2019高考逆袭系列之导数压轴题的解题技巧

合集下载

高考数学压轴题的逆袭技巧

高考数学压轴题的逆袭技巧

2019 年高考数学压轴题的逆袭技巧压轴题的基本状况:一般状况下,每个大题都有起码两个小题,而每题的最后一小题是最压轴最难的,第一小题最简单,不论压轴题多灾,第一小题一般同学都能够做出来拿到分数的,所以在应付压轴题的时候,第一小题必定要做对才有资格接着做后边的题目。

学习基础比较好的同学在最后一道压轴题的第二小题上,一般状况下能够拿到一半左右的分数。

由于压轴题很难,用时久,所以能够拿到一半的分数就算很棒了。

所以建议大家在压轴题上不要耗时太久,在不浪费整体考试时间的基础上,能拿多少分就拿多少分,强弩之末不能穿缟,考试时要恰到好处。

平常练习建议:必定要重视审题。

解题最重要的是要有条件,所以审题可否审出需要的条件是特别重要的要素。

一般一道题给出的题目中,不会实用不到的条件的,考生要相信全部条件都自实用途,不过当时你没有想到而已。

建议解答这些压轴题是,第一个要做的就是仔细审察题目,把条件排列出来,而后再依据题目选择需要的条件作答。

小诀窍——一道大题中第一题的答案是下一题的条件。

好多同学在做压轴题时都忽视了一个重要条件,就是第一小题的答案。

一般第一小题很简单,第二题很难,有的同学忽视了第一题答案能够作为下一题条件这个重要要素,所以耗时好久也解答不出来。

建议考生排列题目给出的条件时,必定要把第一小题的答案也考虑进去。

自然,不是每个压轴大题都是这样的,也有好多压轴题的不一样小题给出不一样条件,希望考生们能够依据实质状况见机而作。

平常高一高二学生练习时必定要注意方法,重视解题思路,实在解答不出来时能够参照答案或许咨询老师同学,在这上边耗资太多时间得失相当。

关于高考 (课程 )生来讲,在不到一个月的时间里最好不要把时间浪费在压轴题目上,基础稳固与考试技巧训练更为重要。

做题心态:“教书先生”唯恐是街市百姓最为熟习的一种称号,从最先的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人仰慕甚或敬畏的一种社会职业。

最近三年高考压轴题系列--导数题思路分析及考题总结

最近三年高考压轴题系列--导数题思路分析及考题总结

最近三年高考压轴题系列---导数思路分析及考题总结经历过高考的学生或者现在还在高中奋斗的学子应该都知道高考数学中有一个拦路虎般存在的难点,它就是导数,很多人可以说是谈导数色变,基本上碰见导数的题目也就是第一问简单写写然后就放弃了。

那么导数真的那么难吗?真的不可搞定吗?当然不是!!!题目之所以难,在于不可控!难在不确定!你不知道导数到底有多少种考法?多少种问法?每一种是怎么回事?有几种方法?每一种的方法是什么?方法之间的区别是什么?在短时间内该怎么去甄别用那种方法?这些问题你都不知道,你当然会恐惧。

那么接下来这个问题老秦帮你解决!下面是我总结导数在文科和理科层面上的考点及模型。

如下图!这个是文科的,内容相对简单!下面是理科的后续小编会逐一为大家分享,敬请期待!今天咱们先来谈一谈高考中考的最多的一种-----参数取值范围类问题!这类问题主要有下面四种方法。

第一:数形结合法------直线+曲线(例题:2019年新课标Ⅰ)这类方法核心,曲线中不含参数,参数在直线上,且直线过定点!第二:变换主元法(例题:2018年新课标Ⅰ)这类方法核心,主要在于多个参数,其中一个参数的范围确定,且单调性易求,简单而言,谁有范围,谁为自变量,求谁,谁为参数!第三:含参分类讨论法(例题:2017年新课标Ⅰ)这类方法核心,主要在于无法分离参数,且整体单调性讨论起来比较容易分类!第四:分离参数法----隐零点问题(例题:2019年郑州三模)这类方法核心,参数易分离,且分离后单调性讨论起来不难,而且导函数零点要么可以搞定,要么出现隐零点!2019年新课标Ⅰ文科------数形结合法(直线+曲线)已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.解:(1)证明:∵f(x)=2sin x﹣x cos x﹣x,∴f′(x)=2cos x﹣cos x+x sin x﹣1=cos x+x sin x﹣1,令g(x)=cos x+x sin x﹣1,则g′(x)=﹣sin x+sin x+x cos x=x cos x,当x∈(0,)时,x cos x>0,当x时,x cos x<0,∴当x=时,极大值为g()=>0,又g(0)=0,g(π)=﹣2,∴g(x)在(0,π)上有唯一零点,即f′(x)在(0,π)上有唯一零点;(2)由(1)知,f′(x)在(0,π)上有唯一零点x0,使得f′(x0)=0,且f′(x)在(0,x0)为正,在(x0,π)为负,∴f(x)在[0,x0]递增,在[x0,π]递减,结合f(0)=0,f(π)=0,可知f(x)在[0,π]上非负,令h(x)=ax,∵f(x)≥h(x),根据f(x)和h(x)的图象可知,∴a≤0,∴a的取值范围是(﹣∞,0].2018年新课标Ⅰ文科----变换主元法已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x﹣,∵x=2是f(x)的极值点,∴f′(2)=ae2﹣=0,解得a=,∴f(x)=e x﹣lnx﹣1,∴f′(x)=,当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,则﹣,由﹣=0,得x=1,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a≥时,f(x)≥0.2017年新课标Ⅰ文科----含参讨论法已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得:f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]2019年郑州三模------分离参数法(隐零点问题)设函数f(x)=ae x﹣x,g(x)=blnx.(Ⅰ)设h(x)=f(x)+g(x),函数h(x)在(1,h(1))处切线方程为y=2x﹣1,求a,b的值;(Ⅱ)若a=1,k为整数,当x>0时,(x﹣k)f'(x)+x+1>0成立,求k的最大值.解:(Ⅰ)h(x)=f(x)+g(x)=ae x+blnx﹣x,,由题意可知,解得,b=1;(Ⅱ)当x>0时,(x﹣k)f'(x)+x+1>0等价于.设,则,令R(x)=e x﹣x﹣2,则R'(x)=e x﹣1.当x>0时,R'(x)>0恒成立,R(x)在(0,+∞)上单调递增,又R(1)<0,R(2)>0,∴R(x)在(0,+∞)上有唯一零点x0,且x0∈(1,2),.∴F(x)单减区间为(0,x0),单增区间为(x0,+∞),∴F(x)在(0,+∞)的最小值为.∴k<F(x0),故k max=2.看完以后大家发现,其实各种方法也许都能搞定,但是区别在于是否能够在短时间内搞定,所以我经常和学生说,导数难的不是方法,而是对方法的选择,尤其是短时间内找到合适的方法。

