石灰石-石膏湿法脱硫技术的工艺流程、反应原理及主要系统
石灰石石膏湿法脱硫原理
石灰石-石膏湿法烟气脱硫工艺石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。
是当前国际上通行的大机组火电厂烟气脱硫的基本工艺。
它采用价廉易得的石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。
脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排入烟囱。
脱硫石膏浆经脱水装置脱水后回收。
由于吸收浆液循环利用,脱硫吸收剂的利用率很高。
最初这一技术是为发电容量在100MW以上、要求脱硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了应用.根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。
已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。
在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是:1、技术成熟,脱硫效率高,可达95%以上。
2、原料来源广泛、易取得、价格优惠3、大型化技术成熟,容量可大可小,应用范围广4、系统运行稳定,变负荷运行特性优良5、副产品可充分利用,是良好的建筑材料6、只有少量的废物排放,并且可实现无废物排放7、技术进步快。
石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺系统、DCS控制系统、电气系统三个分统。
基本工艺过程在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。
基本工艺过程为:(1)气态SO2与吸收浆液混合、溶解(2) SO2进行反应生成亚硫根(3)亚硫根氧化生成硫酸根(4)硫酸根与吸收剂反应生成硫酸盐(5)硫酸盐从吸收剂中分离用石灰石作吸收剂时,SO2在吸收塔中转化,其反应简式式如下: CaCO3+2 SO2+H2O ←→Ca(HSO3)2+CO2在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷入到烟气中。
石灰石石膏湿法脱硫化学反应原理
石灰石石膏湿法脱硫化学反应原理
石灰石石膏湿法脱硫是一种常用的烟气脱硫技术,其原理主要包括以下几个步骤:
1. 石膏浆液的制备:将石灰石(CaCO3)与水反应生成石灰石浆液,同时加入一定量的氧化剂如空气,将部分CaCO3氧化
成氧化钙(CaO),形成钙离子(Ca2+)和氢氧根离子(OH-)。
2. 脱硫反应:将石膏浆液与含有二氧化硫(SO2)的烟气接触,二氧化硫会与钙离子和氢氧根离子发生反应,生成固态的硫酸钙(CaSO4·2H2O)。
反应方程式如下:
Ca2+ + SO2 + 2H2O → CaSO4·2H2O
3. 生成石膏:反应产生的硫酸钙会以颗粒状悬浮在石膏浆液中,形成石膏。
4. 脱水:通过脱水设备,将石膏浆液中的水分去除,使石膏凝固成固体。
整个过程中,石膏浆液充当了吸收剂的角色,能够吸收并固定烟气中的二氧化硫,从而实现脱硫的目的。
生成的石膏可以作为工业原料或用于土壤改良等方面的应用。
四种脱硫方法工艺简介
一、石灰石/石灰-石膏法脱硫工艺一)、工作原理石灰石/石灰-石膏法烟气脱硫采用石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应从而被脱除,最终反应产物为石膏。
二)、反应过程1、吸收SO2+ H2O—>H2SO3SO3+ H2O—>H2SO42、中和CaCO3+ H2SO3—>CaSO3+CO2+ H2OCaCO3+ H2SO4—>CaSO4+CO2+ H2OCaCO3+2HCl—>CaCl2+CO2+ H2OCaCO3+2HF—>CaF2+CO2+ H2O3、氧化2CaSO3+O2—>2 CaSO44、结晶CaSO4+ 2H2O—>CaSO4·2H2O三)、系统组成脱硫系统主要由烟气系统、吸收氧化系统、石灰石/石灰浆液制备系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。
四)、工艺流程锅炉/窑炉—>除尘器—>引风机—>吸收塔—>烟囱来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。
系统一般装3-5台浆液循环泵,每台循环泵对应一层雾化喷淋层。
当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。
吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。
吸收SO2后的浆液进入循环氧化区,在循环氧化区中,亚硫酸钙被鼓入的空气氧化成石膏晶体。
同时,由吸收剂制备系统向吸收氧化系统供给新鲜的石灰石浆液,用于补充被消耗掉的石灰石,使吸收浆液保持一定的pH值。
石灰石-石膏湿法烟气脱硫原理及工艺流程
石灰石-石膏湿法烟气脱硫原理及工艺流程摘要:文中主要对目前火力发电厂普遍使用的石灰石-石膏湿法烟气脱硫工艺的化学反应原理及工艺流程进行了阐述。
为运行及检修提供理论基础。
关键词:火力发电厂石膏湿法烟气脱硫目前,我国的电力供应仍以燃煤的火力发电厂为主,并因此产生的大量SO2的排放而产生的酸雨对我国的生态环境造成了极大的危害,因此,减少SO2的排放是我国大气治理的一个重要方面。
