Eviews面板数据之固定效应模型[精品文档]
固定效应变截距模型eviews
《固定效应变截距模型eviews》在统计学中,固定效应变截距模型是一种多元回归分析方法,通常用于研究面板数据中的固定效应和变截距。
而EViews作为一款强大的计量经济学软件,可以帮助研究者进行各种计量分析,包括固定效应变截距模型的估计和推断。
在本文中,我们将深入探讨固定效应变截距模型在EViews中的应用,以及个人对这一主题的理解和观点。
一、固定效应变截距模型的基本概念1.1 什么是固定效应变截距模型固定效应变截距模型是一种用于分析面板数据的统计模型,它包括了固定效应和变截距。
固定效应指的是个体特定的不变因素,而变截距则是个体特定的斜率。
这种模型能够更准确地捕捉面板数据中个体间的差异,因此在实证研究中得到了广泛的应用。
1.2 模型的基本假设在使用固定效应变截距模型进行分析时,需要满足一些基本假设,比如个体效应与解释变量之间不能存在内生性,个体效应是固定的等等。
只有在这些基本假设成立的情况下,才能够对模型进行有效的估计和推断。
二、EViews中固定效应变截距模型的应用2.1 数据准备在EViews中进行固定效应变截距模型分析之前,首先需要对面板数据进行准备。
这包括导入数据、设定面板数据格式、检查面板数据的平稳性和异方差性等步骤。
2.2 模型估计通过EViews的面板数据估计功能,可以轻松地对固定效应变截距模型进行估计。
在进行模型估计时,需要设定固定效应和变截距,并进行相应的推断。
2.3 结果解读EViews将模型估计的结果以表格和图形的形式呈现出来,研究者可以通过这些结果来判断模型的拟合程度和各个变量的显著性。
EViews还提供了对估计结果进行进一步分析的功能,比如残差分析、模型诊断等。
三、个人观点和理解作为一名计量经济学研究者,我深刻理解固定效应变截距模型在面板数据分析中的重要性。
这种模型能够更好地控制面板数据中的个体特异性,提高了分析的准确性和可信度。
而EViews作为一款优秀的计量经济学软件,为研究者提供了便捷、高效的分析工具,使得固定效应变截距模型的应用变得更加简单和灵活。
固定效应面板数据模型
1
yit ixit it
T阶
e
1
1
T
1
向量 yi eiXii
(T×n)
阶向量
y[d1,d2,
,dn,X]
yD X
[d1, d2,
e 0
,
dn
]
0
e
可编辑课件PPT
0 0
0 0
enT30n
• 该模型通常被称为最小二乘虚拟变量(LSDV)模型。
– 如果n充分小,此模型可以当作具有(n+K)个参数的多 元回归,参数可由普通最小二乘进行估计。
可编辑课件PPT
16
• 模型6:截面个体和时点变截距模型。
Y itit X itβ it i 1,,n t 1,,T
该模型表示,在横截面个体之间,存在个体影响,同时 在不同的时点之间,存在个体影响,但是不存在变化的 经济结构,因而结构参数在不同横截面个体上是相同的。
这是一类在实际应用中常见的模型。从应用的角度,人们 希望既控制截面个体影响,也控制时点影响,然后求得平 均意义上的不变的结构参数。
该模型的估计方法与模型2并无大的差别。
可编辑课件PPT
17
三、经典面板数据模型的设定检验
可编辑课件PPT
18
1、模型设定检验的目的
• 采用Panel Data
– 由于可以构造比单独采用横截面数据或时间序列数据 更现实的结构模型,计量经济学的经验研究大大地丰 富了。
– 但Panel Data包括两维的数据(横截面和时间),如果模 型设定不正确,将造成较大的偏差,估计结果与实际 将相差甚远。
可编辑课件PPT
25
3、说明
• 存在问题
– Panel Data模型的设定检验是建立Panel Data应用模 型的第一步和不可缺少的步骤,但是在实际应用研究 中,研究者经常根据研究目的的需要设定模型类型, 这是目前Panel Data模型应用研究中存在的一个突出 问题。
Eviews面板数据之固定效应模型
Eviews 面板数据之固定效应模型在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是相同的,则称此模型为固定效应模型。
固定效应模型分为三类:1.个体固定效应模型个体固定效应模型是对于不同的纵剖面时间序列(个体)只有截距项不同的模型:2Kit i k kit it k y x u λβ==++∑ (1)从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是相同的,而且除模型的解释变量之外,影响被解释变量的其他所有(未包括在回归模型或不可观测的)确定性变量的效应只是随个体变化而不随时间变化时。
检验:采用无约束模型和有约束模型的回归残差平方和之比构造F 统计量,以检验设定个体固定效应模型的合理性。
F 模型的零假设:01231:0N H λλλλ-===⋅⋅⋅==()1(1,(1)1)(1)RRSS URSS N F F N N T K URSSNT N K --=---+--+RRSS 是有约束模型(即混合数据回归模型)的残差平方和,URSS 是无约束模型ANCOVA 估计的残差平方和或者LSDV 估计的残差平方和。
实践:一、数据:已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp ,不变价格)和人均收入(ip ,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。
