关于热传导方程
热传导方程的求解
热传导方程的求解热传导方程是描述物体内部温度分布随时间变化的数学模型。
求解热传导方程有多种方法,下面将介绍两种常用的求解方法。
一、分离变量法分离变量法是一种常见且简单的求解热传导方程的方法。
它基于热传导方程的偏微分方程特性,将变量分离并进行独立的求解。
1. 问题设定假设需要求解的热传导问题为一维情况,物体的长度为L,初始时刻温度分布为u(x,0)=f(x),物体两端保持恒温边界条件u(0,t) = A,u(L,t) = B。
2. 分离变量假设u(x,t)可表示为u(x,t) = X(x)T(t),将u(x,t)代入热传导方程中,可得到两个方程:X''(x)/X(x) = T'(t)/αT(t),其中α为热扩散系数。
由于左侧只依赖于x,右侧只依赖于t,所以二者必须等于一个常数λ。
3. 求解分离后的方程将上述得到的分离变量方程代入边界条件,可得到两个常微分方程,分别是X''(x)/X(x) = λ 和T'(t)/αT(t) = -λ。
这两个常微分方程可以求解得到X(x)和T(t)。
4. 求解系数通过使用初始条件u(x, 0) = f(x),可以求解出常数λ的值,进而求解出X(x)和T(t)。
5. 求解问题最终将X(x)和T(t)重新结合,即可得到热传导问题的解u(x, t)。
二、有限差分法有限差分法是一种数值求解热传导方程的常用方法,它通过将连续的空间和时间离散化,将偏微分方程转化为差分方程进行求解。
1. 空间和时间离散化将物体的空间进行网格划分,时间进行离散化,并在网格节点上计算温度的近似值。
2. 差分方程将热传导方程中的偏导数进行近似,得到差分方程。
例如,可以使用中心差分法来近似偏导数。
3. 迭代求解根据差分方程,通过迭代计算每个网格节点的温度值,直到达到收敛条件。
4. 求解问题最终,根据求解的温度值,在空间和时间通过插值或者线性拟合等方法得到热传导问题的解。
热量传导的计算方法
热量传导的计算方法热量传导是物体内部或不同物体之间热量传递的过程。
在工程学和物理学中,热量传导的计算方法对于能源的有效利用和工程项目的设计至关重要。
本文将探讨一些常用的热量传导计算方法。
1. 热传导方程热传导方程是描述热量传导的基本方程。
它基于热传导定律,即热流密度正比于温度梯度。
热传导方程的一般形式如下:q = -k * A * ΔT / d其中,q表示单位时间内通过物体传导的热量。
k是材料的热导率,单位为W/(m·K)。
A是传热截面积,单位为m²。
ΔT是温度差,单位为K(或°C)。
d是热传导路径的长度,单位为m。
2. 一维热传导在一维热传导中,热量仅在一个方向上传递。
为了计算一维热传导的热流量,我们需要知道材料的热导率和温度梯度。
假设我们有一个长度为L的杆子,两个表面的温度分别是T1和T2,其中T1大于T2。
我们可以使用以下公式计算通过杆子的热流量:q = -k * A * (T1 - T2) / L该公式可以应用于很多实际问题,例如计算导热管中的热传导。
3. 二维和三维热传导在二维和三维热传导中,热量可以在平面或空间中的各个方向上传递。
为了计算二维和三维热传导的热流量,我们需要使用更复杂的公式。
如果我们考虑一个长方体体积中的热传导问题,可以使用以下公式:q = -k * A * (dT/dx + dT/dy + dT/dz)其中,dT/dx、dT/dy和dT/dz分别表示温度梯度沿x、y和z轴的变化率。
这个公式可以应用于许多三维实际问题,例如计算建筑物的热损失。
4. 复合材料的热传导在许多工程项目中,复合材料的热传导计算是至关重要的。
复合材料由不同种类的材料组成,每种材料都有不同的热导率。
为了计算复合材料的热传导,我们需要考虑各个组成部分的热导率,并使用适当的方法进行计算。
一种常用的方法是加权平均法。
在这种方法中,我们将复合材料划分为小区域,并计算每个区域的热传导。
热传导方程第三类边界条件
热传导方程第三类边界条件热传导方程是描述物体内部热传导过程的一种数学模型,它是通过对物体内部温度分布进行描述,从而研究热量如何在物体内部传递的方程。
在实际问题中,常常需要考虑物体与周围环境之间的热量交换,这就引入了边界条件。
热传导方程的边界条件分为三类,即第一类边界条件、第二类边界条件和第三类边界条件。
其中,第三类边界条件是指在边界处既给定了温度值,又给定了热流密度值。
在物体表面给定了温度和热流密度的情况下,我们可以通过热传导方程来计算物体内部的温度分布。
热传导方程的一般形式为:∂u/∂t = α(∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)其中,u表示温度分布,t表示时间,x、y、z表示空间坐标,α表示热扩散系数。
对于一个具体的问题,我们需要根据实际情况来确定热传导方程的边界条件。
当给定的是第三类边界条件时,我们需要在物体的表面既给定了温度值,又给定了热流密度值。
举个例子来说明第三类边界条件的应用。
假设有一个长方形金属板,它的一侧被加热到100°C,另一侧被冷却到0°C,而另外两侧则既给定了温度值,又给定了热流密度值。
我们的目标是计算金属板内部的温度分布。
我们需要在金属板的表面确定温度和热流密度的分布。
在给定的一侧,温度恒定为100°C,热流密度为0。
在另一侧,温度恒定为0°C,热流密度为0。
而在另外两侧,温度和热流密度的分布需要根据实际情况来确定。
然后,我们可以利用热传导方程来计算金属板内部的温度分布。
根据热传导方程,我们需要求解温度u关于时间t和空间坐标x、y、z的偏导数。
通过数值计算方法,我们可以逐步迭代求解,得到金属板内部的温度分布。
我们可以根据得到的温度分布来分析金属板的热传导过程。
通过观察温度分布的变化,我们可以了解到热量是如何从加热一侧传递到冷却一侧的。
同时,我们还可以根据温度分布来评估金属板的热传导性能,从而为设计和优化金属板的热管理系统提供参考。
热传导方程
热传导方程引言热传导方程是描述物质内部温度分布随时间演变的一种偏微分方程。
它广泛应用于热传导领域,如材料科学、工程热学、地球科学等。
热传导方程描述了热量在物质内部的传递方式,是研究热传导过程和温度场分布的重要工具。
热传导方程的一维形式考虑物质在一维情况下的热传导,热传导方程可以写作:∂u/∂t = α * ∂²u/∂x²其中,u为物质内部的温度,t为时间,x为空间坐标,α为热扩散系数。
