reusable code is provided to simplify the programmer's job. This code is typically provided as a set of dynamically loadable libraries that applications can call at runtime. Because the Java platform is not dependent on any specific operating system, applications cannot rely on any of the pre-existing OS libraries. Instead, the Java platform provides a comprehensive set of its own standard class libraries containing much of the same reusable functions commonly found in modern operating systems. Most of the system library is also written in Java. For instance, Swing library paints the user interface and handles the events itself, eliminatingmany subtle differences between how different platforms handle even similar components.The Java class libraries serve three purposes within the Java platform. First, like other standard code libraries, the Java libraries provide the programmer a well-known set of functions to perform common tasks, such as maintaining lists of items or performing complex string parsing. Second, the class libraries provide an abstract interface to tasks that would normally depend heavily on the hardware and operating system. Tasks such as network access and file access are often heavily intertwined with the distinctive implementations of each platform. The and java.io libraries implement an abstraction layer in native OS code, then provide a standard interface for the Java applications to perform those tasks. Finally, when some underlying platform does not support all of the features a Java application expects, the class libraries work to gracefully handle the absent components, either by emulation to provide a substitute, or at least by providing a consistent way to check for the presence of a specific feature.The success of Java and its write once, run anywhere concept has led to other similar efforts, notably the .NET Framework, appearing since 2002, which incorporates many of the successful aspects of Java. .NET in its complete form (Microsoft's implementation) is currently only fully available on Windows platforms, whereas Java is fully available on many platforms. .NET was built from the ground-up to support multiple programming languages, while the Java platform was initially built to support only the Java language, although many other languages have been made for JVM since..NET includes a Java-like language called Visual J# (formerly named J++) that is incompatible with the Java specification, and the associated class library mostly dates to the old JDK 1.1 version of the language. For these reasons, it is more a transitional language to switch from Java to the .NET platform, than a first class .NET language. Visual J# was discontinued with the release of Microsoft Visual Studio 2008. The existing version shipping with Visual Studio 2005will be supported until 2015 as per the product life-cycle strategy.In June and July 1994, after three days of brainstorming with John Gage, the Director of Science for Sun, Gosling, Joy, Naughton, Wayne Rosing, and Eric Schmidt, the team re-targeted the platform for the World Wide Web. They felt that with the advent of graphical web browsers like Mosaic, the Internet was on its way to evolving into the samehighly interactive medium that they had envisioned for cable TV. As a prototype, Naughton wrote a small browser, Web Runner (named after the movie Blade Runner), later renamed Hot Java.That year, the language was renamed Java after a trademark search revealed that Oak was used by Oak Technology. Although Java 1.0a was available for download in 1994, the first public release of Java was 1.0a2 with the Hot Java browser on May 23, 1995, announced by Gage at the Sun World conference. His announcement was accompanied by a surprise announcement by Marc Andreessen, Executive Vice President of Netscape Communications Corporation, that Netscape browsers would be including Java support. On January 9, 1996, the Java Soft group was formed by Sun Microsystems to develop the technology.Java编程语言Java是一种通用的,并发的,基于类的并且是面向对象的计算机编程语言,它是为实现尽可能地减少执行的依赖关系而特别设计的。
JAVA外文资料翻译
doc文ห้องสมุดไป่ตู้可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
外文文献原文及翻译 作 者:辛明 生物医学工程学院影像工程专业 生物医学工程学院信息技术系 指导老师:杨谊
Parsing Java Abstraction of the Difference Between Classes and Interfaces In Java language, abstract scale-up and with support class abstraction definition of two mechanisms. Because of these two kinds of mechanism of existence, just gives Java powerful object-oriented skills. Abstract scale-up and with between class abstraction definition for support has great similarities, even interchangeable, so many developers into line nonabstract class definition for abstract scale-up and it is becoming more casual with choice. In fact, both between still has the very big difference, for their choice even reflected in problem domain essence of understanding, to design the intentions of the understand correctly and reasonable. This paper will for the difference analysis, trying to give a developer with a choice between them are based. Understand class abstraction Abstract class and interface in Java language is used for abstract classes (in this article nonabstract class not from abstract scale-up translation, it represents an abstract body, and abstract scale-up for Java language used to define class abstraction in one way, please readers distinguish) defined, then what are the abstract classes, use abstract classes for us any good? In object-oriented concept, we know all objects is through class to describe, but in turn not such. Not all classes are used to describe object, if a class does not contain enough information to portray a concrete object, this class is abstract classes. Abstract classes are often used to characterization of problem field in our analysis, design that the abstract concepts, is to the series will look different, but essentially the same exact conception of abstraction. For example: if we carry out a graphical editing software development, will find problem domain exists round, triangle so some specific concept, they are different, but they all belong to shape such a concept, shape this concept in problem domain is not exist, it is an abstract concept. Precisely because the abstract concepts in problem field no corresponding specific concept, so to characterization abstract concepts nonabstract class cannot be instantiated. In an object-oriented field, mainly used for class abstraction types hidden. We can construct a fixed a group of behavior of abstract description, but this group of behavior but can have any a possible concrete implementation. This abstract describe is abstract classes, and this an arbitrary a possible concrete realization is behaved for all possible derived class. Modules can be operating an abstract body. Due to the module dependent on a fixed abstraction body, so it can are not allowed to modify, Meanwhile, through the abstract derived from the body, also can expand the behavior of this module function. Familiar with OCP readers must know, object-oriented design to be able to achieve a core principles OCP (Open - Closed flying), class abstraction is one of the key. From the perspectives of grammar definition abstract class and interface
JAVA外文文献+翻译
Java and the InternetIf Java is, in fact, yet another computer programming language, you may question why it is so important and why it is being promoted as a revolutionary step in computer programming. The answer isn’t immediately obvious if you’re coming from a traditional programming perspective. Although Java is very useful for solving traditional stand-alone programming problems, it is also important because it will solve programming problems on the World Wide Web.1.Client-side programmingThe Web’s initial server-browser design provided for interactive content, but the interactivity was completely provided by the server. The server produced static pages for the client browser, which would simply interpret and display them. Basic HTML contains simple mechanisms for data gathering: text-entry boxes, check boxes, radio boxes, lists and drop-down lists, as well as a button that can only be programmed to reset the data on the form or “submit” the data on the form back to the server. This submission passes through the Common Gateway Interface (CGI) provided on all Web servers. The text within the submission tells CGI what to do with it. The most common action is to run a program located on the server in a directory that’s typically called “cgi-bin.” (If you watch the address window at the top of your browser when you push a button on a Web page, you can sometimes see “cgi-bin” within all the gobbledygook there.) These programs can be written in most languages. Perl is acommon choice because it is designed for text manipulation and is interpreted, so it can be installed on any server regardless of processor or operating system. Many powerful Web sites today are built strictly on CGI, and you can in fact do nearly anything with it. However, Web sites built on CGI programs can rapidly become overly complicated to maintain, and there is also the problem of response time. The response of a CGI program depends on how much data must be sent, as well as the load on both the server and the Internet. (On top of this, starting a CGI program tends to be slow.) The initial designers of the Web did not foresee how rapidly this bandwidth would be exhausted for the kinds of applications people developed. For example, any sort of dynamic graphing is nearly impossible to perform with consistency because a GIF file must be created and moved from the server to the client for each version of the graph. And you’ve no doubt had direct experience with something as simple as validating the data on an input form. You press the submit button on a page; the data is shipped back to the server; the server starts a CGI program that discovers an error, formats an HTML page informing you of the error, and then sends the page back to you; you must then back up a page and try again. Not only is this slow, it’s inelegant.The solution is client-side programming. Most machines that run Web browsers are powerful engines capable of doing vast work, and with the original static HTML approach they are sitting there, just idly waiting for the server to dish up the next page. Client-side programming means that the Web browser is harnessed to do whatever work it can, and the result for the user is a much speedier and more interactive experience at your Web site.The problem with discussions of client-side programming is that they aren’t very different from discussions of programming in general. The parameters are almost the same, but the platform is different: a Web browser is like a limited operating system. In the end, you must still program, and this accounts for the dizzying array of problems and solutions produced by client-side programming. The rest of this section provides an overview of the issues and approaches in client-side programming.2.Plug-insOne of the most significant steps forward in client-side programming is the development of the plug-in. This is a way for a programmer to add new functionality to the browser by downloading a piece of code that plugs itself into the appropriate spot in the browser. It tells the browser “from now on you can perform this new activity.” (You ne ed to download the plug-in only once.) Some fast and powerful behavior is added to browsers via plug-ins, but writing a plug-in is not a trivial task, and isn’t something you’d want to do as part of the process of building a particular site. The value of the plug-in for client-side programming is that it allows an expert programmer to develop a new language and add that language to a browser without the permission of the browser manufacturer. Thus, plug-ins provide a “back door” that allows the creation of new client-side programming languages (although not all languages are implemented as plug-ins).3.Scripting languagesPlug-ins resulted in an explosion of scripting languages. With a scripting language you embed the source code for your client-side program directly into the HTML page, and the plug-in that interprets that language is automatically activated while the HTML page is being displayed. Scripting languages tend to be reasonably easy to understand and, because they are simply text that is part of an HTML page, they load very quickly as part of the single server hit required to procure that page. The trade-off is that your code is exposed for everyone to see (and steal). Generally, however, you aren’t doing amazingly sophisticated things with scripting languages so this is not too much of a hardship.This points out that the scripting languages used inside Web browsers are really intended to solve specific types of problems, primarily the creation of richer and more interactive graphical user interfaces (GUIs). However, a scripting language might solve 80 percent of the problems encountered in client-side programming. Your problems might very well fit completely withinthat 80 percent, and since scripting languages can allow easier and faster development, you should probably consider a scripting language before looking at a more involved solution such as Java or ActiveX programming.The most commonly discussed browser scripting languages are JavaScript (which has nothing to do with Java; it’s named that way just to grab some of Java’s marketing momentum), VBScript (which looks like Visual Basic), and Tcl/Tk, which comes from the popular cross-platform GUI-building language. There are others out there, and no doubt more in development.JavaScript is probably the most commonly supported. It comes built into both Netscape Navigator and the Microsoft Internet Explorer (IE). In addition, there are probably more JavaScript books available than there are for the other browser languages, and some tools automatically create pages using JavaScript. However, if you’re already fluent in Visual Basic or Tcl/Tk, you’ll be more productive using those scripting languages rather than learning a new one. (You’ll have your hands full dealing with the Web issues already.)4.JavaIf a scripting language can solve 80 percent of the client-side programming problems, what about the other 20 percent—the “really hard stuff?” The most popular solution today is Java. Not only is it a powerful programming language built to be secure, cross-platform, and international, but Java is being continually extended to provide language features and libraries that elegantly handle problems that are difficult in traditional programming languages, such as multithreading, database access, network programming, and distributed computing. Java allows client-side programming via the applet.An applet is a mini-program that will run only under a Web browser. The applet is downloaded automatically as part of a Web page (just as, for example, a graphic is automatically downloaded). When the applet is activated it executes a program. This is part of its beauty—it provides you with a way to automatically distribute the client software from the server at the time the user needs the client software, and no sooner. The user gets the latest version of the client software without fail and without difficult reinstallation. Because of theway Java is designed, the programmer needs to create only a single program, and that program automatically works with all computers that have browsers with built-in Java interpreters. (This safely includes the vast majority of machines.) Since Java is a full-fledged programming language, you can do as much work as possible on the client before and after making requests of the server. F or example, you won’t need to send a request form across the Internet to discover that you’ve gotten a date or some other parameter wrong, and your client computer can quickly do the work of plotting data instead of waiting for the server to make a plot and ship a graphic image back to you. Not only do you get the immediate win of speed and responsiveness, but the general network traffic and load on servers can be reduced, preventing the entire Internet from slowing down.One advantage a Java applet has ove