2015山东高考数学试卷(理科)与解析

合集下载

2015山东高考数学理科试题及答案

2015山东高考数学理科试题及答案

14:已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a+b= 32-15:在直角坐标系xoy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点O,A,B ,三角形OAB 的垂心是2C 的焦点,则1C 的离心率32三、解答题:本答题共6小题,共75分。

16:(12分)已知函数2()sin cos cos ()4f x x x x π=-+(1) 求函数()f x 的单调区间;(2) 在锐角三角形ABC 中,角A,B,C 所对的边为a,b,c,已知()0,12Af a ==,求三角形ABC 面积的最大值。

17:(12分)在三棱台DEF-ABC 中AB=2DE,G,H 分别为AC,BC 的中点,(1) 求证://BD FGH 面(2)若CF B ⊥⊥∠︒面ABC,AB BC,CF=DE,AC=45,求平面FGH 与平面ACFD 所成的锐角的大小18:(12分)设数列{}n a 的前n 项和为n S 且满足233n n S =+(1) 求数列{}n a 的通项公式;(2)若数列{}n b 满足3log na n n ab =,求数列{}n b 的前n 项和为n T19:(12分)若n 是一个三位正整数,且个位数大于十位数,十位数大于百位数,则称n 为“三位递增数”(例“137,359,567,”等)在某次趣味数学活动中,每位参赛者需从所有的“三位递增数中随机抽取一个数且只有一次,,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,则得零分;若能被5整除,且不能被10整除则得-1分;若能被10整除,则得1分; (1)写出所有个位数字为5的”三位递增数”;(2)若甲参加活动,求出甲得分X 的分布列及数学期望X E20:(13分) 在直角坐标系xoy 中,已知椭圆2222:1(0)x y C a b a b+=>>12,F F 分别为左右焦点,以1F 为圆心,以3为半径的圆与以以2F 为圆心,以1为半径的圆相交,且交点在椭圆C上(ⅰ)求椭圆C 的标准方程:(ⅱ)设椭圆2222E :1,44x y P a b+=为椭圆C 上的任意一点,过P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于Q, 求OQ OP的值;(2)求三角形ABQ 面积的最大值。

2015年山东高考理科数学试题及答案

2015年山东高考理科数学试题及答案

绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案卸载试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分) 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的1.已知集合}{2430A x x x =-+<,}{24B x x =<<,则A B =( )A.()1,3B.()1,4C.()2,3D.()2,4 2.若复数z 满足1z i i=-,其中i 是虚数单位,则z =( ) A.1i - B.1i + C.1i -- D.1i -+3.要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图象( ) A.向左平移12π个单位 B.向右平移12π个单位 C.向左平移3π个单位 D.向右平移3π个单位 4.已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD =( ) A.232a - B.234a - C.234a D.232a 5.不等式152x x ---<的解集是( ) A.(),4-∞ B.(),1-∞ C.()1,4 D.()1,56.已知满足,x y 约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A.3B.2C.2-D.3-7. 在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.23π B.43π C.53π D.2π 8.已知某批零件的误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则00()68.26P μσζμσ-<<+=,00(22)95.44P μσζμσ-<<+=,) ( ) A.004.56 B.0013.59 C.0027.18 D.0031.749.一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( ) A.5335--或 B.3223--或 C.5445--或 D.4334--或 10.设函数31,1,()2, 1.x x x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的a 的取值范围是( ) A.2[,1]3 B.[0,1] C.2[,)3+∞ D.[1,)+∞ 第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.观察下列各式:0014C =;011334C C +=;01225554C C C ++=;0123377774C C C C +++=;照此规律,当*n N ∈时,012121212121________n n n n n C C C C -----++++= 12.若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值是_________13.执行右边的程序框图,输出的T 的值为_________ 14.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则________a b +=15.平面直角坐标系xOy 中,双曲线1:C 22221(0,0)x y a b a b-=>>的渐近线与抛物线22:2(0)C x py p +>交于点,,.O A B 若OAB ∆的垂心为2C 焦点,则1C 的离心率为_________三、解答题:本答题共6小题,共75分16.(本小题满分12分) 设2()sin cos cos ()4f x x x x π=-+(1)求()f x 的单调区间 (2)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c .若()02A f =,1a =,求ABC ∆面积的最大值17.(本小题满分12分)如图,在三棱台DEF ABC -中,2AB DE =,,G H 分别为,AC BC 的中点(1)求证://BD 平面FGH(2)若CF ⊥平面ABC ,BC AB ⊥,CF DE =,45BAC ∠=,求平面FGH 与 平面ACFD 所成的角(锐角)的大小A18.(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233n n S =+(1)求{}n a 的通项公式(2)若数列{}n b 满足3log 2n n a b =,求{}n b 的前n 项和n T19.(本小题满分12分)设n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等)在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分(1)写出所有个位数字是5的“三位递增数”(2)若甲参加活动,求甲得分X 的分布列与数学期望EX20.(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>左、右焦点分别是12,F F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上(1)求椭圆C 的方程(2)设椭圆2222:144x y E a b+=,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 与,A B 两点,射线PO 交椭圆E 与点Q(i)求OQ OP的值(ii)求ABQ ∆面积的最大值21.(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈(1)讨论()f x 函数级值点的个数,并说明理由(2)若0,()0x f x ∀>≥成立,求a 的取值范围。

