洗衣机控制器课程设计

合集下载

洗衣机plc课程设计

洗衣机plc课程设计

洗衣机 plc课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理及其在洗衣机控制中的应用。

2. 学生能掌握洗衣机主要部件的工作原理,尤其是与PLC控制相关的部件。

3. 学生能运用PLC编程实现对洗衣机启动、洗涤、漂洗、脱水等基本功能的控制。

技能目标:1. 学生能运用所学知识,设计简单的PLC控制程序,实现洗衣机的模拟运行。

2. 学生能通过小组合作,进行PLC程序的调试与优化,提高程序运行效率。

3. 学生能运用相关软件工具,绘制PLC控制系统的电气原理图。

情感态度价值观目标:1. 学生通过学习洗衣机PLC课程,培养对自动化技术及其应用的兴趣,激发创新意识。

2. 学生在课程学习过程中,养成合作、探究的学习习惯,提高问题解决能力。

3. 学生认识到PLC技术在洗衣机行业中的重要地位,增强对节能减排和可持续发展理念的认识。

课程性质:本课程为高一年级电子与自动化专业课程,以理论与实践相结合的方式进行。

学生特点:学生具备基本的电子与自动化知识,对PLC技术有一定了解,但实践经验不足。

教学要求:注重理论与实践相结合,强调动手操作,培养实际工程应用能力。

通过课程学习,使学生在掌握洗衣机PLC控制技术的基础上,提高综合运用所学知识解决实际问题的能力。

二、教学内容1. PLC基础知识回顾:PLC的组成、工作原理、编程语言等,重点回顾与洗衣机控制相关的内容。

教材章节:第一章 PLC概述,第二章 PLC的组成与工作原理。

2. 洗衣机工作原理及主要部件功能介绍:讲解洗衣机洗涤、漂洗、脱水等过程的工作原理,介绍与PLC控制相关的主要部件。

教材章节:第三章 洗衣机结构与原理。

3. PLC控制程序设计:学习PLC编程软件的使用,设计洗衣机各功能模块的PLC控制程序。

教材章节:第四章 PLC编程语言与编程方法。

4. PLC控制程序调试与优化:通过小组合作,对设计好的PLC程序进行调试,发现问题并进行优化。

简易洗衣机控制课程设计

简易洗衣机控制课程设计

洗衣机控制器设计报告一.设计要求启动—→正转20s —→暂行10s—→反转20s——(定时未到)—→暂行10 s———(定时到)——→停止如果定时时间到,则停机并发出音响信号。

(1).采用中小规模集成芯片设计制作一个电子定时器,按照一定的洗涤程序控制电机作正向和反向转动。

(2).电机用2个继电器控制,洗涤定时时间在0—20min内由用户任意设定。

(3).用两位数码管显示洗涤的预置时间,按倒计时方式对洗涤过程作计时显示,直至时间到而停机。

(4). 如果定时时间到,则停机并发出音响信号。

(5). 洗涤过程在送入预置时间后即开始运转。

二.方案选择及电路的工作原理1.方案选择从课程设计要求来看,要求实现电机的正传、反转、暂停,实际上没有电机给我们接上,这回要用四个LED灯的状态来表示,当显示时间前20秒正传、暂停10秒、反转20秒、再暂停10秒,如此一来,周期恰好是60秒,理所当然的分钟计数器、秒计数器是一定要有的。

接下来脉冲是一定的了,但是有分钟计数器和秒钟计数器还要考虑是不是要60分频器,就我们所学过的来说实现循环有移位寄存器;还有个问题,当洗涤时间到了,报警还要一个报警电路,根据人性化、自动化、低成本的设计原则,报警的蜂鸣器不可以长时间的叫,要有个合理的时间,我们可以用一个单稳态电路来实现。

看起来还不错啊,如果这样想那就嫌早了点,还有一个问题要解决:如何提取时间并使循环电路工作的信号?方案有两种:一是直接从数值上进行提取信号来控制一个可以实现循环的74LS194来实现;另一种是制作一个二十进制到十进制的循环转化来把这一分钟走完,但是从电路的复杂程度和经济性来说,显然后者太过于复杂,也不利于接线和排故障,虽然难度会大一些、出成果的时间会比别人晚,但是要设计一个真正可以让用户用放心使用的产品,还得这样做。

尤其是最后的循环电路用两个194一定可以很容易实现。

2.工作原理首先,从秒脉冲出来的信号,经过一个控制电路后进入秒计数器进行秒计数,进行清零,这时用户置入洗涤时间,并按开始按钮,洗衣机开始工作。

eda技术课程设计洗衣机控制器

eda技术课程设计洗衣机控制器

课程EDA技术课程设计题目洗衣机控制器专业电子信息工程姓名主要内容、基本要求、主要参考资料等主要内容:设计一个洗衣机控制器,要求洗衣机有正转、反转、暂停三种状态。

设定洗衣机的工作时间,要洗衣机在工作时间内完成:定时启动→正转20秒→暂停10秒→反转20秒→暂停10秒→定时未到回到“正转20秒→暂停10秒→……”,定时到则停止,同时发出提示音。

基本要求:1、设计一个电子定时器,控制洗衣机作如下运转:定时启动→正转20秒→暂停10秒→反转20秒→暂停10秒→定时未到回到“正转20秒→暂停10秒→……”,定时到则停止;2、若定时到,则停机发出音响信号;3、用两个数码管显示洗涤的预置时间(分钟数),按倒计时方式对洗涤过程作计时显示,直到时间到停机;洗涤过程由“开始”信号开始;4、三只LED灯表示“正转”、“反转”、“暂停”三个状态。

主要参考资料:[1] 潘松著.EDA技术实用教程(第二版). 北京:科学出版社,2005.[2] 康华光主编.电子技术基础模拟部分. 北京:高教出版社,2006.[3] 阎石主编.数字电子技术基础. 北京:高教出版社,2003.完成期限2011.3.11指导教师专业负责人2011年3月7日一、总体设计思想1.基本原理从课程设计要求来看,要求实现电机的正传、反转、暂停,需要用LED灯的状态来表示,当显示时间前20秒正传、暂停10秒、反转20秒、再暂停10秒,如此一来,周期恰好是60秒。

洗衣机控制器的设计主要是定时器的设计。

由一片FPGA和外围电路构成了电器控制部分。

FPGA接收键盘的控制命令,控制洗衣机的进水、排水、水位和洗衣机的工作状态、并控制显示工作状态以及设定直流电机速度、正反转控制、制动控制、起停控制和运动状态控制。

对芯片的编程采用模块化的VHDL (硬件描述语言)进行设计,设计分为三层实现,顶层实现整个芯片的功能。

顶层和中间层多数是由VHDL的元件例化语句实现。

中间层由无刷直流电机控制、运行模式选择、洗涤模式选择、定时器、显示控制、键盘扫描、水位控制以及对直流电机控制板进行速度设定、正反转控制、启停控制等模块组成,它们分别调用底层模块。