高考导数压轴题终极解答

高考导数压轴题终极解答
导数压轴题
2019-3-16
2019-3-16
1பைடு நூலகம்
导数单调性、极值、最值的直接应用
1.(切线)设函数 f ( x) x 2 a . (1)当 a 1 时,求函数 g ( x) xf ( x) 在区间 [0,1] 上的最小值; (2) 当 a 0 时,曲线 y f ( x) 在点 P( x1 , f ( x1 ))( x1 a ) 处的切线为 l ,
24.已知函数 f x x ax bx c 在 ,0 上是减函数,在 0,1 上是增函数,函数
3 2
f x 在 R 上有三个零点.求 b 的值; 若1是其中一个零点,求 f 2 的取值范围;

a 1,g x f ' x 3x 2 ln x
2 3 x 10.设 x 3 是函数 f x x ax b e , x R 的一个极值点.求 a 与 b 的关系式(用 a


2 25 x f x a 0, g x a e ,若存在 1 , 2 0, 4 ,使 表示 b ) ,并求 的单调区间;设 4
单调区间;若存在属于区间
1,3 的 ,
f f ,且 ≥ 1 ,使 ,证明:
ln 3 ln 2 ln 2 ≤a≤ 5 3 .
2019/3/17
10
19.(恒成立,直接利用最值)已知函数 f ( x) ln(ax 1) x 2 ax, a 0 ,
1 9 ) m ln x ( m R , x 0 ) . 2 8
x1,x2 [1, m] , 恒 有 ( Ⅲ ) 设 1 m e , H ( x) f ( x) ( m 1) x , 求 证 : 对 于 | H ( x1 ) H ( x2 ) | 1 .

如何轻而易举拿下高考导数压轴题

如何轻而易举拿下高考导数压轴题

如何轻而易举拿下高考导数压轴题现在高考真题中,越来越多的涉及到高等数学的内容,往往越是中学数学里牵涉到高等数学的内容都会成为命题老师的重点考点。

高考导数往往会是众多考生面前的拦路虎,很多学生遇到导数简直就是不知所措,今天我给大家介绍一种方法,可以轻而易举解决这类答题!首先我给大家介绍几个高等数学里重要的定理,做一下知识铺垫。

(等大家上大学了,你们大一就会学习高等数学,我下面所讲的你们到时候就很清楚了)这里,我们重点讲解前两个中值定理,毕竟与我们高考学习还是有点关系的。

一、罗尔定理我们在讲导数的时候,这个是很容易证明和理解的。

二、拉格朗日中值定理三、柯西中值定理四、洛必达法则注意:①只有当分子或者分母都是趋于零或者趋于无穷大的时候,我们才可以使用洛必达法则,连续多次使用洛必达法则,一定要检查是否在使用的时候满足条件定理;②五、泰勒展开式好了,以上就是我给大家整理的知识点了。

大家还记得上次哈三中老师给我们发的总结吗?今天我给大家展示一下,以下所有的题目都可以很容易很轻松的利用上述方法一一解决!(可能有点不清楚哈,不过标题大家应该可以看得清楚)历年高考导数压轴题集锦2006年全国卷2理科试题2006年全国卷1理科试题2007年全国卷1理科试题2008年全国卷2理科试题2008年辽宁卷理科试题2010年新课标理科试题2010年新课标文科试题2010年全国大纲理科试题2011年新课标理科试题这些题目大家熟练运用我上述提供的方法的话,很轻松都可以做出来。

但是有一个问题大家需要重视并且知道,目前我们高中数学压根儿就没有上述我讲的那些知识点,那该怎么办呢?好了,留个悬念,这部分内容我会放在我的课堂里进行讲解的,大家感兴趣的话可以自行多多思考!。

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法总结很全.
方法 3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。
注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max