热传导方程的二维形式对于二维的情况,假设热传导方程适用于平面内任意点,可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y²)其中,u为物质内部的温度,t为时间,x和y为平面内的空间坐标,α为热扩散系数。
热传导方程的三维形式在三维情况下,热传导方程可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)其中,u为物质内部的温度,t为时间,x、y和z为空间坐标,α为热扩散系数。
定解条件为了求解热传导方程,需要给定一些定解条件。
常见的定解条件有:•初始条件:指定初始时刻的温度分布,即u(x, y, z, 0),其中u是温度,x、y和z分别是空间坐标,0表示初始时刻。
•边界条件:指定物体表面的温度或热流密度。
常见的边界条件有:第一类边界条件(温度指定),即u(x, y, z, t) = g(x, y, z, t);第二类边界条件(热流密度指定),即-k * ∂u/∂n = q(x, y, z, t),其中k为导热系数,n为法向量,q为热流密度。
热传导方程的数值解热传导方程是一个偏微分方程,通常无法得到解析解。
因此,需要借助数值计算方法来求解。
常见的数值方法有有限差分法、有限元法和边界元法等。
在有限差分法中,可以将空间离散为若干个网格点,时间离散为若干个时间步长。
热传导方程傅里叶解
热传导在三维的等方向均匀介质里的传播可用以下方程表达:其中:∙u =u(t, x, y, z) 表温度,它是时间变量 t与空间变量(x,y,z) 的函数。
∙/是空间中一点的温度对时间的变化率。
∙, 与温度对三个空间座标轴的二次导数。
∙k决定于材料的热传导率、密度与热容。
热方程是傅里叶冷却律的一个推论(详见条目热传导)。
如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。
如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。
热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。
一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。
因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。
热方程也是抛物线偏微分方程最简单的例子。
利用拉普拉斯算子,热方程可推广为下述形式其中的是对空间变量的拉普拉斯算子。
热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。
热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornste in-Uhlenb eck 过程。
热方程及其非线性的推广型式也被应用于影像分析。
量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。
就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。
扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。
以傅里叶级数解热方程[编辑]以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作T héori e analyt iquede la chaleu r(中译:解析热学)给出。
大学物理-热传导方程的定解问题
在各向同性的介质中,热流强度 q 与温度的负梯度成正比, 即
(k:热传导系数)
|q|:单位时间垂直通过等温面单位面积的热量,即 q 的方向:等温面的法线方向 (由高温指向低温) 定律的物理意义:q 正比于温度的下降率 单位时间内流入 / 流出 V 的热量为
单位时间内热源在 V 中释放 / 吸收的热量为
单位时间内,V 中介质温度升高/降低所需/放出的热量为
能量守恒定律:Q3 = Q1 + Q2 则 由 V 的任意性,得到
若介质均匀,即 k 为常量,有来自定义:,因此得到
当 V 内无热源,即 f = 0,故有
二、扩散方程 1. 扩散现象:当空间各点浓度分布不均匀时,就有粒子
从高浓度处流向低浓度处。(浓度:单位体 积中的粒子数) 2. 方程的推导 设:空间中任一小体积 V,其边界面为 S
粒子源强度:F (x, y, z, t) ——单位时间,单位体积 内产生的粒子数
求:空间各点粒子浓度 u(x, y, z, t) 的方程 V 内粒子数增加的来源:扩散 + 粒子源
扩散浓度:N ——单位时间通过垂直于 v (粒子定向运动速 度) 的单位面积的粒子数 N=uv,方向:v 的方向
对于扩散现象,有斐克定律: 扩散强度与浓度的负梯度成正比,即 D:扩散系数
扩散导致 V 内粒子增加的数量:
粒子源 V 粒子增加的数量: 内粒子数总的增加数:
因粒子数守恒,有 由 V 的任意性,得到 若 D 为常量,且设 D = a2,则
若 V 内无粒子源,即 F = 0,因而
总结:热传导:热量的传递;扩散:粒子的运动,两 者物理本质不同,但满足同一微分方程。
热传导方程的热传导问题
热传导方程的热传导问题热传导问题是物理学中的一个基本问题。
在工程领域中,热传导是一个非常重要的现象,它在我们生活和工作的方方面面都起着至关重要的作用。
因此,了解热传导的基本原理以及相关的方程是非常有必要的。
热传导方程是描述热传导现象的基本方程。
它描述了材料内部热量的传递过程以及温度随时间的变化情况。
热传导方程最早由法国数学家及物理学家让·巴普蒂斯特·约瑟夫·福里埃提出,他是热力学和热传导学的奠基人之一。
热传导方程的一般形式为:$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k\nabla T) + Q$$其中,$\rho$是物质密度,$c$是热容量,$k$是热导率,$T$是温度,$t$是时间,$Q$是热源项。
方程的左边表示物体内部的热量变化率,右边的第一项$\nabla \cdot (k\nabla T)$表示热量的传递过程,它的物理意义是热量从高温区域传递到低温区域。