2015年高考真题:理科数学(山东卷)试卷(含答案)

2015年高考真题:理科数学(山东卷)试卷(含答案)

2015年普通高等学校招生全国统一考试(山东卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一项是符合题目要求的. (1) 已知集合A=2{|430},{|24}x x x B x x -+<=<<,则A B =(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)解析:2{|430}{|13},(2,3)A x x x x x A B =-+<=<<= ,答案选(C)(2) 若复数z 满足1zi i=-,其中i 是虚数单位,则z = (A)1i - (B) 1i + (C) 1i -- (D) 1i -+解析:2(1)1,1z i i i i i z i =-=-+=+=-,答案选(A) (3)要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像(A)向左平移12π个单位 (B) 向右平移12π个单位(C)向左平移3π个单位 (D) 向右平移3π个单位解析:sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位答案选(B)(4)已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=(A)232a - (B) 234a - (C)234a (D) 232a 解析:由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+= ,答案选(D)(5)不等式|1||5|2x x ---<的解集是(A)(,4)-∞ (B) (,1)-∞ (C) (1,4) (D) (1,5)解析:当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,答案选(A)(6)已知,x y 满足约束条件0,2,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =(A)3 (B) 2 (C) 2- (D) 3-解析:由z a x y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >;答案选(B) 7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)23π (B) 43π (C) 53π (D) 2π 解析:2215121133V πππ=⋅⋅-⋅⋅=,答案选(C)8.已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=.)(A)4.56% (B) 13.59% (C) 27.18% (D) 31.74%解析:1(36)(95.44%68.26%)13.59%2P ξ<<=-=,答案选(B) (9)一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为(A)53-或35- (B) 32-或32- (C) 54-或45- (D) 43-或34- 解析:(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则1,|55|d k ==+=解得43k =-或34-,答案选(D)(10)设函数31,1,()2, 1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是 (A)2[,1]3(B) [0,1] (C) 2[,)3+∞ (D) [1,)+∞解析:由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,答案选(C)二、填空题:本大题共5小题,每小题5分,共25分. (11)观察下列各式:0010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .解析:14n -.具体证明过程可以是:0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++ 021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n n n n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 . 解析:“[0,],t a n 4xx mπ∀∈≤”是真命题,则tan14m π≥=,于是实数m 的最小值为1.(13)执行右边的程序框图,输出的T解析:11200111123T xdx x dx =++=++=⎰⎰(14)已知函数()xf x a b =+(0,a a >≠和值域都是[1,0]-,则a b += .解析:当1a >时101a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2,b =-则13222a b +=-=-. (15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 . 解析:22122:1(0,0)x y C a b a b -=>>的渐近线为by x a =±,则22222222(,),(,)pb pb pb pb A B a a a a-22:2(0)C x py p =>的焦点(0,)2p F ,则22222AF pb pa a k pb b a-==,即2222222593,,.442b c a b c e a a a a +===== 三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,.a b c 若()0,1,2Af a ==求ABC ∆面积的最大值. 解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=- 由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈. (Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1,a =由余弦定理可得2212cos2(26b c bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即2bc ≤=+1112sin sin 22644ABC S bc A bc bc π∆+===≤,故ABC ∆. (17)(本小题满分12分)如图,在三棱台DEF-2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,AB BC CF DE ⊥=∠求平面FGH 与平面ACFD 所成角(锐角)的大小. 