高考数学压轴题的答题技巧

高考数学压轴题的答题技巧

2019年高考数学压轴题的答题技巧首先同学们要正确相识压轴题压轴题主要出在函数,解几,数列三部分内容,一般有三小题。

记住:第一小题是简单题!争取做对!其次小题是中难题,争取拿分!第三小题是整张试卷中难的题目!也争取拿分!其实对于全部仔细复习迎考的同学来说,都有实力与实力在压轴题上拿到一半左右的分数,要获得这一半左右的分数,不须要大量针对性训练,也不须要困难艰深的思索,只须要你有正确的心态!信念很重要,志气不行少。

同学们记住:心理素养高者胜! 其次重要心态:千万不要分心其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。

高考时,你是不行能这么想的。

你可以回顾高三以往考试,问一下自己:在做后一道题目的时候,你有没有想“后一道题目难不难?不知道能不能做出来”“我要不要赶快看看后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会马虎错”……这就是影响你解题的“分心”,这些就使你不专心。

专心于现在做的题目,现在做的步骤。

现在做哪道题目,脑子里就只有做好这道题目。

现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下! 第三重要心态:重视审题你的心态就是珍惜题目中给你的条件。

数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要信任给出的条件肯定是可以做到正确答案的。

所以,解题时,一切都须从题目条件动身,只有这样,一切才都有可能。

在数学家波利亚的四个解题步骤中,第一步审题特别重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理睬题目中你不理解的部分,只要你依据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。

步骤(2)就是想要得到题目的结论,我须要先得到什么结论,这就是所谓的“新结论”。

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

高考数学压轴题的逆袭技巧

高考数学压轴题的逆袭技巧

2019年高考数学压轴题的逆袭技巧压轴题的基本情况:一般情况下,每个大题都有至少两个小题,而每题的最后一小题是最压轴最难的,第一小题最简单,无论压轴题多难,第一小题一般同学都可以做出来拿到分数的,所以在对付压轴题的时候,第一小题一定要做对才有资格接着做后面的题目。

学习基础比较好的同学在最后一道压轴题的第二小题上,一般情况下可以拿到一半左右的分数。

因为压轴题很难,用时久,所以能够拿到一半的分数就算很棒了。

因此建议大家在压轴题上不要耗时太久,在不浪费整体考试时间的基础上,能拿多少分就拿多少分,强弩之末不能穿缟,考试时要适可而止。

平日练习建议:一定要重视审题。

解题最重要的是要有条件,所以审题能否审出需要的条件是非常重要的因素。

一般一道题给出的题目中,不会有用不到的条件的,考生要相信所有条件都自有用处,只是当时你没有想到而已。

建议解答这些压轴题是,第一个要做的就是认真审视题目,把条件罗列出来,然后再根据题目选择需要的条件作答。

小窍门——一道大题中第一题的答案是下一题的条件。

很多同学在做压轴题时都忽略了一个重要条件,就是第一小题的答案。

一般第一小题很简单,第二题很难,有的同学忽略了第一题答案可以作为下一题条件这个重要因素,所以耗时很久也解答不出来。

建议考生罗列题目给出的条件时,一定要把第一小题的答案也考虑进去。

当然,不是每个压轴大题都是这样的,也有很多压轴题的不同小题给出不同条件,希望考生们能够根据实际情况随机应变。

平日高一高二学生练习时一定要注意方法,重视解题思路,实在解答不出来时可以参考答案或者询问老师同学,在这上面耗费太多时间得不偿失。

对于高考(课程)生来讲,在不到一个月的时间里最好不要把时间浪费在压轴题目上,基础巩固与考试技巧训练更加重要。

做题心态:“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。

怎样做好高考数学压轴题

怎样做好高考数学压轴题

怎样做好2019年高考数学压轴题怎样做好2019年高考数学压轴题【】2019年高考已经进入第二轮的复习,查字典数学网的编辑为大家总结了一些怎样做好2019年高考数学压轴题,各位考生可以参考。

很多高三同学认为,数学(备考)高考(高考试题)试卷的最后一题压轴题很难拿分,往往在答题前,就已经先入为主地认为做不出是意料之内的事情,以至于很多考生在压轴题上得分都很低,这是非常可惜的。

首先同学们要正确认识压轴题。

压轴题主要出在函数,解几,数列三部分内容,一般有三小题。

记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。

同学们记住:心理素质高者胜!以2009年的上海高考数学卷的压轴题为例,分析其中一半左右分值的易得分部分,谈一谈解题心态。

同学可以再做一下2019年的高考卷最后一题,或者今年二模卷的最后一题,能否拿到比以往更多的分数。

2009年高考数学上海卷23题:第二重要心态:千万不要分心。

其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。

高考时,你是不可能这么想的。

你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想最后一道题目难不难?不知道能不能做出来我要不要赶快看看最后一题,做不出就去检查前面题目前面不知道做的怎样,会不会粗心错这就是影响你解题的分心,这些就使你不专心。

专心于现在做的题目,现在做的步骤。

现在做哪道题目,脑子里就只有做好这道题目。

现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!第三重要心态:重视审题。

你的心态就是珍惜题目中给你的条件。

数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。

高考函数与导数类压轴题的6大模型与23种考法总结!压轴题不只学霸才能解~

高考函数与导数类压轴题的6大模型与23种考法总结!压轴题不只学霸才能解~

高考函数与导数类压轴题的6大模型与23种考法总结!压轴
题不只学霸才能解~
只有学霸才会解'压轴题'嘛?
在高考数学里,这个问题的答案一定是否定的,数学压轴题十之有九是对函数与导数问题的考查,此类题型确实不简单,但极具规律性,属于难,但是容易备考的题型。

