人教版高考物理专题-电磁感应

合集下载

高三物理第二轮专题复习 专题四电磁感应与电路教案 人教版

高三物理第二轮专题复习 专题四电磁感应与电路教案 人教版

专题四 电磁感应与电路一、考点回顾“电磁感应”是电磁学的核心内容之一,同时又是与电学、力学知识紧密联系的知识点,是高考试题考查综合运用知识能力的很好落脚点,所以它向来高考关注的一个重点和热点,本专题涉及三个方面的知识:一、电磁感应,电磁感应研究是其它形式有能量转化为电能的特点和规律,其核心内容是法拉第电磁感应定律和楞次定律;二、与电路知识的综合,主要讨论电能在电路中传输、分配,并通过用电器转化为其它形式的能量的特点及规律;三、与力学知识的综合,主要讨论产生电磁感应的导体受力、运动特点规律以及电磁感应过程中的能量关系。

由于本专题所涉及的知识较为综合,能力要求较高,所以往往会在高考中现身。

从近三年的高考试题来看,无论哪一套试卷,都有这一部分内容的考题,题量稳定在1~2道,题型可能为选择、实验和计算题三种,并且以计算题形式出现的较多。

考查的知识:以本部分内容为主线与力和运动、动量、能量、电场、磁场、电路等知识的综合,感应电流(电动势)图象问题也经常出现。

二、典例题剖析根据本专题所涉及内容的特点及高考试题中出的特点,本专题的复习我们分这样几个小专题来进行:1.感应电流的产生及方向判断。

2.电磁感应与电路知识的综合。

3.电磁感应中的动力学问题。

4.电磁感应中动量定理、动能定理的应用。

5.电磁感应中的单金属棒的运动及能量分析。

6.电磁感应中的双金属棒运动及能量分析。

7.多种原因引起的电磁感应现象。

(一)感应电流的产生及方向判断1.(2007理综II 卷)如图所示,在PQ 、QR 区域是在在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合。

导线框与磁场区域的尺寸如图所示。

从t =0时刻开始线框匀速横穿两个磁场区域。

以a →b →c →d →e →f 为线框中有电动势的正方向。

以下四个ε-t 关系示意图中正确的是【 】解析:楞次定律或左手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D 选项错误;1-2s 内,磁通量不变化,感应电动势为0,A 选项错误;2-3s 内,产生感应电动势E =2Blv +Blv =3Blv ,感应电动势的方向为逆时针方向(正方向),故C 选项正确。

2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律

2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律
第1讲 电磁感应现象、楞次定律
高考总复习·物理
核心素养
重要考点
物理观念
(1)理解电磁感应现象、磁通量、自感、涡流 等概念;(2)掌握右手定则、楞次定律、法拉 第电磁感应定律等重要规律
1.电磁感应现象、 磁通量
科学思维
科学探究 科学态度
与责任
综合应用楞次定律、法拉第电磁感应定律分 析问题的能力
通过实验探究影响感应电流方向的因素,习·物理
2.实验步骤 (1)按图连接电路,闭合开关,记录下G中流入电流方 向与灵敏电流计G中指针偏转方向的关系. (2)记下线圈绕向,将线圈和灵敏电流计构成通路. (3)把条形磁铁N极(或S极)向下插入线圈中,并从线圈 中拔出,每次记下电流计中指针偏转方向,然后根据步骤(1)的结论,判 定出感应电流方向,从而可确定感应电流的磁场方向. (4)记录实验现象.
了解电磁感应知识在生活、生产和科学技术 中的应用
2.法拉第电磁感 应定律
3.楞次定律的应 用
4.自感、涡流现 象的分析理解
高考总复习·物理
一、磁通量 1.概念:磁感应强度B与面积S的__乘__积____. 2.公式:Φ=____B_S___.适用条件:匀强磁场;S是__垂__直____磁场的有效面 积. 单位:韦伯(Wb),1 Wb=__1_T_·_m__2_. 3.意义:穿过某一面积的磁感线的___条__数___. 4.标矢性:磁通量是___标__量___,但有正、负.
高考总复习·物理
例1 (2023年广东二模)如图甲所示,驱动线圈通过开关S与电源连接,
发射线圈放在绝缘且内壁光滑的发射导管内.闭合开关S后,在0~t0内驱动 线圈的电流iab随时间t的变化如图乙所示.在这段时间内,下列说法正确的 是( B )

2025年高考人教版物理一轮复习专题训练—法拉第电磁感应定律自感和涡流 附答案解析

2025年高考人教版物理一轮复习专题训练—法拉第电磁感应定律自感和涡流  附答案解析

2025年⾼考⼈教版物理⼀轮复习专题训练—法拉第电磁感应定律、⾃感和涡流(附答案解析)1.(2023·北京卷·5)如图所⽰,L是⾃感系数很⼤、电阻很⼩的线圈,P、Q是两个相同的⼩灯泡,开始时,开关S处于闭合状态,P灯微亮,Q灯正常发光,断开开关( )A.P与Q同时熄灭B.P⽐Q先熄灭C.Q闪亮后再熄灭D.P闪亮后再熄灭2.(2023·江苏卷·8)如图所⽰,圆形区域内有垂直纸⾯向⾥的匀强磁场,OC导体棒的O端位于圆⼼,棒的中点A位于磁场区域的边缘。

现使导体棒绕O点在纸⾯内逆时针转动。

O、A、C点电势分别为φO、φA、φC,则( )A.φO>φC B.φC>φAC.φO=φA D.φO-φA=φA-φC3.(2023·⼭东德州市模拟)如图甲所⽰,正⽅形虚线框为匀强磁场区域的边界,取垂直纸⾯向⾥为正⽅向,磁感应强度B随时间t变化的规律如图⼄所⽰。

匝数为n、半径为r的导线圈恰好处于虚线框的外接圆上,导线圈与电阻箱R1、定值电阻R2组成回路,回路中的其他电阻不计。

以下说法正确的是( )A.R2中的电流⽅向先向左,再向右B.回路中的电动势为C.t=t0时刻,回路中的电流为零D.R1=R2时,R1消耗的电功率最⼤4.(2023·⼴东⼴州市⼀模)如图甲所⽰为探究电磁驱动的实验装置。

某个铝笼置于U形磁体的两个磁极间,铝笼可以绕⽀点⾃由转动,其截⾯图如图⼄所⽰。

开始时,铝笼和磁体均静⽌,转动磁体,会发现铝笼也会跟着发⽣转动,下列说法正确的是( )A.铝笼是因为受到安培⼒⽽转动的B.铝笼转动的速度的⼤⼩和⽅向与磁体相同C.磁体从图⼄位置开始转动时,铝笼截⾯abcd中的感应电流的⽅向为a→d→c→b→a D.当磁体停⽌转动后,如果忽略空⽓阻⼒和摩擦阻⼒,铝笼将保持匀速转动5.(多选)(2023·辽宁沈阳市模拟)电⼦感应加速器基本原理如图所⽰,图甲的上、下两个电磁铁线圈中电流的⼤⼩、⽅向可以变化,产⽣的感⽣电场使真空室中的电⼦加速。