右边的第二项$Q$表示内部热源项,比如热电效应、放热反应等。
热传导问题是指研究材料内部的温度分布以及热量传递的问题。
在实际应用中,我们经常需要求解热传导方程以得到温度分布和热量传递情况。
这种求解过程是热传导问题的关键,求解的方法可以归纳为以下两种:1. 解析方法解析方法主要是指根据不同的边界条件和初始条件,直接求解热传导方程的解析解。
这种方法的优点是比较简单,可以方便地得到解析解,且解析解具有一定的通用性。
例如,对于一个杆状物体,设其长度为$L$,初始温度分布为$T_0$,一端恒温为$T_1$,另一端绝热,即$t=0$时,$T(x,0)=T_0$,$T(0,t)=T_1$,$T(L,t)=T_0$。
则最终的温度分布为:$$T(x,t)=T_m + \sum_{n=1}^{\infty} 2T_0n \frac{(-1)^{n+1}}{n\pi}\sin\frac{n\pi x}{L}\exp\left(-\frac{k(n\pi/L)^2}{\rho c}t\right)$$其中,$T_m=(T_0+T_1)/2$为杆状物体的平均温度。
热学方程热传导方程的解析解
热学方程热传导方程的解析解在热学中,热传导方程是一个重要的方程,用于描述热量在物体中的传导过程。
热传导方程的解析解是指能够用解析表达式准确描述热传导过程的解。
热传导方程一般形式为:$$\frac{{\partial T}}{{\partial t}} = a \cdot \nabla^2 T$$其中,$\frac{{\partial T}}{{\partial t}}$表示温度$T$随时间$t$的变化率,$a$是热扩散系数,$\nabla^2 T$表示温度$T$的拉普拉斯算子。
为了求解热传导方程的解析解,我们需要考虑不同情况下的边界条件和初始条件。
1. 一维热传导方程的解析解首先,考虑一维情况下的热传导方程。
假设热传导发生在长度为$L$的直杆上,且直杆的两端保持温度固定,即边界条件为$T(0, t) = T_1$和$T(L, t) = T_2$,其中$T_1$和$T_2$为已知常数。
对于这种情况,可以使用分离变量法来求解热传导方程。
假设解为$T(x, t) = X(x) \cdot T(t)$,将其代入热传导方程得到两个常微分方程:$$\frac{{1}}{{aX}} \frac{{d^2X}}{{dx^2}} = \frac{{1}}{{T}}\frac{{dT}}{{dt}} = -\lambda^2$$其中,$\lambda$为常数。
将得到的两个方程进行求解,可以得到解析解为:$$T(x, t) = \sum_{n=1}^{\infty} C_n \cdot e^{-a \lambda_n^2 t} \cdot\sin(\lambda_n x)$$其中,$C_n$为系数,和边界条件相关。
对于给定的边界条件$T(0, t) = T_1$和$T(L, t) = T_2$,可以确定系数$C_n$的值。
2. 二维热传导方程的解析解接下来,考虑二维情况下的热传导方程。
假设热传导发生在一个矩形区域内,且边界上的温度已知。
热传导方程
热传导方程热传导方程:恒温下,物体各部分之间的传热量与传热面积成正比,这一规律称为热传导定律。
通过查表得知,温度为45摄氏度时,传热系数为0.038,即0.038KJ/m2。
1。
恒温,可求各处温度2。
标准大气压下,可以忽略体积功3。
利用表面传热系数4。
在同样的条件下,用比较实验数据,并将其写成表格,求出平均值: 5。
画出热传导图: 1-2。
4。
45度,可视为理想化,假设为零(或忽略) 5。
利用物理关系求传热速率: 0.038kJ/m2*s=12.2kJ/( m2。
s*s) =16.4KJ/s1。
查热传导方程2。
三次的不同结果都是温度,说明所得数据有误差,故采用插值法,用x表示x分之一,代入上式,解出p= 0.0383。
绘制热传导方程图4。
求各个点的传热速率( p。
m。
) 5。
根据平均值求传热速率( 4。
15KJ/s*s= 2。
28KJ/s*s=1。
6。
45度,可视为理想化,假设为零(或忽略) 5。
利用物理关系求传热速率: 0。
15KJ/m2*s=4。
33KJ/s*s= 1。
4。
当然也可求每个点的温度6。
实际上任何一个热力学系统,除了整个系统处于热平衡外,总还存在着各种各样的内能变化和相变。
内能是能量转化和守恒的量度。
对于一个孤立系统,由于能量在各处是不相互作用的,而且系统和环境都是绝热的,因此系统的内能只取决于系统本身的性质。
温度对内能有着直接的影响。
从能量观点看来,温度是物体分子热运动平均动能的标志。
在绝热条件下,热运动总是从高温区向低温区单方向地进行。
而分子热运动的平均动能是温度的量度,温度越高,分子平均动能就越大,分子平均动能越大,反应速度也就越快。
4。
利用表面传热系数5。
在同样的条件下,用比较实验数据,并将其写成表格,求出平均值: 6。
画出热传导图: 1-2。
4。
45度,可视为理想化,假设为零(或忽略) 5。
利用物理关系求传热速率: 0。
15KJ/m2*s=3。
热传导方程
4热传导方程§1方程的导出和定解问题§2初值问题§3有界域上的定解问题§4应用举例——————————————————————————————————————1 方程的导出和定解问题1. 1热传导方程由于温度分布不均匀,热量从介质中温度高的地方流向温度低的地方称为热传导。
介质内部的温度分布用函数u(x,y,z,t)表示。
定义热流密度q (x,y,z,t ) 为单位时间里通过单位横截面积的热量。
Fourier定理热流密度q与温度函数u的梯度成正比,比例系数k称为导热系数,记为q= -k▽u (4.1) 在介质内部取一体积元,在x, x+dx ; y , y+dy ; z , z+dz 间,如图4.1图4.1 体积元热流从一个面流入,则会从另一个面穿出,净流人体积元的热量等于从一些面元流入的减去从其它面元流出的热量.这里符号规则规定热流流出为正.单位时间内流入小体积元内的总热量dQ为dxdydzuk dxdyq qdxdzqqdydzqqdQzzdzzzyydyyyxxdxxx) ()|| ()||()|| (∇∇=------=+++如果小体积元内无热源,则小体积元的温度变化正比于流入净热量,由比热定律有dxdydzdt u k dudxdydz c )(∇∇=ρ ( 4.2 )其中C 是介质的比热,ρ是质量密度.对于均匀和各向同性的介质, k c ,,ρ 都是正常数,式(4.2)可写成Ω∈=∇-a y x u a u t ,,022其中c k a ρ/2=成为热导率。
