Logistic回归分析

合集下载

LOGISTIC回归分析

LOGISTIC回归分析

LOGISTIC回归分析前⾯的博客有介绍过对连续的变量进⾏线性回归分析,从⽽达到对因变量的预测或者解释作⽤。

那么如果因变量是离散变量呢?在做⾏为预测的时候通常只有“做”与“不做的区别”、“0”与“1”的区别,这是我们就要⽤到logistic分析(逻辑回归分析,⾮线性模型)。

参数解释(对变量的评价)发⽣⽐(odds): ODDS=事件发⽣概率/事件不发⽣的概率=P/(1-P)发⽣⽐率(odds ratio):odds ratio=odds B/odds A (组B相对于组A更容易发⽣的⽐率)注:odds ratio⼤于1或者⼩于1都有意义,代表⾃变量的两个分组有差异性,对因变量的发⽣概率有作⽤。

若等于1的话,该组变量对事件发⽣概率没有任何作⽤。

参数估计⽅法线性回归中,主要是采⽤最⼩⼆乘法进⾏参数估计,使其残差平⽅和最⼩。

同时在线性回归中最⼤似然估计和最⼩⼆乘发估计结果是⼀致的,但不同的是极⼤似然法可以⽤于⾮线性模型,⼜因为逻辑回归是⾮线性模型,所以逻辑回归最常⽤的估计⽅法是极⼤似然法。

极⼤似然公式:L(Θ)=P(Y1)P(Y2)...p(Y N) P为事件发⽣概率P I=1/(1+E-(α+βX I))在样本较⼤时,极⼤似然估计满⾜相合性、渐进有效性、渐进正太性。

但是在样本观测少于100时,估计的风险会⽐较⼤,⼤于100可以介绍⼤于500则更加充分。

模型评价这⾥介绍拟合优度的评价的两个标准:AIC准则和SC准则,两统计量越⼩说明模型拟合的越好,越可信。

若事件发⽣的观测有n条,时间不发⽣的观测有M条,则称该数据有n*m个观测数据对,在⼀个观测数据对中,P>1-P,则为和谐对(concordant)。

P<1-P,则为不和谐对(discordant)。

P=1-P,则称为结。

在预测准确性有⼀个统计量C=(NC-0.5ND+0.5T)/T,其中NC为和谐对数,ND为不和谐对数,这⾥我们就可以根据C统计量来表明模型的区分度,例如C=0.68,则表⽰事件发⽣的概率⽐不发⽣的概率⼤的可能性为0.68。