人教版高考总复习一轮物理精品课件 第11单元 电磁感应 生活中的电磁感应问题(科学态度与责任)

人教版高考总复习一轮物理精品课件 第11单元 电磁感应 生活中的电磁感应问题(科学态度与责任)

1 2 3 4
m/s。
m/s2。
(3)由上述分析可知,每一个线圈进入磁场的过程中,减震器速度减小量
Δv=0.4 m/s
5
线圈的个数为 N= =12.5
0.4
则需要13个线圈,只有进入磁场的线圈产生热量,线圈产生的热量等于动能
的减少量。
第一个线圈恰好完全进入磁场时v1=v-Δv=4.6 m/s
最后一个线圈刚进入磁场时v13=0.2 m/s
即断开,故C正确,D错误。
1 2 3 4
2.(2023浙江宁波模拟)电磁减震器是利用电磁感应原理的一种新型智能化
汽车独立悬架系统。某同学也设计了一个电磁阻尼减震器,图为其简化的
原理图。该减震器由绝缘滑动杆及固定在杆上的多个相互紧靠的相同矩
形线圈组成,滑动杆及线圈的总质量m=1.0 kg。每个矩形线圈abcd匝数
·
L=
安=nBIL=nB·
R
R
F安
刚进入磁场减速瞬间减震器的加速度大小为 a=
m
=
n2 B2 L2 v
=4
mR
(2)设向右为正方向,对减震器进行分析,由动量定理 I=Δp 可得
2 2
2
n B L v
F 安 t=解得
R
n2 B2 L2
·
t=·
2d=mv'-mv0
R
2n2 B2 L2 d
v'=v0- mR =0.2
1mv2 -1mv 2
1
2
2
因此 k= 1
=96。
mv13 2
2
1 2 3 4
3.(2023浙江宁波开学考试)基于电磁阻尼设计的电磁缓冲器是应用于车辆
上以提高运行安全性及乘坐舒适程度的辅助制动装置。其电磁阻尼作用

物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学

物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学

第2讲 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。

(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r 。

3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv 。

(2)v ∥B 时,E =0。

二、自感、涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。

(2)自感电动势①定义:在自感现象中产生的感应电动势叫作自感电动势。

②表达式:E =L ΔIΔt。

(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。

②单位:亨利(H),1 mH =10-3H,1 μH=10-6H 。

2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。

授课提示:对应学生用书第196页命题点一 对法拉第电磁感应定律的理解及应用 自主探究1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,磁通量Φ较大或磁通量的变化量ΔΦ较大时,感应电动势不一定较大。

(2)ΔΦΔt 为单匝线圈产生的感应电动势大小。

2.法拉第电磁感应定律的三个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E =n ΔBΔt S 。

(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E =nB ΔSΔt。

(3)磁通量的变化是由面积和磁场变化共同引起时,则ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt。

《电磁感应》人教版高中物理ppt课件1

《电磁感应》人教版高中物理ppt课件1
乡土社会里,地缘关系也是如此 。每一 家以自 己的地 位做中 心,周 围划出 一个圈 子,个 圈子是 “街坊 ”。可 是这不 是一个 固定的 团体, 而是一 个范围 。范围 的大小 也要依 着中心 的势力 厚薄而 定。

6.在这种富于伸缩性的网络里,随时 随地是 有一个 “己” 作中心 的。这 并不是 个人主 义,而 是自我 主义。 在个人 主义下 ,一方 面是平 等观念 ,指在 同一团 体中各 分子的 地位相 等,个 人不能 侵犯大 家的权 利;一 方面是 宪法观 念,指 团体不 能抹煞 个人, 只能在 个人们 所愿意 交出的 一分权 利上控 制个人 。
2、定律表达式的推演过程
E Φ t
E K Φ (K是比例常数)
t
当k=1, E=
t
E n Φ (n为线圈的匝数) t
E n Φ t
说明: 1、这个公式是法拉第电磁感应定律的一般表达式; 2、单位:1V=1Wb/s 3、公式中的ΔΦ取绝对值,不涉及正负; 4、E表示Δt内的平均感应电动势
图片导入 长江三峡水电站
产生感应电流的条件是什么?
(1)闭合回路
(2)磁通量变化
一、感应电动势 1、定义:在电磁感应现象中产生 的电动势叫感应电动势(E). (1)感应电动势产生条件:磁通量发生改变
电磁感应现象的本质---感应电动势,
二、探究:影响感应电动势大小的因素
从演示的实验、感应电动 势的产生做出合理的猜想
(2)表达式:E n Φ
t
《电磁感应》人教版高中物理ppt课件 1
《电磁感应》人教版高中物理ppt课件 1
问题思考: 学了本节课的内容,你觉得你能发出
电吗?若要发出更多的电能,你有何措施?
《电磁感应》人教版高中物理ppt课件 1

高中物理高考物理一轮复习10 3电磁感应中的电路与图像专题课件新人教版201908021192

高中物理高考物理一轮复习10 3电磁感应中的电路与图像专题课件新人教版201908021192
t1 电压表的示数 U=IR=2ER·R=n(B12-t1B0)S,B 项错误.
t1~t2 时间内线圈产生的感应电动势 E′=nΔΔΦt =nt2B-1t1S, 根据闭合电路欧姆定律 I′=2ER′ =2(tn2-B1tS1)R,C 项正确; t1~t2 时间内,磁通量减小,根据楞次定律可知,P 端电势 低于 Q 端电势, UPQ=-n2(t2B-1 t1)S,D 项错误.
若线框进入磁场时的速度合适,线框所受安培力等于重力, 则线框匀速进入磁场,图像 D 有可能;由分析可知选 A 项.
例 7 如图 1 所示,平行粗糙导轨固定在绝缘水平桌面上, 间距 L=0.2 m,导轨左端接有 R=1 Ω 的电阻,质量为 m=0.1 kg 的粗糙导体棒 ab 静置于导轨上,导体棒及导轨的电阻忽略不 计.整个装置处于磁感应强度 B=0.5 T 的匀强磁场中,磁场方 向垂直导轨向下.现外力 F 作用在导体棒 ab 上使之一开始做匀 加速运动,且外力 F 随时间变化关系如图 2 所示,重力加速度 g =10 m/s2,试求解以下问题:
2 AB 的路端电压 UAB=R总+R总RABEAB=23R3+R RBLv=25BLv CD 两端的电压等于 CA、AB、BD 电压之和,则: UCD=BLv+25BLv=75BLv,
2 AB 段的电流为 I=URA总B=5B23RLv=3B5RLv,
金属棒所受安培力 F 安=BIL=3B52RL2v, 导体棒做匀速运动受力平衡, 在竖直方向有拉力 F=F 安+G, 拉力做功的功率 PF=F·v=(F 安+G)·v=3B52LR2v2+mgv.
A.0~t1 时间内的读数为n(B1-B0)S t1
C.t1~t2 时间内 R 上的电流为2(tn2-B1tS1)R
D.t1~t2 时间内 PQ 间的电势差 UPQ=n2(t2B-1 t1)S