年人均消费(consume)和人均收入(income)数据以及消费者价格指数(p)分别见表1,2和3。
表1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据表2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据表3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109.9 101.3 100 97.8 100.7 100.5 99 PBJ 111.6 105.3 102.4 100.6 103.5 103.1 98.2 PFJ 105.9 101.7 99.7 99.1 102.1 98.7 99.5 PHB 107.1 103.5 98.4 98.1 99.7 100.5 99 PHLJ 107.1 104.4 100.4 96.8 98.3 100.8 99.3 PJL 107.2 103.7 99.2 98 98.6 101.3 99.5 PJS 109.3 101.7 99.4 98.7 100.1 100.8 99.2 PJX 108.4 102 101 98.6 100.3 99.5 100.1 PLN 107.9 103.1 99.3 98.6 99.9 100 98.9 PNMG 107.6 104.5 99.3 99.8 101.3 100.6 100.2 PSD 109.6 102.8 99.4 99.3 100.2 101.8 99.3 PSH 109.2 102.8 100 101.5 102.5 100 100.5 PSX 107.9 103.1 98.6 99.6 103.9 99.8 98.4 PTJ 109 103.1 99.5 98.9 99.6 101.2 99.6 PZJ 107.9 102.8 99.7 98.8 101 99.8 99.1二、1.输入操作:步骤:(1)File——New——Workfile步骤:(2)Start date——End date——OK步骤:(3)Object——New Object步骤:(4)Type of object——Pool步骤:(5)输入所有序列名称步骤:(6)定义各变量点击sheet—输入consume?income?p?步骤:(7)将表1、2、3中的数据复制到Eviews中2.估计操作:步骤:(1)点击poolmodel——Estimate对话框说明Dependent variable:被解释变量;Common:系数相同部分Cross-section specific:截面系数不同部分步骤:(2)将截距项选择区选Fixed effects(固定效应)Cross-section:Fixed得到如下输出结果:接下来用F 统计量检验是应该建立混合回归模型,还是个体固定效应回归模型。
EViews_6[1].0_beta面板数据模型估计,详细!
EViews 6.0 beta在面板数据模型估计中的应用来自免费的minixi1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯2、建立面板数据工作文件workfile(1)最好不要选择EViews默认的blanaced panel 类型Moren_panel(2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件3、建立pool对象(1)新建对象(2)选择新建对象类型并命名(3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。
,建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图关闭建立的pool对象,它就出现在当前工作文件中。
4、在pool对象中建立面板数据序列双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表)在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。
例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。
请看工作文件窗口中的序列名。
展开表(类似excel)中等待你输入、贴入数据。
(1)打开编辑(edit)窗口(2)贴入数据(3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验选择单位根检验设置单位根检验单位根检验结果注意检验方法和两种检验的零假设:Null: Unit root (assumes common unit root process)各截面有相同的单位根Null: Unit root (assumes individual unit root process)允许各截面有不同单位根其中,Levin, Lin & Chu t*检验拒绝含有单位根的零假设,即拒绝非平稳7、在pool窗口对面板数据组合进行协整检验选择进行协整检验协整检验设置对话框,注意有3种检验方法(test type)协整检验结果,同样要注意两种假定(含有AR,即含有单位根,非协整),两种零假设都是非协整,小概率事件发生拒绝非协整。
EVIEWS面板数据分析操作教程及实例解析
模型选择对分析结果影响
模型适用性
根据研究目的和数据特征选择合 适的面板数据模型,如固定效应 模型、随机效应模型等。
模型假设
确保所选模型满足基本假设,如 线性关系、误差项独立同分布等 ,否则可能导致结果不准确。