解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T. 在三棱台DEF ABC -中,2,AB DE =则2AC DF =而G 是AC 的中点,DF//AC ,则//DF GC ,所以四边形DGCF是平行四边形,T是DC的中点,DG//FC. 又在BDC∆,H是BC的中点,则TH//DB,又BD⊄平面FGH,TH⊂平面FGH,故//BD(Ⅱ)由CF⊥平面ABC,可得DG⊥平面ABC而则GB AC⊥,于是,,GB GA GC两两垂直,以点G为坐标原点,,,GA GB GC所在的直线分别为,,x y z轴建立空间直角坐标系,设2AB=,则1,DE CF AC AG====((B C F H则平面ACFD的一个法向量为1(0,1,0)n=,设平面FGH的法向量为2222(,,)n x y z=,则22n GHn GF⎧⋅=⎪⎨⋅=⎪⎩,即222222x yz-=⎪⎨⎪+=⎩,取21x=,则221,y z==2(1,1n=,121cos,2n n<>==,故平面FGH与平面ACFD所成角(锐角)的大小为60 .(18)(本小题满分12分)设数列{}na的前n项和为nS,已知23 3.nnS=+(Ⅰ)求数列{}na的通项公式;(Ⅱ)若数列{}nb满足3logn n na b a=,求数列{}nb的前n项和nT.解:(Ⅰ)由233nnS=+可得111(33)32a S==+=,11111(33)(33)3(2)22n n nn n na S S n---=-=+-+=≥而11133a-=≠,则13,1,3, 1.n nnan-=⎧=⎨>⎩(Ⅱ)由3logn n na b a=及13,1,3, 1.n nnan-=⎧=⎨>⎩可得311,1,log31, 1.3nnnnnabnan-⎧=⎪⎪==⎨-⎪>⎪⎩2311123133333n n n T --=+++++ . 2234111123213333333n n n n n T ---=++++++ 2231223121111111333333331111111()33333331121213133193922331313211823n n n n n n n nnn n T n n n n ---=+-++++--=-+++++----=+-=+--⋅-+=-⋅ 113211243n n n T -+=-⋅19(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX. 解:(Ⅰ)125,135,145,235,245,345; (Ⅱ)X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-===== 甲得分X 的分布列为:0(1)13144221EX =⨯+⨯-+⨯=(20)(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值. 解析:(Ⅰ)由椭圆2222:1(0)x y C a b a b +=>>的离心率为可知c e a ==,而222a b c =+则2,a b c ==,左、右焦点分别是12(,0),,0)F F ,圆1F:22()9,x y +=圆2F:22()1,x y +=由两圆相交可得24<<,即12<<,交点,在椭圆C 上,则224134b b =⋅, 整理得424510b b -+=,解得21,b =214b =(舍去) 故21,b =24,a =椭圆C 的方程为2214x y +=. (Ⅱ)(ⅰ)椭圆E 的方程为221164x y +=, 设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<, 代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP ==. (ⅱ)点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d ==221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-= 2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->||AB =2211||||||36221414m m S AB d k k∆==⋅⋅⋅=++ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k ==+等号成立. 而直线y kx m =+与椭圆C :2214x y +=有交点P ,则 2244y kx m x y =+⎧⎨+=⎩有解,即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解, 其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥,则上述2282m k =+不成立,等号不成立,设(0,1]t =,则2||614m S k ∆==+(0,1]为增函数,于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12. (21)(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点. 当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点. 若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <, 且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减; 当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增. 因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<, 所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调递増; 当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减. 所以函数只有一个极值点。