其大小取决于介质性质。
表4.1列出部分材料的热导率。
表 4.1 部分材料的热导率 a 2 (cm 2/sec )银 1.71铜 1.14铝 0.86铁 0.12若物体内部有热源,比如有电流或有化学反应做出热量,将单位时间单位体积产热率称为热密度,记为 F= ( x , y , z , t ).那么,在式(4.2)右边应加上Fdxdydzdt 如如何一项.从而,导出非齐次热传导方程),,,(22t z y x f u a u t =∇- ( 4.4 ) 其中,ρc F t z y x f /),,,(=定解条件① ① 初始条件),,(),,,(z y x o z y x u ϕ= ( 4.5 )热传导方程只需一个初值条件,是因为热传导方程只含有u 对时间一阶偏导数u t 。
化工原理 传热 习题课公式
ln A 1
d1
二、对流给热 1.对流传热基本方程式---------牛顿冷却定律 t t t T TW tW t
Q At
1 A
R
T、t 平均温度
2.与对流传热有关的准数
l Nu
努塞尔数
lu Re
雷诺数
cp
对平壁或薄圆壁:
1 1 1 R1 R2 K 1 2
4、热量衡算式
热流体:无相变时 ,Q = ms1cp1( T1-T2 ) 有相变时, Q = ms1[r1+cp1( T1-T2 )] 冷流体:无相变时 ,Q = ms2cp2( t2-t1 ) 有相变时, Q = ms2[r2+cp2(t2-t1 )] 根据不同的情况计算传热量,如
2
3
1/ 3
Re 0.4 M
r g 0.725 dt
2
3
1/ 4
三、热辐射
斯蒂芬-波尔茨曼定律(四次方定律)
E0 T
4
斯蒂芬 波尔兹曼常数: 5.67 10 8W / m2 K 4
黑体发射系数:C0 5.67W / m 2 K 4
Pr
gtl 3 2 Gr 2
格拉斯霍夫数
普朗特数
3.流体在圆形直管中作强制对流
(1)强制湍流时:
对气体或低粘度的液体:
Nu 0.023Re Pr
0.8
b=
b
或
du 0.8 cp b 0.023 ( ) ( ) d
=0.4被加热 =0.3被冷却
对粘度高或温差较大的液体:
du 0.8 c p 0.33 0.14 0.027 ( ) ( ) ( ) d w
热传导方程[整理版]
前言本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。
一、概念与常量1、温度场:指某一时刻τ下,物体内各点的温度分布状态。
在直角坐标系中:t=f(x,y,z,τ);在柱坐标系中:t=f(r,θ,z,τ);在球坐标系中:t=f(r,θ,∅,τ)。
补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。
2、等温面与等温线:三维物体内同一时刻所有温度相同的点的集合称为等温面;一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。
3、温度梯度:在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。
称过点P的最大温度变化率为温度梯度(temperature gradient)。
用grad t表示。
定义为:grad t=∂t∂nn补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。
对于连续可导的温度场同样存在连续的温度梯度场。
在直角坐标系中:grad t=∂t∂xi+∂t∂yj+∂t∂zk3、导热系数定义式:λ=q-grad t单位W/(m⋅K)导热系数在数值上等于单位温度降度(即1K/m)下,在垂直于热流密度的单位面积上所传导的热流量。
导热系数是表征物质导热能力强弱的一个物性参数。
补充:由物质的种类、性质、温度、压力、密度以及湿度影响。
二、热量传递的三种基本方式热量传递共有三种基本方式:热传导;热对流;热辐射三、导热微分方程式(统一形式:ρc∂t∂τ=λ∇2t+q)直角坐标系:ρc∂t∂τ=∂∂x(λ∂t∂x)+∂∂y(λ∂t∂y)+∂∂z(λ∂t∂z)+q圆柱坐标系:ρc∂t∂τ=1r∂∂r(λr∂t∂r)+1r2∂∂ϕ(λ∂t∂ϕ)+∂∂z(λ∂t∂z)+q球坐标系:ρc∂t∂τ=1r2∂∂r(λr2∂t∂r)+1r2sinθ∂∂θ(λsinθ∂t∂θ)+1r2sin2θ∂∂ϕ(λ∂t∂ϕ)+ q其中,称α=λρc为热扩散系数,单位m2/s,ρ为物质密度,c为物体比热容,λ为物体导热系数,q为热源的发热率密度,h为物体与外界的对流交换系数。
第六章热传导方程
2. 差分解 uin 1 uin / t a 2 uin1 - 2uin uin1 / x 2 n 1 n 1 u u 0; 0 I 0 ui x L / 2 1 / 2;
%ex5021; (p142) % 一维有限长细杆热传导的差分解; clear; N=100; II=50; a=10; L=10; dx=L/II; dt=1*10^-4; C=a^2*dt/dx^2; x=dx*(0:II); T=dt*(0:N); I=2:II; u=zeros(N+1,II+1); u(1,:)=abs(x-L/2)<1/2; %初始温度 figure(1); h=plot(x,u(1,:),'linewidth',5);set(h,'erasemode','xor'); for n=1:N; u(n+1,1)=0; u(n+1,II+1)=0; u(n+1,I)=u(n,I)+C*(u(n,I+1)-2*u(n,I)+u(n,I-1)); set(h,'ydata',u(n+1,:));drawnow; pause(0.001); end; figure(2); mesh(x,T(1:5:N+1)',u(1:5:N+1,:));