当前,我国火力发电厂减少SO2排放主要采用的为烟气脱硫技术,其中石灰石—石膏湿法FGD技术由于最为成熟、可靠而被广泛采用。
一、石灰石-石膏湿法烟气脱硫工艺介绍石灰石-石膏湿法烟气脱硫工艺属于煤燃烧后脱硫,脱硫系统位于除尘器之后,脱硫过程在溶液中进行,脱硫剂及脱硫生成物均为湿态,脱硫过程的反应温度低于露点,故脱硫后的烟气一般需要经再加热后排出,或提高烟囱的防腐等级。
1 工艺流程介绍其工艺流程为:从锅炉出来的烟气首先经过电除尘器进行除尘,去除烟气中的大部分粉尘颗粒,经除尘后的烟气进入到吸收塔中,同时,浆液循环泵由吸收塔下部抽取浆液并提升到一定高度后,通过喷淋层内设置的喷嘴喷射到吸收塔中。
在吸收塔内烟气向上流动,浆液向下流动,两种物料在吸收塔内进行逆流接触混合,此时,SO2与浆液中的碳酸钙相接触,在空气作用下进行化学反应,并最终形成石膏(CaSO4•2H2O)。
为保证有足量空气使亚硫酸根离子的充分氧化,还需设置氧化风机进行强制氧化。
整个过程中,吸收塔内浆液被循环泵连续不断的向上输送到喷淋层,浆液通过喷嘴喷出,在喷嘴的雾化作用下,气液两相物质充分混合。
每个循环泵与各自的喷淋层相连接,形成多层浆液喷嘴,根据锅炉烟气量及烟气含硫量开启相应的喷嘴层数。
随着烟气中SO2的不断被吸收,在吸收塔中不断的产生石膏,因此必须将石膏排出,以维持物料平衡,故在吸收塔底部设置石膏浆液泵,将二氧化硫与石灰石浆液反应生成的石膏浆液输送至石膏脱水系统,形成可被利用的工业石膏。
石灰石——石膏湿法烟气脱硫技术
石灰石——石膏湿法烟气脱硫技术石灰石——石膏湿法烟气脱硫技术石灰石——石膏湿法烟气脱硫技术是已经开发和推广的烟气脱硫技术中的主流技术,占国内外安装烟气脱硫装置总容量的85%以上。
特点是商业应用时间长,工艺技术成熟,配套设备完善,工作稳定,操作简单,脱硫效率可达到95%以上,可靠性高达95%以上。
吸收剂为石灰石粉,资源丰富,价格低廉,使用安全;副产品为脱硫石膏,可用作水泥添加剂、农业土壤调节剂,或进一步清洗、均化、除杂后,生产建筑用石膏板等。
石灰石——石膏湿法烟气脱硫技术广泛应用于火电厂、冶金、各种工业锅炉、窑炉、水泥工业、玻璃工业、化工工业、有色冶炼等行业大型燃烧设备烟气中SO2的排放控制。
一、工艺流程石灰石——石膏湿法烟气脱硫装置主要由烟气系统、石灰石浆液制备系统、烟气吸收及氧化系统、石膏脱水系统、烟气排放连续监测系统(CEMS)以及自动控制系统和公用工程系统等组成。
工艺流程如图示。
一定浓度的石灰石浆液连续从吸收塔顶部喷入,与经过增加风机增压后进入吸收塔的烟气发生接触。
在烟气被冷却洗涤的过程中,烟气中的SO2被浆液中的碳酸钙吸收生成亚硫酸钙而成为净化烟气,净化后的烟气经除雾器除去烟气中的小雾滴,从吸收塔上部排出,进入大气。
向吸收塔底部的溶液中鼓入空气,溶液中的亚硫酸钙被氧化成为硫酸钙结晶物——石膏。
吸收塔底部的溶液是石灰石、石膏组成的浆状混合物,其部分被强制在塔内循环,部分作为产物排出而成为脱水石膏。
二、工艺原理石灰石——石膏湿法烟气脱硫系统中主要的化学反应包括:1. SO2的吸收2.与石灰石的反应3.氧化反应4.CaSO4晶体生成总的反应方程式为:SO2(g)+ CaCO3(s)+2H2O(l)+1/2O2(g)→CaSO4·2H2O(s)+CO2(g)三、脱硫系统的主要设备1.烟气系统烟气系统由进口烟气挡板门、旁路烟气挡板门、钢制烟道、脱硫增压风机等组成。
原烟气经烟道、烟气进口挡板门进入增压风机,经增压风机升压后进入吸收塔。
石灰石-石膏湿法烟气脱硫工艺原理及特点
石灰石-石膏湿法烟气脱硫工艺原理及特点-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII石灰石-石膏湿法烟气脱硫工艺原理及特点一、工艺原理该工艺采用石灰石或石灰做脱硫吸收剂,石灰石破碎与水混合,磨细成粉壮,制成吸收浆液(当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆)。
在吸收塔内,烟气中的SO2与浆液中的CaCO3(碳酸钙)以及鼓入的氧化空气进行化学反应生成二水石膏,二氧化硫被脱除。
吸收塔排出的石膏浆液经脱水装置脱水后回收。
脱硫后的烟气经除雾器去水、换热器加热升温后进入烟囱排向大气。
烟气从吸收塔下侧进入,与吸收浆液逆流接触,在塔内CaCO3与SO2、H2O进行反应,生成CaSO3·1/2H2O和CO2↑;对落入吸收塔浆浆池的CaSO3·1/2H2O和O2、H2O再进行氧气反应,得到脱流副产品二水石膏。
化学反应方程式:2CaCO3+H2O+2SO2====2CaSO3·1/2H2O+2CO22CaSO3·1/2H2O+O2+3H2O====2CaSO4·2H2O二、FGD烟气系统的原理从锅炉引风机后烟道引出的烟气,通过增压风机升压,烟气换热器(GGH)降温后,进入吸收塔,在吸收塔内与雾状石灰石浆液逆流接触,将烟气脱硫净化,经除雾期除去水雾后,又经GGH升温至大于75摄氏度,再进入净烟道经烟囱排放。
脱硫系统在引风机出口与烟囱之间的烟道上设置旁路挡板门,当FGD装置运行时,烟道旁路挡板门关闭,FGD装置进出口挡板门打开,烟气通过增压风机的吸力作用引入FGD系统。
在FGD装置故障和停运时,旁路挡板门打开,FGD装置进出口挡板门关闭,烟气由旁路挡板经烟道直接进入烟囱,排向大气,从而保证锅炉机组的安全稳定运行。
FGD装置的原烟气挡板、净烟气挡板及旁路挡板一般采用双百叶挡板并设置密封空气系统。
旁路挡板具有快开功能,快开时间要小于10s,挡板的调整时间在正常情况下为75s,在事故情况下约为3~10s。
石灰石-石膏湿法烟气脱硫工艺的化学原理