高考物理一轮复习 第十章 电磁感应 第1讲 电磁感应现象 楞次定律练习(含解析)新人教版-新人教版高

高考物理一轮复习 第十章 电磁感应 第1讲 电磁感应现象 楞次定律练习(含解析)新人教版-新人教版高

第1讲电磁感应现象楞次定律一、单项选择题:在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.如下列图,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现假设使矩形框以左边的一条边为轴转到竖直的虚线位置,如此此过程中磁通量的改变量的大小是( C )A.3-12BS B.3+12NBSC.3+12BS D.3-12NBS[解析] sin θ磁通量与匝数无关,Φ=BS中,B与S必须垂直。

初态Φ1=B cos θ·S,末态Φ2=-B cos θ·S,磁通量的变化量大小ΔΦ=|Φ2-Φ1|=|BS(-cos 30°-sin30°)|=3+12BS,所以应选C项。

2.(2020·浙江诸暨模拟)有人设计了一种储能装置:在人的腰部固定一块永久磁铁,N 极向外;在手臂上固定一个金属线圈,线圈连接着充电电容器。

当手不停地前后摆动时,固定在手臂上的线圈能在一个摆动周期内,两次扫过别在腰部的磁铁,从而实现储能。

如下说法正确的答案是( D )A.该装置违反物理规律,不可能实现B.此装置会使手臂受到阻力而导致人走路变慢C.在手摆动的过程中,电容器极板的电性不变D.在手摆动的过程中,手臂受到的安培力方向交替变化[解析] D.在手摆动的过程中,线圈交替的进入或者离开磁场,使穿过线圈的磁通量发生变化,因而会产生感应电流,从而实现储能,该装置符合法拉第电磁感应定律,可能实现,选项A错误;此装置不会影响人走路的速度,选项B错误;在手摆动的过程中,感应电流的方向不断变化,如此电容器极板的电性不断改变。

选项C错误;在手摆动的过程中,感应电流的方向不断变化,手臂受到的安培力方向交替变化。

选项D正确。

3.如下列图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且与线圈相互绝缘。

当MN中电流突然减小时,线圈所受安培力的合力方向( B )A.向左B.向右C.垂直纸面向外D.垂直纸面向里[解析] 解法一:当MN中电流突然减小时,单匝矩形线圈abcd垂直纸面向里的磁通量减小,根据楞次定律,线圈abcd中产生的感应电流方向为顺时针方向,由左手定如此可知ab边与cd边所受安培力方向均向右,所以线圈所受安培力的合力方向向右,B正确。

2025年高考物理总复习课件专题十电磁感应第2讲法拉第电磁感应定律、自感、涡流

2025年高考物理总复习课件专题十电磁感应第2讲法拉第电磁感应定律、自感、涡流

解:(1)根据法拉第电磁感应定律有E=l22
·
ΔB Δt
=
k2l2.
(2)由图可知线框受到的安培力为F=k2lR3·kt,
当线框开始向上运动时有mg=F,
解得t0=mkg2·l23R.
高考总复习·物理
考点2 导体切割磁感线产生感应电动势的计算 [能力考点] 1.E=Blv的特性 (1)正交性:要求磁场为匀强磁场,而且B、l、v三者互相垂直. (2)有效性:l为导体切割磁感线的有效长度.如图甲中,导体棒的有效长 度为a、b间的距离. (3)相对性:v是导体相对磁场的速度,若磁场也在运动,则应注意速度 间的相对关系.
驱动停在轨道上的列车,则( BC )
A.图示时刻线框中感应电流沿逆时针方向 B.列车运动的方向与磁场移动的方向相同 C.列车速度为v'时线框中的感应电动势大小为2NBL(v-v') D.列车速度为v'时线框受到的安培力大小为2NB2LR2(v−v′)
高考总复习·物理
【解析】线框相对磁场向左运动,根据右手定则可知图示时刻线框中感 应电流沿顺时针方向,A错误;根据左手定则,列车受到向右的安培力, 因此列车运动的方向与磁场移动的方向相同,B正确;由于前后两个边 产生的感应电动势顺次相加,根据法拉第电磁感应定律 E=2NBLΔv=2NBL(v-v'),C正确;列车速度为v'时线框受到的安培力大小 为F=2NBIL=4N2B2LR2(v−v′),D错误.
内容
求的是Δt时间内的平均感应
①若v为瞬时速度,则求的是瞬时感 应电动势
电动势,E与某段时间或某 个过程对应
②若v为平均速度,则求的是平均感 应电动势
高考总复习·物理
适用 范围 对任何电路普遍适用

专题二 法拉第电磁感应定律的应用(课件)高二物理(人教版2019选择性必修第二册)

专题二 法拉第电磁感应定律的应用(课件)高二物理(人教版2019选择性必修第二册)
求此时 ab 杆中的电流及其加速度的大小。
(3)求在下滑过程中,ab 杆可以达到的速度最大值。
04 典例分析
答案:
(1)见解析图
(2)BRlv
gsin θ-B2l2v mR
(3)mgBR2sli2n θ
解析:(1)如图所示,ab 杆受重力 mg,竖直向下;支持力 FN,
垂直导轨平面向上;安培力 F,沿导轨平面向上。
2.制约关系
导体运动 切割磁感线
v变化
E=BLv F安变化
I E R总
F安=BIL
F安的大小与速度大小有关
F合变化
a变化
02 电磁感应现象中的能量分析
1.能量转化的过程分析 电磁感应的实质是不同形式的能量转化的过程,而能量的转化是通 过安培力做功实现的。安培力做功使得电能转化为其他形式的能(通 常为内能),克服安培力做功,则是其他形式的能(通常为机械能)转 化为电能的过程。
01 电磁感应中的电荷量问题
闭合回路中磁通量发生变化时,电荷发生定向移动而形成感应电流,在Δt
内通过某一截面的电荷量(感应电荷量)
q=I·Δt
I=RE总
E=n
ΔΦ Δt
q I t
E
n t t
t n
R总
R总
R总
(1)由上式可知,通过某一截面的感应电荷量q仅由线圈匝数n、回路电阻R和磁
通量的变化量ΔΦ决定,与时间长短无关。 (2)求解电路中通过的电荷量时,I、E 均为平均值.
2.判断感应电流和感应电动势的方向,都是利用相当于电源的部 分根据右手定则或楞次定律判定的。实际问题中应注意外电路电 流由高电势流向低电势,而内电路则相反。
02 对电路的理解
1.内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由 电阻、电容等电学元件组成。