2015年高考理科数学山东卷(含答案解析)

2015年高考理科数学山东卷(含答案解析)

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B )第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2430{|}A x x x =-+<,24{|}B x x =<<,则AB = ( )A .1,3()B .1,4()C .2,3()D .2,4()2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+3.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位4.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD =( )A .232a -B .234a -C .234aD .232a5.不等式|||52|1x x ---<的解集是 ( )A .(,4)-∞B .(,1)-∞C .(1,4)D .(1,5)6.已知x ,y 满足约束条件0,2,0.x y x y y -⎧⎪+⎨⎪⎩≥≤≥若z ax y =+的最大值为4,则a =( )A .3B .2C .2-D .3-7.在梯形ABCD 中,π2ABC ∠=,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,23),从中随机取一件,其长度误差落在区间(3,6)内的概率为 ( )(附:若随机变量ξ服从正态分布2(,)N μσ,则(P μσ-<ξ)68.26%μσ<+=,(2P μσ-<ξ2)95.44%μσ<+=)A .4.56%B .13.59%C .27.18%D .31.74%9.一条光线从点(2-,3-)射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为 ( )A .53-或35-B .32-或23-C .54-或45-D .43-或34-10.设函数31,1,()2, 1,x x x f x x -⎧=⎨⎩<≥则满足()(())2f a f f a =的a 取值范围是( )A .2[,1]3B .[0,1]C .2[,)3+∞D .[1,)+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.观察下列各式:001011330122555012337777C =4C +C =4C +C +C =4C +C +C +C =4;;;;……照此规律,当n ∈*N 时,012n-12n-12n-12n-12n-1C + C + C ++ C ⋯=_______. 12.若“∀x ∈[0,4π],tan x ≤m ”是真命题,则实数m 的最小值为_______. 13.执行如图所示的程序框图,输出的T 的值为_______.14.已知函数()(0,1)xf x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=_______.15.平面直角坐标系xOy 中,双曲线222211 0,0x C a b y a b>->=:()的渐近线与抛物线222C x py =:0p >()交于点O ,A ,B .若OAB △的垂心为2C 的焦点,则1C 的离心率为_______.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________?数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设2π()sin cos cos ()4f x x x x =-+.(Ⅰ)求f x ()的单调区间; (Ⅱ)在锐角ABC △中,角A ,B ,C ,的对边分别为a ,b ,c .若2f A ()=0,a =1,求ABC △面积的最大值.17.(本小题满分12分)如图,在三棱台DEF ABC -中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45︒,求平面FGH 与平面ACFD 所成的角(锐角)的大小.18.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知233nn S =+.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .19.(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX . 20.