石灰石-石膏湿法烟气脱硫工艺的化学原理一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,2又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。
1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度,-,它们与溶解了的CaCO和SOHSO的反应3、气液界面处:参加反应的主要是323是瞬间进行的。
二、脱硫系统整个化学反应的过程简述:1、 SO在气流中的扩散,22、扩散通过气膜3、 SO被水吸收,由气态转入溶液态,生成水化合物24、 SO水化合物和离子在液膜中扩散25、石灰石的颗粒表面溶解,由固相转入液相6、中和(SO水化合物与溶解的石灰石粉发生反应)27、氧化反应8、结晶分离,沉淀析出石膏,三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。
四、二氧化硫的物理、化学性质:①. 二氧化硫SO的物理、化学性质:无色有刺激性气味的有毒气体。
密度比2空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。
SO为酸性氧化物,具有酸性氧化物的通性、2还原性、氧化性、漂白性。
还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原2剂。
②. 三氧化硫SO的物理、化学性质:由二氧化硫SO催化氧化而得,无色易挥23发晶体,熔点16.8℃,沸点44.8℃。
SO为酸性氧化物,SO极易溶于水,溶于33水生成硫酸HSO,同时放出大量的热,42③. 硫酸HSO的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点423,浓硫酸溶于水会放出大量的热,密度为1.84g/cm具有10.4℃,沸点338℃,为强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性,五、石灰石湿-石膏法脱硫化学反应的主要动力过程:1、气相SO被液相吸收的反应:SO经扩散作用从气相溶入液相中与水生成亚硫22-+,当PHH 亚硫酸迅速离解成亚硫酸氢根离子HSO值较高时,和氢离子酸HSO3232-,要使SO吸收不断进行下去,必须中和HSO二级电离才会生成较高浓度的SO233++当,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子电离产生的HH 吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO溶解达到饱和后,SO的吸收就告停止,脱22硫效率迅速下降2、吸收剂溶解和中和反应:固体CaCO 的溶解和进入液相中的CaCO的分解,33+浓度(PH固体石灰石的溶解速度,反应活性以及液相中的H值)影响中和反应2+2+的形CaCa的氧化反应,以及其它一些化合物也会影响中和反应速度。
石灰石石膏湿法脱硫的工艺
石灰石石膏湿法脱硫的工艺【石灰石石膏湿法脱硫的工艺】导语:石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,通过将石灰石与石膏反应,可以高效地去除燃煤发电厂和工业锅炉烟气中的二氧化硫。
本文将深入探讨石灰石石膏湿法脱硫的工艺原理、优势以及相关问题。
一、工艺原理1. 石灰石石膏湿法脱硫原理:石灰石与石膏发生反应生成硬石膏,将烟气中的二氧化硫转化为硫酸钙,并形成可回收利用的石膏产物。
主要反应方程式如下所示:CaCO3 + SO2 + 2H2O → CaSO4·2H2O + CO22. 脱硫反应的特点:该反应是一个快速的液相反应,在一定反应温度、气体流速和石膏浆液浓度下进行。
反应速率受碱性、反应温度、质量浓度等因素的影响。
二、工艺步骤1. 石灰石石膏湿法脱硫的基本步骤:(1)石灰石破碎、磨细:将原料石灰石经过破碎和磨细处理,提高其活性和反应速率。
(2)制备石膏浆液:将石灰石与水混合,形成石灰石浆液。
为了提高脱硫效果,还可加入一定量的添加剂。
(3)脱硫反应:将石灰石浆液喷入脱硫塔,通过与烟气的接触和反应,使二氧化硫转化为硫酸钙。
(4)石膏产物处理:将脱硫过程中生成的硬石膏经过脱水、干燥等处理后,得到成品石膏。
2. 工艺改进:为了提高脱硫效率和经济性,石灰石石膏湿法脱硫工艺进行了多方面的改进。
例如引入喷雾器、增加反应塔数目、采用高效填料等,以增加烟气与石灰石浆液的接触面积,加强反应效果。
三、工艺优势1. 脱硫效率高:石灰石石膏湿法脱硫工艺能够高效地将烟气中的二氧化硫转化为重质石膏产物,脱硫效率可达到90%以上。
2. 石膏产物可回收利用:脱硫过程中生成的硬石膏可以用于建材、石膏板等行业,实现资源的循环利用。
3. 工艺成熟可靠:石灰石石膏湿法脱硫工艺经过多年的实践应用,技术成熟可靠,广泛应用于燃煤发电厂和工业锅炉等领域。
四、问题与挑战1. 石膏处理与排放:脱硫过程中生成的硬石膏需要进行后续的脱水、干燥等处理,同时还需要解决石膏产物的长期存储和排放问题。
石灰石—石膏法脱硫工艺
石灰石-石膏法湿法烟气脱硫工艺内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。
循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除S02 S03 HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O ,并消耗作为吸收剂的石灰石。