r a scripted program is that it’s in compiled form, so the source code isn’t available to the client. On the other hand, a Java applet can be decompiled without too much trouble, but hiding your code is often not an important issue. Two other factors can be important. As you will see later in this book, a compiled Java applet can comprise many modules and take multiple server “hits” (accesses) to download. (In Java 1.1 and higher this is minimized by Java archives, called JAR files, that allow all the required modules to be packaged together and compressed for a single download.) A scripted program will just be integrated into the Web page as part of its text (and will generally be smaller and reduce server hits). This could be important to the responsiveness of your Web site. Another factor is the all-important learning curve. Regardless of what you’ve heard, Java is not a trivial language to learn. If you’re a Visual Basic programmer, moving to VBScript will be your fastest solution, and since it will probably solve most typical client/server problems you might be hard pressed to justify learning Java. If you’re experienced with a scripting language you will certainly benefit from looking at JavaScript or VBScript before committing to Java, since they might fit your needs handily and you’ll be more productive sooner.to run its applets withi5.ActiveXTo some degree, the competitor to Java is Microsoft’s ActiveX, although it takes a completely different approach. ActiveX was originally a Windows-only solution, although it is now being developed via an independent consortium to become cross-platform. Effectively, ActiveX says “if your program connects to its environment just so, it can be dropped into a Web page and run under a browser that supports ActiveX.” (I E directly supports ActiveX and Netscape does so using a plug-in.) Thus, ActiveX does not constrain you to a particular language. If, for example, you’re already an experienced Windows programmer using a language such as C++, Visual Basic, or Borland’s Del phi, you can create ActiveX components with almost no changes to your programming knowledge. ActiveX also provides a path for the use of legacy code in your Web pages.6.SecurityAutomatically downloading and running programs across the Internet can sound like a virus-builder’s dream. ActiveX especially brings up the thorny issue of security in client-side programming. If you click on a Web site, you might automatically download any number of things along with the HTML page: GIF files, script code, compiled Java code, and ActiveX components. Some of these are benign; GIF files can’t do any harm, and scripting languages are generally limited in what they can do. Java was also designed to run its applets within a “sandbox” of safety, which prevents it from wri ting to disk or accessing memory outside the sandbox.ActiveX is at the opposite end of the spectrum. Programming with ActiveX is like programming Windows—you can do anything you want. So if you click on a page that downloads an ActiveX component, that component might cause damage to the files on your disk. Of course, programs that you load onto your computer that are not restricted to running inside a Web browser can do the same thing. Viruses downloaded from Bulletin-Board Systems (BBSs) have long been a problem, but the speed of the Internet amplifies the difficulty.The solution seems to be “digital signatures,” whereby code is verified to show who the author is. This is based on the idea that a virus works because its creator can be anonymous, so if you remove the anonymity individuals will be forced to be responsible for their actions. This seems like a good plan because it allows programs to be much more functional, and I suspect it will eliminate malicious mischief. If, however, a program has an unintentional destructive bug it will still cause problems.The Java approach is to prevent these problems from occurring, via the sandbox. The Java interpreter that lives on your local Web browser examines the applet for any untoward instructions as the applet is being loaded. In particular, the applet cannot write files to disk or erase files (one of the mainstays of viruses). Applets are generally considered to be safe, and since this is essential for reliable client/server systems, any bugs in the Java language that allow viruses are rapidly repaired. (It’s worth noting that the browser software actually enforces these security restrictions, and some browsers allow you to select different security levels to provide varying degrees of access to your system.) You might be skeptical of this rather draconian restriction against writing files to your local disk. For example, you may want to build a local database or save data for later use offline. The initial vision seemed to be that eventually everyone would get online to do anything important, but that was soon seen to be impractical (although low-cost “Internet appliances” might someday satisfy the needs of a significant segment of users). The solution is the “signed applet” that uses public-key encryption to verify that an applet does indeed come from where it claims it does. A signed applet can still trash your disk, but the theory is that since you can now hold the applet creator accountable they won’t do vicious things. Java provides a framework for digital signatures so that you will eventually be able to allow an applet to step outside the sandbox if necessary. Digital signatures have missed an important issue, which is the speed that people move around on the Internet. If you download a buggy program and it does something untoward, how long will it be before you discover the damage? It could be days or even weeks. By then, how will you track down the program that’s done it? And what good will it do you at that point?7.Internet vs. intranetThe Web is the most general solution to the client/server problem, so it makes sense that you can use the same technology to solve a subset of the problem, in particular the classic client/server problem within a company. With traditional client/server approaches you have the problem of multiple types of client computers, as well as the difficulty of installing new client software, both of which are handily solved with Web browsers and client-side programming. When Web technology is used for an information network that is restricted to a particular company, it is referred to as an intranet. Intranets provide much greater security than the Internet, since you can physically control access to the servers within your company. In terms of training, it seems that once people und erstand the general concept of a browser it’s much easier for them to deal with differences in the way pages and applets look, so the learning curve for new kinds of systems seems to be reduced.The security problem brings us to one of the divisions that seems to be automatically forming in the world of client-side programming. If your program is running on the Internet, you don’t know what platform it will be working under, and you want to be extra careful that you don’t disseminate buggy code. You need something cross-platform and secure, like a scripting language or Java.If you’re running on an intranet, you might have a different set of constraints. It’s not uncommon that your machines could all be Intel/Windows platforms. On an intranet, you’re respon sible for the quality of your own code and can repair bugs when they’re discovered. In addition, you might already have a body of legacy code that you’ve been using in a more traditional client/server approach, whereby you must physically install client programs every time you do an upgrade. The time wasted in installing upgrades is the most compelling reason to move to browsers, because upgrades are invisible and automatic. If you are involved in such an intranet, the most sensible approach to take is the shortest path that allows you to use your existing code base, rather than trying to recode your programs in a new language.When faced with this bewildering array of solutions to the client-side programming problem, the best plan of attack is a cost-benefit analysis. Consider the constraints of your problem and what would be the shortest path to your solution. Since client-side programming is still programming, it’s always a good idea to take the fastest development approach for your particular situation. This is an aggressive stance to prepare for inevitable encounters with the problems of program development.8.Server-side programmingThis whole discussion has ignored the issue of server-side programming. What happens when you make a request of a server? Most of the time the request is simply “send me this file.” Your browser then interprets the file in some appropriate fashion: as an HTML page, a graphic image, a Java applet, a script program, etc. A more complicated request to a server generally involves a database transaction. A common scenario involves a request for a complex database search, which the server then formats into an HTML page and sends to you as the result. (Of course, if the client has more intelligence via Java or a scripting language, the raw data can be sent and formatted at the client end, which will be faster and less load on the server.) Or you might want to register your name in a database when you join a group or place an order, which will involve changes to that database. These database requests must be processed via some code on the server side, which is generally referred to as server-side programming. Traditionally, server-side programming has been performed using Perl and CGI scripts, but more sophisticated systems have been appearing. These include Java-based Web servers that allow you to perform all your server-side programming in Java by writing what are called servlets. Servlets and their offspring, JSPs, are two of the most compelling reasons that companies who develop Web sites are moving to Java, especially because they eliminate the problems of dealing with differently abled browsers.9. separate arena: applicationsMuch of the brouhaha over Java has been over applets. Java is actually a general-purpose programming language that can solve any type of problem—at least in theory. And as pointed out previously, there might be more effective ways to solve most client/server problems. When you move out of the applet arena (and simultaneously release the restrictions, such as the one against writing to disk) you enter the world of general-purpose applications that run standalone, without a Web browser, just like any ordinary program does. Here, Java’s strength is not only in its portability, but also its programmability. As you’l l see throughout this book, Java has many features that allow you to create robust programs in a shorter period than with previous programming languages. Be aware that this is a mixed blessing. You pay for the improvements through slower execution speed (although there is significant work going on in this area—JDK 1.3, in particular, introduces the so-called “hotspot” performance improvements). Like any language, Java has built-in limitations that might make it inappropriate to solve certain types of programming problems. Java is a rapidly evolving language, however, and as each new release comes out it becomes more and more attractive for solving larger sets of problems.Java和因特网既然Java不过另一种类型的程序设计语言,大家可能会奇怪它为什么值得如此重视,为什么还有这么多的人认为它是计算机程序设计的一个里程碑呢?如果您来自一个传统的程序设计背景,那么答案在刚开始的时候并不是很明显。
Java中英翻译
abstract (关键字) 抽象['.bstr.kt]access vt.访问,存取['.kses]'(n.入口,使用权)algorithm n.算法['.lg.riem]Annotation [java]代码注释[.n.u'tei..n]anonymous adj.匿名的[.'n.nim.s]'(反义:directly adv.直接地,立即[di'rektli, dai'rektli])apply v.应用,适用[.'plai]application n.应用,应用程序[,.pli'kei..n]' (application crash 程序崩溃) arbitrary a.任意的['ɑ:bitr.ri]argument n.参数;争论,论据['ɑ:gjum.nt]'(缩写args)assert (关键字) 断言[.'s.:t] ' (java 1.4 之后成为关键字)associate n.关联(同伴,伙伴) [.'s.u.ieit]attribute n.属性(品质,特征) [.'tribju:t]boolean (关键字) 逻辑的, 布尔型call n.v.调用; 呼叫; [k.:l]circumstance n.事件(环境,状况) ['s.:k.mst.ns]crash n.崩溃,破碎[kr..]cohesion内聚,黏聚,结合[k.u'hi:..n](a class is designed with a single, well-focoused purpose. 应该不止这点) command n. 命令,指令[k.'mɑ:nd](指挥, 控制) (command-line 命令行)Comments [java]文本注释['k.ments]compile [java] v.编译[k.m'pail]' Compilation n.编辑[,k.mpi'lei..n] const (保留字)constant n. 常量, 常数, 恒量['k.nst.nt]continue (关键字)coupling耦合,联结['k.pli.]making sure that classes know about other classes only through their APIs. declare [java]声明[di'kl..]default (关键字) 默认值; 缺省值[di'f.:lt]delimiter定义符; 定界符Encapsulation[java]封装(hiding implementation details)Exception [java]例外; 异常[ik'sep..n]entry n.登录项, 输入项, 条目['entri]enum (关键字)execute vt.执行['eksikju:t]exhibit v.显示, 陈列[ig'zibit]exist存在, 发生[ig'zist] '(SQL关键字exists)extends (关键字) 继承、扩展[ik'stend]false (关键字)final (关键字) finally (关键字)fragments段落; 代码块['fr.gm.nt]FrameWork [java]结构,框架['freimw.:k]Generic [java]泛型[d.i'nerik]goto (保留字) 跳转heap n.堆[hi:p]implements (关键字) 实现['implim.nt]import (关键字) 引入(进口,输入)Info n.信息(information [,inf.'mei..n] )Inheritance [java]继承[in'herit.ns] (遗传,遗产)initialize预置初始化[i'iz]instanceof (关键字) 运算符,用于引用变量,以检查这个对象是否是某种类型。
(完整版)java介绍外文翻译
外文原文Introduction to Javaautor:Martin Ngobye。
source:Computing Static Slice for Java ProgramsJava is designed to meet the challenges of application development in the context of heterogeneous, network—wide distributed environments. Paramount among these challenges is secure delivery of applications that consume the minimum of system resources,can run on any hardware and software platform, and can be extended dynamically。
Java originated as part of a research project to develop advanced software for a wide variety of network devices and embedded systems. The goal was to develop a small,reliable, portable, distributed, real-time operating platform。
When the project started, C++ was the language of choice。
But over time the difficulties encountered with C++ grew to the point where the problems could best be addressed by creating an entirely new language platform. Design and architecture decisions drew from a variety of languages such as Eiffel, SmallTalk, Objective C, and Cedar/Mesa. The result is a language platform that has proven ideal for developing secure, distributed, network based end-user applications in environments ranging from network—embedded devices to the World-Wide Web and the desktop.The design requirements of Java are driven by the nature of the computing environments in which software must be deployed.The massive growth of the Internet and the World-Wide Web leads us to a completely new way of looking at development and distribution of software. To live in the world of electronic commerce and distribution, Java must enable the development of secure, high performance, and highly robust applications on multiple platforms in heterogeneous, distributed networks.Operating on multiple platforms in heterogeneous networks invalidates the traditional schemes of binary distribution, release, upgrade, patch, and so on。
外文翻译 Java技术及SSH框架和Jsp技术的介绍
毕业设计(论文)外文资料翻译学院:计算机工程学院专业班级:学生姓名:学号:指导教师:外文出处:(外文)/wiki/java_(programming_language)附件:1.外文资料翻译译文; 2.外文原文Java技术及SSH框架和Jsp技术的介绍Java,是一种可以撰写跨平台应用软件的面向对象的程序设计语言,由当时任职太阳微系统的詹姆斯·高斯林(James Gosling)等人于1990年代初开发。
它最初被命名为Oak,目标设置在家用电器等小型系统的编程语言,来解决诸如电视机、电话、闹钟、烤面包机等家用电器的控制和通讯问题。
由于这些智能化家电的市场需求没有预期的高,Sun放弃了该项计划。
就在Oak 几近失败之时,随着互联网的发展,Sun看到了Oak在计算机网络上的广阔应用前景,于是改造了Oak,在1995年5月以“Java”的名称正式发布了。
Java 伴随着互联网的迅猛发展而发展,逐渐成为重要的网络编程语言。
Java编程语言的风格十分接近C++语言。
继承了C++ 语言面向对象技术的核心,Java 舍弃了C++语言中容易引起错误的指针(以引用取代)、运算符重载(operator overloading)、多重继承(以接口取代)等特性,增加了垃圾回收器功能用于回收不再被引用的对象所占据的内存空间。
在Java SE 1.5版本中Java又引入了泛型编程(Generic Programming)、类型安全的枚举、不定长参数和自动装/拆箱等语言特性。
Java不同于一般的编译运行计算机语言和解释执行计算机语言。
它首先将源代码编译成字节码(bytecode),然后依赖各种不同平台上的虚拟机来解释执行字节码,从而实现了“一次编译、到处执行”的跨平台特性。
不过,这同时也在一定程度上降低了Java程序的运行效率。
但在J2SE1.4.2发布后,Java的运行速度有了大幅提升。
与传统程序不同Sun公司在推出Java之际就将其作为一种开放的技术。
Java 简介英文版
8
3.4 Auto garbage collection
• The C/C++ programmer have to explicitly make request of memory, like using pointers, and later have to release the memory manually. • By using Java, the entry-level programmer might forget to release memory without memory leak punishment. (like “” & “” ) • So it can be more robust &&dummy-proof.