模型比较与选择
通过比较不同模型的拟合优度、 参数显著性等指标,选择最优模 型进行分析。
操作规范性与结果可靠性保障措施
操作步骤规范
结果验证与解读
对分析结果进行验证,确保结果的合理性和准确性 ;同时,正确解读分析结果,避免误导读者。
严格按照EVIEWS软件的操作步骤进行分析 ,避免操作失误或遗漏关键步骤。
数据分析报告
编写详细的数据分析报告,包括数据来源、 处理方法、模型选择、分析结果及解读等, 以便读者全面了解分析过程。
方和来估计模型参数。
广义最小二乘法(GLS)
02
当存在异方差性或自相关性时,采用广义最小二乘法进行参数
估计,以提高估计效率。
最大似然法(ML)
03
适用于随机效应模型等复杂面板数据模型,通过最大化似然函
数来估计模型参数。
模型诊断与检验
残差分析
检查残差是否满足独立同分布等假设条件, 以评估模型的拟合效果。
07 EVIEWS面板数 据分析操作注意 事项
数据质量对分析结果影响
数据来源
确保数据来自可靠、权威的来源,避免使用不准确或存在偏见的数 据。
数据完整性
检查数据是否存在缺失值、异常值或重复值,这些问题可能导致分 析结果失真。
数据处理
对数据进行适当的预处理,如清洗、转换和标准化,以提高数据质量 和一致性。
增强了解决实际问题的能力
通过实例解析和操作演示,学员们学会了如何运用所学知识解决实际问题,提高了分析 问题和解决问题的能力。
Eviews面板数据模型估计
4361.555
3890.580 4077.961 5317.862 3612.722 4360.420 3877.345 5011.976 8651.893 3793.908 6145.622
4457.463
4159.087 4281.560 5488.829 3914.080 4654.420 4170.596 5159.538 9336.100 4131.273 6904.368
4571.439 6624.316 4787.606 4968.164 4780.090
4997.843
4878.296 6793.437 5088.315 5363.153 5063.228
5382.808
5271.925 7316.567 5533.688 5797.010 5502.873
6143.565
建立好Pool对象以后,选择View/Spreadsheet (stacked data),EViews会要求输入序列名列表。
大多数情况下,不同截面成员的数据从上到下依次堆积,每一 列代表一个变量,每一列内数据都是按年排列的。如果数据按年排 列,要确保各年内截面成员的排列顺序要一致。
生成新的序列
• 打开原始pool数据,点击工具栏中的poolgenr键,在 弹出的对话框中输入要生成的公式,如: cp?=consume?/p?,ip?=income?/p?
4.如何估计Pool方程
单击Pool工具栏的Estimate选项打开如下对话框:
(1)因变量 在因变量对话框中输入Pool变量或Pool变量表达式。 (2)估计方法 Fixed and Random下: Cross-secti(个体效应)有三个选项,分别表示无、固定和随机个 体效应。 Period(时点效应)有三个选项,分别表示无、有固定和有随机时 点效应。 Weights有五个选项,分别表示无加权、个体的GLS法、个体SUR法、 时点GLS法和时点SUR法。 (3)估计设置 Method有两个选项:LS和TSLS Sample为样本区间。
Eviews面板数据之固定效应模型
Eviews 面板数据之固定效应模型在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是一样的,则称此模型为固定效应模型。
固定效应模型分为三类:1.个体固定效应模型个体固定效应模型是对于不同的纵剖面时间序列〔个体〕只有截距项不同的模型:2Kit i k kit it k y x u λβ==++∑(1)从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是一样的,而且除模型的解释变量之外,影响被解释变量的其他所有〔未包括在回归模型或不可观测的〕确定性变量的效应只是随个体变化而不随时间变化时。
检验:采用无约束模型和有约束模型的回归残差平方和之比构造F 统计量,以检验设定个体固定效应模型的合理性。
F 模型的零假设:RRSS 是有约束模型〔即混合数据回归模型〕的残差平方和,URSS 是无约束模型ANCOVA 估计的残差平方和或者LSDV 估计的残差平方和。
实践:一、数据:1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费〔cp ,不变价格〕和人均收入〔ip ,不变价格〕居民,利用数据〔1〕建立面板数据〔panel data 〕工作文件;〔2〕定义序列名并输入数据;〔3〕估计选择面板模型;〔4〕面板单位根检验。
年人均消费〔consume 〕和人均收入〔ine 〕数据以及消费者价格指数〔p 〕分别见表1,2和3。