循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。
每个泵通常与其各自的喷淋层相连接,即通常采用单元制。
在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。
脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。
经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。
同时按特定程序不时地用工艺水对除雾器进行冲洗。
进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。
在吸收塔出口,烟气一般被冷却到46—55 C左右,且为水蒸气所饱和。
通过GGH将烟气加热到80C以上,以提高烟气的抬升高度和扩散能力。
最后,洁净的烟气通过烟道进入烟囱排向大气。
石灰石-石膏湿法烟气脱硫工艺的化学原理如下:①烟气中的二氧化硫溶解水,生成亚硫酸并离解成氢离子和HS0-3离子;②烟气中的氧和氧化风机送入的空气中的氧将溶液中H S0-3氧化成SO2-4:③吸收剂中的碳酸钙在一定条件下于溶液中离解出Ca2+;④在吸收塔内,溶液中的SO2-4、Ca2+及水反应生成石膏(CaS04- 2H20。
化学反应式分别如下:①S02 + H23 H2S0S H++ HS0-3②H+ + HS0-3+ 1/202 T 2H++ SO2-4③CaC03 + 2H++ H23 Ca2++ 2H2O^ C02f④Ca2+ + SO2-4+ 2H2S CaS04- 2H2O由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HS0-3或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaS04达到一定过饱和度后,结晶形成石膏-CaS04 - 2H20石膏可根据需要进行综合利用或作抛弃处理。
石灰石膏法脱硫技术介绍
主要内容
1 石灰-石膏法工艺原理 2 工艺系统及主要设备介绍 3 我公司脱硫工艺的技术特征 4 系统性能指标
1. 工艺原理
石灰—石膏湿法烟气脱硫工艺
该工艺采用石灰作为脱硫吸收剂,粉状的生石灰与水混 合搅拌制成吸收浆液,在吸收塔内,吸收浆液与烟气接 触混合,烟气中的二氧化硫与浆液中的碱性物质以及鼓 入的氧化空气进行化学反应吸收脱除二氧化硫,最终产 物为石膏。脱硫后的洁净烟气通过除雾器除去雾滴经烟 囱排放。
,该混合物以缓冲液的性质存在,使吸收的pH值保持相对平稳。 在浆液循环槽,充入空气进行强制氧化,其反应如下: HSO3-+1/2O2→ SO42-+ H+ SO32-+1/2O2→ SO42-
石灰石-石膏法流程示意图
石灰-石膏法技术特点
(1) 脱硫效率高达96%以上,对煤种适用性强,可用于高中低 含硫煤种。
增压风机
一般选用静叶可调轴流风机,适用于风机风量大,压升低。
轴流风机模型图
挡板门
2.3 SO2吸收系统
空塔喷淋:内部结构简 单,具有负荷大、不易 堵塞、操作弹性宽。
塔内主要构件包括:
入口喷淋层 雾化喷淋层 二级除雾器
吸收塔配套设备有:
循环泵 氧化风机 搅拌器
吸 收 塔 示 意 图
SO2吸收系统 石膏脱水系统 工艺水系统
2.1 吸收剂制备系统
石灰品质要求:
CaO含量≥85% 原料粒径≤6mm 石灰活性要求:(T60) ≤4 min(DL/T 943-2005)符合在4分钟内熟
化反应温度从20℃升高到60℃ 石灰品质达不到上述要求一般不影响脱硫设备的运行,但会影响
性能。
4 实时调节增压风机电机转速,大大节省系统运行电耗。
石灰石-石膏湿法脱硫工艺的基本原理
石灰石-石膏湿法脱硫工艺的基本原理一、石灰石-石膏湿法脱硫工艺的基本原理石灰石——石膏湿法烟气脱硫工艺的原理是采用石灰石粉制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的氧化空气进行化学反应,最后生成二水石膏。
脱硫后的净烟气依次经过除雾器除去水滴、再经过烟气换热器加热升温后,经烟囱排入大气。
由于在吸收塔内吸收剂经浆液再循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般不超过1.1),脱硫效率不低于95%,适用于任何煤种的烟气脱硫。
石灰石——石膏湿法烟气脱硫工艺的化学原理:烟气中的SO2溶解于水中生成亚硫酸并离解成氢离子和HSO 离子;烟气中的氧(由氧化风机送入的空气)溶解在水中,将 HSO 氧化成SO ; ? 吸收剂中的碳酸钙在一定条件下于水中生成Ca2+;在吸收塔内,溶解的二氧化硫、碳酸钙及氧发生化学反应生成石膏(CaSO4?2H2O)。
由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HSO或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaSO4达到一定过饱和度后结晶形成石膏—CaSO4?2H2O,石膏可根据需要进行综合利用或抛弃处理。
二、工艺流程及系统湿法脱硫工艺系统整套装置一般布置在锅炉引风机之后,主要的设备是吸收塔、烟气换热器、升压风机和浆液循环泵我公司采用高效脱除SO2的川崎湿法石灰石,石膏工艺。