今天车车帮你整理好了压轴题的所有题型和命题角度,无论你的数学成绩如何,请务必试试攻克它。

文末查看电子版领取方式。

\
本文目录
题型一切线型
1.求在某处的切线方程
2.求过某点的切线方程
3.已知切线方程求参数
题型二单调型
1.主导函数需“二次求导”型
2.主导函数为“一次函数”型
3.主导函数为“二次函数”型
4.已知函数单调性,求参数范围
题型三极值最值型
1.求函数的极值
2.求函数的最值
3.已知极值求参数
4.已知最值求参数
题型四零点型
1.零点(交点,根)的个数问题
2.零点存在性定理的应用
3.极值点偏移问题
题型五恒成立与存在性问题
1.单变量型恒成立问题
2.单变量型存在性问题
3.双变量型的恒成立与存在性问题
4.等式型恒成立与存在性问题
题型六与不等式有关的证明问题
1.单变量型不等式证明
2.含有e x与lnx的不等式证明技巧
3.多元函数不等式的证明
4.数列型不等式证明的构造方法。

专题06“三招”妙解导函数零点问题(第一篇)-2019年高考数学压轴题命题区间探究与突破

专题06“三招”妙解导函数零点问题(第一篇)-2019年高考数学压轴题命题区间探究与突破

一.方法综述导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明 “三招”妙解导函数零点问题. 二.解题策略类型一 察“言”观“色”,“猜”出零点【例1】【河北省武邑中学2019届高三上第三次调研】已知函数.(1)当时,求在处的切线方程;(2)设函数,(ⅰ)若函数有且仅有一个零点时,求的值;(ⅱ)在(ⅰ)的条件下,若,,求的取值范围。

【答案】(1)(2)(ⅰ)(ⅱ)【解析】(2)(ⅰ)令则即令,则令,,在上是减函数又所以当时,,当时,,所以在上单调递增,在上单调递减,所以当函数有且今有一个零点时,9分【指点迷津】1.由于导函数为超越函数,无法利用解方程的方法,可以在观察方程结构的基础上大胆猜测.一般地,当所求的导函数解析式中出现ln x时,常猜x=1;当函数解析式中出现e x时,常猜x=0或x=ln x.2.例题解析中灵活应用了分离参数法、构造函数法【举一反三】设()1ln xf x x+=. (1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围; (2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围. 【答案】(1)(0,1);(2)(-∞,2]. 【解析】(1)因为()2ln xf x x'=-,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1,所以a <1<a +1,即0<a <1,故所求实数a 的取值范围是(0,1). (2)方程f (x )=x 2-2x +k 有实数解, 即f (x )-x 2+2x =k 有实数解. 设()()22g x f x x x =-+,则()(2)1g x x '=-2ln xx -. 接下来,需求函数g (x )的单调区间,所以需解不等式g ′(x )≥0及g ′(x )≤0,因而需解方程g ′(x )=0.但此方程不易求解,所以我们可以先猜后解.可得g ′(1)=0,且当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,2],所以所求实数k 的取值范围是(-∞,2]. 类型二 设而不求,巧“借”零点【例2】【2015高考新课标1,文21】设函数()2ln xf x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析 【解析】(II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x,当()00x x Î,时,()0f x ¢<;当()0+x x 违,时,()0f x ¢>. 故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x=时,()f x 取得最小值,最小值为0()f x .由于0202=0x a ex -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2ln f x a a a?. 【指点迷津】本例第(2)问的解题思路是求函数()f x 的最小值.因此需要求()0f x '=的根.但是2()=20x af x e x¢-=的根无法求解.故设出()0f x '=的根为0x ,通过证明f (x )在(0,0x )和(0x ,+∞)上的单调性知()min f x =()000222a f x ax aln x a=++,进而利用基本不等式证得结论,其解法类似解析几何中的“设而不求”. 【举一反三】设函数f (x )=e x-ax -2. (1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值. 【答案】(1)f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)2.(2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x-1)+x +1. 故当x >0时,(x -k )f ′(x )+x +1>0等价于()101x x k x x e +<>-+.① 令()1()01x x g x x x e +=>-+,则()221(2)1(1)(1)x x x x x xe e e x g x e e ----'--=+=由(1)知,函数h (x )=e x-x -2在(0,+∞)上单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在唯一的零点.故g ′(x )在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α). 又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3). 由于①式等价于k <g (α),故整数k 的最大值为2. 类型三 二次构造(求导),避免求根【例3】已知函数f (x )=ln(ax +1)+x 3-x 2-ax . (1)若x =23为y =f (x )的极值点,求实数a 的值; (2)若y =f (x )在[1,+∞)上为增函数,求实数a 的取值范围; (3)若a =-1时,方程f (1-x )-(1-x )3=bx有实根,求实数b 的取值范围. 【答案】(2)因为f (x )在[1,+∞)上为增函数, 所以f ′(x )=1a ax ++3x 2-2x -a =22[3(32)(2)]01x ax ax a ax +--+≥+在[1,+∞)上恒成立. 当a =0时,f ′(x )=x (3x -2),此时f (x )在[1,+∞)上为增函数恒成立,故a =0符合题意; 当a ≠0时,由ax +1>0对x >1恒成立,知a >0.所以3ax 2+(3-2a )x -(a 2+2)≥0对x ∈[1,+∞)恒成立. 令g (x )=3ax 2+(3-2a )x -(a 2+2),其对称轴为x =1132a -,因为a >0,所以1132a -<13,所以g (x )在[1,+∞)上为增函数,所以只需g (1)≥0即可,即-a 2+a +1≥0,解得0<a ≤152. 综上,实数a 的取值范围为15+].∴函数h(x)=g′(x)17+,+∞)上递减.又g′(1)=0,∴存在x0∈(0, 176),使得g′(x0)=0.当0<x<x0时,g′(x)<0,∴函数g(x)在(0,x0)上递减;当x0<x<1时,g′(x)>0,∴函数g(x)在(x0,1)上递增;当x>1时,g′(x)<0,∴函数g(x)在(1,+∞)上递减.又当x→+∞时,g(x)→-∞.又g(x)=x ln x+x2-x3=x(ln x+x-x2)≤1 (ln)4x x+,当x→0时,ln x+14<0,则g(x)<0,且g(1)=0,∴b的取值范围为(-∞,0].【指点迷津】当导函数的零点不易求时,可以通过进一步构造函数,求其导数,即通过“二次求导”,避免解方程而使问题得解.如上面例题,从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b的范围问题,实际上是求g(x)=x(ln x+x-x2)极值问题,问题是g′(x)=ln x+1+2x-3x2=0这个方程求解不易,这时我们可以尝试对h(x)=g′(x)再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.这种方法适用于研究函数的单调性、确定极(最)值及其相关参数范围、证明不等式等.【举一反三】【吉林省通榆县第一中学2019届高三上期中】已知函数,R.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)若关于的方程恰有两个不等实根,求实数的取值范围;【答案】(1)在和上单调递增,在上单调递减,, ;(2).【解析】(Ⅰ)解:当时,函数,则. 令,得,,当变化时,的变化情况如下表:+ - +↗极大值↘极小值↗∴在和上单调递增,在上单调递减.当时,,当时,.(Ⅱ)依题意,即. 则令,则.当时,,故单调递增(如图),且;当时,,故单调递减,且.∴函数在处取得最大值.故要使与恰有两个不同的交点,只需.∴实数的取值范围是.三.强化训练1.设函数满足,,则时,的最小值为()A. B. C. D.【答案】D2.【盐城市2019届高三第一学期期中模拟】已知函数,若函数存在三个单调区间,则实数的取值范围是__________.【答案】【解析】函数,若函数存在三个单调区间即0有两个不等实根,即有两个不等实根,转化为y=a 与y=的图像有两个不同的交点令,即x=,即y=在(0,)上单调递减,在(,+∞)上单调递增。