logistic回归分析案例

logistic回归分析案例

logistic回归分析案例Logistic回归分析案例。

Logistic回归分析是一种常用的统计分析方法,主要用于预测二分类或多分类的结果。

在实际应用中,Logistic回归分析可以帮助我们理解影响某一事件发生的因素,以及对事件发生的概率进行预测。

本文将通过一个实际的案例来介绍Logistic回归分析的应用。

案例背景。

假设我们是一家电商公司的数据分析师,现在我们需要分析用户的购买行为,并预测用户是否会购买某一产品。

我们收集了一些用户的个人信息和他们最近一次购买的产品,希望通过这些数据来预测用户是否会购买新产品。

数据准备。

首先,我们需要收集用户的个人信息和购买行为数据。

个人信息包括年龄、性别、职业等;购买行为数据包括购买的产品类型、购买时间等。

在收集完数据后,我们需要对数据进行清洗和预处理,包括缺失值处理、异常值处理等。

模型建立。

在数据准备完成后,我们可以开始建立Logistic回归模型。

首先,我们需要将数据划分为训练集和测试集,以便对模型进行验证。

然后,我们可以利用训练集来拟合Logistic回归模型,并利用测试集来评估模型的预测效果。

模型评估。

在模型建立完成后,我们需要对模型进行评估。

常用的评估指标包括准确率、精确率、召回率等。

这些指标可以帮助我们判断模型的预测效果,并对模型进行调优。

模型应用。

最后,我们可以利用建立好的Logistic回归模型来预测用户是否会购买新产品。

通过输入用户的个人信息和购买行为数据,模型可以给出用户购买新产品的概率,从而帮助我们进行精准营销和推广。

结论。

通过以上实例,我们可以看到Logistic回归分析在预测用户购买行为方面具有很好的应用价值。

通过收集用户数据、建立模型、评估模型和应用模型,我们可以更好地理解用户行为,并做出更精准的预测和决策。

总结。

Logistic回归分析是一种强大的统计工具,可以帮助我们预测二分类或多分类的结果。

在实际应用中,我们可以根据具体情况收集数据、建立模型,并利用模型进行预测和决策。

有序logistic回归分析

有序logistic回归分析

有序logistic回归分析1.有序logistic回归分析有序logistic回归分析是多元logistic中特殊的一种,因变量为有序的分类数据变量。

有序logistic回归分析与多元logistic回归分析相比多出了平行性检验。

平行性检验:检验自变量各个水平在回归方程中对因变量的影响是否相同。

原假设为H0:模型满足平行性,备择假设:H1:模型不满足平行性。

连接函数亦能对平行性检验起到影响,若平行性检验不通过时,可考更换连接函数进行尝试。

链接函数表函数名称应用说明Logit函数因变量接近均匀分布的情况补充对数-对数连接函数因变量取值越大,概率越大的情况负对数-对数连接函数因变量取值越小,概率越大的情况概率单位连接函数潜在变量为正态分布情况Cauchit连接函数潜在变量有较多极端值的情况常用Logit函数,方程和无序多分类logistic回归分析一样,因此可得方程:ln(pi /(1-pi))=β+β1x1+...βnxn采用最大似然比法或者迭代法对参数的估计,参数通过似然比检验和Wold 检验。

数据应满足的条件:1.因变量为有序多分类数据2.自变量可以是连续型随机变量和分类数据2.有序logistic回归分析操作步骤第一步:将数据导入spss中后,点击分析、回归、有序。

图1有序logistic回归操作第一步第二步:进入图中对话框后点将变量放入对应的变量框中,点击输出勾选、平行线检验、单元格信息。

图2输出勾选第三步:如果结果平行线检验不通过可更换链接函数点击选项、在联接里勾选对应的函数点击继续。

图3链接函数勾选3.有序logistic回归分析结果有序logistic回归的个案处理摘要结果。

图4个案处理摘要模型拟合信息、拟合优度、伪R方结果。

图5模型拟合信息参数估算值、平行线检验结果。

图6参数估计值4.有序logistic回归分析OR值计算步骤点击分析、广义线性模型、广义线性模型。

图7OR值计算第一步第二步:进入广义线性模型对话框后,点击模型类型、勾选有序响应下勾选有序logistic。

数据分析知识:数据分析中的Logistic回归分析

数据分析知识:数据分析中的Logistic回归分析

数据分析知识:数据分析中的Logistic回归分析Logistic回归分析是数据分析中非常重要的一种统计分析方法,它主要用于研究变量之间的关系,并且可以预测某个变量的取值概率。

在实际应用中,Logistic回归分析广泛应用于医学疾病、市场营销、社会科学等领域。

一、Logistic回归分析的原理1、概念Logistic回归分析是一种分类分析方法,可以将一个或多个自变量与一个二分类的因变量进行分析,主要用于分析变量之间的关系,并确定自变量对因变量的影响。

Logistic回归分析使用的是逻辑回归模型,该模型是将自变量与因变量的概率映射到一个范围为0-1之间的变量上,即把一个从负无穷到正无穷的数映射到0-1的范围内。

这样,我们可以用这个数值来表示某个事件发生的概率。

当这个数值大于0.5时,我们就可以判定事件发生的概率比较高,而当这个数值小于0.5时,我们就可以判定事件发生的概率比较小。

2、方法Logistic回归分析的方法有两种:一是全局最优化方法,二是局部最优化方法。

其中全局最优化方法是使用最大似然估计方法,而局部最优化方法则是使用牛顿法或梯度下降算法。

在进行Logistic回归分析之前,我们首先要对数据进行预处理,将数据进行清洗、变量选择和变量转换等操作,以便进行回归分析。

在进行回归分析时,我们需要先建立逻辑回归模型,然后进行参数估计和模型拟合,最后进行模型评估和预测。

在进行参数估计时,我们通常使用最大似然估计方法,即在估计参数时,选择最能解释样本观测数据的参数值。

在进行模型拟合时,我们需要选取一个合适的评价指标,如准确率、召回率、F1得分等。

3、评价指标在Logistic回归分析中,评价指标包括拟合度、准确性、鲁棒性、可解释性等。

其中最常用的指标是拟合度,即模型对已知数据的拟合程度,通常使用准确率、召回率、F1得分等指标进行评价。

此外,还可以使用ROC曲线、AUC值等指标评估模型的性能。

二、Logistic回归分析的应用1、医学疾病预测在医学疾病预测中,Logistic回归分析可以用来预测患某种疾病的概率,如心脏病、肺癌等。

统计学中的Logistic回归分析

统计学中的Logistic回归分析

统计学中的Logistic回归分析Logistic回归是一种常用的统计学方法,用于建立并探索自变量与二分类因变量之间的关系。

它在医学、社会科学、市场营销等领域得到广泛应用,能够帮助研究者理解和预测特定事件发生的概率。

本文将介绍Logistic回归的基本原理、应用领域以及模型评估方法。

一、Logistic回归的基本原理Logistic回归是一种广义线性回归模型,通过对数据的处理,将线性回归模型的预测结果转化为概率值。

其基本原理在于将一个线性函数与一个非线性函数进行组合,以适应因变量概率为S形曲线的特性。

该非线性函数被称为logit函数,可以将概率转化为对数几率。

Logistic回归模型的表达式如下:\[P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+...+\beta_pX_p)}}\]其中,P(Y=1|X)表示在给定自变量X的条件下,因变量为1的概率。