表3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数步骤:〔1〕File——New——Workfile步骤:〔2〕Start date——End date——OK步骤:〔3〕Object——New Object步骤:〔4〕Type of object——Pool步骤:〔5〕输入所有序列名称步骤:〔6〕定义各变量点击sheet—输入consume?ine?p"步骤:〔7〕将表1、2、3中的数据复制到Eviews 中 2.估计操作:步骤:〔1〕点击poolmodel ——Estimate对话框说明Dependent variable:被解释变量;mon :系数一样局部 Cross-section specific:截面系数不同局部步骤:〔2〕将截距项选择区选Fi*ed effects 〔固定效应〕 Cross-section :Fi*ed 得到如下输出结果:接下来用F 统计量检验是应该建立混合回归模型,还是个体固定效应回归模型。
使用Eviews进行面板数据操作(有详图,包括Hausman检验,单位根检验)
每个个体有共
同的参数 bi
bi 随个体不
同而发生
变
变化
参
数
bi 随个体不 同而发生
模 型
变化
下面为个体固定效应的结果。 点击view——representation可以显示具体的回归方程式。
2. 面板数据的检验
① Hausman检验(要在随机效应结果窗口中进行) 对数据进行随机效应模型估计,在估计结果窗口点击view——Fixed/Random Effects testing——Correlated Random Effect-Hausman Test(6.0以上的 版本才可以)
⑤ 在打开的数据组中点击view——graph——scatter——simple scatter, 便可得到不同时间的散点图。
⑥ 同理,按ctrl键,分别选择ip_i, ip_ah,I p_bj, ip_hb…便可得到不同个体 的散点图。
由于是用同一组数据画出的图形,所以虽然采用的 是不同的方法,但是绘出的两个图形一样。
在估计结果中点击proc——Make Model可以出现估计结果的联立方 程形式,进一步点击Solve键可以 在弹出的对话框中进行动态和静态 预测。
在估计结果或原始的面包数据窗口中点击view——unit root test
这里默认为 Schwarz检 验,因为在 小样本情况 下Schwarz 检验效果最 好。
注意:只有在随机效应估计窗口中才能 进行Hausman检验,只有在固定效应估 计窗口中才能进行似然比检验
Hausman检验的原假设是个体效 应与回归变量无关,应建立随机效 应模型,因此当Hausman值较大, 其对应的P值远小于0.05时,拒绝
Eviews数据统计与分析教程12章-面板数据(Panel-Data)模型
EViews统计分析基础教程
二、Pool对象的基本操作
2.Pool对象数据的输入 (2)非堆积数据
在非堆积数据中,给定的截面数据和变量是放在一起的,但 同其他的截面成员和变量的数据是分开的。每一个截面成员 的观测值被放在一纵列中,每一列是截面成员不同时期的样 本观测值。 非堆积数据形式的导入方法与第三章所介绍的数据导入方法 相同。
EViews统计分析基础教程
二、Pool对象的基本操作
1.Pool对象的建立
在Pool对象的编辑窗口中输入截面成员的标识名称,例如做 中国省际面板数据分析时,选取中部五省份为截面成员,即 湖南、湖北、河南、江西和安徽,分布用字母HN,HB,HE, JX,AH表示。这些截面成员各名称之间可用空格隔开,也 可以通过回车键进行换行,即每一个名称占一行。需注意的 是,截面成员的标识名称的设定需简单,便于操作。通常可 以在截面成员标识名称前加下划线“_”。如下图所示。
EViews统计分析基础教程
三、Pool对象模型估计
通过Pool对象可以对固定影响、随机影响变截距模型和固定 影响变系数模型进行估计。常用的方法有最小二乘估计法、 加权最小二乘法等。
EViews统计分析基础教程
三、Pool对象模型估计
在EViews操作中,单击Pool对象工具栏中的“Estimate”或者 选择“Proc”|“Estimate”选项,将弹出下图所示的对话框。
EViews统计分析基础教程
第12章 面板数据(Panel Data)模型
重点内容: • Pool对象的建立 • Pool对象数据分析 • Pool对象模型估计
EViews统计分析基础教程
一、Panel Data模型原理
面板数据模型的基本形式是
Eviews面板数据之随机效应模型
随机(su I jT)效应模型(mox I ng)的估计(guj i)原理说明与豪斯曼检验(j i anyan)在面板数据的计量分析中,如果解释变量对被解释变量的效应不随个体和时间变化,并且解释被解释变量的信息不够完整,即解释变量中不包含一些影响被解释变量的不可观测(guance)的确定性因素,可以将模型设定为固定效应模型,采用反映个体特征或者时间特征的虚拟变量(即知随个体变化或者只随时间变化)或者分解模型的截距项来描述这些缺失的确定性信息。
但是,固定效应模型也存在一定的不足。
例如固定效应模型模型中包含许多虚拟变量时,减少了模型估计的自由度;实际应用中,固定效应模型的随机误差项难以满足模型的基本假设,易于导致参数的非有效估计。
更为重要的是,它只考虑了不完整的确定性信息对被解释变量的效应,而未包含不可观测的随机信息的效应。
为了弥补这一不足,Maddala(1971)W混合数据回归的随机误差项分解为截面随机误差分量、时间随机误差分量和个体时间随机误差分量三部份,讨论如下随机效应模型或者双分量误差分解模型(1):K坊=以十£应才収十气+与+吼(1)k=2~ 表示个体随机误差分量;耳~捍(0,仃.:)表示时间随机误差分量;■:表示个体时间(或者混合)随机误差分量。
如果模型(1)中只存在截面随机误差分量叫而不存在时间随机误差分量七,则称为个体随机效应模型,否则称为个体时间小于模型。