(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别是1F ,2F ,以点1F 为圆心,以3为半径的圆与以点2F 为圆心,以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144 x y E a b +=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.21.(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a ∈R .(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(山东卷)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2{|4+3<0}{|13}A x x x x x =-=<<,()2,3A B =I ,答案选C .【提示】求出集合A ,然后求出两个集合的交集. 【考点】解一元二次不等式,集合间的运算. 2.【答案】A【解析】2(1i)i i +i 1+i z =-=-=,1i z =-,答案选A .【提示】直接利用复数的乘除运算法则化简求解即可. 【考点】复数代数形式的四则运算. 3.【答案】B【解析】πsin 412y x ⎛⎫=- ⎪⎝⎭,需将函数sin 4y x =的图象向右平移π12个单位,答案选B .【提示】直接利用三角函数的平移原则推出结果即可. 【考点】三角函数的图象及其变换. 4.【答案】D【解析】由菱形ABCD 的边长为a ,60ABC ∠=︒可知18060120BAD ∠=︒-︒=︒,2223()()+cos120+2BD CD AD AB AB AB AD AB a a a a =--=-=-︒=uu u r uu u r uuu r uu u r uu u r uu u r uuu r uu u r g g g g ,答案选D .【提示】根据2()()+BD CD AD AB AB AB AD AB =--=-uu u r uu u r uuu r uu u r uu u r uu u r uuu r uu u r g g g 代入可求.【考点】向量的运算. 5.【答案】A【解析】1x <时,1(5)42x x ---=-<成立 当15x ≤<时,1(5)262x x x ---=-<解得4x <;当5x ≥,1(5)42x x ---=<不成立,综上4x <,答案选A .【提示】运用零点分区间,求出零点为1,5,讨论①当1x <,②当15x ≤<,③当5x ≥,分别去掉绝对值,解不等式,最后求并集即可. 【考点】绝对值符号和分类讨论的思想. 6.【答案】B【解析】由+z ax y =得+y ax z =-,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时有最大值+14a =,3a =,不满足10a -<≤;当10a -≤-<,即01a <≤时在1x y ==时有最大值+14a =,3a =,不满足01a <≤;当1a -<-时,即1a >时在2x =,0y =时有最大值24a =,2a =,满足1a >,答案选B .第6题图【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【考点】线性规划的问题. 7.【答案】C【解析】2215ππ12π1133V =-=gg g g ,答案选C . 【提示】画出几何体的直观图,利用已知条件,求解几何体的体积即可. 【考点】空间几何体体积的计算. 8.【答案】B【解析】0000001(36)(95.4468.26)13.592P ξ<<=-=,答案选B . 【提示】由题意(33)68.26%P ξ-<<=,(66)95.44%P ξ-<<=, 可得0000001(36)(95.4468.26)13.592P ξ<<=-=,即可得出结论. 【考点】正态分布.9.【答案】D【解析】(2,3)--关于y 轴的对称点的坐标(2,3)-,设反射光线所在的直线为+3(2)y k x =-,即230kx y k ---=,则1d ==,|5+5|k =解得43k =-或34-,答案选D .【提示】点(2,3)--关于y 轴的对称点为(2,3)-,可设反射光线所在直线的方程为:+3(2)y k x =-,利用直线与圆相切的性质即可得出.【考点】直线与圆的位置关系. 10.【答案】C【解析】由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,答案选C . 【提示】讨论()1f a ≥时,以及1a <,1a ≥,由分段函数的解析式,解不等式即可得到所求范围.【考点】函数的定义域.第Ⅱ卷二、填空题 11.