全自动洗衣机plc课程设计

全自动洗衣机plc课程设计

全自动洗衣机plc课程设计一、课程目标知识目标:1. 让学生掌握PLC(可编程逻辑控制器)的基本原理及其在全自动洗衣机中的应用。

2. 学生能够理解并描述全自动洗衣机的主要部件及其功能。

3. 学生能够运用PLC编程实现对全自动洗衣机洗涤流程的控制。

技能目标:1. 培养学生运用PLC进行自动化设备程序设计的实际操作能力。

2. 学生能够通过小组合作,解决实际工程问题,提高团队协作和沟通能力。

3. 学生能够运用所学知识,设计并优化洗衣机控制程序,提高设备运行效率。

情感态度价值观目标:1. 培养学生对自动化技术的兴趣,激发创新意识,提高实践能力。

2. 培养学生关注生活、关注环保的意识,了解洗衣机在节能减排方面的应用。

3. 培养学生严谨、认真的学习态度,树立正确的工程伦理观念。

课程性质:本课程为实践性较强的专业课,注重理论与实践相结合,以PLC在全自动洗衣机中的应用为载体,培养学生的编程能力和工程素养。

学生特点:学生具备一定的电气基础和编程知识,对PLC有一定了解,但实际操作能力较弱,需要通过本课程加强实践锻炼。

教学要求:教师应注重启发式教学,引导学生主动探索,提高学生的实际操作能力。

同时,注重培养学生的团队协作能力和工程素养,使学生在实践中不断提高。

通过课程目标的分解,确保学生在课程结束后能够达到预定的学习成果。

二、教学内容1. PLC基础知识回顾:包括PLC的基本结构、工作原理、编程语言等,重点回顾与洗衣机控制相关的内容。

2. 全自动洗衣机原理及结构:介绍洗衣机的主要部件,如电机、传感器、执行器等,分析各部分在洗衣机运行过程中的作用。

3. PLC编程软件使用:教授学生如何使用PLC编程软件进行程序设计,包括程序输入、编译、下载和调试等操作。

4. 洗衣机控制程序设计:以全自动洗衣机为例,讲解PLC控制程序的设计方法,包括洗涤、漂洗、脱水等过程的控制逻辑。

5. 实践操作:组织学生进行PLC编程实践,分组完成全自动洗衣机控制程序的设计和调试,培养学生的实际操作能力。

PLC课程设计-全自动洗衣机控制系统设计全文

PLC课程设计-全自动洗衣机控制系统设计全文

可编辑修改精选全文完整版PLC课程设计-全自动洗衣机控制系统设计LT1 系统描述即设计要求1.1 自动洗衣机的介绍随着科学技术不断进步和社会飞速发展,洗衣机成为人民日常生活息息相关的家用电器产品。

洗衣机的全自动化、多功能化、智能化是其发展方向。

基于全自动洗衣机的应用日益广泛,本次设计利用三菱公司生产的PLC控制全自动洗衣机,与传统的继电器逻辑控制系统相比较,洗衣机可靠性、节能性得到了提高。

PLC控制不需要大量的活动部件和电子元器件,它的接线也大大减少,与此同时系统维修简单、维修时间缩短。

全自动洗衣机采用PLC控制系统将大大提高工作效率,和适应工作环境的能力。

在全自动洗衣机中,洗衣机洗涤、脱水程序是由单片机为中心控制系统工作的。

首先由于单片机的指令系统相对复杂,编写洗涤、脱水程序相对复杂;其次,在设计控制系统硬件时.要有多种电路保护装置,如电流保护、电压保护、过载保护、过热保护及欠压保护等等这样增加了硬件的复杂性,隐含较高的故障率无形地增加了维修成本费用,在各种控制系统中广泛运用的PLC能克服单片机的缺点。

它是整体模块,集中了驱动电路、检测电路和保护电路以及通讯联网功能。

因此在运用中,硬件也相对简单,提高控制系统的可靠性。

另外它的编程语言也相对简单。

1.2自动洗衣机的设计要求通过PLC实现的设计要求为:(1)按下启动按钮及水位选择开关,注水直到高(中、低)水位,关水;(2)2s后开始洗涤;(3)洗涤时,正转30s,停2s,然后反转30s,停2s;(4)如此循环5次,总共320s后开始排水,排空后脱水30s;(5)开始清洗,重复(2)~(5),清洗两遍;(6)清洗完成,报警3s并自动停机;(7)若按下停车按扭,可手动排水(不脱水)和手动脱水(不计数);若要求启动开关分为标准洗和轻柔洗,试改变有关输入点,并在程序中加入轻柔洗功能2 方案论证2.1 采用PLC系统:1)可靠性高,PLC作为一种通用的工业控制器,它必须能够在各种不同的工作环境中正常工作。

plc课程设计全自动洗衣机

plc课程设计全自动洗衣机

plc课程设计全自动洗衣机一、课程目标知识目标:1. 理解PLC(可编程逻辑控制器)的基本原理和功能,掌握其在全自动洗衣机控制中的应用。

2. 学习并掌握全自动洗衣机的主要部件、工作原理及相互之间的关系。

3. 了解并掌握PLC编程软件的使用,学会编写简单的控制程序。

技能目标:1. 能够运用PLC技术,设计并实现一个简单的全自动洗衣机控制程序。

2. 培养学生的动手操作能力,学会使用PLC编程软件进行程序编写、调试和优化。

3. 提高学生的问题分析能力,学会运用PLC技术解决实际生活中的问题。

情感态度价值观目标:1. 培养学生对PLC技术及其应用的兴趣,激发学生的学习热情和求知欲。

2. 培养学生的团队协作精神,学会与他人合作共同解决问题。

3. 增强学生的环保意识,理解全自动洗衣机在设计时应充分考虑节能减排。

本课程针对高年级学生,课程性质为理论与实践相结合。

通过本课程的学习,使学生掌握PLC技术在全自动洗衣机控制中的应用,提高学生的实际操作能力和问题解决能力。

在教学过程中,注重培养学生的创新思维和团队协作能力,使学生在实践中感受到科技带来的生活便利,从而激发学生对工程技术学科的兴趣。

课程目标分解为具体学习成果,以便于后续教学设计和评估。

二、教学内容1. PLC基本原理与功能:包括PLC的定义、结构、工作原理,以及其在工业控制中的应用。

教材章节:第一章 PLC概述2. 全自动洗衣机结构与原理:介绍全自动洗衣机的主要部件、工作流程及控制要求。

教材章节:第二章 自动洗衣机结构与原理3. PLC编程软件的使用:学习PLC编程软件的操作方法,包括程序编写、调试和下载。

教材章节:第三章 PLC编程软件的使用4. PLC控制程序设计:结合全自动洗衣机的控制要求,设计并编写PLC控制程序。

教材章节:第四章 PLC控制程序设计5. 实践操作:分组进行全自动洗衣机控制系统的搭建与调试,培养学生的动手能力。

教材章节:第五章 PLC实践操作6. 课程总结与拓展:对所学内容进行总结,探讨PLC技术在其他家电控制中的应用。

洗衣机的程序控制器课程设计

洗衣机的程序控制器课程设计

目录第一章硬件的设计 (2)一、设计任务与要求 (2)二、方案论证与比较 (2)三、系统框图及控制面板 (5)四、主要电路设计 (8)1.89S51单片机的扩展 (8)2. 电源电路的设计 (9)3. 时钟电路工作原理 (10)4. 复位电路工作原理 (10)2按键及显示电路的设计 (11)3.液位的检测电路的设计 (15)4.碰桶检测 (18)5欠压过压的保护电路 (18)6电机的正反转控制 (18)8. 单片机硬件资源的分配 (19)第二章软件的设计 (21)1.系统总体流程图 (21)2.设定时序流程图 (22)3.洗涤子程序流程图 (24)4.漂洗子程序及甩干子程序流程图 (25)5.欠压中断程序流程图 (26)6.键盘扫描程序流程图 (26)7.动态显示剩余时间 (27)8.电路图 (28)9.PCB板(信号层两层) (29)10.元件清单 (31)第三章、项目总结 (32)第四章、主要参考文献 (32)前言家电下乡政策是深入贯彻落实科学发展观、积极扩大内需的重要举措,是财政和贸易政策的创新突破。

2009年,经国务院批准,在试点的三省一市继续实施的同时,将家电销售及售后服务网络相对完善、地方积极性较高的湖南、湖北、广西、重庆等纳入推广地区范围,共计14个省、自治区、直辖市。

家电下乡在各地区实施的时间统一暂定为4年。

新形势下,全国范围内推广家电下乡对于扩大内需、保持经济平稳较快增长具有重要意义。

家电下乡的品种包括彩电、冰箱(含冰柜)、洗衣机、手机、电脑、热水器、摩托车、空调。

可以看到这次的政策对家电行业的发展起到了极大的促进的作用,洗衣机有是农村消费最多的家电产品之一,所以市场前景看好。

但是这次的家电产品不同以往,有它自己的特点。

第一,产品针对的是农村的用户,所以产品的操作必须简单,以适应农村人们的文化素质;第二,功能应该齐全,因为农村的人们都比较朴实,他们要求的是产品的实用、能应对各种复杂的异常情况、产品的适应范围要广。

课程设计---洗衣机控制器的设计

课程设计---洗衣机控制器的设计

电子技术课程设计报告书课题名称洗衣机控制器的设计姓名学号院、系、部专业电子信息工程指导教师2010年 11 月 25日洗衣机控制器的设计1 设计目的(1) 熟悉集成电路的引脚安排。