或者称为但分了误差分解模型。
下面来介绍这两种模型:1 .个体随机效应模型当利用面板数据研究拥有拥有充分多个体的总体经济特征时,若利用总体数据的固定效应模型就会损失巨大的自由度,使得个体截距项的估计不具有有效性。
这时,可以在总体中随机抽取N个样本,利用这N个样本的个体随机效应模型:(2)判断总体的经济规律。
其中,个体随机误差项“是属于第i个个体的随机干扰分量,并在整个时间范围(t=l,2,...,T)保持不变,其反映了不随时间变化的不可观测随机信息的效应。
面板固定效应模型的解释
面板固定效应模型的解释面板固定效应模型是一种用于分析面板数据的统计模型,其主要目的是通过控制个体固定效应和时间固定效应,去除个体和时间上的不可观测因素对变量之间关系的干扰,从而得到更加准确和稳健的估计结果。
在面板数据分析中,个体固定效应指的是不同个体之间的固定因素对变量之间关系的影响,而时间固定效应则是在不同时间点上固定的因素对变量之间关系的影响。
通过引入这些固定效应,面板固定效应模型能够更好地解释面板数据的动态变化和个体差异,从而提高了分析的有效性和可靠性。
面板数据是指在一段时间内对多个个体(例如个人、家庭、公司等)的多次观测数据的集合。
对于这种数据,传统的截面数据分析方法往往无法准确反映出个体和时间的固定特征对变量之间关系的影响,因此需要引入面板数据分析方法来解决这一问题。
面板固定效应模型正是针对面板数据而提出的一种分析方法,其基本思想是通过引入个体固定效应和时间固定效应来消除个体和时间上的不可观测因素对分析结果的影响,从而更好地研究变量之间的关系。
面板固定效应模型的基本形式可以表示为:\[ Y_{it} = \alpha + \beta X_{it} + \theta_i + \lambda_t + \varepsilon_{it} \]其中,\(Y_{it}\)表示面板数据中第i个个体在第t个时间点上的表现变量,\(X_{it}\)表示解释变量,\(\alpha\)为截距项,\(\beta\)为解释变量的系数,\(\theta_i\)为个体固定效应,\(\lambda_t\)为时间固定效应,\(\varepsilon_{it}\)为误差项。
个体固定效应\(\theta_i\)表示个体特定的不可观测因素对\(Y_{it}\)的影响,时间固定效应\(\lambda_t\)表示时间特定的不可观测因素对\(Y_{it}\)的影响。
通过控制这些固定效应,可以减少由个体和时间差异引起的干扰,得到更加稳健和准确的系数估计结果。
固定效应模型结果解读
固定效应模型结果解读固定效应模型(FixedEffectsModel)是一种常见的面板数据分析方法,它可以用于探究个体间的异质性和时间趋势对数据的影响。
本文将从固定效应模型的基本原理、模型结果解读以及应用案例三个方面进行阐述。
一、固定效应模型的基本原理固定效应模型是一种面板数据模型,其基本假设是个体效应与时间无关,且个体效应与解释变量之间不存在相关性。
换句话说,固定效应模型假设个体间的差异是固定的,不随时间变化,只有时间上的变异才会影响因变量。
因此,固定效应模型的核心是控制个体间的异质性,以便更准确地估计时间变化对因变量的影响。
固定效应模型的基本形式为:Yit = αi + β1 X1it + β2 X2it + … + βk Xkit + uit 其中,Yit表示第i个个体在第t个时间点的因变量值,αi表示第i个个体的固定效应,也就是不变的个体差异,X1it ~ Xkit为解释变量,β1 ~ βk为各解释变量的系数,uit为误差项。
为了控制个体间的异质性,固定效应模型通常采用差分(demean)方法,即对每个个体的变量值减去该个体的平均值,以消除个体间的固定效应。
因此,固定效应模型的估计方法是OLS(最小二乘法),但需要考虑个体间的聚类效应,因此需要进行异方差-稳健标准误(heteroskedasticity-robust standard errors)估计。
二、固定效应模型结果解读固定效应模型的核心是控制个体间的异质性,因此其系数解释应该是“时间变化对因变量的影响”,而不是“个体间差异对因变量的影响”。
因此,在解读固定效应模型结果时,需要关注系数的符号、大小和显著性,以及控制变量的影响。
1. 系数符号系数符号表示自变量的变化方向与因变量的变化方向是否一致。
如果系数为正,表示自变量的增加带来因变量的增加;如果系数为负,表示自变量的增加带来因变量的减少。
在探究时间变化对因变量的影响时,系数的符号应该与预期一致,即随着时间的增加,因变量的变化方向应该与系数符号一致。
eviews关于面板数据模型截距,系数,固定效应还是随机效应的选取得检验方法及具体事例
面板数据模型1.面板数据定义。
时间序列数据或截面数据都是一维数据。
例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。
面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。
面板数据是同时在时间和截面空间上取得的二维数据。
面板数据示意图见图1。
面板数据从横截面(cross section)上看,是由若干个体(entity, unit, individual)在某一时刻构成的截面观测值,从纵剖面(longitudinal section)上看是一个时间序列。
面板数据用双下标变量表示。
例如y i t, i = 1, 2, …, N; t = 1, 2, …, TN表示面板数据中含有N个个体。