【答案】14n - 【解析】具体证明过程可以是:012101212121212121211C +C+C ++C (2C +2C2n n n n n n n n n n ----------= 021122223121212121212121211=(C +C )+(C +C )+(C +C )++(C +C )2n n n n nn n n n n n n n ------------⎡⎤⎣⎦01212121121212121212111=(C +C +C ++C +C ++C )2422n n n n n n n n n n n ----------==【提示】仔细观察已知条件,找出规律,即可得到结果.【考点】排列组合的运算. 12.【答案】1【解析】“0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan x m ≤”是真命题,则πtan 14m ≥=,于是m 的最小值是1.【提示】求出正切函数的最大值,即可得到m 的范围. 【考点】三角函数的运算和命题真假.数学试卷 第10页(共21页)数学试卷 第11页(共21页) 数学试卷 第12页(共21页)13.【答案】116【解析】112011111++1++236T xdx x dx ===⎰⎰.【提示】模拟执行程序框图,依次写出每次循环得到的n ,T 的值,当3n =时不满足条件3n <,退出循环,输出T 的值为116.【考点】程序框图. 14.【答案】32-【解析】当1a >时,10+1+0a b a b -⎧=-⎪⎨=⎪⎩,无解;当01a <<时10+0+1a b a b -⎧=⎪⎨=-⎪⎩,解得2b =-,12a =,则13+222a b =-=-【提示】对a 进行分类讨论,分别题意和指数函数的单调性列出方程组 【考点】指数函数的定义域和值域的应用. 15.【答案】32【解析】1C :22221x y a b -=(0,0)a b >>的渐近线为b y x a =±则点2222,pb pb A a a ⎛⎫ ⎪⎝⎭,2222,pb pb B a a ⎛⎫- ⎪⎝⎭,22:2(0)C x py p =>的焦点0,2p F ⎛⎫ ⎪⎝⎭,则22222pb p a pb aa kb -==,即2254b a =,22222+94c a b a a ==,32c e a ==. 【提示】求出A 的坐标,可得22244AC b a k ab-=,利用OAB 的垂心为C 2的焦点,可得22414b a b ab a -⎛⎫⨯-=- ⎪⎝⎭,由此可求C 1的离心率. 【考点】双曲线的离心率. 三、解答题16.【答案】(Ⅰ)()f x 的增区间为πππ,π+44k k ⎡⎤-⎢⎥⎣⎦,k ∈Z()f x 的减区间为π3ππ+,π+44k k ⎡⎤⎢⎥⎣⎦,k ∈Z .【解析】(Ⅰ)由11π()sin 21+cos 2+222f x x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦111sin 2+sin 2222x x =- 1sin 22x =-由ππ2π22π+22k x k -≤≤,k ∈Z ,得ππππ+44k x k -≤≤,k ∈Z ,则()f x 的增区间为πππ,π+44k k ⎡⎤-⎢⎥⎣⎦,k ∈Z ; 由π3π2π+22π+22k x k ≤≤,k ∈Z ,得π3ππ+π+44k x k ≤≤,k ∈Z ,则()f x 的减区间为π3ππ+,π+44k k ⎡⎤⎢⎥⎣⎦,k ∈Z . (Ⅱ)在锐角ABC △中,1sin 022A f A ⎛⎫=-= ⎪⎝⎭,1sin 2A =,π,6A =而1a =,由余弦定理可得22π12cos 2(26b c bc bc bc =+-≥=,当且仅当b c =时等号成立.即bc =11π1sin sin2644ABC S bc A bc bc ===≤△,故ABC △ 【提示】(Ⅰ)由三角函数恒等变换化简解析式可得1()sin 22f x x =-,由ππ2π22π+22k x k -≤≤,k ∈Z 可解得()f x 的单调递增区间,由π3π2π+22π+22k x k ≤≤,k ∈Z 可解得单调递减区间.(Ⅱ)由1s i n 022A f A ⎛⎫=-= ⎪⎝⎭,可得sinA ,cos A ,由余弦定理可得:bc ≤且当b c =时等号成立,从而可求1sin 2bc A ≤【考点】三角函数单调区间,三角形的面积公式. 17.【答案】(Ⅰ)见解析 (Ⅱ)60︒【解析】(Ⅰ)证明:如图1,连接DG ,DC ,设DC 与GF 交于点O .在三棱台DEF ABC -中,2AB DE =,则2AC DF =, 而G 是AC 的中点,DF AC ∥,则DF GC ∥, 所以四边形DGCF 是平行四边形,O 是DC 的中点,DG FC ∥.又在BDC △中,H 是BC 的中点,则OH DB ∥,又BD FGH ⊄平面,OH FGH ⊂平面, 故BD FGH ∥平面.