9
4. Java edition
• J2SE(Java 2 standard edition) • J2EE(Java 2 enterprise edition) • J2ME(Java 2 mobile edition)
10
5. OOAD
System analysis & design can use the following • UML (unified modeling language)/IDE Rational Rose • OOAD principles like OCP, LSP etc. • Design patterns, GoF 23 design patterns
• • • • Platform independent Exception handler Multi-threading Auto garbage collection
5
3.Байду номын сангаас Platform independent
java基础功能介绍外文翻译
外文原文Java FundamentalsThe rise of the Internet and the World Wide Web have fundamentally reshaped computing.Only a few short years ago, the cyber landscape was dominated by stand-alone PCs. Today,nearly all PCs are connected to the Internet. The Internet, itself,was transformed—originally offering a convenient way to share files and information, today it is a vast, distributed computing universe. These changes have been as rapid as they have been profound, and in their wake, they gave rise to a new way to program:Java. Java is the preeminent language of the Internet, but it is more than that. Java has revolutionized programming,changing the way that we think about both the form and the function of a program. To be a professional programmer today implies the ability to program in Java—it has become that important. In the course of this book, you will learn the skills needed to master it. The purpose of this module is to introduce you to Java, including its history, its design philosophy, and several of its most important features. By far, the hardest thing about learning a programming language is the fact that no element exists in isolation. Instead, the components of the language work in conjunction with each other. This interrelatedness is especially pronounced in Java. In fact,it is difficult to discuss one aspect of Java without involving others. To help overcome this problem,this module provides a brief overview of several Java features, including the general form of a Java program, some basic control structures, and operators. It does not go into too many details but, rather, concentrates on the general concepts common to any Java program.1.1 The Origins of JavaComputer language innovation is driven forward by two factors: improvements in the art of programming and changes in the computing environment.Java is no exception. Building upon the rich legacy inherited from C and C++,Java adds refinements and features that reflect the current state of the art in programming.Responding to the rise of the online environment,Java offers features that streamline programming for a highly distributed architecture.Java was conceived by James Gosling, Patrick Naughton,Chris Warth,Ed Frank, and Mike Sheridan at Sun Microsystems in 1991. This language was initially called “Oak”but was renamed“Java”in 1995. Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the primary motivation was the need for a platform-independent language that could be used to create software to be embedded in various consumerelectronic devices, such as toasters, microwave ovens, and remote controls. As you can probably guess, many different types of CPUs are used as controllers. The trouble was that most computer languages are designed to be compiled for a specific target. For example, consider C++.Although it is possible to compile a C++ program for just about any type of CPU, to do so requires a full C++compiler targeted for that CPU. The problem, however,is that compilers are expensive and time-consuming to create. In an attempt to find a better solution, Gosling Java Fundamentals and others worked on a portable, cross-platform language that could produce code that would run on a variety of CPUs under differing environments.This effort ultimately led to the creation of Java.About the time that the details of Java were being worked out, a second, and ultimately more important, factor emerged that would play a crucial role in the future of Java. This second force was, of course, the World Wide Web. Had the Web not taken shape at about the same time that Java was being implemented, Java might have remained a useful but obscure language for programming consumer electronics. However,with the emergence of the Web, Java was propelled to the forefront of computer language design, because the Web, too, demanded portable programs.Most programmers learn early in their careers that portable programs are as elusive as they are desirable. While the quest for a way to create efficient, portable (platform-independent)programs is nearly as old as the discipline of programming itself, it had taken a back seat to other, more pressing problems.However,with the advent of the Internet and the Web, the old problem of portability returned with a vengeance. After all, the Internet consists of a diverse, distributed universe populated with many types of computers, operating systems, and CPUs.What was once an irritating but a low-priority problem had become a high-profile necessity.By 1993 it became obvious to members of the Java design team that the problems of portability frequently encountered when creating code for embedded controllers are also found when attempting to create code for the Internet. This realization caused the focus of Java to switch from consumer electronics to Internet programming.So, while it was the desire for an architecture-neutral programming language that provided the initial spark, it was the Internet that ultimately led to Java’s large-scale success.How Java Relates to C and C++Java is directly related to both C and C++. Java inherits its syntax from C. Its object model is adapted from C++.Java’s relationship with C and C++ is important for several reasons. First, many programmers are familiar with the C/C++ syntax. This makes it easy fora C/C++programmer to learn Java and,conversely,for a Java programmer to learn C/C++.Second, Java’s designers did not “reinvent the wheel.”Instead, they further refined an already highly successful programming paradigm.The modern age of programming began with C. It moved to C++, and now to Java. By inheriting and building upon that rich heritage, Java provides a powerful, logically consistent programming environment that takes the best of the past and adds new features required by the online environment. Perhaps most important, because of their similarities, C, C++, and Java define a common,conceptual framework for the professional programmer.Programmers do not face major rifts when switching from one language to another.One of the central design philosophies of both C and C++ is that the programmer is in charge!Java also inherits this philosophy.Except for those constraints imposed by the Internet environment, Java gives you, the programmer, full control. If you program well, your programs reflect it. If you program poorly, your programs reflect that,too. Put differently, Java is not a language with training wheels.It is a language for professional programmers.Java has one other attribute in common with C and C++: it was designed,tested, and refined by real, working programmers. It is a language grounded in the needs and experiences of the people who devised it. There is no better way to produce a top-flight professional programming language.Because of the similarities between Java and C++, especially their support for objectoriented programming, it is tempting to think of Java as simply the “Internet version of C++.”However, to do so would be a mistake. Java has significant practical and philosophical differences. Although Java was influenced by C++, it is not an enhanced version of C++. For example,it is neither upwardly nor downwardly compatible with C++.Of course, the similarities with C++ are significant, and if you are a C++ programmer, you will feel right at home with Java. Another point: Java was not designed to replace C++. Java was designed to solve a certain set of problems.C++ was designed to solve a different set of problems. Both will coexist for many years to come.How Java Relates to C#Recently a new language called C# has come on the scene. Created by Microsoft to support its .NET Framework, C# is closely reated to Java. In fact, many of C#’s features were directly adapted from Java. Both Java and C# share the same general C++-style syntax, support distributed programming,and utilize the same object model.There are, of course, differences between Java and C#, but the overall “look and feel”of these languages is very similar. This means that if you already know C#, then learning Java will be especially easy. Conversely, if C# is in your future, then your knowledge of Java will come in handy. Giventhe similarity between Java and C#, one might naturally ask, “Will C# replace Java?”The answer is No. Java and C# are optimized for two different types of computing environments. Just as C++ and Java will co-exist for a long time to come, so will C#and Java.1.2 Java’s Contribution to the InternetThe Internet helped catapult Java to the forefront of programming, and Java, in turn, has had a profound effect on the Internet. The reason for this is quite simple: Java expands the universe of objects that can move about freely in cyberspace. In a network, there are two very broad categories of objects that are transmitted between the server and your personal computer:passive information and dynamic,active programs.For example,when you read your e-mail, you are viewing passive data. Even when you download a program, the program’s code is still only passive data until you execute it. However,a second type of object can be transmitted to your computer: a dynamic,self-executing program. Such a program is an active agent on the client computer,yet it is initiated by the server.For example, a program might be provided by the server to properly display the data that it is sending.As desirable as dynamic, networked programs are, they also present serious problems in the areas of security and portability. Prior to Java, cyberspace was effectively closed to half of the entities that now live there. As you will see, Java addresses those concerns and, in doing so, has defined a new form of program: the applet.Java Applets and ApplicationsJava can be used to create two types of programs:applications and applets. An application is a program that runs on your computer,under the operating system of that computer. An application created by Java is more or less like one created using any other type of computer language, such as Visual Basic or C++. When used to create applications, Java is not much different from any other computer language.Rather, it is Java’s ability to create applets that makes it important. An applet is an application designed to be transmitted over the Internet and executed by a Java-compatible Web browser. Although any computer language can be used to create an application, only Java can be used to create an applet. The reason is that Java solves two of the thorniest problems associated with applets: security and portability.Before continuing,let’s define what these two terms mean relative to the Internet.SecurityAs you are almost certainly aware, every time you download a “normal”program,you are risking a viral infection. Prior to Java, most users did not download executable programs frequently, and those that did, scanned them for viruses prior to execution. Even so, most users still worried about the possibility of infecting their systems with a virus or allowing a malicious program to run wild in their systems. (A malicious program might gather privateinformation, such as credit card numbers, bank account balances, and passwords by searching the contents of your computer’s local file system.) Java answers these concerns by providing a firewall between a networked application and your computer.When using a Java-compatible web browser, it is possible to safely download Java applets without fear of viral infection. The way that Java achieves this is by confining a Java program to the Java execution environment and not allowing it access to other parts of the computer. (You will see how this is accomplished, shortly.) Frankly, the ability to download applets with confidence that no harm will be done to the client computer is the single most important aspect of Java.PortabilityAs discussed earlier,many types of computers and operating systems are connected to the Internet. For programs to be dynamically downloaded to all of the various types of platforms, some means of generating portable executable code is needed.As you will soon see, the same mechanism that helps ensure security also helps create portability. Indeed, Java’s solution to these two problems is both elegant and efficient.外文翻译JAVA的基础互联网和万维网的崛起已经从根本上重塑了计算。
Java技术介绍-毕业论文外文翻译