2025年高考人教版物理一轮复习专题训练—电磁感应中的动力学和能量问题(附答案解析)

2025年高考人教版物理一轮复习专题训练—电磁感应中的动力学和能量问题(附答案解析)

错误!错误!错误!错误!错误!错误!错误!错误! 2025年高考人教版物理一轮复习专题训练—电磁感应中的动力学和能量问题(附答案解析)1.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动。

杆ef及线框的电阻不计,开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速运动B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动2.如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下,导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。

下列v-t图像中,正确描述上述过程的可能是()3.(2023·陕西咸阳市模拟)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻。

线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直。

设OO′下方磁场区域足够大,不计空气阻力影响,则下列图像不可能反映线框下落过程中速度v随时间t变化的规律的是()4.(2023·江苏盐城市模拟)如图所示,MN和PQ是竖直放置的两根平行光滑金属导轨,导轨足够长且电阻不计,MP间接定值电阻R,金属杆cd保持与导轨垂直且接触良好。

杆cd由静止开始下落并计时,杆cd两端的电压U、杆cd所受安培力的大小F随时间t变化的图像,以及通过杆cd的电流I、杆cd加速度的大小a随杆的速率v变化的图像,合理的是()5.(多选)如图所示,两根间距为d 的足够长光滑金属导轨,平行放置在倾角为θ=30°的绝缘斜面上,导轨的右端接有电阻R ,整个装置放在磁感应强度大小为B 的匀强磁场中,磁场方向垂直于导轨平面向上。

专题10 电磁感应 -五年(2019-2023)高考物理真题(全国通用) (解析版)

专题10 电磁感应 -五年(2019-2023)高考物理真题(全国通用) (解析版)

专题10电磁感应一、单选题1(2023·全国·统考高考真题)一学生小组在探究电磁感应现象时,进行了如下比较实验。

用图(a)所示的缠绕方式,将漆包线分别绕在几何尺寸相同的有机玻璃管和金属铝管上,漆包线的两端与电流传感器接通。

两管皆竖直放置,将一很小的强磁体分别从管的上端由静止释放,在管内下落至管的下端。

实验中电流传感器测得的两管上流过漆包线的电流I随时间t的变化分别如图(b)和图(c)所示,分析可知()A.图(c)是用玻璃管获得的图像B.在铝管中下落,小磁体做匀变速运动C.在玻璃管中下落,小磁体受到的电磁阻力始终保持不变D.用铝管时测得的电流第一个峰到最后一个峰的时间间隔比用玻璃管时的短【答案】A【详解】A.强磁体在铝管中运动,铝管会形成涡流,玻璃是绝缘体故强磁体在玻璃管中运动,玻璃管不会形成涡流。

强磁体在铝管中加速后很快达到平衡状态,做匀速直线运动,而玻璃管中的磁体则一直做加速运动,故由图像可知图(c)的脉冲电流峰值不断增大,说明强磁体的速度在增大,与玻璃管中磁体的运动情况相符,A正确;B.在铝管中下落,脉冲电流的峰值一样,磁通量的变化率相同,故小磁体做匀速运动,B错误;C.在玻璃管中下落,玻璃管为绝缘体,线圈的脉冲电流峰值增大,电流不断在变化,故小磁体受到的电磁阻力在不断变化,C错误;D.强磁体分别从管的上端由静止释放,在铝管中,磁体在线圈间做匀速运动,玻璃管中磁体在线圈间做加速运动,故用铝管时测得的电流第一个峰到最后一个峰的时间间隔比用玻璃管时的长,D错误。