而\(\beta_0\)、\(\beta_1\)、...\(\beta_p\)则是待估计的参数。

二、Logistic回归的应用领域1. 医学领域Logistic回归在医学领域中具有重要的应用。

例如,研究者可以使用Logistic回归分析,探索某种疾病与一系列潜在风险因素之间的关系。

通过对患病和非患病个体的数据进行回归分析,可以估计各个风险因素对疾病患病的影响程度,进而预测某个个体患病的概率。

2. 社会科学领域在社会科学研究中,研究者常常使用Logistic回归来探索特定变量对于某种行为、态度或事件发生的影响程度。

例如,研究者可能想要了解不同性别、教育程度、收入水平对于选民投票行为的影响。

通过Logistic回归分析,可以对不同自变量对于投票行为的作用进行量化,进而预测某个选民投票候选人的概率。

3. 市场营销领域在市场营销中,Logistic回归也被广泛应用于客户分类、市场细分以及产品销量预测等方面。

通过分析客户的个人特征、购买习惯和消费行为等因素,可以建立Logistic回归模型,预测不同客户购买某一产品的概率,以便制定个性化的市场营销策略。

7-多元Logistic-回归分析解析

7-多元Logistic-回归分析解析
28
什么是哑变量?
一个含有g个类的分类型变量可以构造g个哑变量。
29
如何用SAS程序构造哑变量? data d2; set d1; array a{3} student teacher worker; do i=1 to 3; a{i}=( x 1= i ) ; end; run;
data d2; set d1;
INTERCPT 1 3.7180 0.6387 33.8853
0.0001
.
.
BIRTHWT 1 -0.00397 0.000588 45.6092
0.0001 -0.702480 206.996
1、因变量bpd对自变量birthwt 的logistic回归模型是:
2、自变量birthwt 的回归系数在统计意义上不等于0 (p=0.0001),因此,OR=0.996在统计意义上不等于1。 OR=0.996 说明新生儿出生体重每增加一个单位(g),患 BPD病的机会就会减少大约0.4% 。即患bpd病的概率 随新生儿出生体重的增加而下降。
• 按因变量取值个数:
• 二值logistic回归分析
• 多值logistic回归分析
• 按自变量个数:
• 一元logistic回归分析
• 多元logistic回归分析
9
第二节 Logistic 回归分析的数学模型
(1) 二值一元logistic回归模型: 令y是1,0变量,x是任
意变量,p=p(y=1|x) ,那么,二值变量y关于 变量x的一元logistic 回归 模型是:
Analysis of Maximum Likelihood Estimates
Parameter Standard Wald

logistic回归分析

logistic回归分析

Logistic回归分析
数学模型:
e p 1 e
1 X 1 2 X 2 m X m
1 X 1 2 X 2 m X m
Logistic回归分析
一、基本思想
用模型去描述实际资料时,须使 得理论结果与实际结果尽可能的一致。
资料整理格式
Logistic回归分析
1
消除xj量纲的影响
2.标准化偏回归系数j 的意义
果的发生,为“不利因素”;
xij
xij x j sj
(1)符号:取 “+”,xj 增大,则P增大,即促进阳性结
取 “-”,xj增大,则P减小,即抑制阳性结 果的发生,为“保护因素”。 (2)大小 :∣ j ∣越大,则xj 对结果的影响也就越大。
i 1 2 n
x1 x11 x21 xn1
x2
...
xm x1m x2m xnm
δ δ δ δ
1 2
x12 ... x22 ... …... xn2 ...
n
Logistic回归分析
二、基本原理
1.结果问题 : 对于第i个个体而言,其理论结果为pi , 而实际结果是i 。 2.一致问题: 对于第i个个体而言, i =1 pi i =0 qi
m

OR e j 1
j ) ˆ j ( x*j x
(1)对多指标的共同效应进行评价:

若OR>1,则处于X*水平下的阳性结果发生风险要高于X 水平, 即“不利因素”占主导地位;