(2)掌握各芯片的逻辑功能及使用方法。

(3)了解面包板结构及其接线方法。

(4)了解洗衣机控制器的组成及工作原理。

(5)熟悉洗衣机控制器的设计与制作。

(6)运用HVDL 语言完成洗衣机控制器的编程。

2 设计思路(1)设计洗衣机控制器电路。

(2)设计可预置时间(10-30分钟)的定时模块。

(3)设计洗衣机运作模块,控制洗衣机的进水,洗衣,放水,脱水运转。

(4)设计分频模块,为洗衣机提供‘秒’时钟。

(5)设计译码模块,完成对时间(分)的二进制译码和LED 管的动态扫描。

(6)设计电源电路和按键判别电路。

(7)设计显示电路,完成对剩余时间和工作状态的显示3 设计过程3.1 方案论证洗衣机控制器的整体框图如下(图一)所示:图 一(洗衣机控制器原理框图)FPGA 芯片 电源总控制键盘电路 译码模块洗衣机运作模块 显示电路 分频模块 时钟(1K )工作原理:1、开启电源后,洗衣机进入总控模块的时间设定模式,由7段LED 灯显示所设定时间;2、时间设定后,启动洗衣机,进入洗衣机运转模式,即启动洗衣机运转模块,同时屏蔽总控模块总时间(Time_all )信号。

每次自动洗衣时间由总控模块自动分配。

七段LED 灯轮换显示工作模式(进水=1,洗衣=2,放水=3,脱水=4)和剩余时间。

3、3次自动洗衣完成后,洗衣机进入待机模式,七段LED 灯灭,再次等待时间设定。

电路设计洗衣机控制器主要电路如图所示:ULN2803是高电压大电流达林顿晶体管阵列,用于高电压大电流负载。

74LS138为动态扫描译码电路,可基于该电路扩展LED 显示为最高8位动态。

增加了VCC 所接上拉电阻,为LED 显示提供足够的驱动电流。

KEY 为机械开关,只针对单个按键进行合键判别,无对应行列扫描。

洗衣机控制器课程设计

洗衣机控制器课程设计

课程设计任务书课程名称数字电子技术课题名称洗衣机控制器专业班级学号姓名指导教师任务书下达日期:设计完成日期:设计内容与设计要求一、设计内容:1.设计并制作一个电子定时器,用以控制洗衣机的电机作如下运转:启动—>预备10s —>洗涤Ⅰ30s—> 洗涤Ⅱ30s—>停止(放水)40 s—>甩干30s2. 用2位数码管显示洗涤时间(秒数),按倒计时方式对洗涤过程作计时显示,直到时间到停机,并发出音响信号报警。

3.用发光二极管显示洗涤过程的各道步骤。

4.* 总洗涤时间可由用户通过十进制拔码盘任意设定,并设置启动键,在预置定时时间后,按启动键开始机器运转。

5.*设置停止键,在洗涤过程中随时按该键可终止动作,并使显示器清0。

二、设计要求:1.设计思路清晰,给出整体设计框图和总电路图;2.单元电路设计,给出具体设计思路和电路;3.安装、调试电路;4.写出设计报告;主要设计条件1.提供调试用实验室;2.提供调试用实验箱和电路所需元件及芯片;说明书格式a.课程设计封面;b.任务书;c.说明书目录;d.设计总体思路,基本原理和框图(总电路图);e.单元电路设计(各单元电路图);f.安装、调试步骤;g.故障分析与电路改进;h.总结与体会;i.附录(元器件清单);j.参考文献;k.课程设计成绩评分表;进度安排第一周星期一:下达设计任务书,查找资料;星期二:确定总体设计方案;单元电路设计;星期三:电路仿真,修改方案;星期四:画出整机原理图草图及调试电路图;星期五:安装、调试电路;第二周星期一~三:安装、调试电路;星期四~五:验收电路,写设计报告,打印相关图纸;星期五:答辩、交设计报告书。

参考文献1、《电子线路设计、实验、测试》(第二版)华中理工大学出版社谢自美主编2、《新型集成电路的应用》---------电子技术基础课程设计华中理工大学出版社梁宗善主编3、《电子技术基础实验》高等教育出版社-------------陈大钦主编目录目录 (5)一.设计总体思路,基本原理和框图 (6)1.设计总体思路 (6)2.基本原理 (6)3.系统设计框图 (7)二.单元电路设计 (7)1、可预置数的减数计数器 (7)2、时间置数器 (9)3、步骤计数器及其显示、报警 (11)三.总电路图 (13)四.安装调试步骤 (19)五.故障分析与电路改进 (21)六.总结与调试体会 (22)七.附录(元器件清单) (23)八.参考文献 (23)电气与信息工程系课程设计评分表 (24)一.设计总体思路,基本原理和框图1.设计总体思路从课程设计要求来看,要求实现洗衣机的开机预备,分别洗涤2次,暂停放水,甩干,这就需要用到五个LED灯的状态来表示,且规定显示时间为预备10秒,2次洗涤都为30秒,暂停放水的时间为40秒,甩干也为30秒,如此一来,我们就要用到倒计时秒计数器,配合计数器我们还需要一个脉冲信号源,来让它实现倒计时。

课程设计---洗衣机控制器的设计

课程设计---洗衣机控制器的设计

电子技术课程设计报告书课题名称洗衣机控制器的设计姓名学号院、系、部专业电子信息工程指导教师2010年 11 月 25日洗衣机控制器的设计1 设计目的(1) 熟悉集成电路的引脚安排。

(2)掌握各芯片的逻辑功能及使用方法。

(3)了解面包板结构及其接线方法。

(4)了解洗衣机控制器的组成及工作原理。

(5)熟悉洗衣机控制器的设计与制作。

(6)运用HVDL 语言完成洗衣机控制器的编程。

2 设计思路(1)设计洗衣机控制器电路。

(2)设计可预置时间(10-30分钟)的定时模块。

(3)设计洗衣机运作模块,控制洗衣机的进水,洗衣,放水,脱水运转。

(4)设计分频模块,为洗衣机提供‘秒’时钟。

(5)设计译码模块,完成对时间(分)的二进制译码和LED 管的动态扫描。

(6)设计电源电路和按键判别电路。

(7)设计显示电路,完成对剩余时间和工作状态的显示3 设计过程3.1 方案论证洗衣机控制器的整体框图如下(图一)所示:图 一(洗衣机控制器原理框图)FPGA 芯片 电源总控制键盘电路 译码模块洗衣机运作模块 显示电路 分频模块 时钟(1K )工作原理:1、开启电源后,洗衣机进入总控模块的时间设定模式,由7段LED 灯显示所设定时间;2、时间设定后,启动洗衣机,进入洗衣机运转模式,即启动洗衣机运转模块,同时屏蔽总控模块总时间(Time_all )信号。

每次自动洗衣时间由总控模块自动分配。

七段LED 灯轮换显示工作模式(进水=1,洗衣=2,放水=3,脱水=4)和剩余时间。

3、3次自动洗衣完成后,洗衣机进入待机模式,七段LED 灯灭,再次等待时间设定。

电路设计洗衣机控制器主要电路如图所示:ULN2803是高电压大电流达林顿晶体管阵列,用于高电压大电流负载。

74LS138为动态扫描译码电路,可基于该电路扩展LED 显示为最高8位动态。

增加了VCC 所接上拉电阻,为LED 显示提供足够的驱动电流。

KEY 为机械开关,只针对单个按键进行合键判别,无对应行列扫描。

EDA课程设计洗衣机控制器

EDA课程设计洗衣机控制器
评估标准:根据测试结果,评估控制器的性能指标,如响应时间、准确性、稳定性等
优化建议:根据评估结果,提出优化建议,如改进算法、优化硬件配置、提高软件效率 等
测试报告:编写测试报告,详细记录测试过程、结果和优化建议,以便于后续改进和维 护。
单击此处添加标题
智能化:随着人工智能技术的发展,洗衣机控制器将更加智能化,能够自动识别 衣物类型、数量、脏污程度等,实现更加精准的洗涤控制。
控制器芯片类型:微控制器(MCU)
控制器芯片品牌:STM32系列
控制器芯片型号:STM32F103C8T6
控制器芯片功能:控制洗衣机的电机、水位、温度等参数,实现洗衣机的洗涤、脱水等 功能。
控制器接口:用于连接洗衣 机控制器和外部设备的接口
接口类型:包括数字接口和 模拟接口
数字接口:用于传输数字信 号,如开关信号、传感器信 号等
意义:通过设计洗衣机控制器,可以加深对电子设计自动化课程的理解,提高实 践能力和创新能力,为未来的工作打下坚实的基础
提高学生实践能力:通过设计洗衣机控制器,提高学生的实践操作能力和创新能力。
掌握专业知识:通过设计洗衣机控制器,让学生更好地掌握电子设计自动化(EDA)的相 关专业知识。
培养团队协作能力:设计洗衣机控制器需要团队合作,可以培养学生的团队协作能力和 沟通能力。
测试报告:详细记录测试过程、结果和 结论,为改进设计提供依据
测试环境:模拟家庭 环境,包括温度、湿 度、电压等
测试设备:洗衣机、 测试仪器、数据记录 仪等
测试项目:洗涤性能、 能耗、噪音、振动等
数据分析:使用统计方 法,如方差分析、回归 分析等,对测试数据进 行处理和分析,得出结 论。
性能测试:包括功能测试、性能测试、稳定性测试等