Java Technical DescriptionJava as a Programming Platform.Java is certainly a good programming language. There is no doubt that it is one of the better languages available to serious programmers. We think it could potentially have been a great programming language, but it is probably too late for that. Once a language is out in the field, the ugly reality of compatibility with existing code sets in."Java was never just a language. There are lots of programming languages out there, and few of them make much of a splash. Java is a whole platform, with a huge library, containing lots of reusable code, and an execution environment that provides services such as security, portability across operating systems, and automatic garbage collection.As a programmer, you will want a language with a pleasant syntax and comprehensible semantics (i.e., not C++). Java fits the bill, as do dozens of other fine languages. Some languages give you portability, garbage collection, and the like, but they don't have much of a library, forcing you to roll your own if you want fancy graphics or networking or database access. Well, Java has everything—a good language, a high-quality execution environment, and a vast library. That combination is what makes Java an irresistible proposition to so many programmers.Features of Java.1.SimpleWe wanted to build a system that could be programmed easily without a lot of esoteric training and which leveraged today's standard practice. So even though we found that C++ was unsuitable, we designed Java as closely to C++ as possible in order to make the system more comprehensible. Java omits many rarely used, poorly understood, confusing features of C++ that, in our experience, bring more grief than benefit.The syntax for Java is, indeed, a cleaned-up version of the syntax for C++. There is no need for header files, pointer arithmetic (or even a pointer syntax), structures, unions, operator overloading, virtual base classes, and so on. (See the C++ notes interspersed throughout the text for more on the differences between Java and C++.) The designers did not, however, attempt to fix all of the clumsy features of C++. For example, the syntax of the switch statement is unchanged in Java. If you know C++, you will find the transition to the Java syntax easy.If you are used to a visual programming environment (such as Visual Basic), you will not find Java simple. There is much strange syntax (though it does not take long to get the hang of it). More important, you must do a lot more programming in Java. The beauty of Visual Basic is that its visual design environment almost automatically provides a lot of the infrastructure for an application. The equivalent functionality must be programmed manually, usually with a fair bit of code, in Java. There are, however, third-party development environments that provide "drag-and-drop"-style program development.Another aspect of being simple is being small. One of the goals of Java is to enable the construction of software that can run stand-alone in small machines. The size of the basic interpreter and class support is about 40K bytes; adding the basic standard libraries and thread support (essentially a self-contained microkernel) adds an additional 175K.2. Object OrientedSimply stated, object-oriented design is a technique for programming that focuses on the data (= objects) and on the interfaces to that object. To make an analogy with carpentry, an "object-oriented" carpenter would be mostly concerned with the chair he was building, and secondarily with the tools used to make it; a "non-object-oriented" carpenter would think primarily of his tools. The object-oriented facilities of Java are essentially those of C++.Object orientation has proven its worth in the last 30 years, and it is inconceivable that a modern programming language would not use it. Indeed, the object-oriented features of Java are comparable to those of C++. The major differencebetween Java and C++ lies in multiple inheritance, which Java has replaced with the simpler concept of interfaces, and in the Java metaclass model. The reflection mechanism and object serialization feature make it much easier to implement persistent objects and GUI builders that can integrate off-the-shelf components.3. DistributedJava has an extensive library of routines for coping with TCP/IP protocols like HTTP and FTP. Java applications can open and access objects across the Net via URLs with the same ease as when accessing a local file system. We have found the networking capabilities of Java to be both strong and easy to use. Anyone who has tried to do Internet programming using another language will revel in how simple Java makes onerous tasks like opening a socket connection. (We cover networking in Volume 2 of this book.) The remote method invocation mechanism enables communication between distributedobjects (also covered in Volume 2).There is now a separate architecture, the Java 2 Enterprise Edition (J2EE), that supports very large scale distributed applications.4. RobustJava is intended for writing programs that must be reliable in a variety of ways. Java puts a lot of emphasis on early checking for possible problems, later dynamic (run-time) checking, and eliminating situations that are error-prone.… The single biggest difference between Java and C/C++ is that Java has a pointer model that eliminates the possibility of overwriting memory and corrupting data.This feature is also very useful. The Java compiler detects many problems that, in other languages, would show up only at run time. As for the second point, anyone who has spent hours chasing memory corruption caused by a pointer bug will be very happy with this feature of Java.If you are coming from a language like Visual Basic that doesn't explicitly use pointers, you are probably wondering why this is so important. C programmers are not so lucky. They need pointers to access strings, arrays, objects, and even files. In Visual Basic, you do not use pointers for any of these entities, nor do you need to worry about memory allocation for them. On the other hand, many data structures aredifficult to implement in a pointerless language. Java gives you the best of both worlds. You do not need pointers for everyday constructs like strings and arrays. You have the power of pointers if you need it, for example, for linked lists. And you always have complete safety, because you can never access a bad pointer, make memory allocation errors, or have to protect against memory leaking away.5. SecureJava is intended to be used in networked/distributed environments. Toward that end, a lot of emphasis has been placed on security. Java enables the construction of virus-free, tamper-free systems.In the first edition of Core Java we said: "Well, one should 'never say never again,'" and we turned out to be right. Not long after the first version of the Java Development Kit was shipped, a group of security experts at Princeton University found subtle bugs in the security features of Java 1.0. Sun Microsystems has encouraged research into Java security, making publicly available the specification and implementation of the virtual machine and the security libraries. They have fixed all known security bugs quickly. In any case, Java makes it extremely difficult to outwit its security mechanisms. The bugs found so far have been very technical and few in number. From the beginning, Java was designed to make certain kinds of attacks impossible, among them:∙Overrunning the runtime stack—a common attack of worms and viruses Corrupting memory outside its own process space Reading or writing files without permission.∙A number of security features have been added to Java over time. Since version1.1, Java has the notion of digitally signed classesWith a signed class, you can be sure who wrote it. Any time you trust the author of the class, the class can be allowed more privileges on your machine.6. Architecture NeutralThe compiler generates an architecture-neutral object file format—the compiled code is executable on many processors, given the presence of the Java runtime system.The Java compiler does this by generating bytecode instructions which have nothing to do with a particular computerarchitecture. Rather, they are designed to be both easy to interpret on any machine and easily translated into native machine code on the fly.This is not a new idea. More than 20 years ago, both Niklaus Wirth's original implementation of Pascal and the UCSD Pascal system used the same technique. Of course, interpreting bytecodes is necessarily slower than running machine instructions at full speed, so it isn't clear that this is even a good idea. However, virtual machines have the option of translating the most frequently executed bytecode sequences into machine code, a process called just-in-time compilation. This strategy has proven so effective that even Microsoft's .NET platform relies on a virtual machine.The virtual machine has other advantages. It increases security because the virtual machine can check the behavior of instruction sequences. Some programs even produce bytecodes on the fly, dynamically enhancing the capabilities of a running program.7. PortableUnlike C and C++, there are no "implementation-dependent" aspects of the specification. The sizes of the primitive data types are specified, as is the behavior of arithmetic on them.For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a 16-bit integer, a 32-bit integer, or any other size that the compiler vendor likes. The only restriction is that the int type must have at least as many bytes as a short int and cannot have more bytes than a long int. Having a fixed size for number types eliminates a major porting headache. Binary data is stored and transmitted in a fixed format, eliminating confusion about byte ordering. Strings are saved in a standard Unicode format.The libraries that are a part of the system define portable interfaces. For example, there is an abstract Window class and implementations of it for UNIX, Windows, and the Macintosh.As anyone who has ever tried knows, it is an effort of heroic proportions to write a program that looks good on Windows, the Macintosh, and 10 flavors of UNIX. Java1.0 made the heroic effort, delivering a simple toolkit that mapped common user interface elements to a number of platforms.Unfortunately, the result was a library that, with a lot of work, could give barely acceptable results on different systems. (And there were often different bugs on the different platform graphics implementations.) But it was a start. There are many applications in which portability is more important than user interface slickness, and these applications did benefit from early versions of Java. By now, the user interface toolkit has been completely rewritten so that it no longer relies on the host user interface. The result is far more consistent and, we think, more attractive than in earlier versions of Java.8. InterpretedThe Java interpreter can execute Java bytecodes directly on any machine to which the interpreter has been ported. Since linking is a more incremental and lightweight process, the development process can be much more rapid and exploratory.Incremental linking has advantages, but its benefit for the development process is clearly overstated. In any case, we have found Java development tools to be quite slow. If you are used to the speed of the classic Microsoft Visual C++ environment, you will likely be disappointed with the performance of Java development environments. (The current version of Visual Studio isn't as zippy as the classic environments, however. No matter what languageyou program in, you should definitely ask your boss for a faster computer to run the latest development environments. )9. High PerformanceWhile the performance of interpreted bytecodes is usually more than adequate, there are situations where higher performance is required. The bytecodes can be translated on the fly (at run time) into machine code for the particular CPU the application is running on.If you use an interpreter to execute the bytecodes, "high performance" is not the term that we would use. However, on many platforms, there is also another form ofcompilation, the just-in-time (JIT) compilers. These work by compiling the bytecodes into native code once, caching the results, and then calling them again if needed. This approach speeds up commonly used code tremendously because one has to do the interpretation only once. Although still slightly slower than a true native code compiler, a just-in-time compiler can give you a 10- or even 20-fold speedup for some programs and will almost always be significantly faster than an interpreter. This technology is being improved continuously and may eventually yield results that cannot be matched by traditional compilation systems. For example, a just-in-time compiler can monitor which code is executed frequently and optimize just that code for speed.10. MultithreadedThe enefits of multithreading are better interactive responsiveness and real-time behavior.if you have ever tried to do multithreading in another language, you will be pleasantly surprised at how easy it is in Java. Threads in Java also can take advantage of multiprocessor systems if the base operating system does so. On the downside, thread implementations on the major platforms differ widely, and Java makes no effort to be platform independent in this regard. Only the code for calling multithreading remains the same across machines; Java offloads the implementation of multithreading to the underlying operating system or a thread library. Nonetheless, the ease of multithreading is one of the main reasons why Java is such an appealing language for server-side development.11. DynamicIn a number of ways, Java is a more dynamic language than C or C++. It was designed to adapt to an evolving environment. Libraries can freely add new methods and instance variables without any effect on their clients. In Java, finding out run time type information is straightforward.This is an important feature in those situations in which code needs to be added to a running program. A prime example is code that is downloaded from the Internet to run in a browser. In Java 1.0, finding out runtime type information was anything but straightforward, but current versions of Java give the programmer full insight intoboth the structure and behavior of its objects. This is extremely useful for systems that need to analyze objects at run time, such as Java GUI builders, smart debuggers, pluggable components, and object databases.Java技术介绍Java是一种程序设计平台Java是一种优秀的程序设计语言。
Java语言中英文简介(可打印修改)
Java语言 Java正在使快速开发Internet上通讯与协同工作的通用程序成为可能。
这里,我们不仅是谈论字处理、电子数据表,而且是能够处理销售、客户服务、记帐、数据库和人事资源管理的应用程序一一它们是公司计算的基础。
Java也使争论中的一类新的、称之为网络计算机(即NC)的便宜计算机成为可能,SUN IBM、Apple和其它公司希望这种计算机将在公司和家庭中普及开来。
Java工作的方法简单。
与那些要占用PC机硬盘多兆字节的普通应用软件不一样,java应用程序,即小应用程序,是很小的程序,它常驻在网络中集中式的服务器上。
只有当你需要这种应用程序时,网络才把它们送到你的机器上,山于小应用程序比常规程序小得多,故下载不需很多时间。
比方说,你要检查一下西南地区的销售结果,利用Internet浏览器找到能提交则一务数据的公司内部Web站点,再用鼠标器击一下或两下,便可以调这些数字。
服务器将不仅快速给你数据,而且显示它所需要的销售分析小应用程序。
这些数字在Java数据表中将浮现在你的屏幕上,因而你能即兴地使用它们,而不是麻烦地将它们调入你自己的数据表程序中。
为用图形显示这些数字,你可以一调入作图表的小应用程序,让你漂漂亮亮地打印出报表来,而所有这些不必离开浏览器。
你也始终能得到最新最好的小应用程序版本:因为这种软件只存储存一才\地方,公司的技术人员可较答易地使其保持最新。
然而,Java语言的真正优点是具有让用户省钱的能力,因为它大大简化了应用程序的开发与部署使用。
而且让它们保留己有的“传统”计算机和软件。
Java程序一旦写好了,就能在任何一种计算机(PC机、Macintosh机、Unix工作站、甚至是大型机)上无需修改就能运行。
基本的操作系统是没有差别的。
Java实际上给予了那些较旧的专用的计算机(有变成废品风险的产品)新的生命。
在不到一年的时间内,Java己成了微软的PC操作系统Windows系列的主要挑战者,比DOS和WINDOWS挑战传统的大型机和小型机的速度还要快。
外文翻译java
外文资料译文及原文JavaJava I/O 系统对编程语言的设计者来说,创建一套好的输入输出(I/O)系统,是一项难度极高的任务。
这一点可以从解决方案的数量之多上看出端倪。
这个问题难就难在它要面对的可能性太多了。
不仅是因为有那么多 I/O 的源和目地(文件,控制台,网络连接等等),而且还有很多方法(顺序的『sequential』,随机的『random-access』, 缓存的『 buffered 』,二进制的『 binary 』,字符方式的『 character 』,行的『by lines 』,字的『 by words 』,等等)。
Java类库的设计者们用"创建很多类"的办法来解决这个问题。
坦率地说Java I/O 系统的类实在是太多了,以至于初看起来会把人吓着(但是,具有讽刺意味的是,这种设计实际上是限制了类的爆炸性增长)。
此外,Java在1.0版之后又对其 I/O 类库作了重大的修改,原先是面向 byte 的,现在又补充了面向Unicode字符的类库。
为了提高性能,完善功能,JDK1.4又加了一个nio(意思是"new I/O"。
这个名字会用上很多年)。
这么以来,如果你想对Java的I/O 类库有个全面了解,并且做到运用自如,你就得先学习大量的类。
此外,了解 I/O 类库的演化的历史也是相当重要的。
可能你的第一反应是 "别拿什么历史来烦我了,告诉我怎么用就可以了! "但问题是,如果你对这段历史一无所知,很快就会被一些有用或是没用的类给搞糊涂了。
本章会介绍 Java 标准类库中的各种 I/O 类,及其使用方法。
File 类在介绍直接从流里读写数据的类之前,我们先介绍一下处理文件和目录的类。
File 类有一个极具欺骗性的名字;或许你会认为这是一个关于文件的类,但它不是。
你可以用它来表示某个文件的名字,也可以用它来表示目录里一组文件的名字。
介绍java英语作文