该套烟气脱硫系统(FGD)处理烟气量为定洲发电厂,1和,2机组(2×600MW)100,的烟气量,定洲电厂的FGD系统由以下子系统组成:(1)吸收塔系统(2)烟气系统(包括烟气再热系统和增压风机)(3)石膏脱水系统(包括真空皮带脱水系统和石膏储仓系统)(4)石灰石制备系统(包括石灰石接收和储存系统、石灰石磨制系统、石灰石供浆系统) (5)公用系统(6)排放系统(7)废水处理系统1、吸收塔系统吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔,并在上升区与雾状浆液逆流接触,处理后的烟气在吸收塔顶部翻转向下,从与吸收塔烟气入口同一水平位置的烟气出口排至烟气再热系统。
石灰石石膏湿法脱硫工艺
石灰石石膏湿法脱硫工艺前言石灰石石膏湿法脱硫工艺是一种常见的工业脱硫方法,用于减少燃煤电厂、钢铁厂等工业生产过程中排放的二氧化硫(SO2)对环境的污染。
该工艺通过氧化石灰石和反应生成石膏的方式,将SO2转化为无害的石膏,并且可以回收利用。
工艺原理石灰石石膏湿法脱硫工艺的核心是利用石灰石(CaCO3)与SO2发生化学反应,生成石膏(CaSO4)的过程。
具体的反应方程式为:CaCO3 + SO2 + 2H2O -> CaSO4·2H2O + CO2该反应是一个可逆反应,因此可以根据需要控制反应的进行程度,以获得所需的脱硫效果。
工艺的主要步骤包括石灰石浆液的制备、氧化反应、石膏生成和石膏渣的处理。
工艺步骤1. 石灰石浆液的制备首先需要将粉状石灰石与水进行混合,形成悬浮液状的石灰石浆液。
在制备过程中需要注意控制浆液的浓度和pH值,以确保浆液的稳定性和反应效果。
常用的石灰石浆液浓度为15-20%。
2. 氧化反应石灰石浆液通过喷射或喷淋的方式加入SO2所在的烟气中,使二者充分接触,触发氧化反应。
这一步骤一般在脱硫塔中进行。
氧化反应的有效性与气液接触面积、接触时间和反应温度密切相关。
为了提高气液接触面积和接触时间,常常采用喷雾式喷射器或旋流雾化器,并通过增加塔体高度,提高反应温度来增加反应速率。
3. 石膏生成在氧化反应中,SO2与石灰石浆液中的CaCO3反应生成了石膏。
石膏的生成是一个放热反应,石灰石浆液中的温度会随之升高。
反应完成后,石膏与水会自然分离,形成固液两相。
4. 石膏渣的处理在石膏生成后,需要对石膏渣进行处理。
常见的处理方法包括脱水、脱水湿法输运和硬化处理。
脱水是将石膏渣中剩余的水分去除,使其成为干燥的固体,方便后续的处理和利用。
脱水后的石膏渣可以包装成粉状或块状产品,用于建材或农业等领域。
脱水湿法输运是通过浆液输送系统,将脱水石膏渣以浆液形式输送到相应的处理装置进行继续处理。
这种方法适用于处于较长输送距离的场合。
石灰石石膏湿法脱硫工艺流程
石膏存储系统和石膏利用
湿石膏的存储方法取决于发电厂烟气脱硫系统石膏的产 量、用户的需求量、运输手段以及石膏中间储仓的大小。对 于容量为300~700m3的中间储仓,石膏在其中的存放时间不 应超过1个月。因此,推荐采用带有底部卸料系统的一次型 储仓,如图所示。
石膏仓应采取防腐措施和防堵措施。在寒冷地区,石膏 仓应采取防冻措施。若脱硫副产物暂无综合利用条件时,可 经一级旋流器浓缩输送至贮存场,也可经脱水后输送至贮存 场,但宜与灰渣分别堆放,留有今后综合利用的可能性,并 应采取防止副产物造成二次污染的措施。
水力旋流器
石膏脱水系统
• 石膏处理系统-石膏水力旋流器 •重的、粗的颗粒流入二次脱水 •较轻,细颗粒,包括飞灰,石灰石则溢流出去 •无传动件
真空皮带脱水机的脱水原理是将需要分离的液体(或气 体)混合物置于具有细微孔道过滤介质的一侧,在压差推 动力作用下,流体通过过滤介质的细孔道流到介质的另一 侧,流体中的固体颗粒则被截留,从而实现液体与固体颗 粒的分离。
脱硫废水处理
脱硫废水处理包括以下4个步骤: A、废水中和 反应池由3个隔槽组成,每个隔槽充满后自流进入下个隔槽。在脱硫废水 进入第1隔槽的同时加入一定量的10%左右的石灰浆液,通过不断搅拌,其 pH值可从5.5左右升至9.0以上。 B、重金属沉淀 Ca(OH) 2的加入不但升高了废水的pH值,而且使Fe3+、Zn2+、Cu2+、Ni2+、 Cr3+等重金属离子生成氢氧化物沉淀。一般情况下3价重金属离子比2价更容 易沉淀,当pH值达到9.0~9.5时,大多数重金属离子均形成了难溶氢氧化物。 同时,石灰浆液中的Ca2+还能与废水中的部分F-反应,生成难溶的CaF2;与 As3+ 络合生成Ca3 (AsO3)2等难溶物质。此时Pb2+ 、Hg2+仍以离子形态留在 废水中,所以在第2隔槽中加入有机硫化物药剂TMT-15,使其Pb2+、Hg2+反 应形成难溶的硫化物沉积下来。
石灰石石膏湿法脱硫
石灰石石膏湿法脱硫
在工业生产过程中,二氧化硫的排放是一项严重的环境污染问题。
为了减少二氧化硫的排放,石灰石石膏湿法脱硫技术应运而生。
石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,其工作原理是利用石灰石(CaCO3)和石膏(CaSO4)来将含有二氧化硫的烟气中的硫氧化物吸收和转化成硫酸盐的方法。
其基本反应方程式如下:
CaCO3 + SO2 + 2H2O -> CaSO4·2H2O + CO2
在工业生产中,石灰石通常以石灰石浆的形式喷入脱硫塔中,而脱硫塔内有填料来增加气液接触面积。
当含有二氧化硫的烟气通过脱硫塔时,二氧化硫会与石灰石浆中的氢氧根和钙离子发生反应,生成硫酸钙和二氧化碳,并最终形成石膏。
石膏是一种无害的产物,可以被应用在建筑材料、水泥生产等领域。
因此,石灰石石膏湿法脱硫技术不仅可以有效减少环境污染,还可以实现资源的再利用,具有双重的环保效益。
相比于其他脱硫技术,石灰石石膏湿法脱硫技术具有高效、低成本、操作简便等优点。