T表示时间序列的最大长度。
若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。
图1 N=7,T=50的面板数据示意图例如1990-2000年30个省份的农业总产值数据。
固定在某一年份上,它是由30个农业总产总值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。
面板数据由30个个体组成。
共有330个观测值。
对于面板数据y i t, i = 1, 2, …, N; t = 1, 2, …, T来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data)。
若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。
注意:EViwes 3.1、4.1、5.0既允许用平衡面板数据也允许用非平衡面板数据估计模型。
如何进行面板数据的固定效应模型和随机效应模型估计
如何进行面板数据的固定效应模型和随机效应模型估计面板数据是在经济学和社会科学研究中广泛使用的一种数据类型。
它是通过对多个时间点上观察的个体进行观察,也就是同一组个体在不同时间上的观测。
而面板数据的固定效应模型和随机效应模型是对面板数据进行估计的常见方法。
本文将先介绍面板数据的基本概念,然后详细讲解固定效应模型和随机效应模型的估计方法。
一、面板数据的基本概念面板数据是指在一段时间内对同一组个体进行观察的数据,这些个体可以是人、家庭、企业等。
面板数据有两个维度:个体维度和时间维度。
个体维度表示观察的个体单位,时间维度表示观察的时间点。
面板数据可以帮助我们捕捉到个体之间的异质性和随时间的变化。
在经济学和社会科学研究中,面板数据可以用来研究个体间的相关性、因果效应等问题。
二、固定效应模型的估计固定效应模型是一种利用面板数据进行估计的方法。
它假设个体固定效应不随时间变化,即个体间的异质性是固定的。
固定效应模型的基本形式如下:Yit = αi + Xitβ + εit其中,Yit是个体i在时间t的观测值;αi是个体i的固定效应,表示不随时间变化的个体间差异;Xit是个体i在时间t的解释变量;β是参数向量,表示X对Y的影响;εit是个体i在时间t的误差项。
固定效应模型的估计方法有很多,常用的是最小二乘法估计。
最小二乘法的基本思想是最小化观测值与估计值之间的差异。
通过估计出固定效应模型中的参数αi和β,可以得到个体效应的估计值,从而分析不同个体之间的差异和解释变量对因变量的影响。
三、随机效应模型的估计随机效应模型是另一种常用的面板数据估计方法。
它假设个体固定效应是随机的,即个体间的异质性是随机的,并且与观测变量无关。
随机效应模型的基本形式如下:Yit = α + Xitβ + γi + εit其中,Yit是个体i在时间t的观测值;α是截距项;Xit是个体i在时间t的解释变量;β是参数向量;γi是个体i的随机效应,表示随机个体间差异;εit是个体i在时间t的误差项。
eviews面板数据回归分析步骤2篇
eviews面板数据回归分析步骤2篇eviews 面板数据回归分析步骤eviews 是一款经济学数据分析软件,非常适合进行面板数据回归分析。
本文将介绍 eviews 的面板数据回归分析步骤,以及一些常见的面板数据回归模型。
步骤一:导入数据在 eviews 中导入数据非常简单。
首先,打开 eviews软件,然后单击菜单栏中的 File(文件)并选择 Open(打开)。
在弹出的对话框中选择要导入的数据文件,并选择“workfile”作为数据格式。
在下一步中,选择“Panel Data”选项并点击“Next”。
接下来,选择数据类型和变量。
最后,选择导入数据的时间和交叉板块。
单击“Finish”完成数据导入。
步骤二:定义面板数据对象在导入数据后,需要定义面板数据对象。
在 eviews 软件中,单击“Object”并选择“New Object”选项。
在下拉菜单中选择“Panel”并单击“OK”。
在弹出的对话框中,为面板数据对象取一个名称并单击“OK”。
步骤三:运行面板数据回归模型在 eviews 中运行面板数据回归模型非常简单。
首先,单击菜单栏中的“Quick”并单击“Estimate”选项。
在出现的对话框中,选择要运行的面板数据回归模型。
例如,选择Feasible GLS(可行广义最小二乘估计)或Fixed Effects(固定效应)模型。
在下一步中,选择要运行的变量并单击“OK”。
步骤四:绘制面板数据图形在运行面板数据回归模型后,可以绘制面板数据图形。
在 eviews 中,单击“View”并选择“Graphs”选项。
在下拉菜单中选择“Panel”并单击“OK”。
接下来,在出现的对话框中选择要绘制的图形类型,例如线性图或散点图。
单击“OK”完成绘图。
常见的面板数据回归模型1. 固定效应模型固定效应模型是一种常用的面板数据回归模型,用于捕捉不同个体之间固定效应的异质性。
该模型的最基本形式为:Y i,t = α i + βX i,t + ε i,t在该公式中,Y i,t 表示第 i 个个体在时间 t 的取值,α i 是第 i 个个体的固定效应,β 是回归系数,X i,t 是解释变量,ε i,t 是误差项。
实验(十)面板数据模型 文档讲解