洗衣机控制器课程设计报告书

洗衣机控制器课程设计报告书

学院课程设计一、设计要求与原理设计一个洗衣机控制器,要求洗衣机有正转、反转、暂停三种状态。

设定洗衣机的工作时间,要洗衣机在工作时间完成:定时启动正转20秒暂停10秒反转20秒暂停10秒定时未到回到“正转20秒暂停10秒……”,定时到则停止,同时发出提示音。

基本要求:1、设计一个电子定时器,控制洗衣机作如下运转:定时启动正转20秒暂停10秒反转20秒暂停10秒定时未到回到“正转20秒暂停10秒……”,定时到则停止;2、若定时到,则停机发出音响信号;3、用两个数码管显示洗涤的预置时间(分钟数),按倒计时方式对洗涤过程作计时显示,直到时间到停机;洗涤过程由“开始”信号开始;4、三只LED灯表示“正转”、“反转”、“暂停”三个状态。

二、洗衣机的工作过程首先用电路控制三只LED显示洗衣机正转、反转、暂停三种状态。

然后用电子定时器控制洗衣机设定的工作时间,以及正传和反转运行时间的控制。

同时用两个数码管显示洗涤的预置时间(按分钟计数),按倒计时方式对洗涤过程作计时显示,直到时间到停机;洗涤过程由“开始”信号开始;最后定时到则停止,同时用蜂鸣器发出提示音。

通过各种开关组成控制电路,使洗衣机实现程序运转。

直至结束为止。

三、各模块图洗衣机控制电路由定时输入模块,电机输出模块,电机时间控制模块,数字显示电路,倒计时模块以及报警器模块组成。

图一四、各模块的VHDL代码与仿真结果1、输入定时模块,此模块是为了实现希望让洗衣机工作多少个分钟,有两个数码管显示工作时间,所以可以不同要求输入要洗衣的时间,可以输入1~59分钟不等时间,人性化控制,与实际的洗衣机工作是一样的。

程序如下:library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity shuru isPort ( shu : in std_logic;hshu: in std_logic;din : in std_logic;dout:out std_logic_vector(3 downto 0);dout1:out std_logic_vector(3 downto 0));end shuru;architecture Behavioral of shuru issignal count: std_logic_vector(3 downto 0);signal count1: std_logic_vector(3 downto 0);beginprocess(shu,hshu,din)begindout<=count;dout1<=count1;if din='0' thendout<="1111";dout1<="1111";elsif rising_edge(shu) thenif count="1001" thencount<="0000";elsecount<=count+1;end if;end if;if rising_edge(hshu) thenif count1="0110" thencount1<="0000";elsecount1<=count1+1;end if;end if;end process;end Behavioral;仿真波形如下2、产生1HZ频率的信号此程序是将学校试验箱上提供的48MHZ的信号分频成1HZ频率的信号,这样可以一秒进行计数,程序很简单,如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;entity fp48M isport(clk_48MHZ: in std_logic;clk_1HZ: out std_logic);end fp48M;architecture behav of fp48M issignal clk_1HZ_r: std_logic;signal count : std_logic_vector(24 downto 0);beginprocess (clk_48MHZ)beginif clk_48MHZ'event and clk_48MHZ='1' thenif count="1011011100011010111111111"thencount<=(others=>'0');clk_1HZ_r<=not clk_1HZ_r;else count<=count+1;clk_1HZ<=clk_1HZ_r;end if;end if;end process;end behav;3、提供定时脉冲模块此模块提供1分钟产生一个高电平和5秒产生一个高电平,这两个脉冲为后面的循环和控制60秒减一分钟有很多的作用,起到后面的作用,同时可以根据自己来设置各状态工作时间,这可以和后面的循环控制一起来控制,程序如:library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity washmachine isPort ( clk : in std_logic;c :out std_logic;d :out std_logic);end washmachine;architecture miao20 of washmachine issignal count: std_logic_vector(2 downto 0);signal shi: integer range 0 to 60;beginprocess(clk)beginif rising_edge(clk) thenif shi=60 thenshi<=0;c<='1';else shi<=shi+1;c<='0';end if;if count="100" thencount<="000";d<='1';elsecount<=count+1;d<='0';end if;end if;end process;end miao20;仿真波形如下:4、循环控制模块此模块是为了实现能够控制洗衣机正转、反转、暂停的功能,同时也可以和前一模块一起控制各个状态的工作时间。

洗衣机控制器课程设计

洗衣机控制器课程设计

洗衣机控制器课程设计
洗衣机控制器课程设计是系统工程专业学生需要完成的一项重要课程设计。

它旨在教会学生如何使用电子技术来设计和实现一台洗衣机控制器。

洗衣机控制器课程设计不仅仅涉及到电子技术,还包括洗衣机机械部件、洗衣机常规功能等方面的知识。

本课程设计的目的是让学生在完成洗衣机控制器的设计之前,先理解洗衣机的原理和其他方面的知识。

首先,学生需要了解洗衣机的基本结构及其功能,并学习洗衣机的基本控制原理。

同时,学生还需要学习洗衣机控制器的电路设计,包括电路图的绘制、电气元件的选择及其尺寸等。

此外,学生还需要学习洗衣机控制器的编程技术,包括程序控制算法的选择、程序控制算法的实现等。

接下来,学生需要了解洗衣机控制器的实际应用,包括洗衣机控制器容易出现的故障和解决方法以及洗衣机控制器的调试方法等。

此外,学生还需要学习和掌握洗衣机控制器的检测技术,包括电路的检测、程序的检测、洗衣机的电性能测试等。

最后,学生需要根据所学的知识,设计一台洗衣机控制器,将所有知识点融会贯通,最终完成一台具有一定实用价值的洗衣机控制器。

洗衣机控制器课程设计是一门涉及电气工程、机械工程、计算机科学等多个领域的课程,要求学生掌握洗衣机控制器的基本原理及其应用,以便完成一台能够实用的洗衣机控制器的设计。

本课程的学习不仅能够提高学生的综合素质,而且可以让学生具备独立设计洗衣机控制器的能力,为他们今后从事相关工作打下坚实的基础。

电子技术课程设计智能洗衣机控制器word

电子技术课程设计智能洗衣机控制器word

电子技术课程设计智能洗衣机控制器电子技术基础课程设计——智能洗衣机控制器目录一、课程设计的目的二、课程设计的课题与要求1.课程设计的课题2.课程设计的要求三、设计思路与过程1.设计前提概述2.ASM图3.状态图4.输入输出设计四、程序内容五、仿真波形图1.模式一的仿真2.模式二的仿真3.模式三的仿真4.模式四的仿真5.模式五的仿真六、课设感想与收获一、课程设计的目的1.了解数字系统的组成,学习数字系统的设计方法。