但同时也存在着一些缺点,例如脱硫塔需占用较大的空间,对于废水处理等环节也需要进行综合考虑。
综上所述,石灰石石膏湿法脱硫技术在工业生产中扮演着重要的角色,为减少二氧化硫的排放、改善环境质量提供了一种有效的途径。
在未来的发展中,我们还需不断优化技术,降低成本,提高脱硫效率,推动绿色环保产业的发展。
石灰石-石膏法烟气脱硫的工艺流程
石灰石-石膏法烟气脱硫的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!石灰石-石膏法烟气脱硫是一种常用的湿法脱硫技术,其工艺流程主要包括以下几个步骤:1. 烟气系统:锅炉燃烧产生的烟气通过引风机进入脱硫系统。
湿法脱硫技术
1. 概述石灰石-石膏法烟气脱硫技术已经有几十年的发展历史,技术成熟可靠,适用范围广泛,据有关资料介绍,该工艺市场占有率已经达到85以上。
由于反应原理大同小异,本培训教材总结了一些通用的规律和设计准则,基本适用于目前市场上常用的各种石灰石-石膏法烟气脱硫技术,包括喷淋塔、鼓泡塔、液柱塔等。
2.典型的系统构成典型的石灰石/石灰-石膏湿法烟气脱硫工艺流程如图2-1所示,实际运用的脱硫装置的范围根据工程具体情况有所差异。
3反应原理3.1吸收原理吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。
这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCl、HF被吸收。
SO2吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。
为了维持吸收液恒定的pH值并减少石灰石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机、氧化空气和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。
3.2化学过程强制氧化系统的化学过程描述如下:(1)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2+H2O→H2SO3(溶解)H2SO3⇋H++HSO3-(电离)吸收反应的机理:吸收反应是传质和吸收的的过程,水吸收SO2属于中等溶解度的气体组份的吸收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制,吸收速率=吸收推动力/吸收系数(传质阻力为吸收系数的倒数)强化吸收反应的措施:a)提高SO2在气相中的分压力(浓度),提高气相传质动力。
b)采用逆流传质,增加吸收区平均传质动力。
c)增加气相与液相的流速,高的Re数改变了气膜和液膜的界面,从而引起强烈的传质。
d)强化氧化,加快已溶解SO2的电离和氧化,当亚硫酸被氧化以后,它的浓度就会降低,会促进了SO2的吸收。
e)提高PH值,减少电离的逆向过程,增加液相吸收推动力。
f)在总的吸收系数一定的情况下,增加气液接触面积,延长接触时间,如:增大液气比,减小液滴粒径,调整喷淋层间距等。
石灰石石膏湿法脱硫技术
编辑ppt
22
图1-6 晶种生成速率和晶体增长速率与相对过饱和度σ的关系
编辑ppt
23
根据以上分析,保持亚稳平衡区域中相对过饱和度为适
当值时,可使浆液中生成较大的晶体。为保持脱硫装置的正
常运行,维持这些条件非常重要。
工艺上一般控制相对过饱和度σ=0.1~0.3(或相对饱和度
RS为1.1~1.3),以保证生成的石膏易于脱水,同时防止系
双膜理论的基本要点如下: ① 相互接触的气、液两流体间存在着稳定的相界面,界 面两侧各有一个很薄的有效滞流膜层,吸收质以分子扩散方 式通过此二膜层。 ② 在相界面处,气、液两相达到平衡。 ③ 在膜层以外的中心区,由于流体充分湍动,吸收质浓 度是均匀的,即两相中心区内浓度梯度皆为零,全部浓度变 化集中在两个有效膜层内。
石灰石-石膏湿法脱硫
工艺流程
编辑ppt
提纲
一、石灰石-石膏湿法脱硫工艺的基本原理 二、石灰石浆液制备系统 三、烟气系统及设备 四、吸收系统 五、石膏脱水系统 六、脱硫废水系统
编辑ppt
一、石灰石-石膏湿法脱硫工艺的基本原理
编辑ppt
石灰石-石膏湿法烟气脱硫工艺的原理是采用石灰石(块)粉 制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接 触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的 氧化空气进行化学反应,最后生成二水石膏。脱硫后的净烟 气依次经过除雾器除去水滴、再经过烟气换热器加热升温后, 经烟囱排入大气。由于在吸收塔内吸收剂经浆液再循环泵反 复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般 不超过1.03),脱硫效率不低于95%,适用于任何煤种的烟 气脱硫。
0
0.2 0.4 0.6 0.8
1 2
1 mol/L
石灰石石膏湿法脱硫工艺
石灰石石膏湿法脱硫工艺一、工艺简介石灰石石膏湿法脱硫工艺是目前应用最广泛的脱硫技术之一,其原理是利用石灰石和石膏反应生成硬度较高的钙硫石,从而达到减少二氧化硫排放的目的。
该工艺具有投资成本低、运行成本低、处理效率高等优点,在电力、钢铁、化工等行业得到广泛应用。
二、原材料准备1. 石灰石:选用纯度高、颗粒均匀的优质石灰石。
2. 石膏:选用纯度高、含水量适中的优质天然石膏。
3. 水:选用清洁无杂质的自来水或经过处理后的水源。
三、工艺流程1. 粉碎:将采购回来的石灰石和石膏进行粉碎,使其颗粒大小均匀,便于后续反应。