第17题图1(Ⅱ)由,C F A B C ⊥平面可得DG ABC ⊥平面而AB BC ⊥,45BAC ∠=︒,则,GB AC ⊥ 于是GD ,GB ,GC 两两垂直,以点为G 坐标原点,GA,GB GD 所在的直线分别为,x ,y z 轴建立空间直角坐标系,如图2,2AB =,1DE CF ==,AC =,AG =B,(C ,(F ,22H ⎛⎫- ⎪ ⎪⎝⎭则平面ACFD 的一个法向量为1(0,1,0)n =u r , 设平面FGH 的法向量为2222(,,)n x y z =u u r则2200n GH n GF ⎧=⎪⎨=⎪⎩u ur uuu r g u u r uuu r g 即22220,22+0,yx z -=⎪⎨⎪=⎩取21x =,则21y =,2z =2n =u u r121cos ,2n n 〈〉==u r u u r ,故平面FGH 与平面ACFD 所成的角(锐角)的大小为60︒.数学试卷 第13页(共21页)数学试卷 第14页(共21页) 数学试卷 第15页(共21页)第17题图2【提示】(Ⅰ)根据2AB DE =便可得到2BC EF =,从而可以得出四边形EFHB 为平行四边形,从而得到BE HF ∥,便有BE FGH ∥平面,再证明DE FGH ∥平面,从而得到BDE FGH 平面∥平面,从而BD FGH ∥平面;(Ⅱ)连接HE ,根据条件能够说明HC ,HG ,HE 三直线两两垂直,从而分别以这三直线为x ,y ,z 轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG ,可说明1n BG=u r uuu r为平面ACFD 的一条法向量,设平面FGH 的法向量为2222(,,)n x y z =u u r ,根据2200n GH n GF ⎧=⎪⎨=⎪⎩u u r uuu r g u u r uuu r g 即可求出法向量2n u u r ,设平面FGH 与平面ACFD 所成的角为θ,根据12cos cos ,n n θ=〈〉u r u u r即可求出平面FGH 与平面ACFD 所成的角的大小. 【考点】线面的位置关系,两平面所夹的角 18.【答案】(Ⅰ)13,1,3,1n n n a n -=⎧=⎨>⎩,n *∈N(Ⅱ)1132+11243n n n T -=-g ,n *∈N 【解析】(Ⅰ)由23+3nn S =得111(3+3)32a S === 11111(3+3)(3+3)3(2)22n n n n n n a S S n ---=-=-=≥,而11133a -=≠,则13,1,3, 1.n n n a n -=⎧=⎨>⎩n *∈N .(Ⅱ)由3log n n n a b a =及13,1,3, 1.n n n a n -=⎧=⎨>⎩可得311,1,log 31, 1.3n n nn n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩.n *∈N 23111231+++++33333n n n T --=L ①223411112321++++++3333333n n n n n T ---=L ② 由①-②得,223121111111+++++33333333n n n n T --=--L223111111113333333n n n --⎛⎫=-+++++- ⎪⎝⎭L 113313212131+91392233n n n n n n ---=+-=---g 132+11823nn =-g 1132+11243n n n T -=-g ,n *∈N . 【提示】(Ⅰ)利用23+3n n S =,可求得13a =;当1n >时,1123+3n n S --=,两式相减1222n n n a S S -=-,可求得13n n a -=,从而可得{}n a 的通项公式;(Ⅱ)依题意,3log n n n a b a =,可得113b =,当1n >时,31113log 313n n n n b n ---==-g ,于是可求得1113T b ==;当1n >时,121121++++13+23++(1)3)3n n n T b b b n ---=⋯⨯⨯⋯-⨯=(,利用错位相减法可求得{}n b 的前n 项和n T .【考点】等比数列的通项公式,数列前n 项和的问题. 19.【答案】(Ⅰ)125,135,145,235,245,3450+(1)+1=3144221EX =⨯⨯-⨯【解析】(Ⅰ)125,135,145,235,245,345.(Ⅱ)由题意知,全部“三位递增数”的个数为3984C =,随机变量X 的取值为:0,1-,1,当0X =时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即38C ; 当1X =-时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,5,7中选择两个数字和5进行组合,即24C ;当1X =时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即24C ;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即1144C C . 