2.学习数字系统由上向下设计法的工具-ASM图3.熟悉现代数字系统的实现方法:用PLD器件取代传统的中规模集成器件实现数字电路与系统。

4.学习分层次化实现数字电路与系统的方法。

5.学习使用硬件描述语言(HardwareDescriptionLanguage)对数字电路与系统进行建模、仿真与实现的方法。

二、课程设计的课题与要求1.课程设计的课题设计一个智能洗衣机(全自动洗衣机)控制器,能够实现洗衣,漂洗和脱水的功能。

2.课程设计的要求能够使用按键模拟对洗衣机的控制,能够设置工作模式,为了便于观察,将洗衣机的工作模式和所剩的工作时间用数码管显示出来,能够将洗衣机当前所处的状态用发光管或者数码管显示出来。

【模式1】:洗特别脏的衣服(洗衣30秒钟)【模式2】:洗脏的衣服(洗衣20秒钟)【模式3】:洗一般的衣服(洗衣10秒钟)【模式4】:漂洗(每次漂洗5秒钟)【模式5】:脱水(每次脱水3秒钟)【洗衣全过程】:洗衣+脱水+漂洗+脱水+漂洗+脱水,注水完成使用外部传感器S=1表示。

【漂洗模式】:漂洗+脱水+漂洗+脱水,注水完成使用外部传感器S=1表示。

【脱水模式】:脱水。

【注】:操作完毕使用蜂鸣器鸣叫两秒提示。

三、设计思路与过程1.设计前提概述本设计任务主要是实现各个模式之间的切换以及各个状态之间的转变。

课题已经要求有模式一到五这五个模式,故按照这五个模式来思考。

另外,课题也明确要求了三个状态:洗衣,漂洗与脱水。

plc全自动洗衣机课程设计

plc全自动洗衣机课程设计

plc全自动洗衣机课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理,掌握其在全自动洗衣机中的应用。

2. 学生能够描述全自动洗衣机的主要部件及其功能,了解各部件之间如何通过PLC进行协调工作。

3. 学生能够掌握PLC编程的基础知识,并运用这些知识对简单的控制流程进行编程。

技能目标:1. 学生能够运用所学知识,分析全自动洗衣机的电气原理图,并识别其中的PLC控制逻辑。

2. 学生通过实际操作,学会使用PLC编程软件进行基本的编程操作,实现洗衣机的简单控制功能。

3. 学生能够通过小组合作,设计并模拟一个简单的PLC全自动洗衣机控制系统,提升实践操作和团队协作能力。

情感态度价值观目标:1. 培养学生对PLC技术及其在日常生活用品中应用的兴趣,激发学生对工程技术职业的探索热情。

2. 增强学生的环保意识,理解智能化家电对节能减排的重要性,培养学生社会责任感。

3. 通过课程学习,引导学生树立正确的工程伦理观念,认识到技术发展应服务于人民生活的改善。

4. 强化学生的团队合作意识,通过小组合作学习,培养学生互相尊重、协同解决问题的良好品质。

本课程目标设计考虑了学生的年级特点,注重理论与实践的结合,旨在通过PLC全自动洗衣机这一实际案例,将抽象的电气控制原理具体化、生活化,提高学生的实际操作能力,同时培养学生的科学素养和工程意识。

二、教学内容1. 全自动洗衣机概述:介绍洗衣机的发展历程,全自动洗衣机的分类、结构及工作原理。

- 教材章节:第二章“家用电器的发展及其电气控制技术”2. PLC基础知识:讲解PLC的组成、工作原理、编程语言及编程方法。

- 教材章节:第五章“可编程逻辑控制器(PLC)基础”3. 全自动洗衣机PLC控制系统:分析全自动洗衣机PLC控制系统的组成、原理及功能。

- 教材章节:第六章“PLC在家用电器中的应用”4. PLC编程实践:指导学生使用PLC编程软件进行编程,实现全自动洗衣机的控制功能。

洗衣机控制器课程设计

洗衣机控制器课程设计

洗衣机控制器 课程设计一、课程目标知识目标:1. 让学生掌握洗衣机控制器的基本原理,理解其电路构成及功能。

2. 使学生了解洗衣机控制器的编程方法,学会编写简单的控制程序。

3. 帮助学生了解洗衣机控制器与其他家电的互联互通,拓展智能家电的知识领域。

技能目标:1. 培养学生运用控制器进行家电控制的能力,提高实际操作技能。

2. 培养学生独立思考和解决问题的能力,通过编写程序实现洗衣机的智能化控制。

3. 提高学生的团队协作能力,通过小组合作完成控制器的设计与调试。

情感态度价值观目标:1. 激发学生对家电控制技术的兴趣,培养其探索精神和创新意识。

2. 培养学生关注智能家居领域的发展,增强社会责任感和时代使命感。

3. 引导学生树立正确的消费观念,提倡环保、节能的生活方式。

课程性质:本课程为实用技术类课程,以实践操作为主,理论讲解为辅。

学生特点:本年级学生具有较强的求知欲,动手能力较强,但对洗衣机控制器相关知识了解较少。

教学要求:结合学生特点,注重理论与实践相结合,强化实践操作环节,提高学生的动手能力和创新能力。

通过课程学习,使学生能够掌握洗衣机控制器的基本原理和操作方法,培养其编程思维和团队协作能力。

同时,关注学生的情感态度价值观的培养,使其在学习过程中形成正确的价值观和消费观念。

将课程目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 洗衣机控制器原理:讲解洗衣机控制器的电路构成、工作原理及各部分功能,结合课本第三章第一节内容。

2. 编程方法:介绍洗衣机控制器的编程语言和编程方法,以课本第四章为基础,通过案例教学使学生掌握基本编程技巧。

3. 控制器操作与调试:讲解控制器的基本操作方法,组织学生进行实践操作,学会调试控制器程序,参考课本第五章内容。

4. 智能家电互联互通:分析洗衣机控制器与其他家电的互联互通原理,结合课本第六章,拓展学生智能家电的知识领域。

5. 实践项目:分组进行洗衣机控制器的编程与调试,完成一个简单的智能家居控制系统设计,涵盖课本第三至六章的主要内容。

洗衣机控制器课程设计

洗衣机控制器课程设计

以下是一个洗衣机控制器课程设计的示例:课程名称:洗衣机控制器设计课程目标:1.了解洗衣机的基本原理和工作原理。

2.掌握洗衣机控制器的组成和功能。

3.学习使用嵌入式系统开发工具进行洗衣机控制器的设计和编程。

4.实践设计一个简单的洗衣机控制器原型。

课程大纲:1.洗衣机基本原理•介绍洗衣机的结构和工作原理。

•讲解洗衣机的动力系统、进水系统、排水系统等基本组成部分。

2.洗衣机控制器概述•解释洗衣机控制器的作用和功能。

•介绍洗衣机控制器的硬件和软件组成。

3.嵌入式系统开发工具介绍•介绍常用的嵌入式系统开发工具,如Arduino、Raspberry Pi等。

•讲解开发工具的基本原理和使用方法。

4.洗衣机控制器设计与编程•设计一个简单的洗衣机控制器电路。

•使用嵌入式系统开发工具进行控制器的编程。

•讲解控制器的各个功能模块的实现方法,如电机控制、传感器接口、显示器等。

5.实践项目:洗衣机控制器原型•学员分组进行实践项目。

•设计和搭建一个简单的洗衣机控制器原型。

•编写控制程序,实现基本的洗衣操作功能。

6.测试与改进•测试洗衣机控制器原型的功能和性能。

•分析测试结果,进行改进和优化。

7.总结与展望•总结课程学习成果。

•展望洗衣机控制器技术的发展方向和应用前景。

教学方法:•授课讲解:通过演示和讲解来介绍洗衣机控制器的基本概念和原理。

•实践操作:学员通过实践项目,亲自设计和搭建洗衣机控制器原型,并进行编程和测试。

•小组讨论:鼓励学员在小组内进行讨论和合作,促进彼此学习和交流。

评估方式:•实践项目成果评估:评估学员设计和搭建的洗衣机控制器原型的功能和性能。

•知识考核:通过笔试或口头答辩等形式,考核学员对洗衣机控制器的基本原理和设计方法的理解。

这个课程设计旨在通过理论讲解和实践操作相结合的方式,帮助学员全面了解洗衣机控制器的设计过程和技术要点。

通过实践项目的实施,学员将能够应用所学知识设计出简单的洗衣机控制器原型,并加深对嵌入式系统和控制器设计的理解和掌握。

自动洗衣机控制器ddpp课程设计

自动洗衣机控制器ddpp课程设计

电子科技大学数字设计原理和实践课程设计报告题目:自动洗衣机控制器姓名:魏玉峰学号:29一、任务和要求设计内容:1)进行需求分析,确定总体框架;2)画出逻辑电路图;3)对设计电路进行仿真;设计要求:假设自动洗衣机的定时操作顺序是,洗衣10min,排水2min,脱水3min,然后停止。