高考数学:导数压轴题的归纳总结方法

高考数学:导数压轴题的归纳总结方法

高考数学:导数压轴题的归纳总结方法今天我们来聊聊高考数学导数压轴题的归纳总结方法。

在对导数专题归纳总结的时候,可以细分为两个层面。

第一,对题型进行归纳总结。

举例说明,下图的题目中的第二小问,如果去做归纳总结的话,很多题目都跟这道题目相类似,这种题目可以概括为一般形式:如果用归纳总结的思路去做的话,可以细分到之前说的双变量这一类问题的大类,大类下面有一个小类,叫做极值点偏移问题。

希望大家在学习导数专题的过程中,不要简单地光做题,而要在做题中能发现这样一类题型。

导数的问题做多了之后就会发现,很多时候都有相似之处,将这些相似之处提取出来,我们就可以将它一般化为这样一种题型,把它抽象出来。

本质上说,我们就是找这样的一般问题,再从一般的角度去解决方法,看这一类的问题有什么具体的解决套路,这样就可以在学习过程中达到事半功倍的效果了。

第二,对解题方法和解题方向进行归纳总结。

什么叫做解题方法?就是对于之前已经分好类的xx问题,我们可以第一步xxxxx,第二步xxxxxx……第x步xxxxxx,问题解决。

大家可以看出,这样一类问题,方法和套路性比较强。

结合具体例子来谈,还是这个题目,刚刚说可以划归为双变量分类下的极值点偏移这种具体的问题。

对于这一类极值点偏移具体的问题,刚才已经提出一般化的解题题型,那么这一类一般化的解题题型,应该怎样去解决呢?极值点偏移问题三步走:(1)画图观察极值点偏移方向(2)利用f(x)的单调性转移不等式(3)构造f(x)=f(x)-f(2a-x)完成证明在做题的时候,对于这种一般化的问题进行归纳总结,归纳总结出一步一步的套路。

当你完成这种从题型到解决方法的归纳总结之后,就会对导数这一类具体问题拍着胸脯说:“考试,考到这样一类问题,把题目做完,应该是一件十拿九稳的事情。

”因为你把一般的问题都做完,考试题目只要是已经归纳总结过的题型,你只需要把已经总结出的方法往上套,结合具体的题目,将一些条件拿过来进行运算,最后就可以将这一类题目做出来。

导数压轴题解题技巧

导数压轴题解题技巧

导数压轴题解题技巧
嘿,朋友们!今天咱就来聊聊导数压轴题解题技巧,这可真是个让人又爱又恨的家伙啊!
你看哈,导数压轴题就像是一场刺激的游戏!比如说,给你个函数,哎呀,那弯弯曲曲的图象就像是复杂的迷宫,你得找到出路!就像你在森林里迷路了,得想办法走出来呀!
先来谈谈怎么求导吧!这可是基础。

像有个函数f(x)=x²+3x,那求导可得 f'(x)=2x+3 呀!就好比你走路,求导就是弄清楚往哪个方向走得快,能不走错路嘛!
再说说构造新函数吧!有时候题目里的条件乱七八糟,咋办呢?那就巧妙地构造个新函数呗!比如说,给你两个函数 f(x)和 g(x),它们之间有某种关系,那咱就把它们组合起来弄个新函数 H(x) 呀!这就好像把不同的积木拼在一起搭出个新造型。