%ex504; (p145) % 非奇次方程的输运问题的差分解; clear; N=500; K=100; L=1; a2=50; b=5; dx=L/K; dt=10^-6; C=a2*dt/dx^2; B=b*dt/dx/2; x=dx*(0:K); T=dt*(0:N); J=2:K; u=zeros(N+1,K+1); u(1,:)=(x-1/2).^2; %初始温度 figure(1); =plot(x,u(1,:),'linewidth',5);set(h,'erasemode','xor'); for n=1:N; u(n, 1)=0; u(n,K+1)=0; %边界条件 u(n+1,J)=u(n,J) +C*(u(n,J+1)+u(n,J-1)- 2*u(n,J))… -B*(u(n,J+1)-u(n,J-1)); set(h,'ydata',u(n+1,:)); drawnow; pause(0.01); end; figure(1); mesh(x,T(1:10:N+1)',u(1:10:N+1,:)); figure(2); subplot(2,1,1); plot(x,u(1,:)'); title('初始分布(t=0)'); subplot(2,1,2); plot(x,u(N+1,:)');title('末分布');
热传导方程
3这时可记2λμ=,此时关于X 的方程的解为:cos sin .X A x B x μμμμμ=+从而我们得到满足泛定方程的一系列解:()22cos sin .a tu T X A x B x eμμμμμμμμ−==+为了得到满足初始条件的解,需要把这一系列解叠加起来;由于此时μ的取值没有限制,可以取所有实数值从而需要求积分:()22cos sin a tu u d A x B x ed μμμμμμμμ∞∞−−∞−∞==+∫∫10例8.1 一个具有常初温0u 的细杆,已知它的一端保持温度为零,求杆上以后的温度分布。
解:该问题可以归结为求解如下定解问题:()()()()()200,0,0,0 0,,0 0.t xx u a u x t u t t u x u x =<<∞>=≥=<<∞12二维和三维情形传导和扩散通常是在三维情况中进行的,这时泛定方程应该包含三个空间变量:()223.t xx yy zz u a u u u a u =++=Δ 就像在特殊情况下可以得到一维传导和扩散问题一样,在某些情况下,我们也可以得到二维问题:()222.t xx yy u a u u a u =+=Δ 类似地,三维无界介质中的热传导问题可以归结为如下定解问题(Cauchy 问题):()()23,,,,0,,t u a u u x y z x y z ϕ⎧=Δ⎪⎨=⎪⎩第九章Lapalce方程的Fourier 解1316讨论可知,该本征值问题在2,0,1,2,n n λ=="时有非平凡解:()cos sin n n n a n b n θθθΘ=+。
同时关于r 的方程变为:22'''-0r R rR n R +=。
该方程的通解为:-000ln ,.n nn n n R c d r R c r d r =+=+为得到满足边界条件的解,叠加这些特解得到:()()()0,,n n u l u l f θθθ∞===∑。
数理方程第三章热传导方程
关于一维Fourier变换的性质(1)-(7)对于多 维Fourier变换也成立。此外还有 性质8.若
f ( x ) f1 ( x1 ) f 2 ( x2 ) f n ( xn ), 其中 f i ( xi ) L( , ), 则有
F ( f ) F ( f i ) i
(1i ) x
Hale Waihona Puke 0例2:设 f ( x ) e
Ax 2
( A 0),
求F ( f )( )
2 1 Ax i x 解: F f e e dx 2 1 i Ax2 i x Ax 2 i x {e e 2 A xe e dx} 2 2 Ai Ax 2 F ( xe ) 2 A dF ( f ) d
为此在u(x,t)的积分表达式中做变量替换 ( x) ( 2a t ), 则 1 2 u x, t e x 2a t d
x x0 , t 0
由的有界性,当x (-, ),t>0时,积分关于x,t是 一致收敛的,当x x0 , t 0 时可在积分号下取极限,
t
K ( x , t ) d
d K ( x , t ) f , d
0
()
u x , t K ( x , t ) d
t
d K ( x , t ) f , d
2) 微分性质 设 f ,
3)乘多项式 设
f , xf , x m f绝对可积,则 (m 1)
d F xf i F f d m d F xm f i m F f m d
3热传导方程(扩散方程)
u
g ( x , y , z , t ),
( x, y, z ) ,
t 0,
(1.8)
特别地:g ( x , y , z , t ) 0 时,物体表面保持恒温。
2、第二边界条件 ( Neumann 边界条件)
u k n
g ( x , y , z , t ),
定义2 在区域 R 3 [0, ) 上,由偏微分方程和初 始条件组成的定解问题称为初值问题或柯西问题。 例如三维热传导方程的初值问题为:
2 3 u a ( u u u ) f ( x , y , z , t ), ( x , y , z , t ) R , t 0, t xx yy zz 3 u ( x , y , z , t ) | ( x , y , z ), ( x , y , z , t ) R . t 0
准备知识
2. *通量与散度 设向量场 A ( P, Q, R ), P, Q, R, 在域G 内有一阶 连续 偏导数, 则 向量场通过有向曲面 的通量为
A n d S
( n 为 的单位法向量)
G 内任意点处的散度为 P Q R div A A x y z
(1.6)
通常称(1.5)为非齐次的热传导方程,而称(1.6) 为齐次热传导方程。
二、定解条件(初始条件和边界条件) 初始条件:
u( x , y , z , t ) ( x , y , z ), ( x , y , z ) G , t 0 : (1.7)
边界条件:( G )
例如三维热传导方程的第一初边值问题为:
热传导方程
在理想状态下一根棍子的热传导,配上均匀的边界条件。
其中函数 f 是给定的。再配合下述边界条件 .