介绍java英语作文The Essence of Java: A Programming Paradigm.Java, a programming language that revolutionized the software industry, has become synonymous with reliability, portability, and scalability. Its journey from itsinception in 1991 to its widespread adoption today is a testament to its versatility and adaptability. In this article, we delve into the core characteristics of Javathat have made it a preferred choice for developers across the globe.Origins and Evolution.Java was born out of a necessity to create a programming language that was both powerful and easy to use. Its creators, James Gosling, Mike Sheridan, and Patrick Naughton, were motivated by the complexities of C++ and the need for a language that could run on various platforms seamlessly. The result was Java, a language that combinedthe power of C++ with the simplicity of Smalltalk.Over the years, Java has evolved significantly. Fromits initial version, Java 1.0, released in 1996, to the latest iteration, Java 17, released in 2021, the language has undergone numerous improvements and enhancements. These include the addition of new features like lambda expressions, streams, and modularization, among others.Core Characteristics of Java.1. Platform Independence: Java's "Write Once, Run Anywhere" mantra is its most prominent feature. This is achieved through the Java Virtual Machine (JVM), which acts as an interpreter and converts Java bytecodes into machine code executable by the underlying hardware. This ensures that Java programs can run seamlessly on any platform, provided it has the JVM installed.2. Object-Oriented Programming: Java is an object-oriented programming (OOP) language, emphasizing the use of objects and classes. This paradigm simplifies complexsystems by breaking them down into manageable components. Java supports all the fundamental OOP concepts, including encapsulation, inheritance, and polymorphism.3. Robustness and Security: Java's strong typing, exception handling, and garbage collection mechanisms contribute to its robustness. By automatically managing memory allocation and deallocation, Java reduces the risk of memory leaks and other memory-related issues. Additionally, Java's security features, such as access control and encryption, make it an ideal choice for developing secure applications.4. Portability: As mentioned earlier, Java's cross-platform compatibility is one of its key strengths. The JVM ensures that Java programs can be transported easily from one platform to another without any modifications. This portability not only simplifies deployment but also扩大了Java的市场影响力。
JAVA附件二 外文资料翻译
附件二外文资料翻译参考文献[13]的相关译文:Java从诞生到日趋完善,经过了不断的发展壮大,目前全世界拥有了成千上万的Java开发人员。
如何编写出更清晰、更正确、更健壮且更易于重用的代码,是大家所追求的目标之一。
作为经典Jolt获奖作品的新版书,它已经进行了彻底的更新,涵盖了自第1版之后所引入的Java SE 5和Java SE 6的新特性。
作者探索了新的设计模式和语言习惯用法,介绍了如何充分利用从泛型到枚举、从注解到自动装箱的各种特性。
本书的作者Joshua Bloch曾经是Sun公司的杰出工程师,带领团队设计和实现过无数的Java平台特性,包括JDK 5.0语言增强版和获奖的Java Collections Framework。
他也是Jolt奖的获得者,现在担任Google 公司的首席Java架构师。
他为我们带来了共78条程序员必备的经验法则:针对你每天都会遇到的编程问题提出了最有效、最实用的解决方案。
书中的每一章都包含几个“条目”,以简洁的形式呈现,自成独立的短文,它们提出了具体的建议、对于Java平台精妙之处的独到见解,并提供优秀的代码范例。
每个条目的综合描述和解释都阐明了应该怎么做、不应该怎么做,以及为什么。
通过贯穿全书透彻的技术剖析与完整的示例代码,仔细研读并加以理解与实践,必定会从中受益匪浅。
书中介绍的示例代码清晰易懂,也可以作为日常工作的参考指南。
参考文献[14]的相关译文:从出生到完善的Java,经过不断发展,目前全世界有成千上万的Java 开发人员。
如何写一个更清晰,更准确,更可靠和更容易重用代码,是我们追求的目标。
作为一个典型的颠簸获奖作品的书的新版本,它已被彻底更新,包括SE 5和Java SE 6后版本的Java引入的新功能。
本文探讨了设计模式和语言的新成语,介绍了如何利用通用的枚举,从注释自动包装的各种特性。
本书的作者约书亚布洛赫是杰出的工程师在太阳,带领团队实现Java平台的功能众多的设计,包括JDK 5增强版和获奖的Java集合框架。
JAVA编程术语英语翻译
**********************<JA V A编程术语英语翻译>**********************abstract 抽象的抽象的abstraction 抽象体、抽象物、抽象性抽象体、抽象物、抽象性access 存取、取用存取、访问access level 存取级别访问级别access function 存取函式访问函数activate 活化激活active 作用中的adapter 配接器适配器address 位址地址address space 位址空间,定址空间address-of operator 取址运算子取地址操作符aggregation 聚合algorithm 演算法算法allocate 配置分配allocator (空间)配置器分配器application 应用程式应用、应用程序application framework 应用程式框架、应用框架应用程序框架architecture 架构、系统架构体系结构argument 引数(传给函式的值)。
叁见parameter 叁数、实质叁数、实叁、自变量array 阵列数组arrow operator arrow(箭头)运算子箭头操作符assembly 装配件assembly language 组合语言汇编语言assert(ion) 断言assign 指派、指定、设值、赋值赋值assignment 指派、指定赋值、分配assignment operator 指派(赋值)运算子= 赋值操作符associated 相应的、相关的相关的、关联、相应的associative container 关联式容器(对应sequential container)关联式容器atomic 不可分割的原子的attribute 属性属性、特性audio 音讯音频A.I. 人工智慧人工智能background 背景背景(用於图形着色)後台(用於行程)backward compatible 回溯相容向下兼容bandwidth 频宽带宽base class 基础类别基类base type 基础型别(等同於base class)batch 批次(意思是整批作业)批处理benefit 利益收益best viable function 最佳可行函式最佳可行函式(从viable functions 中挑出的最佳吻合者)binary search 二分搜寻法二分查找binary tree 二元树二叉树binary function 二元函式双叁函数binary operator 二元运算子二元操作符binding 系结绑定bit 位元位bit field 位元栏位域bitmap 位元图位图bitwise 以bit 为单元逐一┅bitwise copy 以bit 为单元进行复制;位元逐一复制位拷贝block 区块,区段块、区块、语句块boolean 布林值(真假值,true 或false)布尔值border 边框、框线边框brace(curly brace) 大括弧、大括号花括弧、花括号bracket(square brakcet) 中括弧、中括号方括弧、方括号breakpoint 中断点断点build 建造、构筑、建置(MS 用语)build-in 内建内置bus 汇流排总线business 商务,业务业务buttons 按钮按钮byte 位元组(由8 bits 组成)字节cache 快取高速缓存call 呼叫、叫用调用callback 回呼回调call operator call(函式呼叫)运算子调用操作符(同function call operator)candidate function 候选函式候选函数(在函式多载决议程序中出现的候选函式)chain 串链(例chain of function calls)链character 字元字符check box 核取方块(i.e. check button) 复选框checked exception 可控式异常(Java)check button 方钮(i.e. check box) 复选按钮child class 子类别(或称为derived class, subtype)子类class 类别类class body 类别本体类体class declaration 类别宣告、类别宣告式类声明class definition 类别定义、类别定义式类定义class derivation list 类别衍化列类继承列表class head 类别表头类头class hierarchy 类别继承体系, 类别阶层类层次体系class library 类别程式库、类别库类库class template 类别模板、类别范本类模板class template partial specializations类别模板偏特化类模板部分特化class template specializations类别模板特化类模板特化cleanup 清理、善後清理、清除client 客端、客户端、客户客户client-server 主从架构客户/服务器clipboard 剪贴簿剪贴板clone 复制克隆collection 群集集合combo box 复合方块、复合框组合框command line 命令列命令行(系统文字模式下的整行执行命令)communication 通讯通讯compatible 相容兼容compile time 编译期编译期、编译时compiler 编译器编译器component 组件组件composition 复合、合成、组合组合computer 电脑、计算机计算机、电脑concept 概念概念concrete 具象的实在的concurrent 并行并发configuration 组态配置connection 连接,连线(网络,资料库)连接constraint 约束(条件)construct 构件构件container 容器容器(存放资料的某种结构如list, vector...)containment 内含包容context 背景关系、周遭环境、上下脉络环境、上下文control 控制元件、控件控件console 主控台控制台const 常数(constant 的缩写,C++ 关键字)constant 常数(相对於variable)常量constructor(ctor)建构式构造函数(与class 同名的一种member functions)copy (v) 复制、拷贝拷贝copy (n) 复件, 副本cover 涵盖覆盖create 创建、建立、产生、生成创建creation 产生、生成创建cursor 游标光标custom 订制、自定定制data 资料数据database 资料库数据库database schema 数据库结构纲目data member 资料成员、成员变数数据成员、成员变量data structure 资料结构数据结构datagram 资料元数据报文dead lock 死结死锁debug 除错调试debugger 除错器调试器declaration 宣告、宣告式声明deduction 推导(例:template argument deduction)推导、推断default 预设缺省、默认defer 延缓推迟define 定义预定义definition 定义、定义区、定义式定义delegate 委派、委托、委任委托delegation (同上)demarshal 反编列散集dereference 提领(取出指标所指物体的内容)解叁考dereference operator dereference(提领)运算子* 解叁考操作符derived class 衍生类别派生类design by contract 契约式设计design pattern 设计范式、设计样式设计模式※最近我比较喜欢「设计范式」一词destroy 摧毁、销毁destructor 解构式析构函数device 装置、设备设备dialog 对话窗、对话盒对话框directive 指令(例:using directive)(编译)指示符directory 目录目录disk 碟盘dispatch 分派分派distributed computing 分布式计算(分布式电算) 分布式计算分散式计算(分散式电算)document 文件文档dot operator dot(句点)运算子. (圆)点操作符driver 驱动程式驱动(程序)dynamic binding 动态系结动态绑定efficiency 效率效率efficient 高效高效end user 终端用户entity 物体实体、物体encapsulation 封装封装enclosing class 外围类别(与巢状类别nested class 有关)外围类enum (enumeration) 列举(一种C++ 资料型别)枚举enumerators 列举元(enum 型别中的成员)枚举成员、枚举器equal 相等相等equality 相等性相等性equality operator equality(等号)运算子== 等号操作符equivalence 等价性、等同性、对等性等价性equivalent 等价、等同、对等等价escape code 转义码转义码evaluate 评估、求值、核定评估event 事件事件event driven 事件驱动的事件驱动的exception 异常情况异常exception declaration 异常宣告(ref. C++ Primer 3/e, 11.3)异常声明exception handling 异常处理、异常处理机制异常处理、异常处理机制exception specification 异常规格(ref. C++ Primer 3/e, 11.4)异常规范exit 退离(指离开函式时的那一个执行点)退出explicit 明白的、明显的、显式显式export 汇出引出、导出expression 运算式、算式表达式facility 设施、设备设施、设备feature 特性field 栏位,资料栏(Java)字段, 值域(Java)file 档案文件firmware 韧体固件flag 旗标标记flash memory 快闪记忆体闪存flexibility 弹性灵活性flush 清理、扫清刷新font 字型字体form 表单(programming 用语)窗体formal parameter 形式叁数形式叁数forward declaration 前置宣告前置声明forwarding 转呼叫,转发转发forwarding function 转呼叫函式,转发函式转发函数fractal 碎形分形framework 框架框架full specialization 全特化(ref. partial specialization)function 函式、函数函数function call operator 同call operatorfunction object 函式物件(ref. C++ Primer 3/e, 12.3)函数对象function overloaded resolution函式多载决议程序函数重载解决(方案)functionality 功能、机能功能function template 函式模板、函式范本函数模板functor 仿函式仿函式、函子game 游戏游戏generate 生成generic 泛型、一般化的一般化的、通用的、泛化generic algorithm 泛型演算法通用算法getter (相对於setter) 取值函式global 全域的(对应於local)全局的global object 全域物件全局对象global scope resolution operator全域生存空间(范围决议)运算子:: 全局范围解析操作符group 群组group box 群组方块分组框guard clause 卫述句(Refactoring, p250) 卫语句GUI 图形介面图形界面hand shaking 握手协商handle 识别码、识别号、号码牌、权柄句柄handler 处理常式处理函数hard-coded 编死的硬编码的hard-copy 硬拷图屏幕截图hard disk 硬碟硬盘hardware 硬体硬件hash table 杂凑表哈希表、散列表header file 表头档、标头档头文件heap 堆积堆hierarchy 阶层体系层次结构(体系)hook 挂钩钩子hyperlink 超链结超链接icon 图示、图标图标IDE 整合开发环境集成开发环境identifier 识别字、识别符号标识符if and only if 若且唯若当且仅当Illinois 伊利诺伊利诺斯image 影像图象immediate base 直接的(紧临的)上层base class。
java介绍外文翻译()
外文原文Introduction to Javaautor:Martin Ngobye.source:Computing Static Slice for Java Programs Java is designed to meet the challenges of application development in the context of heterogeneous, network-wide distributed environments. Paramount among these challenges is secure delivery of applications that consume the minimum of system resources, can run on any hardware and software platform, and can be extended dynamically.Java originated as part of a research project to develop advanced software for a wide variety of network devices and embedded systems. The goal was to develop a small, reliable, portable, distributed, real-time operating platform. When the project started, C++ was the language of choice. But over time the difficulties encountered with C++ grew to the point where the problems could best be addressed by creating an entirely new language platform. Design and architecture decisions drew from a variety of languages such as Eiffel, SmallTalk, Objective C, and Cedar/Mesa. The result is a language platform that has proven ideal for developing secure, distributed, network based end-user applications in environments ranging from network-embedded devices to the World-Wide Web and the desktop.The design requirements of Java are driven by the nature of the computing environments in which software must be deployed.The massive growth of the Internet and the World-Wide Web leads us to a completely new way of looking at development and distribution of software. To live in the world of electronic commerce and distribution, Java must enable the development of secure, high performance, and highly robust applications on multiple platforms in heterogeneous, distributed networks.Operating on multiple platforms in heterogeneous networks invalidates the traditional schemes of binary distribution, release, upgrade, patch, and so on. To survive in this jungle, Java must be architecture neutral, portable, and dynamically adaptable.The Java system that emerged to meet these needs is simple, so it can be easily programmed by most developers; familiar, so that current developers can easily learn Java; object oriented, to take advantage of modern software development methodologies and to fit into distributed client-server applications; multithreaded, for high performance in applications that need to perform multipleconcurrent activities, such as multimedia; and interpreted, for maximum portability and dynamic capabilities.Together, the above requirements comprise quite a collection of buzzwords, so let’s examine some of them and their respective benefits before going on.What’s completely new is the manner in which Java and its run-time system have combined them to produce a flexible and powerful programming system..Developing your applications using Java results in software that is portable across multiple machine architectures, operating systems, and graphical user interfaces, secure, and high performance, With Java, your job as a software developer is much easier—you focus your full attention on the end goal of shipping innovative products on time, based on the solid foundation of Java. The better way to develop software is here, now, brought to you by the Java language platform.Very dynamic languages like Lisp, TCL, and SmallTalk are often used for prototyping. One of the reasons for their success at this is that they are very robust—you don’t have to worry about freeing or corrupting memory.Similarly, programmers can be relatively fearless about dealing with memory when programming in Java, The garbage collection sy stem makes the programmer’s job vastly easier; with the burden of memory management taken off the programmer’s shoulders, storage allocation errors go away. Another reason commonly given that languages like Lisp, TCL, and SmallTalk are good for prototyping is that they don’t require you to pin down decisions early on—these languages are semantically rich.Java has exactly the opposite property: it forces you to make explicit choices. Along with these choices come a lot of assistance—you can write method invocations and, if you get something wrong, you get told about it at compile time. You don’t have to worry about method invocation error.The Java beginner must grasp 30 basic conceptsBasic concept1.In OOP the only relations is what the object’s interface, such as the computer seller he leaves alone internal structure of electrical source, but he is only concerned about that whether the power will be supplied to you, also so long as know can or not but is not how and why.All procedures are make up of certain attribute and the behavior object, the different object visit invokes through the function invocation, between the object all intercommunion are invoke through the method invocation, By object data encapsulation, enhances reuse rate verymuch..2.In OOP the most important thought is class, the class is the template ,isa blueprint, construct an object from a class, namely construct an instance of the class.3. Encapsulation: is that combines the data and the behavior in a package) and hides the data the realization process to the object user, in an object data is called its instance field.4.Through expands a class to obtain a new class is called inheritance, but all classes are constructed by the object super root class of expansion, super root class of as follows can make the introduction.5.Object 3 principal characteristicsBehavior--- explained this object can make what.Tate--- when the object exerts the method object reflection.Dentity--- and other similar behavior objects discrimination symbols.Each object has only indentity and among three characteristics they affect mutually.6. Relations among classes:Use-a:Dependent relationHas-a:Polymerization relationIs-a: inheritor relation -- example:A class has inherited B class, this time A class not only has B class of method, but also has its