还有分类讨论哦!遇到各种情况都要考虑到。

比如一个函数在不同区间上的单调性不一样,那咱就得仔细分析呀!“嘿,这可不能马虎!”不认真分析怎么能得高分呢?
哎呀,导数压轴题真不是盖的,有时候确实难倒一大片人呢!但咱别怕呀,只要掌握了这些技巧,多练多总结,还怕它不成?记住,每一道导数压轴题都是一个挑战,但也是一个让我们进步的机会呀!
咱就是说,导数压轴题解题技巧真的能让我们在数学的海洋里畅游得更畅快!大家可得好好学起来,攻克这道难关,走向数学的辉煌呀!。

2019年高考压轴题:导数题型及解题方法

2019年高考压轴题:导数题型及解题方法

2019年高考压轴题:导数题型及解题方法一.切线问题题型1:求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2:过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x −='−)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .(1)求曲线y =f (x )在点x =2处的切线方程;(答案:0169=−−y x )(2)若过点A )2)(,1(−≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3−−)题型3:求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x −='−,12212)()(y y x f x x −='−;求出21,x x ,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例 求曲线2x y =与曲线x e y ln 2=的公切线方程。

(答案02=−−e y x e )二.单调性问题题型1 求函数的单调区间求含参函数的单调区间的关键是确定分类标准。

分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧以下是 8 条关于导数压轴题题型归纳及处理技巧的内容:1. 哎呀,导数压轴题里有一种常见的题型就是求最值问题呀!就像在登山的时候,要找到那最高的山峰!比如函数y=x³-3x²+5,你能快速找到它的最值吗?2. 嘿,还有判断函数单调性的题型呢!这就像开汽车,要清楚什么时候加速什么时候减速。

像函数 f(x)=xlnx,你能判断它的单调性吗?3. 哇塞,导数里那种恒成立问题也很让人头疼啊!就好比要让一个球一直保持在一个固定的位置。

比如f(x)≥a 在某个区间恒成立,这可得好好琢磨琢磨怎么处理哦!像函数 f(x)=e^x+x,若f(x)≥kx 恒成立,你能搞定吗?4. 哦哟,导数压轴题里的不等式证明可不好惹呢!就像是要跨过一条很难跨的沟。

比如要证明某个不等式成立,怎么把导数的知识用上呀?比如 x>0 时,证明 e^x>1+x,你知道怎么下手吗?5. 嘿呀,有一种题型是利用导数求曲线的切线方程呢!这就像在给一条曲线画上漂亮的切线。

比如给定曲线y=x²,在某点处的切线怎么求呢,你会吗?6. 哇哦,那些与极值点有关的题型也挺有趣的嘛!就如同在一群小朋友里找到那个最特别的。

比如给定一个函数,怎么去找它的极值点呢?像函数g(x)=x³-3x,它的极值点在哪儿呀?7. 哈哈,还有根据导数信息画函数图象的题型呢!这可像是根据描述去画一幅神秘的画。

比如知道了导数的一些情况,那函数图象大概长啥样呢?你能想象出来吗?8. 哎呀呀,最后还有一类是把导数和其他知识综合起来的题型呢!这就像把不同的拼图块拼成一幅完整的画。

比如和数列结合起来,那可真是够有挑战性呢!像这样的综合题,你能勇敢挑战吗?我觉得导数压轴题虽然难,但只要掌握了这些题型和处理技巧,多练习多总结,就一定能攻克它!。

手把手教你高考导数大题如何多拿分(文理通用)

手把手教你高考导数大题如何多拿分(文理通用)

手把手教你导数大题如何多拿分(文理通用)文科和理科导数题差异不明显(大概就是理科有三题,文科考前两题这种难度差异),因此文科的同学也可以阅读此文章,对于导数过于难以理解的知识,跳过即可。

Ⅰ.在解题之前有几件事大家需要明白:1.导数题作为压轴题,有一定的难度。

因此,对于基础差的同学,写了第一问,OK,四分到手;然后看一眼第二问有没有本文中所讲的套路,有的话跟着套路一通列制造出你会但是时间不够用的假象,争取拿到6-8分即可;倘若攻略里有哪些步骤自己不那么明白,那就直接跳过,把更多的时间用于其他题型或者其他科目的提升会更划算;对于基础一般的同学,掌握80%左右本文的手法,每天坚持练1道,作为自己逻辑思维的训练和计算的训练是极好的,但在考场上千万不要恋战,不要想着用解出这道题来证明自己的数学能力,得不偿失!对于基础好的同学,这些基础的手法一定要再巩固好,在考场上沉着一些努力把这道题拿下,加油!2.之前听说洛必达法则在某些地区好像不受欢迎(因为此法为大学高等数学的一种求极限的方式,所以部分地区高考判卷时碰到这种解法可能不给分数),所以大家别太依赖,但还是推荐大家都掌握。

大家可以通过这种方法来判断一下这个函数在某一点的极限,进而对这个函数更加了解一些。

比如考场上突然你需要证明这个函数在x=1处的极限是2才能证明你的答案,这时你先用洛必达法则悄咪咪一算,正好是2,那好,此时你写下咒语“当x趋于1时,易得,函数趋于2;因此,显然……成立”,你懂的hhhh。