让我们试着找一个非恒等于零的解,使之满足边界条件 (3) 并具备以下形式:
这套技术称作分离变量法。现在将 u 代回方程 (1),
由于等式右边只依赖 x,而左边只依赖 t,两边都等于某个常数 − λ,于是:
汉 漢▼ [编辑]
其中:
u =u(t, x, y, z) 表温度,它是时间变量 t 与 空间变量 (x,y,z) 的函数。
/ 是空间中一点的温度对时间的变化率。
,
与
温度对三个空间座标轴的二次导数。
k 决定于材料的热传导率、密度与热容。
热方程是傅里叶冷却律的一个推论(详见条目热传导)。
一维热方程图解 (观看动画版)
热传导方程 - 维基百科,自由的百科全书
以傅里叶级数解热方程
以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作 Théorie analytique de la chaleur(中译:解析热学)给出。先考虑只有一个 空间变量的热方程,这可以当作棍子的热传导之模型。方程如下:
[编辑]
其中 u = u(t, x) 是t 和 x 的双变量函数。 x 是空间变量,所以 x ∈ [0,L],其中 L 表示棍子长度。 t 是时间变量,所以 t ≥ 0。
最后,序列 {en}n ∈ N 张出 L2(0, L) 的一个稠密的线性子空间。这就表明我们实际上已将算子 Δ 对角化。
非均匀不等向介质中的热传导
[编辑]
一般而言,热传导的研究奠基于以下几个原理。首先注意到热流是能量流的一种形式,因此可以谈论单位时间内流进空间中一 块区域的热量。
单位时间内流入区域 V 的热量由一个依赖于时间的量 qt(V) 给出。假设 q 有个密度 Q(t,x),于是
热传导的计算方法
热传导的计算方法热传导是热量从高温区域向低温区域传递的过程。
在工程领域中,了解和计算热传导非常重要,因为它直接关系到热能的利用和传递效率。
本文将介绍一些常用的热传导计算方法,并通过具体示例来说明它们的应用。
1.导热方程导热方程是最基本的热传导计算方法之一。
它描述了热传导过程中的温度变化,并利用热扩散系数、温度梯度和物质的热容量等参数进行计算。
导热方程的通用形式为:q = -k * A * ΔT/Δx,其中q表示热流量,A表示传热面积,ΔT表示温度差,Δx表示距离,k表示热导率。
例如,假设我们要计算热量从金属块的一侧传导到另一侧的情况。
已知金属块的热导率为0.2W/(m·K),距离为0.5m,温度差为50℃,传热面积为1m²。
利用导热方程,我们可以计算出热流量为q = -0.2 * 1 * 50/0.5 = -20W。
2.热传导方程热传导方程是导热方程的一种特殊形式,适用于热传导速率与温度变化成正比的情况。
具体来说,热传导方程可以通过考虑温度分布的变化来计算热传导速率。
它的通用形式为:q = -k * A * dT/dx,其中q表示热流量,A表示传热面积,dT表示温度变化,dx表示位置的变化,k表示热导率。
以一个简单的例子来说明,假设我们要计算热量从一段铁棒的一端传导到另一端的情况。
已知铁的热导率为80W/(m·K),位置变化为1m,温度变化为100℃,传热面积为2m²。
利用热传导方程,我们可以计算出热流量为q = -80 * 2 * 100/1 = -16000W。
3.有限元法有限元法是一种基于数值模拟的热传导计算方法。
它将连续介质离散化为多个小单元,并利用数学建模和计算技术进行模拟。
有限元法可以用来计算复杂几何形状和非线性材料的热传导问题。
例如,假设我们要计算一个复杂形状的导热板的热传导问题。
我们可以将导热板离散化为多个小单元,并在每个单元内进行温度和热量分布的计算。
热传导方程
2 2 x
当导热材料体内温度分布不均匀时,热量总由高温区域流 向低温区域,这种现象就叫热传导。 分类:
维数
一维 二维 三维
热源
有热源 无热源
用到的定律: 能量守恒定律
傅里叶热力学定律
傅里叶热力学定律:
在导热现象中,单位时间内通 过给定截面的热量,正比例于垂直 于该截面方向上的温度变化率和截 面面积,而热量传递的方向则与温 度流密度q是在与传输方向相垂直的单位面积 上,在x方向上的传热速率。 比例常数κ是一个输运特性,称为热导率 (也称为 导热系数),单位是 W m1 K 1 。 也可以表述如下:
dT Q k dx
A
2 m A 为传热面积,单位为
已知导体的比热容c、密度ρ处处相等,设截面面积为A,热导率为k 由能量守恒得:
x2
x 1
c Adx utdt kAdt ux xdx
t1 t1 x 1
t2
t2
x 2
由于t1,t2,x1,x2的任意性,得:
cAut kAuxx
令 a 2 k /(c ) ,约去A,得:
- t u a u 0
2 2 x
谢谢!