故选A。

2(2023·北京·统考高考真题)如图所示,光滑水平面上的正方形导线框,以某一初速度进入竖直向下的匀强磁场并最终完全穿出。

线框的边长小于磁场宽度。

下列说法正确的是()A.线框进磁场的过程中电流方向为顺时针方向B.线框出磁场的过程中做匀减速直线运动C.线框在进和出的两过程中产生的焦耳热相等D.线框在进和出的两过程中通过导线横截面的电荷量相等【答案】D【详解】A .线框进磁场的过程中由楞次定律知电流方向为逆时针方向,A 错误;B .线框出磁场的过程中,根据E =BlvI =E R联立有F A =B 2L 2v R=ma由于线框出磁场过程中由左手定则可知线框受到的安培力向左,则v 减小,线框做加速度减小的减速运动,B 错误;C .由能量守恒定律得线框产生的焦耳热Q =F A L其中线框进出磁场时均做减速运动,但其进磁场时的速度大,安培力大,产生的焦耳热多,C 错误;D .线框在进和出的两过程中通过导线横截面的电荷量q =I t 其中I =E R,E =BLx t 则联立有q =BL Rx 由于线框在进和出的两过程中线框的位移均为L ,则线框在进和出的两过程中通过导线横截面的电荷量相等,故D 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考定位电磁感应是电磁学部分的重点之一,是高考的重要考点.考查的重点有以下几个方面:①楞次定律的理解和应用;②电磁感应图象;③电磁感应过程中的动态分析;④综合应用电路知识和能量观点解决电磁感应问题.应考策略:复习应注意“抓住两个定律,运用两种观点”.两个定律是指楞次定律和法拉第电磁感应定律;两种观点是指动力学观点和能量观点. 考题1 对楞次定律和电磁感应图象问题的考查例1 (单选)如图1所示,直角坐标系xOy 的二、四象限有垂直坐标系向里的匀强磁场,磁感应强度大小均为B ,在第三象限有垂直坐标系向外的匀强磁场,磁感应强度大小为2B .现将半径为L 、圆心角为90°的扇形闭合导线框OPQ 在外力作用下以恒定角速度绕O 点在纸面内沿逆时针方向匀速转动.t =0时刻线框在图示位置,设电流逆时针方向为正方向.则下列关于导线框中的电流随时间变化的图线,正确的是( )图1审题突破 根据转动闭合线框切割磁感线产生的感应电动势公式E =12Bl 2ω求出每条半径切割磁感线时产生的感应电动势,分段由闭合电路欧姆定律求出感应电流,由楞次定律判断感应电流的方向,即可选择图象.解析 根据楞次定律,线框从第一象限进入第二象限时,电流方向是正方向,设导线框的电阻为R ,角速度为ω,则电流大小为B ωL 22R ,从第二象限进入第三象限时,电流方向是负方向,电流大小为3B ωL 22R ,从第三象限进入第四象限时,电流方向是正方向,电流大小是3B ωL22R ,线框从第四象限进入第一象限时,电流方向是负方向,电流大小为B ωL22R ,B 选项正确.答案 B1.(双选)(2014·江苏·7)如图2所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( )图2A.增加线圈的匝数B.提高交流电源的频率C.将金属杯换为瓷杯D.取走线圈中的铁芯答案AB解析当电磁铁接通交流电源时,金属杯处在变化的磁场中产生涡电流发热,使水温升高.要缩短加热时间,需增大涡电流,即增大感应电动势或减小电阻.增加线圈匝数、提高交变电流的频率都是为了增大感应电动势,瓷杯不能产生涡电流,取走铁芯会导致磁性减弱.所以选项A、B正确,选项C、D错误.1.楞次定律的理解和应用(1)“阻碍”的效果表现为:①阻碍原磁通量的变化——增反减同;②阻碍物体间的相对运动——来拒去留;③阻碍自身电流的变化——自感现象.(2)解题步骤:①确定原磁场的方向(分析合磁场);②确定原磁通量的变化(增加或减少);③确定感应电流磁场的方向(增反减同);④确定感应电流方向(安培定则).2.求解图象问题的思路与方法(1)图象选择问题:求解物理图象的选择题可用“排除法”,即排除与题目要求相违背的图象,留下正确图象.也可用“对照法”,即按照要求画出正确的草图,再与选项对照.解决此类问题的关键是把握图象特点,分析相关物理量的函数关系,分析物理过程的变化或物理状态的变化.(2)图象分析问题:定性分析物理图象,要明确图象中的横轴与纵轴所代表的物理量,弄清图象的物理意义,借助有关的物理概念、公式、不变量和定律作出相应判断.在有关物理图象的定量计算时,要弄清图象所揭示的物理规律及物理量间的函数关系,善于挖掘图象中的隐含条件,明确有关图象所包围的面积、斜率,以及图象的横轴、纵轴的截距所表示的物理意义.考题2 对电磁感应中动力学问题的考查例2 如图3所示,间距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面夹角为30°,导轨的电阻不计,导轨的N 、Q 端连接一阻值为R 的电阻,导轨上有一根质量一定、电阻为r 的导体棒ab 垂直导轨放置,导体棒上方距离L 以上的范围存在着磁感应强度大小为B 、方向与导轨平面垂直向下的匀强磁场.现在施加一个平行斜面向上且与棒ab 重力相等的恒力,使导体棒ab 从静止开始沿导轨向上运动,当ab 进入磁场后,发现ab 开始匀速运动,求:图3(1)导体棒的质量;(2)若进入磁场瞬间,拉力减小为原来的一半,求导体棒能继续向上运动的最大位移. 审题突破 (1)由牛顿第二定律求出导体棒的加速度,由匀变速运动的速度位移公式求出速度,由安培力公式求出安培力,然后由平衡条件求出导体棒的质量.(2)应用牛顿第二定律、安培力公式分析答题.解析 (1)导体棒从静止开始在磁场外匀加速运动,距离为L ,其加速度为F -mg sin 30°=ma F =mg得a =12g棒进入磁场时的速度为v =2aL =gL 由棒在磁场中匀速运动可知F 安=12mgF 安=BIL =B 2L 2vR +r得m =2B 2L 2R +r L g(2)若进入磁场瞬间使拉力减半,则F =12mg则导体棒所受合力为F 安F 安=BIL =B 2L 2vR +r=mav =Δs Δt和a =Δv Δt 代入上式 B 2L 2Δs Δt R +r =m Δv Δt 即B 2L 2Δs R +r=m Δv设导体棒继续向上运动的位移为s ,则有B 2L 2sR +r=mv 将v =gL 和m =2B 2L2R +rL g代入得s =2L 答案 (1)2B 2L2R +rLg(2)2L2.(单选)如图4所示,光滑斜面PMNQ 的倾角为θ,斜面上放置一矩形导体线框abcd ,其中ab 边长为l 1,bc 边长为l 2,线框质量为m 、电阻为R ,有界匀强磁场的磁感应强度为B ,方向垂直于斜面向上,ef 为磁场的边界,且ef ∥MN .线框在恒力F 作用下从静止开始运动,其ab 边始终保持与底边MN 平行,F 沿斜面向上且与斜面平行.已知线框刚进入磁场时做匀速运动,则下列判断不正确的是( )图4A .线框进入磁场前的加速度为F -mg sin θmB .线框进入磁场时的速度为F -mg sin θRB 2l21 C .线框进入磁场时有a →b →c →d 方向的感应电流 D .线框进入磁场的过程中产生的热量为(F -mg sin θ)l 1 答案 D解析 线框进入磁场前,对整体,根据牛顿第二定律得:F -mg sin θ=ma ,线框的加速度为a =F -mg sin θm ,故A 正确.