2. 配料:按一定比例将粉碎好的石灰石和石膏混合在一起,制成配料。
3. 反应:将配料加入搅拌槽中,加入适量的水,进行搅拌反应。
反应过程中,石灰石和石膏发生化学反应,生成硬度较高的钙硫石。
4. 沉淀:将反应后的钙硫石沉淀到底部,分离出上清液。
5. 过滤:将上清液通过过滤器过滤,去除其中的杂质和悬浮物。
6. 浓缩:将过滤后的液体进行浓缩处理,使其达到一定浓度。
7. 干燥:将浓缩后的液体进行干燥处理,制成成品。
四、关键工艺参数控制1. 配料比例:配料比例是影响反应效果和产品质量的关键因素之一。
通常采用1:1~1:1.5的比例进行配料。
2. 反应温度:反应温度对反应速率和产物质量有很大影响。
通常采用55℃左右的温度进行反应。
3. 反应时间:反应时间也是影响产物质量和工艺效率的重要因素之一。
通常采用2~4小时左右的时间进行反应。
4. 搅拌速度:搅拌速度对于保证反应均匀和产物质量也有很大影响。
通常采用20~30转/分的速度进行搅拌。
五、工艺优化及改进1. 采用先进的粉碎设备,提高石灰石和石膏的粉碎效率,提高配料的均匀性。
2. 采用自动化控制系统,实现对关键工艺参数的实时监测和调节,提高生产效率和产品质量。
3. 优化反应槽结构,提高反应效率和产物质量。
4. 加强废水处理,减少对环境的污染。
六、安全措施1. 在操作过程中要注意防护眼睛、皮肤等部位,避免接触到化学品。
石灰-石膏石灰石-石膏法脱硫介绍
三、石灰-石膏/石灰石-石膏法脱硫介绍3.1石灰石/石膏湿法脱硫概述3.1.1工艺说明石灰石/石膏湿法脱硫具有反应速度快、脱硫效率高、设备运行可靠性高,吸收剂采用石灰石粉来源广泛,适应机组负荷变化范围大,系统运行安全稳定等优点,因此,湿法脱硫工艺在大型机组脱硫中被广泛采用。
由于石灰石/石膏湿法脱硫技术成熟度高,且国家环保要求的不断提高,近两年来,中小型机组脱硫中也被广泛采用。
3.1.2脱硫反应原理烟气中SO2的吸收主要在吸收塔中进行,通过吸收塔喷淋浆液及浆液池氧化等措施脱除二氧化硫,浆液pH值为5.2到6.0。
吸收塔浆池的设计易于碳酸钙溶解,强制氧化和晶体沉淀。
其工艺原理主要有以下过程。
吸收塔基本反应如下:SO2 + CaCO3---> CaSO3 + CO2SO3 + CaCO3 ---> CaSO4 + CO2中间反应也同时发生,钙离子溶解:CaCO3 (s) ---> CaCO3 (aq)CaCO3 (aq) + H2O ---> Ca2++ HCO3- + OH-SO32-在气液交界面上:SO2 (g) ---> SO2 (aq)SO2 (aq) + H2O ---> H2SO3---> HSO3- + H+HSO 3- ---> H + + SO 32-石膏的初级沉淀是由于强制氧化的作用:SO 32- + 1/2 O 2 ---> SO 42-Ca 2+ + SO 42- + 2H 2O ---> CaSO 4.2H 2O(s)亚硫酸盐也与钙离子发生反应生成CaSO 3.1/2H 2O :Ca 2+ + SO 32- + 1/2 H 2O ---> CaSO 3.1/2H 2O(s)不仅可以脱除二氧化硫,吸收塔也可以脱除HCl 和HF 。
碳酸钙按照下述方式被中和:2 HCl + CaCO3 ---> CaCl 2 + H 2O + CO 22 HF + CaCO3 ---> CaF 2 + H 2O + CO 2通过上述一系列反应过程,烟气中的SO 2最终反应生成了稳定无污染的CaSO 4(石膏),从而达到有效脱除SO 2等污染物的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石灰石-石膏湿法脱硫技术的工艺流程
如下图的石灰石-石膏湿法烟气脱硫技术的工艺流程图。
图一常见的脱硫系统工艺流程
图二无增压风机的脱硫系统
如上图所示引风机将除尘后的锅炉烟气送至脱硫系统,烟气经增压风机增压后(有的系统在增压风机后设有GGH换热器,我们一、二期均取消了增压风机,和旁路挡板,图二),进入脱硫塔,浆液循环泵将吸收塔的浆液通过喷淋层的喷嘴喷出,与从底部上升的烟气发生接触,烟气中SO2的与浆液中的石灰石发生反应,生成CaSO3,从而除去烟气中的SO2。
经过净化后的烟气在流经除雾器后被除去烟气中携带的液滴,最后从烟囱排出。
反应生成物CaSO3进入吸收塔底部的浆液池,被氧化风机送入的空气强制氧化生成CaSO4,结晶生成石膏。
石灰石浆液泵为系统补充反应消耗掉的石灰石,同时石膏浆液输送泵将吸收塔产生的石
膏外排至石膏脱水系统将石膏脱水或直接抛弃。
同时为了防止吸收塔内浆液沉淀在底部设有浆液搅拌系统,一期采用扰动泵,二期采用搅拌器。
石灰石-石膏湿法脱硫反应原理
在烟气脱硫过程中,物理反应和化学反应的过程相对复杂,吸收塔由吸收区、氧化区和结晶区三部分组成,在吸收塔浆池(氧化区和结晶区组成)和吸收区,不同的层存在不同的边界条件,现将最重要的物理和化学过程原理描述如下:(1)SO2溶于液体
在吸收区,烟气和液体强烈接触,传质在接触面发生,烟气中的SO2溶解并转化成亚硫酸。
SO2+H2O<===>H2SO3
除了SO2外烟气中的其他酸性成份,如HCL和HF也被喷入烟气中的浆液脱除。
装置脱硫效率受如下因素影响,烟气与液体接触程度,液气比、雾滴大小、SO2含量、PH值、在吸收区的相对速度和接触时间。
(2)酸的离解
当SO2溶解时,产生亚硫酸,同时根据PH值离解:
H2SO3<===>H++HSO3-对低pH值
HSO3-<===>H++SO32-对高pH值
从烟气中洗涤下来的HCL和HF,也同时离解:
HCl<===>H++Cl-F<===>H++F-