传热三大方程
传热三大方程
传热三大方程是指热传导方程、热对流方程和热辐射方程。
1. 热传导方程(Fourier定律):描述了物体内部的热传导行为,即热量从高温区传递到低温区。
其数学表达式为:
q = -k∇T
其中,q表示单位时间内通过单位面积传导的热量,k为热导率,∇T为温度梯度(即温度随空间位置的变化率)。
2. 热对流方程(Newton冷却定律):描述了热量通过流体介
质的传热过程,即热量通过流体的对流传输。
其数学表达式为:
q = hA(T-T_∞)
其中,q表示单位时间内通过单位面积传热的热量,h为对流
换热系数,A为传热面积,T为物体表面的温度,T_∞为流体
的温度。
3. 热辐射方程(斯特藩-玻尔兹曼定律):描述了热能以电磁
波(热辐射)的形式传递的过程,即热能通过空间的辐射传输。
其数学表达式为:
q = εσA(T^4-T_∞^4)
其中,q表示单位时间内通过单位面积传热的热量,ε为物体
的发射率,σ为斯特藩-玻尔兹曼常数,A为辐射面积,T为物体表面温度,T_∞为周围介质的温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[507-04] (2)
边界条件,最通常的形式有三类。
第一边界条件(或称狄利克雷条件):
[507-05] (3)即表面温度为已知函数。
第二边界条件(或称诺伊曼条件):
[507-06] (4)式中是的外法向,即通过表面的热量已知。
热传导方程式(或称热方程)是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。
物理动机
一维热方程图解 (观看动画版)
热传导在三维的等方向均匀介质里的传播可用以下方程式表达:
其中:
u =u(t, x, y, z) 表温度,它是时间变量 t 与 空间变量 (x,y,z) 的函数。 /是空间中一点的温度对时间的变化率。 uxx, uyy 与 uzz 温度对三个空间座标轴的二次导数。 k 决定于材料的热传导率、密度与热容。 热方程是傅立叶冷却律的一个推论(详见条目热传导)。
扩散方程的历史源流
粒子扩散方程首先由 Adolf Fick 于1855年导得。
以格林函数解扩散方程
格林函数是扩散方程在粒子位置已知时的解(数学家称之为扩散方程的基本解)。当粒子初始位置在原点 时,相应的格林函数记作(t>0);根据扩散方程对平移的对称性,对一般的已知初始位置,相应的格林函数是。
[508-05]
[508-06]。
对于一个有界区域,若边界温度为零,在初始时刻在(,,)处给定一个单位点热源(,,,0)=(,,),当>0时由它引起在内的温度分布(即热传导方程的解)称为热传导方程第一边值问题的格林函数,记作(-,-,-,)。根据格林公式
[508-07]
[508-08],式中是的共轭算子,
对于一般的初始条件,扩散方程的解可以透过积分分解为一族格林函数的叠加。
举例来说,设 t=0 时有一大群粒子,根据浓度分布的初始值 分布于空间中。扩散方程的解将告诉我们浓度分布如何随时间演化。
跟任何(广义)函数一样,浓度分布的初始值可Biblioteka 透过积分表为狄拉克δ函数的叠加:
扩散方程是线性的,因此在之后的任一时刻 t,浓度分布变为:
极值原理 一个内部有热源的热传导过程(即在方程(1)中≥0),它的最低温度一定在边界上或初始时刻达到,这就是所谓的极值原理。事实上,还可以有更强的结论:①如果在=[kg1][kg1]时在内部某一点达到了最低温度,那么在这个时刻以前(即<时)整个物体的温度等于常数,这就是所谓的强极值原理;②如果这个最低温度只在[kg1]=[kg1][kg1]时刻的某一边界点[kg1][kg1]达到,那么在这一点上[508-16](是的外法向),此即所谓的边界点引理。
其中 u = u(t, x) 是t 和 x 的双变量函数。
x 是空间变量,所以 x ∈ [0,L],其中 L 表示棍子长度。 t 是时间变量,所以 t ≥ 0。假设下述初始条件
其中函数 f 是给定的。再配合下述边界条件
0. 让我们试着找一个非恒等于零的解,使之满足边界条件 (3) 并具备以下形式:
最后,序列 {en}n ∈ N 张出 L(0, L) 的一个稠密的线性子空间。这就表明我们实际上已将算子 Δ 对角化。
非均匀不等向介质中的热传导
一般而言,热传导的研究奠基于以下几个原理。首先注意到热流是能量流的一种形式,因此可以谈论单位时间内流进空间中一块区域的热量。
单位时间内流入区域 V 的热量由一个依赖于时间的量 qt(V) 给出。假设 q 有个密度 Q(t,x),于是 热流是个依赖于时间的向量函数 H(x),其刻划如下:单位时间内流经一个面积为 dS 而单位法向量为 n 的无穷小曲面元素的热量是 因此单位时间内进入 V 的热流量也由以下的面积分给出
基本解与格林函数 基本解是点热源的影响函数。如果在=0时刻在(,,)处给定单位点热源,即(,,,0)=(,,)(是狄克函数),则当>0时由它引起的在全空间的温度分布(即热传导方程(1)的解)称为热传导方程的基本解。通过傅里叶变换可以得到它的表达式。当>0时
[508-02]
[508-03]
热传导方程初值问题(1)、(2)的解可通过叠加的步骤由基本解生成[508-04]
粒子扩散
粒子扩散方程