设计出这个自动洗衣机的控制器。

设计提示:本设计有4个状态,分别为初始状、洗衣系统、排水系统、和脱水状态。

当有复位信号时,系统进入循环控制状态,依次执行操作,可从信号灯观察到所处状态。

二、设计思路的介绍分析:洗衣机开机后,自动进入循环状态,分别进行洗衣10min,排水2min,脱水3min的操作,然后回到待机状态。

任意期间输入复位信号都会重新开始进入循环控制状态。

LED指示灯和当前操作对应,处于发光状态。

由以上要求可知,所有状态共4种,分别为初始状态、洗衣状态、排水状态、0000 待机0001 洗衣状态0010 洗衣状态0011 洗衣状态0100 洗衣状态0101 洗衣状态0110 洗衣状态0111 洗衣状态1000 洗衣状态1001 洗衣状态1010 洗衣状态1011 排水状态1100 排水状态1101 脱水状态1110 脱水状态1111 脱水状态三、总体方案的选择经过多次选择和比较最终选择74163,7400来完成电路实现计时功能。

将时钟信号设为1/60hz,即每分钟一个上升沿。

电路中采用16个4输入和非门,1个12输入和非门,1个2输入和非门,1个3输入和非门。

把每一个4输入和非门的四个角分别于74163的Qd、Qc、Qb、Qa相连,而每一个4输入和非门分别对应一个74163的输出状态。

当所输出状态对应了洗衣机状态时,总输出状态将产生变化,从而进行当前操作,具体电路图设计如下:Clk为时钟信号1/60hzInput为开关按钮Clr为复位按钮Standby代表当前为待机状态Washing代表当前为洗衣状态Drainage代表当前为排水状态Dehydration代表当前为洗衣状态四、Verilog HDL 代码module try3(clk,input,clr,Standby,Washing,Drainage,Dehydration );input clk; input input; input clr; output Standby; output Washing;output Drainage;output Dehydration;wire SYNTHESIZED_WIRE_114; wire SYNTHESIZED_WIRE_115; wire SYNTHESIZED_WIRE_2; wire SYNTHESIZED_WIRE_116; wire SYNTHESIZED_WIRE_117; wire SYNTHESIZED_WIRE_5; wire SYNTHESIZED_WIRE_6; wire SYNTHESIZED_WIRE_7; wire SYNTHESIZED_WIRE_8; wire SYNTHESIZED_WIRE_9; wire SYNTHESIZED_WIRE_10; wire SYNTHESIZED_WIRE_12; wire SYNTHESIZED_WIRE_13; wire SYNTHESIZED_WIRE_16; wire SYNTHESIZED_WIRE_17; wire SYNTHESIZED_WIRE_18; wire SYNTHESIZED_WIRE_23; wire SYNTHESIZED_WIRE_24; wire SYNTHESIZED_WIRE_25; wire SYNTHESIZED_WIRE_34; wire SYNTHESIZED_WIRE_36; wire SYNTHESIZED_WIRE_38; wire SYNTHESIZED_WIRE_39; wire SYNTHESIZED_WIRE_42; wire SYNTHESIZED_WIRE_43; wire SYNTHESIZED_WIRE_44; wire SYNTHESIZED_WIRE_51; wire SYNTHESIZED_WIRE_53; wire SYNTHESIZED_WIRE_78; wire SYNTHESIZED_WIRE_84; wire SYNTHESIZED_WIRE_85; wire SYNTHESIZED_WIRE_86; wire SYNTHESIZED_WIRE_88; wire SYNTHESIZED_WIRE_90; wire SYNTHESIZED_WIRE_91; wire SYNTHESIZED_WIRE_118; wire SYNTHESIZED_WIRE_95; wire SYNTHESIZED_WIRE_96; wire SYNTHESIZED_WIRE_97; wire SYNTHESIZED_WIRE_98; wire SYNTHESIZED_WIRE_99; wire SYNTHESIZED_WIRE_100; wire SYNTHESIZED_WIRE_101; wire SYNTHESIZED_WIRE_102; wire SYNTHESIZED_WIRE_103; wire SYNTHESIZED_WIRE_104; wire SYNTHESIZED_WIRE_105; wire SYNTHESIZED_WIRE_106; wire SYNTHESIZED_WIRE_107; wire SYNTHESIZED_WIRE_108; wire SYNTHESIZED_WIRE_112; wire SYNTHESIZED_WIRE_113; \74163 b2v_inst(.ENT(input),.CLRN(clr),.CLK(clk),.ENP(input),.LDN(input),.QA(SYNTHESIZED_WIRE_115),.QB(SYNTHESIZED_WIRE_116),.QC(SYNTHESIZED_WIRE_117),.QD(SYNTHESIZED_WIRE_114));assign SYNTHESIZED_WIRE_105 = ~(SYNTHESIZED_WIRE_114 & SYNTHESIZED_WIRE_115 & SYNTHESIZED_WIRE_2 & SYNTHESIZED_WIRE_116);assign SYNTHESIZED_WIRE_2 = ~SYNTHESIZED_WIRE_117;assign SYNTHESIZED_WIRE_113 = ~(SYNTHESIZED_WIRE_5 & SYNTHESIZED_WIRE_6 & SYNTHESIZED_WIRE_7 & SYNTHESIZED_WIRE_8);assign SYNTHESIZED_WIRE_100 = ~(SYNTHESIZED_WIRE_9 & SYNTHESIZED_WIRE_10 & SYNTHESIZED_WIRE_117 & SYNTHESIZED_WIRE_12);assign SYNTHESIZED_WIRE_102 = ~(SYNTHESIZED_WIRE_13 & SYNTHESIZED_WIRE_115 & SYNTHESIZED_WIRE_117 & SYNTHESIZED_WIRE_16);SYNTHESIZED_WIRE_117 & SYNTHESIZED_WIRE_116);assign SYNTHESIZED_WIRE_118 = ~(SYNTHESIZED_WIRE_114 & SYNTHESIZED_WIRE_115 & SYNTHESIZED_WIRE_23 & SYNTHESIZED_WIRE_24);assign SYNTHESIZED_WIRE_103 = ~(SYNTHESIZED_WIRE_25 & SYNTHESIZED_WIRE_115 & SYNTHESIZED_WIRE_117 & SYNTHESIZED_WIRE_116);assign SYNTHESIZED_WIRE_108 = ~(SYNTHESIZED_WIRE_114 & SYNTHESIZED_WIRE_115 & SYNTHESIZED_WIRE_117 & SYNTHESIZED_WIRE_116);assign SYNTHESIZED_WIRE_104 = ~(SYNTHESIZED_WIRE_114 & SYNTHESIZED_WIRE_34 & SYNTHESIZED_WIRE_117 & SYNTHESIZED_WIRE_36);assign SYNTHESIZED_WIRE_96 = ~(SYNTHESIZED_WIRE_114 & SYNTHESIZED_WIRE_38 & SYNTHESIZED_WIRE_39 & SYNTHESIZED_WIRE_116);assign SYNTHESIZED_WIRE_95 = ~(SYNTHESIZED_WIRE_114 & SYNTHESIZED_WIRE_42 & SYNTHESIZED_WIRE_43 & SYNTHESIZED_WIRE_44);assign SYNTHESIZED_WIRE_5 = ~SYNTHESIZED_WIRE_114;assign SYNTHESIZED_WIRE_7 = ~SYNTHESIZED_WIRE_117;assign SYNTHESIZED_WIRE_8 = ~SYNTHESIZED_WIRE_116;assign SYNTHESIZED_WIRE_6 = ~SYNTHESIZED_WIRE_115;assign SYNTHESIZED_WIRE_90 = ~SYNTHESIZED_WIRE_117;assign SYNTHESIZED_WIRE_91 = ~SYNTHESIZED_WIRE_116;assign SYNTHESIZED_WIRE_97 = ~(SYNTHESIZED_WIRE_51 & SYNTHESIZED_WIRE_115 & SYNTHESIZED_WIRE_53 & SYNTHESIZED_WIRE_116);assign SYNTHESIZED_WIRE_88 = ~SYNTHESIZED_WIRE_114;assign SYNTHESIZED_WIRE_84 = ~SYNTHESIZED_WIRE_114;assign SYNTHESIZED_WIRE_86 = ~SYNTHESIZED_WIRE_117;assign SYNTHESIZED_WIRE_85 = ~SYNTHESIZED_WIRE_115;assign SYNTHESIZED_WIRE_51 = ~SYNTHESIZED_WIRE_114;assign SYNTHESIZED_WIRE_53 = ~SYNTHESIZED_WIRE_117;assign SYNTHESIZED_WIRE_9 = ~SYNTHESIZED_WIRE_114;assign SYNTHESIZED_WIRE_12 = ~SYNTHESIZED_WIRE_116;assign SYNTHESIZED_WIRE_10 = ~SYNTHESIZED_WIRE_115;assign SYNTHESIZED_WIRE_13 = ~SYNTHESIZED_WIRE_114;assign SYNTHESIZED_WIRE_16 = ~SYNTHESIZED_WIRE_116;assign SYNTHESIZED_WIRE_17 = ~SYNTHESIZED_WIRE_114;assign SYNTHESIZED_WIRE_18 = ~SYNTHESIZED_WIRE_115;assign SYNTHESIZED_WIRE_25 = ~SYNTHESIZED_WIRE_114;assign SYNTHESIZED_WIRE_43 = ~SYNTHESIZED_WIRE_117;assign SYNTHESIZED_WIRE_44 = ~SYNTHESIZED_WIRE_116;assign SYNTHESIZED_WIRE_42 = ~SYNTHESIZED_WIRE_115;assign SYNTHESIZED_WIRE_23 = ~SYNTHESIZED_WIRE_117;assign SYNTHESIZED_WIRE_112 = ~SYNTHESIZED_WIRE_116;assign SYNTHESIZED_WIRE_24 = ~SYNTHESIZED_WIRE_116;assign SYNTHESIZED_WIRE_39 = ~SYNTHESIZED_WIRE_117;assign SYNTHESIZED_WIRE_38 = ~SYNTHESIZED_WIRE_115;SYNTHESIZED_WIRE_117 & SYNTHESIZED_WIRE_116);assign SYNTHESIZED_WIRE_36 = ~SYNTHESIZED_WIRE_116;assign SYNTHESIZED_WIRE_34 = ~SYNTHESIZED_WIRE_115;assign SYNTHESIZED_WIRE_78 = ~SYNTHESIZED_WIRE_115;assign SYNTHESIZED_WIRE_98 = ~(SYNTHESIZED_WIRE_84 & SYNTHESIZED_WIRE_85 & SYNTHESIZED_WIRE_86 & SYNTHESIZED_WIRE_116);assign SYNTHESIZED_WIRE_99 = ~(SYNTHESIZED_WIRE_88 & SYNTHESIZED_WIRE_115 & SYNTHESIZED_WIRE_90 & SYNTHESIZED_WIRE_91);assign Washing = ~(SYNTHESIZED_WIRE_118 & SYNTHESIZED_WIRE_118 & SYNTHESIZED_WIRE_118 & SYNTHESIZED_WIRE_95 & SYNTHESIZED_WIRE_96 & SYNTHESIZED_WIRE_97 & SYNTHESIZED_WIRE_98 & SYNTHESIZED_WIRE_99 & SYNTHESIZED_WIRE_100 & SYNTHESIZED_WIRE_101 & SYNTHESIZED_WIRE_102 & SYNTHESIZED_WIRE_103);assign Drainage = ~(SYNTHESIZED_WIRE_104 & SYNTHESIZED_WIRE_105);assign Dehydration = ~(SYNTHESIZED_WIRE_106 & SYNTHESIZED_WIRE_107 & SYNTHESIZED_WIRE_108);assign SYNTHESIZED_WIRE_106 = ~(SYNTHESIZED_WIRE_114 & SYNTHESIZED_WIRE_115 & SYNTHESIZED_WIRE_117 & SYNTHESIZED_WIRE_112);assign Standby = ~SYNTHESIZED_WIRE_113;endmodule五、仿真结果截图六、结果分析当给入信号后,洗衣依次进入洗衣状态,排水状态,脱水状态,最后回到待机状态,当有复位信号 CLR=0 输入时,系统进入循环控制状态。