若OR<1,则处于X*水平下的阳性结果发生风险要低于X 水平, 即“保护因素”占主导地位;

logistic回归分析

logistic回归分析

队列研究(cohort study):也称前瞻性研究、随访研究等。是一种由因及果的研
究,在研究开始时,根据以往有无暴露经历,将研究人群分为暴露人群和非暴 露人群,在一定时期内,随访观察和比较两组人群的发病率或死亡率。如果两 组人群发病率或死亡率差别有统计学意义,则认为暴露和疾病间存在联系。队 列研究验证的暴露因素在研究开始前已存在,研究者知道每个研究对象的暴露 情况。
调查方向:追踪收集资料 暴露 疾病 +
人数
比较
aபைடு நூலகம்
b c
+
研究人群
a/(a+b)
+ -
-
c/(c+d)
d
队列研究原理示意图
暴露组 非暴露组
病例 a c
非病例 b d
合计 n1=a+b n0=c+d
发病率 a/ n1 c/ n0
相对危险度(relative risk, RR)也称危险比(risk ratio) 或率比(rate ratio) RR I e a / n1 、 I e a / n1 、 I 0 c / n2 。
研究,先按疾病状态确定调查对象,分为病例(case)和对照 (control)两组,然后利用已有的记录、或采用询问、填写调查表 等方式,了解其发病前的暴露情况,并进行比较,推测疾病与 暴露间的关系。
调查方向:收集回顾性资料
比较 a/(a+b)
人数 a b c
暴露 +
疾病 病例
+ 对照 -
c/(c+d) d
二、 logistic回归模型的参数估计
logistic 回归模型的参数估计常采用最大似然估计。 其基本思想是先建立似然函数与对数似然函数, 求使对数似然函数最大时的参数值,其估计值即 为最大似然估计值。 建立样本似然函数:

Logistic回归分析

Logistic回归分析

Logistic 回归分析Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。

适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。

一、Logistic 回归模型设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为:[]0112211exp (...)n n P X X X ββββ=+-++++它可以化成如下的线性形式:01122ln ...1n n P X X X P ββββ⎛⎫=++++ ⎪-⎝⎭通常用最大似然估计法估计模型中的参数。

二、Logistic 回归模型的检验与变量筛选根据R Square 的值评价模型的拟合效果。

变量筛选的原理与普通的回归分析方法是一样的,不再重复。

三、Logistic 回归的应用(1)可以进行危险因素分析计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。

(2)预测与判别Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。

当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。

四、SPSS操作方法1.选择菜单2.概率预测值和分类预测结果作为变量保存其它使用默认选项即可。

例:试对临床422名病人的资料进行分析,研究急性肾衰竭患者死亡的危险因素和统计规律。

Logistic回归分析.sav解:在SPSS中采用Logistic回归全变量方式分析得到:(1)模型的拟合优度为0.755。

Logistic回归分析(共53张PPT)

Logistic回归分析(共53张PPT)
数值。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。

Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。

(卫生统计学)第十九章 Logistic回归分析

(卫生统计学)第十九章 Logistic回归分析
由于各变量指标单位不同,不能用βj的大小比较各xi的作用大小,而须用标准化 偏回归系数β’j 来比较 。
结果解释
3个βi的估计值都是正数,表明这三个因素都是危险因素且都有统计学意 义。从优势比OR上可以看出,在因素x2和x3固定不变时,因素x1每增加一个 等级所引起的优势比为增加前的3.034倍;在因素X1和X3固定不变时,因素x2 每增加一个等级所引起的优势比为增加前的2.019倍 。在因素x1和x2固定不变 时,因素x3每增加一个等级所引起的优势比为增加前的2.651倍。同时在考察 因素相对贡献大小时,从标准系数看, β'1> β' 3 > β'2 ,故x1的相对贡献比x2和 x3大。
OR
P1 P0
/1 /1
P1 P0
e i
亦称比数比
反映某一个危险因素 xi在不同暴露水平下发病 与不发病的比。
当阳性率 P 1时, OR RR
二、参数估计
由于Logistic回归是一种概率模型,通常采用最大似然估计法(maximum likelihood estimate)求解模型中的参数βj的估计值 bj (j=0,1,2,….k)。
1. 相对危险度 RR( Re lative Risk ) RR P1 P0
反映某一个危险因素 xi两个不同暴露水平 1与 0的发病率的比
2. 优势 Odds
Odds P1 P1 1 P1 q1
亦称比数
反映某一个危险因素 xi在暴露水平 1下发病率与不发病率的 比
3. 优势比 OR ( Odds Ratio )
个例预测
设某AMI患者在症状5小时内送到医院(x3=0),未发生休克(x1=0), 已有心衰(x2=1),求抢救成功的概率。