设线框匀速运动的速度大小为v ,则线框受力平衡,F =F 安+mg sin θ,而F 安=B ·Bl 1v R ·l 1=B 2l 21vR ,解得v =F -mg sin θR B 2l 21,选项B 正确;根据右手定则可知,线框进入磁场时有a →b →c →d 方向的感应电流,选项C 正确;由能量关系,线框进入磁场的过程中产生的热量为力F 做的功与线框重力势能增量的差值,即Fl 2-mgl 2sin θ,选项D 错误,故选D.3.如图5甲所示,MN 、PQ 是相距d =1.0 m 足够长的平行光滑金属导轨,导轨平面与水平面间的夹角为θ,导轨电阻不计,整个导轨处在方向垂直于导轨平面向上的匀强磁场中,金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,已知金属棒ab 的质量m =0.1 kg ,其接入电路的电阻r =1 Ω,小灯泡电阻R L =9 Ω,重力加速度g 取10 m/s 2.现断开开关S ,将棒ab 由静止释放并开始计时,t =0.5 s 时刻闭合开关S ,图乙为ab 的速度随时间变化的图象.求:图5(1)金属棒ab 开始下滑时的加速度大小、斜面倾角的正弦值; (2)磁感应强度B 的大小.答案 (1)6 m/s 235(2)1 T解析 (1)S 断开时ab 做匀加速直线运动 由图乙可知a =Δv Δt =6 m/s 2根据牛顿第二定律有:mg sin θ=ma 所以sin θ=35.(2)t =0.5 s 时S 闭合,ab 先做加速度减小的加速运动,当速度达到最大v m =6 m/s 后做匀速直线运动根据平衡条件有mg sin θ=F 安 又F 安=BId E =Bdv m I =ER L +r解得B =1 T.在此类问题中力现象和电磁现象相互联系、相互制约,解决问题前首先要建立“动—电—动”的思维顺序,可概括为:(1)找准主动运动者,用法拉第电磁感应定律和楞次定律求解感应电动势的大小和方向. (2)根据等效电路图,求解回路中的感应电流的大小及方向.(3)分析安培力对导体棒运动速度、加速度的影响,从而推出对电路中的感应电流有什么影响,最后定性分析导体棒的最终运动情况. (4)列牛顿第二定律或平衡方程求解. 考题3 对电磁感应中能量问题的考查例3 如图6所示,平行金属导轨与水平面间夹角均为37°,导轨间距为1 m ,电阻不计,导轨足够长.两根金属棒ab 和以a ′b ′的质量都是0.2 kg ,电阻都是1 Ω,与导轨垂直放置且接触良好,金属棒和导轨之间的动摩擦因数为0.25,两个导轨平面处均存在着垂直轨道平面向上的匀强磁场(图中未画出),磁感应强度B 的大小相同.让a ′b ′固定不动,将金属棒ab 由静止释放,当ab 下滑速度达到稳定时,整个回路消耗的电功率为8 W .求:图6(1)ab 下滑的最大加速度;(2)ab 下落了30 m 高度时,其下滑速度已经达到稳定,则此过程中回路电流的发热量Q 为多大?(3)如果将ab 与a ′b ′同时由静止释放,当ab 下落了30 m 高度时,其下滑速度也已经达到稳定,则此过程中回路电流的发热量Q ′为多大?(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)审题突破 (1)当ab 棒刚下滑时,v =0,没有感应电流,此时加速度最大.(2)ab 棒达到最大速度后做匀速运动,其重力功率等于整个回路消耗的电功率,求出v m ,根据能量守恒列式求回路电流的发热量Q .(3)a ′b ′和ab 受力平衡时稳定,求出稳定速度,根据能量守恒列式求回路电流的发热量Q ′.解析 (1)当ab 棒刚下滑时,ab 棒的加速度有最大值:a =g sin θ-μg cos θ=4 m/s 2.(2分)(2)ab 棒达到最大速度时做匀速运动,有mg sin θ=BIL +μmg cos θ,(2分)整个回路消耗的电功率P 电=BILv m =(mg sin θ-μmg cos θ)v m =8 W ,(2分)则ab 棒的最大速度为:v m =10 m/s(1分) 由P 电=E 22R =BLv m22R(2分) 得:B =0.4 T .(1分)根据能量守恒得:mgh =Q +12mv 2m +μmg cos θ·hsin θ(2分)解得:Q =30 J .(1分)(3)由对称性可知,当ab 下落30 m 稳定时其速度为v ′,a ′b ′也下落30 m ,其速度也为v ′,ab 和a ′b ′都切割磁感线产生电动势,总电动势等于两者之和.根据共点力平衡条件,对ab 棒受力分析, 得mg sin θ=BI ′L +μmg cos θ (2分)又I ′=2BLv ′2R =BLv ′R(2分) 代入解得v ′=5 m/s(1分) 由能量守恒2mgh =12×2mv ′2+2μmg cos θh sin θ+Q ′(3分)代入数据得Q ′=75 J .(1分)答案 (1)4 m/s 2(2)30 J (3)75 J4.(双选)在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,如图7所示.一个质量为m 、电阻为R 、边长也为L 的正方形线框在t =0时刻以速度v 0进入磁场,恰好做匀速直线运动,若经过时间t 0,线框ab 边到达gg ′与ff ′中间位置时,线框又恰好做匀速运动,则下列说法正确的是( )图7A .当ab 边刚越过ff ′时,线框加速度的大小为g sin θB .t 0时刻线框匀速运动的速度为v 04C .t 0时间内线框中产生的焦耳热为32mgL sin θ+1532mv 2D .离开磁场的过程中线框将做匀速直线运动 答案 BC解析 当ab 边进入磁场时,F A =B 2L 2v 0R =mg sin θ.当ab 边刚越过f ′f 时,线框的感应电动势和电流均加倍,4B 2L 2v 0R -mg sin θ=ma ,加速度向上为3g sin θ,A 错误;t 0时刻,4B 2L 2vR =mg sin θ,解得v =v 04,B 正确;线框从进入磁场到再次做匀速运动过程,沿斜面向下运动距离为32L ,则由功能关系得t 0时间内线框中产生的焦耳热为Q =3mgL sin θ2+12mv 20-12mv 2=32mgL sin θ+1532mv 20,C 正确;线框离开磁场时做加速运动,D 错误.5.如图8所示,水平放置的足够长的平行金属导轨MN 、PQ 的一端接有电阻R 0,不计电阻的导体棒ab 静置在导轨的左端MP 处,并与MN 垂直.以导轨PQ 的左端为坐标原点O ,建立直角坐标系xOy ,Ox 轴沿PQ 方向.每根导轨单位长度的电阻为r .垂直于导轨平面的非匀强磁场磁感应强度在y 轴方向不变,在x 轴方向上的变化规律为:B =B 0+kx ,并且x ≥0.现在导体棒中点施加一垂直于棒的水平拉力F ,使导体棒由静止开始向右做匀加速直线运动,加速度大小为a .设导体棒的质量为m ,两导轨间距为L .不计导体棒与导轨间的摩擦,导体棒与导轨接触良好,不计其余部分的电阻.图8(1)请通过分析推导出水平拉力F 的大小随横坐标x 变化的关系式;(2)如果已知导体棒从x =0运动到x =x 0的过程中,力F 做的功为W ,求此过程回路中产生的焦耳热Q ;(3)若B 0=0.1 T ,k =0.2 T/m ,R 0=0.1 Ω,r =0.1 Ω/m ,L =0.5 m ,a =4 m/s 2,求导体棒从x =0运动到x =1 m 的过程中,通过电阻R 0的电荷量q .