课程设计 洗衣机控制器

课程设计 洗衣机控制器

题目洗衣机控制器班级 06电子信息学号姓名时间科技艺术学院一、设计要求普通洗衣机的主要控制电路是一个定时器,它按照一定的洗涤程序控制电机作正向和反向转动。

设计要求如下1、洗衣机转动模式有三种,分别为强力,标准和轻柔。

强力:正转4s,停止2s,反转4s;标准:正转3s,停止2s,反转3s;轻柔:正转2s,停止1s,反转2s;2、洗衣时间可选择5分钟,10分钟,15分钟,20分钟。

3、洗完后进行两次漂洗每,次5分钟。

4、漂洗结束后进行脱水。

5、自动排水。

6、洗衣结束后发出警报。

7、可用数字显示洗衣机的全部工作时间。

二、总体设计原理对于自动控制,使用单片机是最简单的,但是对于普通的洗衣机控制使用一般器件也可完成。

我设计的洗衣机控制电路主要采用CMOS和TTL集成器件,如计数器,锁存器,与门,非门,555定时器等构成洗衣机控制电路。

洗衣机的洗衣流程如下:加水—(定时)洗衣—排水加水—漂洗—排水加水—漂洗—排水—脱水—排水—警报并停机。

电路设计框图如下:三、各单元设计与分析1、多谐振荡器多谐振荡器是一种自激振荡器,产生振荡信号,用于计时。

在许多场合对多谐振荡器的频率稳定性要求严格,一般采用石英晶体振荡器。

但是由于洗衣机对时间的精确度要求不是很高,所以我采用555定时器接成的1HZ 多谐振荡器。

电路如图: 图中是把555定时器接成施密特触发器,在用施密特触发器接成多谐振荡器的方法接成。

其中R 1=R 2=48K Ω,C 1=0.01μ,C 2=10μ把数据带入T=(R 1+2R 2)C 2ln2, 得T=1s即周期为一秒,输出1HZ 的信号。

2、时钟电路时钟电路采用计数器对输入的1HZ 振荡信号进行计数,从而实现计时。

用十进制计数器接成两个60进制计数器,分别用于计秒和计分。

因为整个洗衣时间不会超过1小时,所以不用计时。

V10U十进制计数器有很多中,如74LS90,74LS290,74160等。

74160有预置数功能,此功能在应用中不需要,用它肯定是浪费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计(论文)题 目 基于单片机的洗衣机控制器设计姓 名 高飞学 号 3090401097专业班级 09通信 1班指导教师 裘 君分 院 信息科学与工程分院完成时间 2013年1月11日宁波理工学院摘要模糊控制是以模糊数学为基础发展起来的一种新的非线性的控制方法,解决了一些用传统方法无法解决的问题。

近年来,模糊控制在家用电器控制中得到较广泛的应用,采用模糊控制技术的洗衣机具有自动识别衣质、衣量,自动识别肮脏程度,自动决定水量,自动投入恰当的洗涤剂等功能,不仅实现了洗衣机的全面自动化,也大大提高了洗衣的质量,具有很强的实用性和较好的发展前景。