logistic回归分析

logistic回归分析

表13-7 例13-2的logistic回归模型自变量筛选结果
模型
因素 X
第1步 常数项
回归系数 标准误
b
Sb
-2.528 0.238
Wald χ2 P值 112.433 <0.001
OR值
OR值95%可信区间 下限 上限
0.080
治疗11周
2.149 0.289 55.267 <0.001 8.578 4.867 15.117
因素 X 常数项
回归系数 标准误
Waldχ2 P值 OR值
b
Sb
-0.910 0.136 44.870 0.000 0.403
OR值95%可信区间
下限
上限
吸烟
0.886 0.150 34.862 0.000 2.424 1.807
3.253
饮酒
0.526 0.157 11.207 0.001 1.692 1.244
logistic回归分析
Logistic regression analysis
• 医学研究中应变量有时是二分类结果,如发病与不 发病、死亡与生存、有效与无效、复发与未复发等, 当需要研究二分类应变量的影响因素时,适合采用 logistic回归分析。
logistic回归属于概率型非线性回归,它是研究二 分类(可以扩展到多分类)反应变量与多个影响 因素之间关系的一种多变量分析方法。logistic回 归模型参数具有明确的实际意义。
OR值的可信区间:
exp(bj - zα/2 Sbj ) ORj exp(bj zα/2 Sb j )
• 例13-1 研究吸烟(X1)、饮酒(X2)与食道癌 (Y)关系的病例-对照资料,试作logistic回归 分析。

Logistic回归分析

Logistic回归分析
95%置信区间上限小于1时说明可能是保护因素,相反如果下限大于1则说明可 能是危险因素。
急性心肌梗死合并心源性休克的危险因素分析
Wald就是卡方值,取值范围(0-10),P越小,wald越大
急性心肌梗死合并心源性休克的危险因素分析
Wald就是卡方值,取值范围(0-10),P越小,wald越大
急性心肌梗死合并心源性休克的危险因素分析
Logistic回归分析

统计学方法 计量资料采用t检验 计数资料采用卡法检验 按P<0.05有统计学差异
Logistic回归分析


急性心肌梗死合并心源性休克的危险因素分析
1、两组患者的一般资料(性别、年龄、吸烟、饮酒、家族史) 2、临床表现(是否合多系统疾病)
3、血生化检查(高血压、卒中、糖尿病、血脂异常、肌钙蛋白、B型脑
β的绝对值越大,SE越大(一般而言);取值在(0,1)
Hale Waihona Puke 谢谢Logistic回 归分析
一、主要用于流行病学研究中危险因
素的分析(最主要)
二、如果已经建立了logistic回归模型,
则可以根据模型,预测在不同的自变 量情况下,发生某病或某种情况的概 率有多大。
Logistic回归分析

例如:急性心肌梗死合并心源性休克的危险因素分析 AMI:100人(对照组) AMI合并心源性休克:50人(观察组)
急性心肌梗死合并心源性休克的危险因素分析

以急性心肌梗死并出现心源性休克为因 变量,将单因素有显著性影响的因素为 自变量,引入Logistic回归分析模型,进行 多因素分析。
急性心肌梗死合并心源性休克的危险因素分析

急性心肌梗死合并心源性休克的危险因素分析

logistic回归分析

logistic回归分析

它与自变量x1, x2,…,xp之间的Logistic回
归模型为:
p exp(0 1X1 2 X 2 ... m X m ) 1 exp(0 1X1 2 X 2 ... m X m )
1
1 p
1 exp( 0 1 X 1 p X p )
6
模 型
ln
P 1 P
=0
1
• 按照研究设计类型 –非条件logistic回归(研究对象未经匹配) –条件logistic回归(研究对象经过匹配)
5
Logistic回归模型
应变量Y
1 0
发生 未发生 ,
自变量X1, X 2 ,
, Xm
在m个自变量的作用下阳性结果发生的概率记作:
P P(Y 1| X1, X 2 ,, X m ) 0 P 1
X1
2
X
2
m X m log itP
参 数
常数项 0
表示暴露剂量为0时个体

发病与不发病概率之比的自然对数。
意 义
回归系数 j ( j 1,2,, m)
表示自变量 X j 改变一个单位时
logitP 的改变量。 7
优势比OR(odds ratio)
流行病学衡量危险因素作用大小的比数比例指标。 计算公式为:
OR j
P1 P0
/(1 /(1
P1 ) P0 )
式中 P1 和 P0 分别表示在 X j 取值为 c1 及 c0 时 的发病概率, OR j 称作多变量调整后的优势比, 表示扣除了其他自变量影响后危险因素的作用。
8
与 logisticP 的关系:
对比某一危险因素两个不同暴露水平 X j c1 与 X j c0 的发病 情况(假定其它因素的水平相同),其优势比的自然对数为:

统计学-logistic回归分析

统计学-logistic回归分析

研究问题可否用多元线性回归方法?
ˆ y a b x b x b x 1 1 2 2 m m 1.多元线性回归方法要求 Y 的取值为计量
的连续性随机变量。 2.多元线性回归方程要求Y与X间关系为线 性关系。 ˆ 不能回答“发生与 3.多元线性回归结果 Y 否” logistic回归方法补充多元线性回归的不足
第十六章 logistic回归分析
logistic回归为概率型非线性回归 模型,是研究分类观察结果(y)与 一些影响因素(x)之间关系的一种 多变量分析方法
问题提出:
医学研究中常研究某因素存在条件下某结果是否 发生?以及之间的关系如何? 因素(X) 疾病结果(Y) x1,x2,x3…XK 发生 Y=1 不发生 Y=0 例:暴露因素 冠心病结果 高血压史(x1):有 或无 有 或 无 高血脂史(x2): 有 或 无 吸烟(x3): 有或无
lnllnplnlikehoodratiotest通过比较包含与不包含某一个或几个待检验观察因素的两个模型的对数似然函数变化来进行其统计量为近似服从自由度为待检验因素个数的scoretest以未包含某个或几个变量的模型为基础保留模型中参数的估计值并假设新增加的参数为零计算似然函数的一价偏导数又称有效比分及信息距阵两者相乘便得比分检验的统计量分布
• 分析因素xi为等级变量时,如果每个等级的 作用相同,可按计量资料处理:如以最小或 最大等级作参考组,并按等级顺序依次取为 0,1,2,…。此时, e(bi) 表示xi增加一个等 级时的优势比, e(k* bi)表示xi增加k个等级时 的优势比。如果每个等级的作用不相同,则 应按多分类资料处理。 • 分析因素xi为连续性变量时, e(bi)表示xi增加 一个计量单位时的优势比。
Y 发病=1 不发病=0

《logistic回归分析》课件

《logistic回归分析》课件

信用卡欺诈检测
应用逻辑回归模型检测信用 卡交易中的欺诈行为,保护 用户利益和减少风险。
电影推荐
利用逻辑回归模型根据用户 的历史行为和偏好进行电影 推荐,提供个性化的影片推 荐。
总结与展望
Logistic回归分析的优点和不足
总结逻辑回归分析的优点和限制,讨论其适用范围和局限性。
发展前景
展望逻辑回归分析在未来的发展趋势和应用领域。
探讨Logistic回归分析在实际问题中的广泛应用。
Logistic回归与线性回归的区别
比较Logistic回归和线性回归之间的差异和适用情况。
逻辑回归模型及其基本假设
1 Sigmoid函数
2 逻辑回归的数学模

介绍Sigmoid函数及其在
3 基本假设
描述逻辑回归模型中的
逻辑回归中的作用。
解释逻辑回归的数学模
《logistic回归分析》PPT 课件
介绍logistic回归分析的PPT课件,涵盖课程内容、逻辑回归模型、参数估计与 模型拟合、分类结果与型诊断、实战案例、总结与展望以及参考文献。
课程介绍
什么是Logistic回归分析
介绍Logistic回归分析的基本概念和原理。
Logistic回归分析的应用
• [3]C. Bishop (2006) Pattern recognition and machine learning. Springer.
讨论如何评估逻辑回归模型的分类结果,确定 哪些样本属于正类和负类。
ROC曲线
解释ROC曲线在逻辑回归模型中的作用,用于评 估模型的分类性能。
混淆矩阵
介绍混淆矩阵,用于评估逻辑回归模型的分类 准确性和误判情况。
模型的诊断

logistic 回归的例子

logistic 回归的例子

logistic 回归的例子
Logistic回归是一种广义线性回归(generalized linear model),其因变量是二分类的分类变量或某事件的发生率,并且是数值型变量。

下面是一个简单的例子:
假设我们有一组数据,其中包含两组人群的特征,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。

我们将这两组人群标记为胃癌组和非胃癌组。

通过Logistic回归分析,我们可以得到每个特征的权重,从而了解哪些特征是胃癌的危险因素。

具体来说,Logistic回归模型的公式为:
p = 1 / (1 + e^(-z))
其中,z = w'x + b,w和b是待求参数,x是特征向量,w是权重向量。

通过最大似然估计法,我们可以求解出w和b的值。

然后,我们可以将权重向量w与特征向量x相乘,再加上偏置项b,得到z值。

最后,将z值代入Logistic函数中,得到每个样本属于胃癌组的概率p值。

在上述例子中,我们假设数据集是平衡的,即两组人群的数量大致相等。

如果数据集不平衡,我们可以通过增加样本数量、采用过采样技术、采用加权Logistic回归等方法来解决。

另外,Logistic回归模型的适用条件包括:因变量为二分类的分类变量或某事件的发生率;自变量和因变量之间存在线性关系;各观测对象间相互独立等。

需要注意的是,Logistic回归模型的应用需要具备一定的统计
学基础和专业知识,并且在实际应用中需要考虑到数据的分布、特征的选取、模型的评估等多个方面。

因此,在进行Logistic回归分析时,需要结合实际情况和具体问题进行分析和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32