答案 (1)F =ma +B 0+kx 2L 22ax R 0+2rx(2)W -max 0(3)0.5 C解析 (1)设导体棒运动到坐标为x 处的速度为v ,由法拉第感应定律得产生的感应电动势为:E =BLv ①由闭合电路欧姆定律得回路中的电流为:I =BLv R 0+2rx②由于棒做匀加速度直线运动,所以有:v =2ax ③ 此时棒受到的安培力:F A =BIL ④ 由牛顿第二定律得:F -F A =ma⑤由①②③④⑤联立解得:F =ma +B 0+kx 2L 22ax R 0+2rx(2)设导体棒在x =x 0处的动能为E k ,则由动能定理得:E k =max 0⑥由能量守恒与转化定律得:W =Q +E k⑦将⑥式代入⑦式解得:Q =W -max 0 (3)由①②两式得:I =B 0+kx LvR 0+2rx⑧ 因为v =at ,将题中所给的数值代入⑧式得:I =2t (A)⑨可知回路中的电流与时间成正比,所以在0~t 时间内,通过R 0的电荷量为:q =I2t =t 2 (C)由匀加速直线运动规律得:t =2xa当x =1 m 时,有q =2xa=0.5 C1.明确安培力做的功是电能和其他形式的能之间相互转化的“桥梁”,用框图表示如下: 电能W 安>0W 安<0其他形式的能2.明确功能关系,确定有哪些形式的能量发生了转化.如有摩擦力做功,必有内能产生;有重力做功,重力势能必然发生变化;安培力做负功,必然有其他形式的能转化为电能.3.根据不同物理情景选择动能定理、能量守恒定律或功能关系列方程求解问题.考题4 综合应用动力学观点和能量观点分析电磁感应问题例4 (20分)如图9甲所示,MN 、PQ 是相距d =1 m 的足够长平行光滑金属导轨,导轨平面与水平面成某一夹角,导轨电阻不计;长也为1 m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,ab 的质量m =0.1 kg 、电阻R =1 Ω;MN 、PQ 的上端连接右侧电路,电路中R 2为一电阻箱;已知灯泡电阻R L =3 Ω,定值电阻R 1=7 Ω,调节电阻箱使R 2=6 Ω,重力加速度g =10 m/s 2.现断开开关S ,在t =0时刻由静止释放ab ,在t =0.5 s 时刻闭合S ,同时加上分布于整个导轨所在区域的匀强磁场,磁场方向垂直于导轨平面斜向上;图乙所示为ab 的速度随时间变化图象.图9(1)求斜面倾角α及磁感应强度B 的大小;(2)ab 由静止下滑s =50 m(此前已达到最大速度)的过程中,求整个电路产生的电热; (3)若只改变电阻箱R 2的值.当R 2为何值时,ab 匀速下滑中R 2消耗的功率最大?消耗的最大功率为多少?解析 (1)S 断开时,ab 做匀加速直线运动,从图乙得a =Δv Δt=6 m/s2(1分)由牛顿第二定律有mg sin α=ma , (1分) 所以有sin α=35,即α=37°,(1分)t =0.5 s 时,S 闭合且加了磁场,分析可知,此后ab 将先做加速度减小的加速运动,当速度达到最大(v m =6 m/s)后接着做匀速运动. 匀速运动时,由平衡条件知mg sin α=F 安, (1分) 又F 安=BId I =Bdv mR 总(1分) R 总=R +R 1+R L R 2R L +R 2=10 Ω(1分) 联立以上四式有mg sin α=B 2d 2v mR 总(2分) 代入数据解得B = mg sin αR 总d 2v m=1 T(1分)(2)由能量转化关系有mg sin αs =12mv 2m +Q(2分) 代入数据解得Q =mg sin αs -12mv 2m =28.2 J(1分)(3)改变电阻箱R 2的值后,ab 匀速下滑时有mg sin α=BdI(1分)所以I =mg sin αBd=0.6 A(1分) 通过R 2的电流为I 2=R LR L +R 2I(1分) R 2的功率为P =I 22R 2(1分) 联立以上三式可得P =I 2R 2L R 2R L +R 22=I2R2L R LR 2+R 22(1分) 当R LR 2=R 2时,即R 2=R L =3 Ω,功率最大, (1分) 所以P m =0.27 W .(2分)答案 (1)37° 1 T (2)28.2 J (3)3 Ω 0.27 W(2014·安徽·23)(16分)如图10甲所示,匀强磁场的磁感应强度B 为0.5 T ,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“∧”形状的光滑金属导轨MPN (电阻忽略不计),MP 和NP 长度均为2.5 m ,MN 连线水平,长为3 m .以MN 中点O 为原点、OP 为x 轴建立一维坐标系Ox .一根粗细均匀的金属杆CD ,长度d 为3 m 、质量m 为1 kg 、电阻R 为0.3 Ω,在拉力F 的作用下,从MN 处以恒定速度v =1 m/s 在导轨上沿x 轴正向运动(金属杆与导轨接触良好).g 取10 m/s 2.图10(1)求金属杆CD 运动过程中产生的感应电动势E 及运动到x =0.8 m 处电势差U CD ; (2)推导金属杆CD 从MN 处运动到P 点过程中拉力F 与位置坐标x 的关系式,并在图乙中画出F -x 关系图像;(3)求金属杆CD 从MN 处运动到P 点的全过程产生的焦耳热. 答案 (1)1.5 V -0.6 V(2)F =12.5-3.75x (0≤x ≤2) 见解析图 (3)7.5 J解析 (1)金属杆CD 在匀速运动中产生的感应电动势E =Blv (l =d ) E =1.5 V(D 点电势高)当x =0.8 m 时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l 外,则 l 外=d -OP -x OPd OP = MP 2-MN 22=2 m得l 外=1.2 m 由楞次定律判断D 点电势高,故C 、D 两端电势差U CD =-Bl 外v =-0.6 V.(2)杆在导轨间的长度l 与位置x 的关系是l =OP -x OP d =3-32x 对应的电阻R 1=l d R 电流I =Blv R 1杆受的安培力为F 安=BIl =7.5-3.75x根据平衡条件得F =F 安+mg sin θF =12.5-3.75x (0≤x ≤2)画出的F -x 图象如图所示.(3)外力F 所做的功W F 等于F -x 图线下所围的面积.即W F =5+12.52×2 J=17.5 J 而杆的重力势能增加量ΔE p =mgOP sin θ故全过程产生的焦耳热Q =W F -ΔE p =7.5 J.知识专题练 训练10题组1 楞次定律和电磁感应图象问题1.(单选)法拉第发明了世界上第一台发电机——法拉第圆盘发电机.如图1所示,紫铜做的圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固定一个摇柄,边缘和圆心处各与一个黄铜电刷紧贴,用导线将电刷与电流表连接起来形成回路.转动摇柄,使圆盘逆时针匀速转动,电流表的指针发生偏转.下列说法正确的是( )图1A .回路中电流大小变化,方向不变B .回路中电流大小不变,方向变化C .回路中电流的大小和方向都周期性变化D .回路中电流方向不变,从b 导线流进电流表答案 D解析 铜盘转动产生的感应电动势为:E =12BL 2ω,B 、L 、ω不变,E 不变,电流:I =E R =BL 2ω2R,电流大小恒定不变,由右手定则可知,回路中电流方向不变,从b 导线流进电流表,故A 、B 、C 错误,D 正确.2.