Ⅱ.实战练习(导数部分)说起来很抽象,我们边写边详细说明其中的一些运算。

先来一道比较容易的分析热热身,活动一下思维。

再来一道秀一下基本操作,然后开讲这也算是导数题里的一个较为常见的常规操作,基础差的同学一定要结合二次函数图像以及含参的讨论来好好吸收!一、恒成立问题对于恒成立问题,一般有两种解法:分离参数,将参数m分离到一边,然后计算另一侧函数的最值,然后得出m 的取值范围。

高考函数导数压轴题分析及应对策略

高考函数导数压轴题分析及应对策略

高考函数导数压轴题分析及应对策略
高考函数导数压轴题分析及应对策略
高考中,函数导数压轴题常常会出现在数学试卷中,其中最重要的就是理解函数导数概念及掌握计算导数的方法。

函数导数是指在某一个点的函数变化率,它是当我们求函数的导数时,最重要的概念。

考试中的一些压轴题往往都是考察对函数导数基本概念的认识,以及计算导数的能力。

解决高考函数导数压轴题的策略主要有两点:
一是预习,复习函数、导数的基本概念,主要考察方程式求导、不定积分概念,以及极限求值等技能,应誊写出公式,掌握计算导数的方法。

二是练习,找一批真题和习题,在解题过程中复习所学的知识,感知其思想和计算步骤,不断练习,解决相关的题目,把这些细节牢记在心,以提供解题时的参照,
争取考试时有少量准备时就能解答出来。

总之,考生要认真对待每一题,敢于试错,不到最后时刻都不要放弃,也不要丧失信心,只要坚持认真、严谨的态度,相信自己一定能取得理想的成绩。

导数压轴题的几种处理方法

导数压轴题的几种处理方法

导数压轴题的几种处理方法导数压轴题在高等数学中属于比较重要的部分,对于学生来说也是比较难以掌握和解答的问题。

在解决导数压轴题的过程中,有一些常用的处理方法可以帮助我们更好地理解题目、分析问题以及解决问题。

接下来,我将介绍一些常见的导数压轴题处理方法。

1.代数化简法:对于一些复杂的函数表达式,我们可以通过代数化简的方法将它转化为更简单的形式。

在处理导数压轴题时,代数化简法也是一种常用的处理方法。

可以通过分子有理化、公式换元、加减引理等方法对函数进行化简,从而更方便地进行导数运算。

2.函数性质法:当给定函数的性质或公式时,可以通过利用函数的性质和公式进行求导。

对于一些常见函数,如指数函数、对数函数、三角函数等,有一些基本的求导公式,可以通过直接套用公式进行求导。

3.极限转换法:在求导过程中,有时候我们可以通过将导数的定义转化为极限的形式,然后利用极限的性质来求导。

极限转换法通常适用于一些特殊的函数形式,如分段函数、绝对值函数等。

4.高阶导数法:对于一些特殊的问题,我们还可以通过求取高阶导数来解决。

通过求取函数的一阶、二阶、甚至更高阶导数,可以更全面地了解函数的性质和特点,从而更好地解答问题。

5.导数的几何意义法:导数的几何意义是描述函数变化率的概念,一些导数压轴题可以通过对导数的几何意义进行分析来解决。

例如,利用导数的几何意义可以判断函数的增减性、极值点和拐点等。

6.隐函数求导法:一些函数的表达式难以直接求导,可以通过对方程两边同时求导的方法来解决。

这种方法通常适用于隐函数关系的导数压轴题,可以通过对隐函数关系进行求导然后解方程得到结果。

7.递归求导法:对于一些重复出现的函数表达式,可以通过递归求导法直接求取导数的表达式。

这种方法适用于一些具有规律性的函数,可以通过重复进行相同的导数运算来求取导数。

8.利用导数性质法:导数具有一些特定的性质,如导数的和、差、积、商、复合函数等性质。

在求导过程中,可以通过利用这些性质来简化计算过程,从而更快速地求解导数问题。

高考数学导数压轴题解题技巧

高考数学导数压轴题解题技巧

高考数学导数压轴题解题技巧包括:
函数法:将参数k当成整个函数中的一部分,分情况讨论k的不同取值对函数的影响。

放缩法:有的参数给的一个范围,通过单调性分析,可以简化为一个端点值讨论即可。

比如给k≤2,你可以转化为
k=2,这样题中就没有参数了,大大降低难度。

此外,还有分离参数等方法。

在解决导数压轴题时,需要注意:
遇到有关单调性或最值的题目,考虑使用导数法。

对于存在性问题,如求参数的取值范围,可以运用分离参数法。

对于与零点存在性有关的问题,最好借助零点存在性定理严格说明,即需在给定单调区间【以单调增区间为例】上找到,进而严格说明使得。

在应用这些技巧时,要结合题目的具体条件和已知信息,灵活运用所学知识解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[针对训练] 2.设函数f(x)=ln x+mx ,m∈R.
(1)当m=e(e为自然对数的底数)时,求f(x)的极小值; 解(2):讨(论1)由函题数设g(x,)=当fm′=(xe)时-,x3零f(点x)=的l个n x数+.xe,则f′(x)=x-x2 e, ∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上单调递减, 当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上单调递增, ∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2, ∴f(x)的极小值为2.
x (0, a)
a
( a,+∞)
f′(x)