own method(Individuality exists in general character)7.Structure object use structure:Structure proposing, the structure is one special method, the structure object and to its initialization.Example:A Data class of structure calls DataNew Data () --- structure a new object, also initialize current time.Data happyday=new Data () --- an object evaluates an variable happyday, thus enables this object to be used many times, here be stated the cause variable and the object variable are different.New returns the value is a quotation.Constructor characteristic:The constructor may have 0, one or many parametersThe constructor and the class have the same nameA class may have many constructor. The constructor has not returned valueThe constructor always be together used with the new operator8. Over loading: When many methods have the same name when includes the different parameter, then has the over loading Which method does the compiler have to choose invokes.9.Package : Java allow one or many classes to become together as group, is called package, to organizing duty easily, the standard Java storehouse divides into many packages ng java.Util java, net and so on, the package is layered and all java packages are in java and in a javax package.10. Extendable thought: permit to construct new class on existing classes , when you extend the class which already existed, then you reuse this class of method and the field, at the same time you might add the new method and the field in the new class.11.Expandable class:The expandable class fully manifested is-a to extend the relations The form is:Class (subclass) extends (base class).12. Multi-modality: In java, the object variable is multi-modality But in java does not support multiple extend.13.Dynamic combine: the mechanism of invoking object method mechanism.1) compiler examines object statement type and method name.2) the compiler examines that method invokes parameter type.3) static combine: If the method type is priavte static the final ,compiler can accurately know which method should invoke.4) when the procedure runs and uses dynamic combine to invoke a method, the method edition which then hypothesized machine must invoke x the object actual type which aims at to match.5) dynamic combine: is a very important characteristic, it can cause the procedure to change again may expand but does not need to translate has saved the code.14.Final class:In order to prevent other people derive the new class from yours class, this class is cannot expanded.15.The dynamic invocation spend longer time than the static invocation expenditure.16.Abstract class:Stipulated or many abstract methods class of itself must define is abstract.Example: Public abstract string getDescripition17.In Java each class is be extended by object class.18. equal and toString method in object class .Equal uses in testing an object is whether equal with another object.ToString returns to represent this object the string of character, each class can nearly over loading this method, in order to returns to the current condition the correct expression.(The toString method is a very important method)19.General programming:Any class of type all values all may replace witha object class of variable.20.The array tabulates: The ArrayList dynamic array tabulates, is a class of storehouse, defines in java.In uitl package, but automatic control array size.21.in class and class of object ,getclass method returns to the class type an example, when the procedure start contains can increase in the main method class, hypothesized confidential increase all classes which he needs, each increase class all must increase the class which it needs.22.The class: class might dynamic operate the java code for the compilation the procedure to provide the formidable function reflection, this function was JavaBeans is specially useful, the use reflected Java to be able to support the VB programmer to be familiar with the use the tool.1) when run analysis class ability.2) when run searches observes a class of object.3) realizes the general array operation code.4) provides the method object.But this mechanism mainly aims at the tool but not the application and the procedure.In the reflection mechanism most important part is that permits class that you inspect structure. With to API includes:Method pointer: Java does not have the method pointer, makes a method address another method, may invoke it in behind, but the interface is the better solution.23. interface: should showing class could do what but not to assign how to do, a class may realize one or many interfaces.24.The interface is not a class, but is to conforms to a interface request class of set of standard.If realizes a interface to need 2 steps:1) the statement class needs to realize assigns the interface.2) provides in the interface all methods definition.Stated a class realizes a interface to need to use the implements key wordsClass actionB implements Comparable its actionb needs to provide the CompareTo method, the interface is not the class, cannot use a new example interface.25.A class only then a super class, but a class can realize many interfaces. In a Java important interface: Cloneable26.The interface and call-back :to programs a commonly used pattern is call-back,in the pattern, you may refer when this class of pattern settled specific time occurs returns to adjusts on the object the method.Example:ActionListener interface monitor.Similar API includes:27.Object clone:The clone method is a object protection method, this meant your code cannot simple invoke it.28.Inner class an inner class definition is the definition in another class.The reason is:1) an inner class object can visit founds its object realization, including private data.2) about other classes in the same package in that, inner class can be hided.3) the anonymous inner class may the very convenient definition accent.In 4) uses the category to be possible the extremely convenient compilation event driver.29.Agent class (proxy):1) appointing all codes that interfaces request2) all methods (toString equals) that object class define30.Data type:Java is kind of emphasizing type language, each variable all must be declared its types at first, in java altogether has 8 basic types . four kinds are the long, two kinds are the float, one is the char, being used in the Unicode code char, Boolean.1. java is simpleJava and C + + are very similar, but much simpler. All the high-level programming language features, is not absolutely necessary have been deleted. For example, Java does not overload operator, the title of the document,pre-processing, computing pointer, the structure of the joint, multi-dimensional array, templates and implicit type conversion. If you know a little C, C + + or Pascal, you will soon master Java. Here is a simple procedure JavaHelloWorld: publicclassHelloInternet (publicstaticvoidmain (Stringargv []) (System. out. println ( "HelloIn-ternet!")))2. Java is object-orientedJava is an object-oriented programming language. In addition to the simple types, such as digital and Boolean operators in addition, Java is an object of most. As with any object-oriented languages, Java code also organized by category. Each category provides a definition of the object behavior. Another type of succession can be a kind of behavior. In the category of the root level, often the target category. Java support for the single type of inherited hierarchy. This means that each category can only inherit one other category. Some of the language to allow multiple inheritance, but it may cause confusion and unnecessarily complicated language. For example, imagine that an object would inherit two completely different category. Java also supports the kind of summary of the interface. This allows programmers to define the interface methods, and do not have to rush immediately to determine the methods to achieve.A type of interface can be a number of purposes in order to truly multi-inheritance of a number of advantages. The implementation of an object can be any number of interfaces. IDL interface and Java interface very similar. Very easy to set up IDLJ compiler. In other words, Java can be used to create a CORBA object system distributed object system. In the view of many computer systems use IDL interface and CORBA objects, such compatibility is important.3. Java is a type of staticIn a Java program, it is essential to the definition used by the target (number of characters, such as an array) type. This will help programmers quickly found because the procedure when the compiler can detect the type of error. However, Java System objects are also dynamic types. A requirement for the type of dynamic is often possible, so programmers can write the procedures for different types of objects to do different things.4. Is a Java-based compilerWhen running Java programs, which were first compiled into byte code. Byte code is very similar to the machine instructions, so Java program is very efficient. However, the byte code does not specifically for a particular machine, so no need to recompile Java program can be in many different computer implementation. Java source code files were compiled into a category, which is equivalent to process byte code performance. In a Java class file, and an example for all of the variables are in the light of, and for the first time in the implementation of the code be resolved. This makes the code more common and more easily subject to revision, but still high.5. Java is architecture neutralJava language is the same for each computer. For example, simple types are the same: 32-bit integer always, always 64-bit long integers. It is strange, such as C and C + + programming language, and so fashionable it is not the case. As a result of these languages so the definition of freedom, each of the compiler and development environment will be different, so that this process nuisance become a transplant. Java programs can easily gain access to transplants, and there is no need to re-compile.6. Java is a soundJava program can not be caused by the collapse of the computer. Java careful testing of the system memory of each visit, make sure it is legitimate and will not cause any problems. However, even if the Java program may also be wrong. If there is some kind of unexpected things, the process will not collapse, and to abandon the exception. Procedures for such an exception would be found to address them. Traditional computer programs can access the full memory. May (unconsciously) to amend any of the value of memory, which will cause problems. Java program can only access memory to allow them access to those parts of the Java program can not modify it does not seek to change the value.7. Java is a compactAs the Java is designed to run on a small computer, as a programming language for the system is relatively small. It effectively in more than 4MB of RAM to run on PC machine. Java translator occupied by only a few hundred KB. This translator for the Java platform independence and portability is reliable. Due to Java is very small, it is a very small computer memory, such as the Java-based PC, as well as television sets, ovens, telephone and home computer, and so on,it is ideal.8. Java is a multi-threadedJava program can run more than one thread. For example, it can be a thread in a time-consuming to complete the calculation, and other users to interact with the threads of dialogue. Therefore, users do not have to stop working, waiting for the Java computing time-consuming process. In the multi-threaded programming environment, it is often difficult because many things may occur at the same time. However, Java provides easy-to-use features simultaneously, so that the programming easier.中文翻译JAVA介绍作者:Martin Ngobye.出处:Computing Static Slice for Java Programs Java是被设计用来解决在上下文分布式的异构网络中应用程序开发的问题。
Java技术外文翻译文献
Java技术外文翻译文献(文档含中英文对照即英文原文和中文翻译)外文:Core Java™ Volume II–Advanced Features When Java technology first appeared on the scene, the excitement was not about a well-crafted programming language but about the possibility of safely executing applets that are delivered over the Internet (see V olume I, Chapter 10 for more information about applets). Obviously, delivering executable applets is practical only when the recipients are sure that the code can't wreak havoc on their machines. For this reason, security was and is a major concern of both the designers and the users of Java technology. This means that unlike other languages andsystems, where security was implemented as an afterthought or a reaction to break-ins, security mechanisms are an integral part of Java technology.Three mechanisms help ensure safety:•Language design features (bounds checking on arrays, no unchecked type conversions, no pointer arithmetic, and so on).•An access control mechanism that controls what the code can do (such as file access, network access, and so on).•Code signing, whereby code authors can use standard cryptographic algorithms to authenticate Java code. Then, the users of the code can determine exactly who created the code and whether the code has been altered after it was signed.Below, you'll see the cryptographic algorithms supplied in the java.security package, which allow for code signing and user authentication.As we said earlier, applets were what started the craze over the Java platform. In practice, people discovered that although they could write animated applets like the famous "nervous text" applet, applets could not do a whole lot of useful stuff in the JDK 1.0 security model. For example, because applets under JDK 1.0 were so closely supervised, they couldn't do much good on a corporate intranet, even though relatively little risk attaches to executing an applet from your company's secure intranet. It quickly became clear to Sun that for applets to become truly useful, it was important for users to be able to assign different levels of security, depending on where the applet originated. If an applet comes from a trusted supplier and it has not been tampered with, the user of that applet can then decide whether to give the applet more privileges.To give more trust to an applet, we need to know two things:•Where did the applet come from?