基于模糊控制的全自动洗衣机自动控制系统,以单片机AT89S51为核心,可以实现洗衣机的智能控制,提高洗衣质量,节约能源。

基于51单片机的洗衣控制系统,控制面板由按键、指示灯和LED 显示器组成。

按键选择洗衣机工作方式,指示灯配合按键工作,LED 显示器则显示洗衣机洗涤和脱水时间。

洗衣机的整体电路模块包括键盘矩阵、指示灯、电动机控制及电源电路。

控制程序设计包括定时中断服务程序、外中断服务程序及主程序。

关键词:模糊控制;洗衣机;全自动;洗衣控制系统;51单片机;控制程序Fuzzy control based on fuzzy mathematics is developed on the basis of a new kind of nonlinear control method to solve some of the problems can not be solved using traditional methods. Recent years, fuzzy control been more widely used in household appliances control using fuzzy control technology washing machine to automatically identify quality clothing, clothing amount, automatically identify how dirty, automatically determines the amount of water, automatically put into the proper detergent and other functions, not only to achieve a fully automated washing machine, and also greatly improve the quality of the laundry, has a strong practical and good development prospects.Automatic washing machine automatic control system based on fuzzy control, MCU AT89S51 as the core, you can achieve the intelligent control of the washing machine to improve the laundry quality, and energy conservation.Based on 51MCU laundry control system, the control panel buttons, lights, and LED display. Button to select the washing machine works, the indicator with the keys work, LED display shows the washing machine washing and dehydration time. Washing the overall circuit module comprises a keyboard matrix, indicator, motor control and power supply circuit. The design of the control program, including the timer interrupt service routine, outside the interrupt service routine and the main program.Keywords: fuzzy control; washing machine; fully automatic; laundry control system; 51 MCU;control progra目录摘要 (I)Abstract (1)第1章概述 (1)1.1洗衣机的概念 (1)1.2洗衣机的发展现状 (1)1.3洗衣机的发展趋势 (1)1.4 现有洗衣机存在的一些列问题 (2)1.4.1漂洗不净洗涤剂有残留 (2)1.4.2洗衣机配重影响噪音水平 (2)1.4.3 洗衣机最多能洗多少衣服 (2)1.4.4 高速甩干有用么 (3)1.5 本课题的目的 (3)第2章硬件系统的设计 (4)2.1洗衣机洗涤原理 (4)2.2 全自动洗衣机的控制功能要求 (4)2.3 硬件线路原理 (5)2.3.1电源部分 (5)2.3.2功能设置及控制电路 (6)2.3.3 洗衣机状态显示 (6)2.3.4 输出控制电路 (6)2.4 系统工作流程 (7)2.4.1 主程序设计 (7)2.4.2 内部定时中断设计 (9)2.4.3 外部中断设计 (9)第3章软件系统的设计 (9)3.1 模糊控制的基本原理 (9)3.2 模糊化在洗衣机中的应用 (11)3.3 模糊推理 (13)3.4反模糊化 (13)结束语 (14)致谢 (15)参考文献 (15)第1章概述1.1洗衣机的概念洗衣机(washing machine)是利用电能产生机械作用来洗涤衣物的清洁电器。

按其额定洗涤容量分为家用和集体用两类。

中国规定洗涤容量在6kg以下的属于家用洗衣机:家用洗衣机主要由箱体、洗涤脱水桶(有的洗涤和脱水桶分开)、传动和控制系统等组成,有的还装有加热装置。

洗衣机一般专指使用水作为主要的清洗液体,有别于使用特制清洁溶液,及通常由专人负责的干洗。

1.2洗衣机的发展现状根据机电商会研究,近年来,中国洗衣机行业一直维持着20%-30%的稳定增长。

机电商会调查结果显示,国内受访消费者家中目前主流使用的洗衣机仍是全自动波轮洗衣机,但滚筒洗衣机的购买欲望在明显上升。

与此同时,节水降噪仍是洗衣机技术关注重点,国内受访消费者对于洗衣机的耗水量、耗电量,以及洗涤剂使用量非常关注。

目前中国的洗衣机市场,虽然仍以波轮洗衣机为主,但滚筒洗衣机凭借在水耗及洗涤效率方面的优势对波轮洗衣机的市场替代趋势已经逐渐开始显现。

1.3洗衣机的发展趋势从目前的市场上看,各洗衣机生产商大力推广的概念主要是集中在“节能”、“节水”和“降噪”上,预计此趋势在很长一段时间内都将会是国内洗衣机市场消费者和厂家十分关注的技术点。

现代科学技术的发展,特别是嵌入式技术的发展,使微电脑的功能日益强大,微电脑与传感器系统的结合,以及人们对洗衣机使用方便的要求,使得洗衣机的全自动化成为另一个发展方向。

因此,从世界范围内来说,洗衣机总的发展趋势是向微电脑,传感系统,智能化、全自动化的方向发展。

1.4 现有洗衣机存在的一些列问题1.4.1漂洗不净洗涤剂有残留洗涤结束后,很多用户都会发现残存一些泡沫或是洗涤剂在衣物上面。

同时在洗涤结束后一段时间,也会有用户发现洗衣机仍然在往外排水。

有人认为这是洗衣机产品质量问题,其实不然,造成漂洗不净的情况有很多,一个是下面会说到的甩干转速不够,一个是洗涤剂使用过量。

我们有时会使用过量的洗涤剂进行清洗,而洗衣机自设程序无法改变,在原有漂洗次数过后还会残留大量洗涤剂不能正常漂洗,就会造成一定的漂洗不净。

另外关于在洗涤结束后仍有水排出的问题,由于我们由于投放了过多的洗涤剂,搅拌后会产生大量泡沫,漂洗不净,就难免会残留大量泡沫在洗衣机内部。

当洗涤剂泡沫消失后,残留的水分就会沿着排水口排水,造成继续“排水”的假象。

1.4.2洗衣机配重影响噪音水平消费者在购买产品时几乎不会对产品的重量多加关注,认为重量只是洗衣机一个无关注要的参数。

其实这犯了一个比较常见的错误。

洗衣机重量对我们使用有着不小的影响,尤其是对噪音方面。

为了解决噪音问题,厂商一方面对产品性能进行改进,产品设计上也进行改良,洗衣机的重量就是其中一点。

为了在高速甩干过程中保持洗衣机的平稳,厂商便在洗衣机重量上做足了文章,增加配重就是其中最常见的方法。

增加了配重,在高速甩干中,洗衣机运转就会更加平稳,噪音也就更小了。

1.4.3 洗衣机最多能洗多少衣服每台洗衣机都会有一个额定的洗涤容量,这个数字是我们挑选洗衣机的一个关键指标。

那么我们能够洗涤能效标识上所标示重量的衣物吗?一般来说,洗衣机洗涤额定重量的衣物应该是没问题的。

不过我们要注意到、一个事实:很多品牌有意无意地将洗衣机容量当作是洗衣机洗涤容量来标注。

而滚筒洗衣机的洗衣原理是靠衣物的摔打进行洗涤,同时需要足够摩擦来清除污迹,所以在洗涤时滚筒内要留出足够的空间,这也要求我们不能把内筒装满进行洗涤。

因此实际使用时,使用率也就是其50%~80%左右,切不可过大或者过小的选择我们的容积。

另外同一洗涤容量下,内筒的直径、内筒的深度,会造成不同空间大小的内筒类型,对衣物的摩擦、摔打都会有影响,所以我们在挑选洗衣机时,不光要关注洗涤容量,还要关注内筒形状。

1.4.4 高速甩干有用么不少商家会把高转速作为一个机器独特的卖点来吸引消费者,消费者在听信宣传后,往往会以为高转速下衣物能甩的更干,减少晾衣时间,从而花了更多的钱购买了一台拥有高转速的洗衣机产品。

其实洗衣机的最高转速,只是代表该产品能够达到极限的转速,但不一定能长时间维持该转速。

有时候虽然你手动调节了最高转速,但是洗衣机都会有自检功能,当检测到负载过大时,就会自动进行降速调节。

滚筒洗衣机在800~1000转/分的速度即可达到预期甩干效果,再高的转速,甩干效果也不会有明显提升。

不过转速越大,在甩干过程中产生的离心力也越大,所以高转速对于降低漂洗残留非常重要,针对上面所说的洗涤不净,高转速的作用,这时开始显现,转速越高,洗涤剂残留现象越不明显。

1.5 本课题的目的本课题的目的就是设计一种比较合理的全自动洗衣机模糊控制器,这种采用模糊控制的全自动洗衣机能够自动判断被洗衣物的重量轻重、质料软硬,自动检测洗衣桶内水的脏污程度和污渍性质(油污或泥污);能自动预选水位、水流强度和洗涤时间,并能进行衣物偏置的自动纠正等,也应该能在整个洗涤过程中实施监控,并适时调整这些运行参数,以达到最佳的洗涤效果。

相关文档
最新文档