在粒子扩散的模性中,我们考虑的方程涉及
在大量粒子集体扩散的情况:粒子的体积浓度,记作 c。 或者
在单一粒子的情况:单一粒子对位置的机率密度函数,记作 P。 不同情况下的方程式:
或者
c 与 P 都是位置与时间的函数。D 是扩散系数,它控制扩散速度,通常以米/秒为单位。
随机变量 Rx,Ry,Rz 服从平均数为 0、变异数为 的正态分布。在三维的情形,随机向量 服从平均数为 、变异数为 的正态分布。
在 t=0 时,上述 的表示式带有奇点。对应于粒子处在原点之初始条件,其机率密度函数是在原点的狄拉克δ函数,记为(三维的推广是);扩散方程对此初始值的解也称作格林函数。
在粒子扩散的情形,我们可以将狄拉克δ函数对应的初始条件理解为粒子落在一个已知位置。一般而言,任何扩散过程的解都有这种表法,包括热传导或动量的扩散;后者关系到流体的黏性现象。
一维格林函数解列表以下以简写 BC 代表边界条件,IC 代表初始条件。
应用
热方程在许多现象的数学模型中出现,而且常在金融数学中作为期权的模型出现。著名的布莱克-斯科尔斯模型中的差分方程可以转成热方程,并从此导出较简单的解。许多简单期权的延伸模型没有解析解,因此必须以数值方法计算模型给出的定价。热方程可以用 Crank-Nicolson 法有效地求数值解,此方法也可用于许多无解析解的模型(详见文献 Wilmott,1995)。
如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定 u 的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。
热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。
热方程在流形上的推广是处理阿蒂亚-辛格指标定理的主要工具之一,由此也导向热方程在黎曼几何中的许多深入应用。
广义热传导
传递是广义的,包括传导,辐射,对流等,传导要借助于固体物,如铁板从这端到那端.
简称抛物型方程,一类重要的偏微分方程。热传导方程是最简单的一种抛物型方程。
热传导方程 研究热传导过程的一个简单数学模型。根据热量守恒定律和傅里叶热传导实验定律导致热传导方程
其中 n(x) 是在 x 点的向外单位法向量。
热传导定律说明温度对时间的梯度满足以下线性关系 其中 A(x) 是个 3 × 3 实对称正定矩阵。 利用格林定理可将之前的面积分转成一个体积分
温度在 x 点对时间的改变率与流进无穷小体积元素的热量成比例,此比例常数与时间无关,而可能与空间有关,写作 κ (x)。 将以上所有等式合并,便获得支配热流的一般公式。
[507-01] (1)式中是温度;[kg2]是拉普拉斯算符;是导温系数;[507-00];[kg2]是热传导系数;[kg2]分别是比热和密度;[507-03];是外加热源密度自然界还有很多现象同样可以用方程(1)来描述,例如分子在介质中的扩散过程等,因此方程(1)通常亦称为扩散方程。
定解问题 为了确定一个具体的热传导过程,除了列出方程(1)以外,还必须知道物体的初始温度(初始条件)和在它的边界上所受到的外界的影响(边界条件)。
热方程也是抛物线偏微分方程最简单的例子。
利用拉普拉斯算子,热方程可推广为下述形式
其中的 Δ 是对空间变量的拉普拉斯算子。
热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornstein-Uhlenbeck 过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。
这套技术称作分离变量法。现在将 u 代回方程式 (1),
由于等式右边只依赖 x,而左边只依赖 t,两边都等于某个常数 ? λ,于是:
以下将证明 (6) 没有 λ ≤ 0 的解:
假设 λ < 0,则存在实数 B、C 使得 从 (3) 得到 于是有 B = 0 = C,这蕴含 u 恒等于零。 假设 λ = 0,则存在实数 B、C 使得 仿上述办法可从等式 (3) 推出 u 恒等于零。 因此必然有 λ > 0,此时存在实数 A、B、C 使得 从等式 (3) 可知 C = 0,因此存在正整数 n 使得 由此得到热方程形如 (4) 的解。
第三边界条件(或称罗宾条件):
[508-01] (5)式中≥0;即物体表面给定热交换条件。
除了以上三类边界条件外还可以在边界[kg1]上给定其他形式的边界条件,如斜微商条件、混合边界条件等。
方程(1)连同初始条件(2)以及边界条件(3)、(4)、(5)中的任意一个一起构成了一个定解问题,根据边界条件的不同形式,分别称为第一、二、三边值问题,统称为热传导方程的初边值问题或混合问题。若≡,[kg2]则由方程(1)和初始条件(2)构成的定解问题称为热传导方程的初值问题或柯西问题。
如果扩散系数 D 依赖于浓度 c(或第二种情况下的机率密度 P),则我们得到非线性扩散方程。
单一粒子在粒子扩散方程下的随机轨迹是个布朗运动。
如果一个粒子在时间 t = 0 时置于 ,则相应的机率密度函数具有以下形式:
它与机率密度函数的各分量 Rx, Ry and Rz 的关系是:
[508-09]任意第一边值问题(1)(2)、(3)的解都可通过格林函数表为[508-10]
[508-11]