面板数据模型的EViews操作(EViews’ Operation of Panel data Model)Pooled Time Series, Cross-Section DataData ofen contain information on a relatively small number of cross-sectional unit observed over time. For example,you may have time series data on GDP for a number of European nations.Or perhaps you have state level data on unemployment observed over time.We term such data pooled time series,cross-section data.EViews provides a number of specialized tools to help you work with pooled data. EViews will help you manage your data,perform operations in either the the time series or the cross-section dimension,and apply estimation methods that accpunt for the pooled structure of your data. EViews Object that manages time series/cross-section data is called a pool. The experiment will describe how to set up your data to work with,and how to define and work with objects.【实验目的】掌握面板数据模型基本内容的软件操作【实验内容】面板数据模型的实验内容:建立面板数据工作文件;对面板数据的处理;面板数据模型的参数估计一、从Excel数据导入建立一个工作文件1.双击EViews标识,打开EViews主窗口;从EViews主菜单中点击File键,选择open →foreign data as Workfile→单击左键→弹出一个窗口→找到Excel数据表→点击打开→点击下一步→点击完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Eviews 面板数据之固定效应模型
在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是相同的,则称此模型为固定效应模型。
固定效应模型分为三类:
1.个体固定效应模型
个体固定效应模型是对于不同的纵剖面时间序列(个体)只有截距项不同的模型:
2
K
it i k kit it k y x u λβ==++∑ (1)
从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是相同的,而且除模型的解释变量之外,影响被解释变量的其他所有(未包括在回归模型或不可观测的)确定性变量的效应只是随个体变化而不随时间变化时。
检验:采用无约束模型和有约束模型的回归残差平方和之比构造F 统计量,以检验设定个体固定效应模型的合理性。
F 模型的零假设:
01231:0N H λλλλ-===⋅⋅⋅==
()1
(1,(1)1)(1)
RRSS URSS N F F N N T K URSS
NT N K --=
---+--+
RRSS 是有约束模型(即混合数据回归模型)的残差平方和,URSS 是无约束模型ANCOV A 估计的残差平方和或者LSDV 估计的残差平方和。
实践:
一、数据:已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp ,不变价格)和人均收入(ip ,不变价格)居民,利用数据(1)建立面板数据(panel data )工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。
年人均消费(consume )和人均收入(income )数据以及消费者价格指数(p )分别见表1,2和3。
人均消费 1996 1997 1998 1999 2000 2001 2002 CONSUMEAH 3607.43 3693.55 3777.41 3901.81 4232.98 4517.65 4736.52 CONSUMEBJ 5729.52 6531.81 6970.83 7498.48 8493.49 8922.72 10284.6 CONSUMEFJ 4248.47 4935.95 5181.45 5266.69 5638.74 6015.11 6631.68 CONSUMEHB 3424.35 4003.71 3834.43 4026.3 4348.47 4479.75 5069.28 CONSUMEHLJ 3110.92 3213.42 3303.15 3481.74 3824.44 4192.36 4462.08 CONSUMEJL 3037.32 3408.03 3449.74 3661.68 4020.87 4337.22 4973.88 CONSUMEJS 4057.5 4533.57 4889.43 5010.91 5323.18 5532.74 6042.6 CONSUMEJX 2942.11 3199.61 3266.81 3482.33 3623.56 3894.51 4549.32 CONSUMELN