0

a1-ln a
f(x)
2
所以函数 f(x)的单调递减区间是(0, a),单调递增区间是( a, +∞).
函数 f(x)在 x= a处取得极小值 f( a)=a1-2ln a,无极大值. 综上可知,当 a≤0 时,函数 f(x)的单调递增区间为(0,+∞), 函数 f(x)既无极大值也无极小值; 当 a>0 时,函数 f(x)的单调递减区间是(0, a),单调递增区间 为( a,+∞),函数 f(x)有极小值a1-2ln a,无极大值.
故 M(a)-m(a)=43.
-13a3+3a-4,-1<a≤13, 综上,M(a)-m(a)=-13a3-3a-2,13<a<1,
43,a≥1.
利用数形结合思想探究函数的零点
[典例] (2017·沈阳质检)函数f(x)=ax+xln x在x=1处 取得极值.
(1)求f(x)的单调区间; (2)若y=f(x)-m-1在定义域内有两个不同的零点,求 实数m的取值范围.
(2)由f(x)=x22-aln x, 得f′(x)=x-ax=x2-x a(x>0).
①当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上单调递
增,函数既无极大值,也无极小值;
②当a>0时,由f′(x)=0,得x= a或x=- a(舍去).
于是,当x变化时,f′(x)与f(x)的变化情况如下表:
考自变量的取值范围,讨论的关键是做到不重不漏.
解:由已知得,f(x)=1313xx33+ -xx- +aa, ,xx≥ <aa,, 令g(x)=13x3+x-a,则g′(x)=x2+1>0, 所以g(x)在[a,+∞)上为增函数. 令h(x)=13x3-x+a,则h′(x)=x2-1. 令h′(x)=0,得x=±1,所以h(x)在(-∞,-1)和(1,+∞) 上是增函数,在(-1,1)上为减函数.
(1)因为f(x)在R上是增函数,所以h(x)在(-∞,a)上为增函 数,所以a≤-1. 故a的取值范围为(-∞,-1]. (2)因为函数f(x)在R上不单调,所以a>-1. 当-1<a<1时,f(x)在(-∞,-1)上是增函数,在(-1,a)上是 减函数,在[a,+∞)上是增函数, 所以m(a)=a33, M(a)=max{h(-1),g(1)}=maxa+23,43-a.
当43-a≥a+23,即-1<a≤13时,M(a)=43-a, M(a)-m(a)=-13(a3+3a-4); 当43-a<a+23,即13<a<1时,M(a)=a+23, M(a)-m(a)=-13(a3-3a-2). 当a≥1时,f(x)在[-1,1]上是减函数,
所以 m(a)=h(1)=a-23,M(a)=h(-1)=a+23.
卷Ⅱ
函数单调性的判断、不等式证明及值域 问题
卷Ⅲ
三角函数的导数运算、最值问题及不等式 证明
卷Ⅰ 导数的几何意义、函数的最值、零点问题
2015
卷Ⅱ
利用导数研究函数的单调性、根据恒成立 求参数的取值范围
命题分析
导数日益成为解决问 题必不可少的工具,利用 导数研究函数的单调性与 极值(最值)是高考的常见 题型,而导数与函数、不 等式、方程、数列等的交 汇命题,是高考的热点和 难点.
压轴专题(三) 第21题解答题“函份 卷别
考查内容
卷Ⅰ 利用导数研究函数的单调性、函数的零点
2017
卷Ⅱ
利用导数研究函数的单调性及极值、函数 的零点、不等式的证明
卷Ⅲ
导数在研究函数单调性中的应用、不等式 放缩
卷Ⅰ 函数的零点问题、不等式的证明
2016
[解] (1)由题意知,f′(x)=a+ln x+1(x>0), f′(1)=a+1=0,解得a=-1, 当a=-1时,f(x)=-x+xln x, 即f′(x)=ln x, 令f′(x)>0,解得x>1; 令f′(x)<0,解得0<x<1. ∴f(x)在x=1处取得极小值,f(x)的单调递增区间为(1, +∞),单调递减区间为(0,1).
解答题的热点题型有: (1)利用导数研究函数 的单调性、极值、最值; (2)利用导数证明不等 式或探讨方程根; (3)利用导数求解参数 的范围或值.
[常考题点逐一突破]
利用分类讨论思想探究函数性质 [典例] (2017·张掖诊断)设函数f(x)=x22-aln x. (1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程; (2)求函数f(x)的单调区间和极值. [解] (1)当a=1时,f(x)=x22-ln x, 则f′(x)=x-1x,所以f′(1)=0,又f(1)=12, 所以曲线y=f(x)在点(1,f(1))处的切线方程为y=12.
(2)y=f(x)-m-1 在(0,+∞)上有两个不同的零点,可转化 为 f(x)=m+1 在(0,+∞)上有两个不同的根,也可转化为 y=f(x) 与 y=m+1 的图象有两个不同的交点,由(1)知,f(x)在(0,1)上单 调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,
由题意得,m+1>-1,即 m>-2, ① 当 0<x<1 时,f(x)=x(-1+ln x)<0; 当 x>0 且 x→0 时,f(x)→0; 当 x→+∞时,显然 f(x)→+∞. 如图,由图象可知,m+1<0,即 m<-1,② 由①②可得-2<m<-1. 故实数 m 的取值范围为(-2,-1).
[题后悟通] 1.解答这类题的模板 定义域 ―→ 求导数 ―→ 零点 ―→ 列表 ―→ 回答 ―→
遇见参数要讨论哪一步遇见就在哪一步展开讨论 2.解答这类题的难点 (1)何时讨论参数?由于题目条件的不同,有的在求零点时
讨论,有的在列表时讨论; (2)如何讨论参数?需要根据题目的条件确定,有时还需参
相关文档
最新文档