•Was the code corrupted in transit?In the past 50 years, mathematicians and computer scientists have developed sophisticated algorithms for ensuring the integrity of data and for electronic signatures. The java.security package contains implementations of many of these algorithms. Fortunately, you don't need to understand the underlying mathematics to use the algorithms in the java.security package. In the next sections, we show you how message digests can detect changes in data files and how digital signatures can prove the identity of the signer.A message digest is a digital fingerprint of a block of data. For example, the so-called SHA1 (secure hash algorithm #1) condenses any data block, no matter how long, into a sequence of 160 bits (20 bytes). As with real fingerprints, one hopes that no two messages have the same SHA1 fingerprint. Of course, that cannot be true—there are only 2160 SHA1 fingerprints, so there must be some messages with the same fingerprint. But 2160is so large that the probability of duplication occurring is negligible. How negligible? According to James Walsh in True Odds: How Risks Affect Your Everyday Life (Merritt Publishing 1996), the chance that you will die from being struck by lightning is about one in 30,000. Now, think of nine other people, for example, your nine least favorite managers or professors. The chance that you and all of them will die from lightning strikes is higher than that of a forged message having the same SHA1 fingerprint as the original. (Of course, more than ten people, none of whom you are likely to know, will die from lightning strikes. However, we are talking about the far slimmer chance that your particular choice of people will be wiped out.)A message digest has two essential properties:•If one bit or several bits of the data are changed, then the message digest also changes.• A forger who is in possession of a given message cannot construct a fake message that has the same message digest as the original.The second property is again a matter of probabilities, of course. Consider the following message by the billionaire father:"Upon my death, my property shall be divided equally among my children; however, my son George shall receive nothing."That message has an SHA1 fingerprint of2D 8B 35 F3 BF 49 CD B1 94 04 E0 66 21 2B 5E 57 70 49 E1 7EThe distrustful father has deposited the message with one attorney and the fingerprint with another. Now, suppose George can bribe the lawyer holding the message. He wants to change the message so that Bill gets nothing. Of course, that changes the fingerprint to a completely different bit pattern:2A 33 0B 4B B3 FE CC 1C 9D 5C 01 A7 09 51 0B 49 AC 8F 98 92Can George find some other wording that matches the fingerprint? If he had been the proud owner of a billion computers from the time the Earth was formed, each computing a million messages a second, he would not yet have found a message he could substitute.A number of algorithms have been designed to compute these message digests. The two best-known are SHA1, the secure hash algorithm developed by the National Institute of Standards and Technology, and MD5, an algorithm invented by Ronald Rivest of MIT. Both algorithms scramble the bits of a message in ingenious ways. For details about these algorithms, see, for example, Cryptography and Network Security, 4th ed., by William Stallings (Prentice Hall 2005). Note that recently, subtle regularities have been discovered in both algorithms. At this point, most cryptographers recommend avoiding MD5 and using SHA1 until a stronger alternative becomes available.The Java programming language implements both SHA1 and MD5. The MessageDigest class is a factory for creating objects that encapsulate the fingerprinting algorithms. It has a static method, called getInstance, that returns an object of a class that extends the MessageDigest class. This means the MessageDigest class serves double duty:•As a factory class•As the superclass for all message digest algorithmsFor example, here is how you obtain an object that can compute SHA fingerprints:MessageDigest alg = MessageDigest.getInstance("SHA-1");(To get an object that can compute MD5, use the string "MD5" as the argument to getInstance.)After you have obtained a MessageDigest object, you feed it all the bytes in the message by repeatedly calling the update method. For example, the following code passes all bytes in a file to the alg object just created to do the fingerprinting:InputStream in = . . .int ch;while ((ch = in.read()) != -1)alg.update((byte) ch);Alternatively, if you have the bytes in an array, you can update the entire array at once:byte[] bytes = . . .;alg.update(bytes);When you are done, call the digest method. This method pads the input—as required by the fingerprinting algorithm—does the computation, and returns the digest as an array of bytes.byte[] hash = alg.digest();The program in Listing 9-15 computes a message digest, using either SHA or MD5. You can load the data to be digested from a file, or you can type a message in the text area.Message SigningIn the last section, you saw how to compute a message digest, a fingerprint for the original message. If the message is altered, then the fingerprint of the altered message will not match the fingerprint of the original. If the message and its fingerprint are delivered separately, then the recipient can check whether the message has been tampered with. However, if both the message and the fingerprint were intercepted, it is an easy matter to modify the message and then recompute the fingerprint. After all, the message digest algorithms are publicly known, and they don't require secret keys. In that case, the recipient of the forged message and the recomputed fingerprint would never know that the message has been altered. Digital signatures solve this problem.To help you understand how digital signatures work, we explain a few concepts from the field called public key cryptography. Public key cryptography is based on the notion of a public key and private key. The idea is that you tell everyone in the world your public key. However, only you hold the private key, and it is important that you safeguard it and don't release it to anyone else. The keys are matched by mathematical relationships, but the exact nature of these relationships is not important for us.The keys are quite long and complex. For example, here is a matching pair of public and private Digital Signature Algorithm (DSA) keys.Public key:Code View:p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df 63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd7 3da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4y:c0b6e67b4ac098eb1a32c5f8c4c1f0e7e6fb9d832532e27d0bdab9ca2d2a8123ce5a8018b8161 a760480fadd040b927281ddb22cb9bc4df596d7de4d1b977d50Private key:Code View:p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df 63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73 da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4x: 146c09f881656cc6c51f27ea6c3a91b85ed1d70aIt is believed to be practically impossible to compute one key from the other. That is, even though everyone knows your public key, they can't compute your private key in your lifetime, no matter how many computing resources they have available.It might seem difficult to believe that nobody can compute the private key from the public keys, but nobody has ever found an algorithm to do this for the encryption algorithms that are in common use today. If the keys are sufficiently long, brute force—simply trying all possible keys—would require more computers than can be built from all the atoms in the solar system, crunching away for thousands of years. Of course, it is possible that someone could come up with algorithms for computing keys that are much more clever than brute force. For example, the RSA algorithm (the encryption algorithm invented by Rivest, Shamir, and Adleman) depends on the difficulty of factoring large numbers. For the last 20 years, many of the best mathematicians have tried to come up with good factoring algorithms, but so far with no success. For that reason, most cryptographers believe that keys with a "modulus" of 2,000 bits or more are currently completely safe from any attack. DSA is believed to be similarly secure.Figure 9-12 illustrates how the process works in practice.Suppose Alice wants to send Bob a message, and Bob wants to know this message came from Alice and not an impostor. Alice writes the message and then signs the message digest with her private key. Bob gets a copy of her public key. Bob then applies the public key to verify thesignature. If the verification passes, then Bob can be assured of two facts:•The original message has not been altered.•The message was signed by Alice, the holder of the private key that matches the public key that Bob used for verification.You can see why security for private keys is all-important. If someone steals Alice's private key or if a government can require her to turn it over, then she is in trouble. The thief or a government agent can impersonate her by sending messages, money transfer instructions, and so on, that others will believe came from Alice.The X.509 Certificate FormatTo take advantage of public key cryptography, the public keys must be distributed. One of the most common distribution formats is called X.509. Certificates in the X.509 format are widely used by VeriSign, Microsoft, Netscape, and many other companies, for signing e-mail messages, authenticating program code, and certifying many other kinds of data. The X.509 standard is part of the X.500 series of recommendations for a directory service by the international telephone standards body, the CCITT.The precise structure of X.509 certificates is described in a formal notation, called "abstract syntax notation #1" or ASN.1. Figure 9-13 shows the ASN.1 definition of version 3 of the X.509 format. The exact syntax is not important for us, but, as you can see, ASN.1 gives a precise definition of the structure of a certificate file. The basic encoding rules, or BER, and a variation, called distinguished encoding rules (DER) describe precisely how to save this structure in a binary file. That is, BER and DER describe how to encode integers, character strings, bit strings, and constructs such as SEQUENCE, CHOICE, and OPTIONAL.译文:Java核心技术卷Ⅱ高级特性当Java技术刚刚问世时,令人激动的并不是因为它是一个设计完美的编程语言,而是因为它能够安全地运行通过因特网传播的各种applet。
(完整word版)JAVA外文文献+翻译
Java and the InternetIf Java is, in fact, yet another computer programming language, you may question why it is so important and why it is being promoted as a revolutionary step in computer programming. The answer isn't immediately obvious if you’re comin g from a traditional programming perspective. Although Java is very useful for solving traditional stand—alone programming problems, it is also important because it will solve programming problems on the World Wide Web。
1.Client—side programmingThe Web’s in itial server—browser design provided for interactive content, but the interactivity was completely provided by the server. The server produced static pages for the client browser, which would simply interpret and display them。
Basic HTML contains simple mechanisms for data gathering: text-entry boxes, check boxes, radio boxes, lists and drop—down lists, as well as a button that can only be programmed to reset the data on the form or “submit” the data on the form back to the server。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文原文Introduction to Javaautor:Martin Ngobye、source:Computing Static Slice for Java ProgramsJava is designed to meet the challenges of application development in the context of heterogeneous, network-wide distributed environments、Paramount among these challenges is secure delivery of applications that consume the minimum of system resources, can run on any hardware and software platform, and can be extended dynamically、Java originated as part of a research project to develop advanced software for a wide variety of network devices and embedded systems、The goal was to develop a small, reliable, portable, distributed, real-time operating platform、When the project started, C++ was the language of choice、But over time the difficulties encountered with C++ grew to the point where the problems could best be addressed by creating an entirely new language platform、Design and architecture decisions drew from a variety of languages such as Eiffel, SmallTalk, Objective C, and Cedar/Mesa、The result is a language platform that has proven ideal for developing secure, distributed, network based end-user applications in environments ranging from network-embedded devices to the World-Wide Web and the desktop、The design requirements of Java are driven by the nature of the computing environments in which software must be deployed、The massive growth of the Internet and the World-Wide Web leads us to a completely new way of looking at development and distribution of software、To live in the world of electronic commerce and distribution, Java must enable the development of secure, high performance, and highly robust applications on multiple platforms in heterogeneous, distributed networks、Operating on multiple platforms in heterogeneous networks invalidates the traditional schemes of binary distribution, release, upgrade, patch, and so on、To survive in this jungle, Java must be architecture neutral, portable, and dynamically adaptable、The Java system that emerged to meet these needs is simple, so it can be easily programmed by most developers; familiar, so that current developers can easily learn Java; object oriented, to take advantage of modern software development methodologies and to fit into distributed client-server applications; multithreaded, for high performance in applications that need to perform multiple concurrent activities, such as multimedia; and interpreted, for maximum portability and dynamic capabilities、Together, the above requirements comprise quite a collection of buzzwords, so let’s examine some of them and their respective benefits before going on、What’s completely new is the manner in which Java and its run-time system have combined them to produce a flexible and powerful programming system、、Developing your applications using Java results in software that is portable across multiple machine architectures, operating systems, and graphical user interfaces, secure, and high performance, With Java, your job as a software developer is much easier—you focus your full attention on the end goal of shipping innovative products on time, based on the solid foundation of Java、The better way to develop software is here, now, brought to you by the Java language platform、Very dynamic languages like Lisp, TCL, and SmallTalk are often used for prototyping、One of the reasons for their success at this is that they are very robust—you don’t have to worry about freeing or corrupting memory、Similarly, programmers can be