3493.02
3719.91
3890.74
3989.93
4356.06
4654.42
5342.64
CONSUMENMG 2767.84 3032.3 3105.74 3468.99 3927.75 4195.62 4859.88 CONSUMESD 3770.99 4040.63 4143.96 4515.05 5022 5252.41 5596.32 CONSUMESH 6763.12 6819.94 6866.41 8247.69 8868.19 9336.1 10464 CONSUMESX 3035.59 3228.71 3267.7 3492.98 3941.87 4123.01 4710.96 CONSUMETJ 4679.61 5204.15 5471.01 5851.53 6121.04 6987.22 7191.96 CONSUMEZJ 5764.27 6170.14 6217.93 6521.54 7020.22 7952.39 8713.08
人均收入1996 1997 1998 1999 2000 2001 2002 INCOMEAH 4512.77 4599.27 4770.47 5064.6 5293.55 5668.8 6032.4 INCOMEBJ 7332.01 7813.16 8471.98 9182.76 10349.69 11577.78 12463.92 INCOMEFJ 5172.93 6143.64 6485.63 6859.81 7432.26 8313.08 9189.36 INCOMEHB 4442.81 4958.67 5084.64 5365.03 5661.16 5984.82 6679.68 INCOMEHLJ 3768.31 4090.72 4268.5 4595.14 4912.88 5425.87 6100.56 INCOMEJL 3805.53 4190.58 4206.64 4480.01 4810 5340.46 6260.16 INCOMEJS 5185.79 5765.2 6017.85 6538.2 6800.23 7375.1 8177.64 INCOMEJX 3780.2 4071.32 4251.42 4720.58 5103.58 5506.02 6335.64 INCOMELN 4207.23 4518.1 4617.24 4898.61 5357.79 5797.01 6524.52 INCOMENMG 3431.81 3944.67 4353.02 4770.53 5129.05 5535.89 6051 INCOMESD 4890.28 5190.79 5380.08 5808.96 6489.97 7101.08 7614.36 INCOMESH 8178.48 8438.89 8773.1 10931.64 11718.01 12883.46 13249.8 INCOMESX 3702.69 3989.92 4098.73 4342.61 4724.11 5391.05 6234.36 INCOMETJ 5967.71 6608.39 7110.54 7649.83 8140.5 8958.7 9337.56 INCOMEZJ 6955.79 7358.72 7836.76 8427.95 9279.16 10464.67 11715.6
表3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109.9 101.3 100 97.8 100.7 100.5 99
PBJ 111.6 105.3 102.4 100.6 103.5 103.1 98.2
PFJ 105.9 101.7 99.7 99.1 102.1 98.7 99.5 PHB 107.1 103.5 98.4 98.1 99.7 100.5 99
PHLJ 107.1 104.4 100.4 96.8 98.3 100.8 99.3
PJL 107.2 103.7 99.2 98 98.6 101.3 99.5
PJS 109.3 101.7 99.4 98.7 100.1 100.8 99.2
PJX 108.4 102 101 98.6 100.3 99.5 100.1 PLN 107.9 103.1 99.3 98.6 99.9 100 98.9 PNMG 107.6 104.5 99.3 99.8 101.3 100.6 100.2 PSD 109.6 102.8 99.4 99.3 100.2 101.8 99.3 PSH 109.2 102.8 100 101.5 102.5 100 100.5 PSX 107.9 103.1 98.6 99.6 103.9 99.8 98.4
PTJ 109 103.1 99.5 98.9 99.6 101.2 99.6
PZJ 107.9 102.8 99.7 98.8 101 99.8 99.1
二、1.输入操作:
步骤:(1)File——New——Workfile
步骤:(2)Start date——End date——OK
步骤:(3)Object——New Object
步骤:(4)Type of object——Pool
步骤:(5)输入所有序列名称
步骤:(6)定义各变量点击sheet—输入consume?income?p?
步骤:(7)将表1、2、3中的数据复制到Eviews中2.估计操作:
步骤:(1)点击poolmodel——Estimate。