注:因为p>a,所以认为样本实际值得到的分布与 预测值得到的分布无显著差异,模型拟合优度较好 。
33

注:模型整体的准确度不高,对不购买人群的准确 率极高,对购买人群的准确率很低。
34

注:预测类别图上可以看出,预测概率在0.4附近的 样本预测准确率相对最低。事实上,无论用什么分 类方法,这类样本身就是最难预测的。

Hosmer—Lemeshow检验:通过模型可以计算出给 定解释变量取值时被解释变量取1的概率预测。如 果模型拟合较好,则应给实际值为1的样本以较高 的概率,给实际值为0的样本以低的概率预测值。 于是对概率预测值进行分位数分组(通常为10分位 数,将样本分为10组),预测概率大小分得的10组 和实际观测值0/1类别分组形成了交叉列联表。由 观测频数和期望频数计算卡方统计量,即Hosmer— Lemeshow统计量,它服从自由度为n-2的卡方分布 ,n为组数。

39
模型拟合优度的评价与检验 目的:第一,回归方程能够解释被解释变量变差的 程度,即线性回归的部分能解释LogitP的程度,这 一点与一般线性回归分析是相同的;第二,由回归 方程得到的概率进行分别判别的准确率。 方法: 第一目的:Cox &Snell R2 统计量和 Nagel ker ke R2 统计量 第二目的:混淆矩阵(错判矩阵)和 Hosmer-Lemeshow检验

16
2 L0 N 1 ( ) 2 Cox & Snell R 统计量= L1
,N为样本容量。 该统计量类似于一般线性模型中的R方,统计量的值 越大表明模型的拟合优度越高。不足之处在于其取值 范围无法确定,不利于模型之间的比较。
Cox &Snell R 2

Nagel ker ke R2 统计量=
i 1
7
p




模型的评价: 二项Logistic回归模型很好的体现了概率P值和解释 变量之间的非线性关系。 二项Logistic回归模型本质是一个二分类的线性概率 模型。 通过模型计算P(Y=1)和P(Y=0)的概率,经过比较两 个概率的大小,可以对样本进行类别预测。
8
发生比(相对风险,胜算,odds)的意义: Odds: P 某事件发生概率与不发生概率之 1 P 比。 例如:考上大学的概率为0.25, 则考上大学的odds为0.25/0.75=0.3333:1=1:3,可 以解释为考上与考不上之比为1:3 同理,可以计算考不上大学的odds为0.75/0.25=3:1 ,可以解释为考不上与考上之比为1:3
24
应用举例

例:为研究和预测某商品消费特点和趋势,收集了 以往的消费数据,变量有是否购买、年龄、性别和 收入水平。除年龄外,其余变量都是分类变量。是 否购买是被解释变量,其余都是解释变量。分析目 标:建立客户购买的预测模型,分析影响因素。
25
被解释变量 解释变量栏
可以产生交互项
筛选变 量策略
26

6
9.2二项Logistic回归分析
二项Logistic回归方程: P 设 P (Y 1) P ,称 为发生比(Odds)或 1 P 相对风险,则定义

P
p P ln( ) 0 i xi 1 P i 1 1
1 exp[( 0 i xi )]
即当被解释变量出现分类变量时,如果建立普通的回 归模型会违背回归模型的前提假设。此时采用的建模
4
方法是Logistic回归分析。
二项Logistic回归分析:
Logistic回归分析
Y为二分类 多项Logistic回归分析:
Y为多分类
5
1967年Truelt J,Connifield J和Kannel W在 《Journal of Chronic Disease》上发表了冠心病危险 因素的研究,较早将Logistic回归用于医学研究。
11
二项Logistic回归方程的参数估计: 一般的线性回归模型适合于使用最小二乘法进行估计 ,但是,由于Logistic回归模型中随机扰动项并不满足 经典假设,所以需要使用极大似然法估计。

ˆ 估计就是使Ln(L)达到最大的 。
12
二项Logistic回归方程的检验



回归方程的显著性检验 目的:检验解释变量全体与LogitP (定义LogitP=ln) 的线性关系是否显著,是否可以用线性模型拟合。 检验思想:设没有引入任何解释变量的回归方程的 似然函数为 L0 ,引入解释变量之后回归方程的似然 0 L0 / L1 1 函数值为 L1 ,则似然比为 L0 / L1 。显然, ,且 0 L0 / L1 1 越接近于1,则表明模型中的解释 变量对模型总体没有显著贡献;反之,越接近于0 ,则表明引入变量对模型具有显著贡献。
注:以上问题的共同点是因变量不是连续型变量, 而是分类变量。
3