根据上面反应,在离解过程中,H+离子成为游离态,导致PH值降低。
浆液中H+离子的增加,导致SO2在浆液中的溶解量减少。
因此,为使浆液能够再吸收SO2,必须清除H+离子。
H+离子的清除采用中和的方式。
(3)中间产物的中和反应
使用能够溶于浆液的石灰石,同上述提到的离子发生如下反应:
CaCO3(固体)<===>CaCO30(溶解)
CaCO30(溶解)+2H+<===>Ca2++CO2+H2O
Ca2+离子与溶解的酸发生反应:
Ca2++2Cl-<===>CaCl2
Ca2++2F-<===>CaF2
Ca2++2HSO3-<===>Ca(HSO3)2
Ca2++SO32-<===>CaSO3
生成溶解的亚硫酸钙的反应,主要发生在吸收区上部,因为烟气中SO2含量的降低,使此区域内的浆液保持一个高的PH值,极大地降低了HSO3-的浓度,从而在进一步提高脱硫效率同时降低了在吸收区结垢的可能性。
在吸收区下部以及在氧化区是降低SO2浓度的主要区域,PH值较低。
在此区域内,洗涤液含有少量的亚硫酸钙,但有更多的亚硫酸氢钙。
除了PH值和液气比外,脱硫效率还取决于上述中和反应的速度和石灰石溶解的速度。
而石灰石溶解的速度取决于H+的浓度,而且随PH值的降低而加快。
钙离子、氯离子和硫酸根离子对石灰石的溶解速度有负面影响。
其中氯离子随烟气和工艺水进入吸收系统,钙离子由吸收浆液带入,而硫酸根离子由氧化溶解的亚硫酸根离子产生。
浆液中氯离子浓度通过废水排放来控制。
(4)亚硫酸氢钙的氧化
一些已形成的亚硫酸氢钙,被浆液所含的氧在吸收区氧化。
HSO3-+0.5O2<===>SO42-+H+
而剩余的亚硫酸氢根则在氧化区由浆池中大量空气所氧化。
在此工艺中,PH 值主要控制在4.5~5.5,更多的H+离子按上述反应形成了。
这些H+离子由浆液中过剩的石灰石所中和,其结果是生成了溶解的硫酸钙。
CaCO3+2H+<===>Ca2++H2O+CO2
SO42-+Ca2+<===>CaSO4
(5)反应产物的结晶
连续产生的硫酸钙导致溶液的过饱和,从而形成了石膏晶体。
CaSO4+2H2O<===>CaSO4˙2H2O
通过维持浆液中固体含量在80~180g/l的水平,石膏结晶的过程最优化,新生成的石膏在晶种上逐步长大成石膏晶体,所产生的副产品石膏从系统中排除。
整个脱硫塔的反应可以变为如下一张图
石灰石-石膏湿法脱硫主要系统
1.系统构成
石灰石-石膏湿法脱硫系统包括以下几个系统:烟气系统、吸收塔系统及氧化空气系统、石灰石上料及浆液制备系统、石膏脱水及废水系统、工艺水系统、电气及热控系统组成
1.1烟气系统
烟气系统主要包括烟道及各膨胀节、如设有增压风机还有风机挡板等,、如设有GGH烟气换热器还包括有GGH换热器及其辅助系统。
另外现在的脱硫系统已取消旁路挡板,当系统发生故障时为了保证脱硫系统的安全,在脱硫烟道入口还设有事故喷淋降温系统。
锅炉烟气进入吸收塔系统。
烟气经过风机加压后进入吸收塔反应后从烟囱排入大气;当脱硫系统发生故障或系统无法继续运行时,在锅炉正常停运前,烟道上的事故喷淋系统启动,确保脱硫设备的安全。
1.2.吸收塔及氧化空气系统
吸收塔系统是整个脱硫系统的核心。
主要包括设备浆液循环泵、氧化风机,扰动系统(搅拌器或扰动本)、石膏浆液排出泵。
吸收塔由吸收区、氧化区和结晶区组成。
在吸收塔的吸收区,烟气与浆液接触发生反应烟气中的SO2和其他有害气体和粉尘被除去。
在吸收塔浆液池中,亚硫酸钙被鼓入的氧化空气氧化生成CaSO4。
同时氧化生成CaSO4结晶生成石膏,通过石膏浆液输送泵排出吸收塔送去石膏脱水系统,同时新鲜的石灰石浆液加入浆池,补充系统反应消耗掉的石灰石。
1.3.石灰石上料及浆液制备系统
石灰石上料及浆液制备系统主要是向吸收系统提供合格的石灰石浆液。
球磨机分干式磨和湿式磨两种,干式磨能耗大,运行噪声大,所以电厂一般采用湿式磨。
主要设备有湿式球磨机、振动给料机、斗式提升机、仓顶皮带机、石灰石浆液箱、石灰石浆液输送泵。
石灰石原料要求直径不大于20mm,由振动给料机→斗式提升机→仓顶皮带输送机送入石灰石贮仓,再由称重给料机送入湿式球磨机,磨制好的石灰石浆液通过磨机浆液再循环泵送入旋流站,合格的浆液送至石灰石
浆液箱,由石灰石浆液输送泵送至吸收塔,补充因与SO2反应而消耗了的吸收剂。
1.4.石膏脱水及废水系统
石膏脱水及废水系统是处理脱硫副产物的系统。
主要设备包括真空皮带脱水机、石膏浆液输送泵(如设有)、废水泵、滤液水泵及相应的浆液箱罐。
吸收塔浆池中产生的石膏由石膏浆液排出泵送入石膏旋流器浓缩,其溢流至滤液水箱,含固量为45%~60%的底流直接进入真空皮带机或送入石膏浆液箱由石膏浆液输送泵送入真空皮带脱水机脱水,脱水后的产物为含水量不大于10%的石膏,由皮带输送机送入石膏库。
脱硫装置浆液内的水在不断循环过程中,会富集重金属元素和CL–等,加快脱硫设备的腐蚀,影响石膏品质。
为此,设置脱硫装置废水系统来将这些有害元素排出。
1.5工艺水系统
工艺水系统主要由工艺水箱、工艺水泵和除雾器冲洗水泵组成。
工艺水泵主要提供吸收塔补水,石灰石浆液制备系统,石膏脱水系统,所有浆液输送泵、输送管路、浆液箱的冲洗水、氧化风机的冷却水及浆液泵的密封水和机封冲洗水。
除雾器冲洗水泵主要提供除雾器冲洗,氧化空气管减温水。
1.6.电气及热控系统
脱硫电气系统主要由以下几个部分构成:脱硫6KV压配电设备、脱硫0.4KV 力中心、保安系统、照明检修系统、220V蓄电池直流系统、UPS不停电系统、车间MCC等。
热控系统一般包括测量仪表、信号,I/O卡件,DCS或PLC操作系统。
其中操作系统具有自动调节、报警的功能,国外先的技术甚至能做到无人值守的功能。