(双选)如图2所示,虚线右侧存在匀强磁场,磁场方向垂直纸面向外,正方形金属框电阻为R ,边长是L ,自线框从左边界进入磁场时开始计时,在外力作用下由静止开始,以垂直于磁场边界的恒定加速度a 进入磁场区域,t 1时刻线框全部进入磁场.若外力大小为F ,线框中电功率的瞬时值为P ,线框磁通量的变化率为ΔΦΔt,通过导体横截面的电荷量为q ,(其中P —t 图象为抛物线)则这些量随时间变化的关系正确的是( )图2答案 BD解析 线框做匀加速运动,其速度v =at ,感应电动势E =BLv 线框进入磁场过程中受到的安培力F 安=BIL =B 2L 2v R =B 2L 2at R 由牛顿第二定律得:F -B 2L 2at R =ma 则F =ma +B 2L 2a R t ,故A 错误; 感应电流I =E R =BLat R 线框的电功率P =I 2R =BLa 2R t 2,故B 正确; 线框的位移s =12at 2,ΔΦΔt =B ·ΔS Δt =B ·L ·12at 2t =12BLat ,故C 错误; 电荷量q =I Δt =E R ·Δt =ΔΦΔt R ·Δt =ΔΦR =BLs R =BL ·12at 2R =BLa 2Rt 2,故D 正确. 题组2 电磁感应中动力学问题3.(双选)如图3所示,两根足够长的平行金属导轨倾斜放置,导轨下端接有定值电阻R ,匀强磁场方向垂直导轨平面向上.现给金属棒ab 一平行于导轨的初速度v ,使金属棒保持与导轨垂直并沿导轨向上运动,经过一段时间金属棒又回到原位置.不计导轨和金属棒的电阻,在这一过程中,下列说法正确的是( )图3A .金属棒上滑时棒中的电流方向由b 到aB .金属棒回到原位置时速度大小仍为vC .金属棒上滑阶段和下滑阶段的最大加速度大小相等D .金属棒上滑阶段和下滑阶段通过棒中的电荷量相等答案 AD解析 金属棒上滑时,根据右手定则判断可知金属棒中感应电流的方向由b 到a ,故A 正确.金属棒运动过程中产生感应电流,受到安培力作用,根据楞次定律可知安培力总是阻碍金属棒相对于导轨运动,所以金属棒的机械能不断减小,则金属棒回到原位置时速度大小必小于v ,故B 错误.根据牛顿第二定律得:对于上滑过程:mg sin θ+F 安=ma 上;对于下滑过程:mg sin θ-F 安′=ma 下.可知:a 上>a 下,故C 错误.金属棒上滑阶段和下滑阶段中回路磁通量的变化量相等,根据q =ΔΦR可知通过金属棒的电荷量相等,故D 正确. 4.如图4所示,螺线管横截面积为S ,线圈匝数为N ,电阻为R 1,管内有水平向右的磁场,磁感应强度为B .螺线管与足够长的平行金属导轨MN 、PQ 相连并固定在同一平面内,与水平面的夹角为θ,两导轨间距为L .导轨电阻忽略不计.导轨处于垂直斜面向上、磁感应强度为B 0的匀强磁场中.金属杆ab 垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动.已知金属杆ab 的质量为m ,电阻为R 2,重力加速度为g .忽略螺线管磁场对金属杆ab 的影响,忽略空气阻力.图4(1)螺线管内方向向右的磁场B 不变,当ab 杆下滑的速度为v 时,求通过ab 杆的电流的大小和方向;(2)当ab 杆下滑的速度为v 时,螺线管内方向向右的磁场才开始变化,其变化率ΔB Δt=k (k >0).讨论ab 杆加速度的方向与k 的取值的关系.答案 (1)B 0Lv R 1+R 2,方向为b →a (2)k <B 20L 2v -mg R 1+R 2θB 0LNS ,加速度方向向上;k >B 20L 2v -mg R 1+R 2θB 0LNS ,加速度方向向下解析 (1)切割磁感线产生的感应电动势E 1=B 0Lv则电流的大小I =E 1R 1+R 2=B 0Lv R 1+R 2根据右手定则知,通过ab 的电流方向为b →a .(2)根据法拉第电磁感应定律得,螺线管中磁场变化产生的感应电动势E 2=N ΔBS Δt=kNS 产生的感应电动势方向与ab 切割产生的感应电动势方向相反.则感应电流的大小I =E 1-E 2R 1+R 2 当mg sin θ<B 0IL =B 0L B 0Lv -kNS R 1+R 2时,加速度方向向上. 即k <B 20L 2v -mg R 1+R 2θB 0LNS ,加速度方向向上. 当mg sin θ>B 0IL =B 0L B 0Lv -kNS R 1+R 2时,加速度方向向下. 即k >B 20L 2v -mg R 1+R 2θB 0LNS ,加速度方向向下 题组3 电磁感应中能量问题5.(双选)如图5所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L .一个质量为m 、边长也为L 的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行.t =0时刻导线框的上边恰好与磁场的下边界重合(图中位置Ⅰ),导线框的速度为v 0.经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零.此后,导线框下落,经过一段时间回到初始位置Ⅰ(不计空气阻力),则( )图5A .上升过程中合力做的功与下降过程中合力做的功相等B .上升过程中线框产生的热量比下降过程中线框产生的热量多C .上升过程中,导线框的加速度逐渐减小D .上升过程克服重力做功的平均功率小于下降过程重力的平均功率答案 BC解析 线框在运动过程中要克服安培力做功,消耗机械能,故返回原位置时速率减小,由动能定理可知,上升过程动能变化量大,合力做功多,所以选项A 错误;分析线框的运动过程可知,在任一位置,上升过程的安培力大于下降过程中的安培力,而上升、下降位移相等,故上升过程克服安培力做功大于下降过程中克服安培力做的功,故上升过程中线框产生的热量多,所以选项B 正确;以线框为对象分析受力可知,在上升过程做减速运动,有F 安+mg=ma ,F 安=B 2L 2v R ,故有a =g +B 2L 2mRv ,所以上升过程中,速度减小,加速度也减小,故选项C 正确;在下降过程中的加速度小于上升过程的加速度,而上升、下降的位移相等,故可知上升时间较短,下降时间较长,两过程中重力做功大小相同,由功率公式可知,上升过程克服重力做功的平均功率大于下降过程重力做的平均功率,所以选项D 错误.6.(2014·新课标Ⅱ·25)半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图6所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g .求:图6(1)通过电阻R 的感应电流的方向和大小;(2)外力的功率.答案 (1)方向为C →D 大小为3B ωr 22R (2)9B 2ω2r 44R +3μmg ωr 2解析 (1)根据右手定则,得导体棒AB 上的电流方向为B →A ,故电阻R 上的电流方向为C →D . 设导体棒AB 中点的速度为v ,则v =v A +v B 2 而v A =ωr ,v B =2ωr根据法拉第电磁感应定律,导体棒AB 上产生的感应电动势E =Brv根据闭合电路欧姆定律得I =E R ,联立以上各式解得通过电阻R 的感应电流的大小为I =3B ωr 22R. (2)根据能量守恒定律,外力的功率P 等于安培力与摩擦力的功率之和,即P =BIrv +fv ,而f =μmg解得P =9B 2ω2r 44R +3μmg ωr 2.。

相关文档
最新文档