若因变量是被解释变量,则一般线性模型会出现以 下问题: 对于任意给定的 xi 值,残差 i 也变成了离散型变 量,不是正态分布,因此导致无法进行相应的统计 推断。 对于任意给定的 xi 值,残差 i 也不再满足 E( i ) 0, D( i ) 2
14



回归系数的显著性检验 目的:需要对每个回归系数的显著性进行检验。 检验思想:通过构造Wald统计量进行检验,Wald统 计量和似然比统计量都是极大似然估计方法中常用 的检验统计量。 方法: H0 : j 0
Waldi (
ˆ j S ˆ
j
) 2 ~ 2 (1)
15
第九章
Logistic回归分析
9.1Logistic回归分析概述

问题1:研究消费者的不同特征如何影响是否购买 小轿车时,消费者的年龄、年收入、职业、性别等 因素将作为解释变量,是否购买作为被解释变量, 此时的被解释变量是一个二分类变量。
问题2:在研究消费者特征对某种商品的品牌选择 取向时,品牌作为被解释变量,由于候选品牌多样 ,因此是一个多分类问题。

23



注:对于具有n个类别的分类变量,需要n-1个虚拟 变量即可。 参照类别:虚拟变量值全部定义为0的类别是参照 类别。例如上一个例子中的“女”,“低”。 在Logistic回归模型中各虚拟自变量回归系数的含义 是相对于参照类别,其它各类别对被解释变量平均 贡献的差。进而可以研究各类别间对被解释变量的 平均贡献差异。

9
相对风险比(胜算比,odds ratio)的意义 0dds ratio:在自变量处于不同的水平时的胜算,加 以比较(两个胜算的比值),称为胜算比。 例如:大公司成功经营的概率为10/11,小公司成功 经营的概率为2/13, 则大公司成功经营的胜算为(10/11)/(1/11)=10 小公司成功经营的胜算为(2/13)/(11/13)=0.182 即Odds ratio=10/0.182=55, 即可以解释为大公司的成功胜算为小公司成功胜算的 55倍。

10

二项Logistic回归方程系数的含义: p 因为 exp( 0 i xi ), i 1 当自变量 xi 增加一个单位时,则有
exp( 1 0 i xi )
* p
*
exp( i ) 于是:
i 1
xi 增加一个单位时 即表明:当其它解释条件不变时, 所导致的相对风险是原来相对风险的 exp( i ) 倍。即控 制其它变量不变时,x增加一个单位的相对风险比exp( i ) 即x在不同水平时的,二者的Odds radio是 exp( i ) 。
该统计量的取值范围为0~1,值越大表明模型拟合程 度越高,越接近于0说明模型拟合优度越低。
17
1 ( L0 )
2 N

混淆矩阵(错判矩阵)
总体正确率 代表了预测正确的样本所占 的比例,当然该值越大表明预测能力越强。错判矩阵 是一种常用的评价各种分类判别模型优劣的方法。
18
f11 f 22 f11 f 22 f12 f 21
29

注:因变量和哑变量的编码是非常重要的信息,对 于模型参数的解读和模型的分析都非常中重要。
30

注:初始模型,一般从全模型开始。Age没有通过 检验,income这一类变量通过了,但是其中某一个 哑变量没有通过,经验做法是这一类哑变量全部保 留。
31

注:模型整体的线性没通过检验,但是拟合指标显 示,模型的拟合程度并不好。Logistic回归模型的参 数估计值是采用迭代算法获得,因此需要迭代收敛

注:个人喜欢使用相对简单明了的Indicator方法, 至于哪一个类别作为参考类别,会因具体问题而定 。
27

注:在Logistic回归分析中,如果不关心迭代的历史 和筛选变量的过程,可以不做选择。
28

注:在保存变量中一般最关心概率的预测值和类别 的预测值。一般以0.5为分割点,预测概率大于0.5 ,预测为Y=1;预测概率小于0.5,预测为Y=0。

2

问题3:在流行病学的研究中,有一类常见问题是 探索某疾病的危险因素,同时根据危险因素预测某 疾病发生的概率。例如,想探讨胃癌发生的危险因 素,选择两组人群,一组胃癌患者,另一组非胃癌 患者,这形成了因变量。两组人群肯定有不同的体 征和生活方式,自变量可以包括很多,例如:年龄 、性别、饮食习惯、幽门螺杆菌感染等。
22
虚拟变量:将分类的各个类别分别以0/1二值变量 的形式重新编码,用1表示属于该类,1表示不属于 该类。 例如: (1)“性别”需要一个虚拟变量,值1定义为“男” ,则值0定义为“女”。 (2)“满意度”需要2个虚拟变量,两个变量值为 (1,0)定义为“高”,(0,1)定义为“中”, (0,0)定义为“低”。
相关文档
最新文档