relatively fearless about dealing with memory when programming in Java, The garbage collection sys tem makes the programmer’s job vastly easier; with the burden of memory management taken off the programmer’s shoulders, storage allocation errors go away、Another reason commonly given that languages like Lisp, TCL, and SmallTalk are good for prototyping is that they don’t require you to pin down decisions early on—these languages are semantically rich、Java has exactly the opposite property: it forces you to make explicit choices、Along with these choices come a lot of assistance—you can write method invocations and, if you get something wrong, you get told about it at compile time、You don’t have to worry about method invocation error、The Java beginner must grasp 30 basic conceptsBasic concept1、In OOP the only relations is what the object’s interface, such as the computer seller he leaves alone internal structure of electrical source, but he is only concerned about that whether the power will be supplied to you, also so long as know can or not but is not how and why、All procedures are make up of certain attribute and the behavior object, the different object visit invokes through the function invocation, between the object all intercommunion are invoke through the method invocation, By object data encapsulation, enhances reuse rate very much、、2、In OOP the most important thought is class, the class is the template ,is a blueprint, construct an object from a class, namely construct an instance of the class、3、Encapsulation: is that combines the data and the behavior in a package) and hides the data the realization process to the object user, in an object data is called its instance field、4、Through expands a class to obtain a new class is called inheritance, but all classesare constructed by the object super root class of expansion, super root class of as follows can make the introduction、5、Object 3 principal characteristicsBehavior--- explained this object can make what、Tate--- when the object exerts the method object reflection、Dentity--- and other similar behavior objects discrimination symbols、Each object has only indentity and among three characteristics they affect mutually、6、Relations among classes:Use-a:Dependent relationHas-a:Polymerization relationIs-a: inheritor relation -- example:A class has inherited B class, this time A class not only has B class of method, but also has its own method(Individuality exists in general character)7、Structure object use structure:Structure proposing, the structure is one special method, the structure object and to its initialization、Example:A Data class of structure calls DataNew Data () --- structure a new object, also initialize current time、Data happyday=new Data () --- an object evaluates an variable happyday, thus enables this object to be used many times, here be stated the cause variable and the object variable are different、New returns the value is a quotation、Constructor characteristic:The constructor may have 0, one or many parametersThe constructor and the class have the same nameA class may have many constructor、The constructor has not returned valueThe constructor always be together used with the new operator8、Over loading: When many methods have the same name when includes the different parameter, then has the over loading Which method does the compiler have to choose invokes、9、Package : Java allow one or many classes to become together as group, is called package, to organizing duty easily, the standard Java storehouse divides into many packages Java、Lang java、Util java, net and so on, the package is layered and all java packages are in java and in a javax package、10、Extendable thought: permit to construct new class on existing classes , when you extend the class which already existed, then you reuse this class of method and the field, at the same time you might add the new method and the field in the new class、11、Expandable class:The expandable class fully manifested is-a to extend the relations The form is:Class (subclass) extends (base class)、12、Multi-modality: In java, the object variable is multi-modality But in java does not support multiple extend、13、Dynamic combine: the mechanism of invoking object method mechanism、1) compiler examines object statement type and method name、2) the compiler examines that method invokes parameter type、3) static combine: If the method type is priavte static the final ,compiler can accurately know which method should invoke、4) when the procedure runs and uses dynamic combine to invoke a method, the method edition which then hypothesized machine must invoke x the object actual type which aims at to match、5) dynamic combine: is a very important characteristic, it can cause the procedure to change again may expand but does not need to translate has saved the code、14、Final class:In order to prevent other people derive the new class from yours class, this class is cannot expanded、15、The dynamic invocation spend longer time than the static invocation expenditure、16、Abstract class:Stipulated or many abstract methods class of itself must define is abstract、Example: Public abstract string getDescripition17、In Java each class is be extended by object class、18、equal and toString method in object class 、Equal uses in testing an object is whether equal with another object、ToString returns to represent this object the string of character, each class can nearly over loading this method, in order to returns to the current condition the correct expression、(The toString method is a very important method)19、General programming:Any class of type all values all may replace with a object class of variable、20、The array tabulates: The ArrayList dynamic array tabulates, is a class of storehouse, defines in java、In uitl package, but automatic control array size、21、in class and class of object ,getclass method returns to the class type an example, when the procedure start contains can increase in the main method class, hypothesized confidential increase all classes which he needs, each increase class all must increase the class which it needs、22、The class: class might dynamic operate the java code for the compilation the procedure to provide the formidable function reflection, this function was JavaBeans is specially useful, the use reflected Java to be able to support the VB programmer to be familiar with the use the tool、procedure of analysis class ability is called the reflector, in Java to provide this function the package to call Java、Lang、The reflect reflection mechanism is extremely formidable、1) when run analysis class ability、2) when run searches observes a class of object、3) realizes the general array operation code、4) provides the method object、But this mechanism mainly aims at the tool but not the application and the procedure、In the reflection mechanism most important part is that permits class that you inspect structure、With to API includes:Java、Lang、Reflect、Field returns to the field、Java、Reflect、Method returns to the method、Java、Lang、Reflect、Constructor returns to the parameter、Method pointer: Java does not have the method pointer, makes a method address another method, may invoke it in behind, but the interface is the better solution、23、interface: should showing class could do what but not to assign how to do, a class may realize one or many interfaces、24、The interface is not a class, but is to conforms to a interface request class of set of standard、If realizes a interface to need 2 steps:1) the statement class needs to realize assigns the interface、2) provides in the interface all methods definition、Stated a class realizes a interface to need to use the implements key wordsClass actionB implements Comparable its actionb needs to provide the CompareTo method, the interface is not the class, cannot use a new example interface、25、A class only then a super class, but a class can realize many interfaces、In a Java important interface: Cloneable26、The interface and call-back :to programs a commonly used pattern is call-back,in the pattern, you may refer when this class of pattern settled specific time occurs returns to adjusts on the object the method、Example:ActionListener interface monitor、Similar API includes:Java、Swing、JOptionPaneJava、Swing、TimerJava、Awt、Tookit27、Object clone:The clone method is a object protection method, this meant your code cannot simple invoke it、28、Inner class an inner class definition is the definition in another class、The reason is:1) an inner class object can visit founds its object realization, including private data、2) about other classes in the same package in that, inner class can be hided、3) the anonymous inner class may the very convenient definition accent、In 4) uses the category to be possible the extremely convenient compilation event driver、29、Agent class (proxy):1) appointing all codes that interfaces request2) all methods (toString equals) that object class define30、Data type:Java is kind of emphasizing type language, each variable all must be declared its types at first, in java altogether has 8 basic types 、four kinds are the long, two kinds are the float, one is the char, being used in the Unicode code char, Boolean、1、java is simpleJava and C + + are very similar, but much simpler、All the high-level programming language features, is not absolutely necessary have been deleted、For example, Java does not overload operator, the title of the document, pre-processing, computing pointer, the structure of the joint, multi-dimensional array, templates and implicit type conversion、If you know a little C, C + + or Pascal, you will soon master Java、Here is a simple procedure JavaHelloWorld:publicclassHelloInternet (publicstaticvoidmain (Stringargv []) (System、out、println ( "HelloIn-ternet!")))2、Java is object-orientedJava is an object-oriented programming language、In addition to the simple types,such as digital and Boolean operators in addition, Java is an object of most、As with any object-oriented languages, Java code also organized by category、Each category provides a definition of the object behavior、Another type of succession can be a kind of behavior、In the category of the root level, often the target category、Java support for the single type of inherited hierarchy、This means that each category can only inherit one other category、Some of the language to allow multiple inheritance, but it may cause confusion and unnecessarily complicated language、For example, imagine that an object would inherit two completely different category、Java also supports the kind of summary of the interface、This allows programmers to define the interface methods, and do not have to rush immediately to determine the methods to achieve、 A type of interface can be a number of purposes in order to truly multi-inheritance of a number of advantages、The implementation of an object can be any number of interfaces、IDL interface and Java interface very similar、Very easy to set up IDLJ compiler、In other words, Java can be used to create a CORBA object system distributed object system、In the view of many computer systems use IDL interface and CORBA objects, such compatibility is important、3、Java is a type of staticIn a Java program, it is essential to the definition used by the target (number of characters, such as an array) type、This will help programmers quickly found because the procedure when the compiler can detect the type of error、However, Java System objects are also dynamic types、 A requirement for the type of dynamic is often possible, so programmers can write the procedures for different types of objects to do different things、4、Is a Java-based compilerWhen running Java programs, which were first compiled into byte code、Byte code is very similar to the machine instructions, so Java program is very efficient、However, the byte code does not specifically for a particular machine, so no need to recompile Java program can be in many different computer implementation、Java source code files were compiled into a category, which is equivalent to process byte code performance、In a Java class file, and an example for all of the variables are in the light of, and for the first time in the implementation of the code be resolved、This makes the code more common and more easily subject to revision, but still high、5、Java is architecture neutralJava language is the same for each computer、For example, simple types are the same: 32-bit integer always, always 64-bit long integers、It is strange, such as C and C + + programming language, and so fashionable it is not the case、As a result of these languages so the definition of freedom, each of the compiler and development environment will bedifferent, so that this process nuisance become a transplant、Java programs can easily gain access to transplants, and there is no need to re-compile、6、Java is a soundJava program can not be caused by the collapse of the computer、Java careful testing of the system memory of each visit, make sure it is legitimate and will not cause any problems、However, even if the Java program may also be wrong、If there is some kind of unexpected things, the process will not collapse, and to abandon the exception、Procedures for such an exception would be found to address them、Traditional computer programs can access the full memory、May (unconsciously) to amend any of the value of memory, which will cause problems、Java program can only access memory to allow them access to those parts of the Java program can not modify it does not seek to change the value、7、Java is a compactAs the Java is designed to run on a small computer, as a programming language for the system is relatively small、It effectively in more than 4MB of RAM to run on PC machine、Java translator occupied by only a few hundred KB、This translator for the Java platform independence and portability is reliable、Due to Java is very small, it is a very small computer memory, such as the Java-based PC, as well as television sets, ovens, telephone and home computer, and so on, it is ideal、8、Java is a multi-threadedJava program can run more than one thread、For example, it can be a thread in a time-consuming to complete the calculation, and other users to interact with the threads of dialogue、Therefore, users do not have to stop working, waiting for the Java computing time-consuming process、In the multi-threaded programming environment, it is often difficult because many things may occur at the same time、However, Java provides easy-to-use features simultaneously, so that the programming easier、中文翻译JA V A介绍作者:Martin Ngobye、出处:Computing Static Slice for Java ProgramsJava就是被设计用来解决在上下文分布式的异构网络中应用程序开发的问题。