则3839C 2(0)C 3P X ===,2439C 1(1)C 14P X =-==,1124443C C +C 11(1)C 42P X ===g ,0+(1)+1=3144221EX =⨯⨯-⨯.【提示】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X 的取值为:0,1-,1分别求出对应的概率,即可求出分布列和期望. 【考点】排列与组合的有关问题.20.【答案】(Ⅰ)22+14x y =(Ⅱ)(ⅰ)2(ⅱ)【解析】(Ⅰ)由椭圆C :2222+1(0)x y a b a b =>>的离心率为,可知c e a ==,而222+a b c =,则2a b =,c =,左,右焦点分别是1(,)F 0,2,0)F ,圆1:F 22()+9x y =,圆2:F 22()+1x y =,有两圆相交可得24<<,即12<<,交点⎛,在椭圆C 上,则224134b b =g ,整理得4245+10b b -=,解得21b =,214b =(舍去). 故21b =,24a =,椭圆C 的方程22+14x y =.数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)(Ⅱ)(ⅰ)椭圆E 的方程为22+1164x y =,设点P 00(,)x y 满足22+14x y =,射线PO :000(0)y y x xx x =<代入22+1164x y =可得点00(2,2),Q x y --于是||2||OQ OP ==.(ⅱ)点00(2,2),Q x y --到直线AB 距离等于圆点O 到直线AB 距离的3倍d == 22+,+1164y kx m x y =⎧⎪⎨=⎪⎩得22+4(+)16x kx m =整理得222(1+4)+8+4160k x kmx m -= 2222226416(4+1)(4)16(16+4)0k m k m k m ∆=--=->||AB =2222211||+16+4=||3612221+42(4+1)ABQ m m k m S AB d k k -=≤=g g g g △当且仅当||m =228+2m k =等号成立.而直线+y kx m =与椭圆C :222+14xy =有交点P ,则222++14y kx m x y =⎧⎪⎨=⎪⎩有解,即224|+|4x kx m +=,222(14)+8+440k x kmx m +-=有解, 其判别式22222216416(4+1)(1)16(4+1)0k m k m k m ∆=--=-≥,即221+4k m ≥,则上述228+2m k =不成立,等号不成立,设(]0,1t ,则ABQ S =△(]0,1为增函数, 于是当221+4k m =时max S ==△ 故ABQ △面积的最大值为【提示】(Ⅰ)运用椭圆的离心率公式和a ,b ,c 的关系,计算即可得到b ,进而得到椭圆C 的方程;(Ⅱ)求得椭圆E 的方程,(ⅰ)设P 00(,)x y ,||||OQ OP λ=,求得Q 的坐标,分别代入椭圆C ,E 的方程,化简整理,即可得到所求值;(ⅱ)将直线+y kx m =代入椭圆E 的方程,运用韦达定理,三角形的面积公式,将直线+y kx m =代入椭圆C 的方程,由判别式大于0,可得t 的范围,结合二次函数的最值,又ABQ △的面积为3S ,即可得到所求的最大值.【考点】椭圆的标准方程,圆交点连线所形成三角形的有关问题 21.【答案】(Ⅰ)见解析 (Ⅱ)01a ≤≤【解析】(1)2()ln(+1)+()f x x a x x =-,定义域为(1,+)-∞21(21)(+1)+12++1()+(21)+1+1+1a x x ax ax af x a x x x x --'=-==设2()2++1g x ax ax a =-当0a =时,()1g x =,1'()01f x x =>+函数()f x 在(1,+)-∞为增函数,无极值点. 当0a >时,228(1)98a a a a a ∆=--=-,若809a ≥>时,0∆≤,()0g x ≥,'()0f x ≥函数()f x 在(1,+)-∞为增函数,无极值点. 若89a >时,0∆>,设()0g x =的两个不相等的实数根12,x x ,且12,x x <且121+2x x =-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,)x x ∈-,()0g x >,()0f x '>()f x 单调递增; 当12(,)x x x ∈,()0g x <,()0f x '<,()f x 单调递减; 当2(,+)x x ∈∞,()0g x >,()0f x '>,()f x 单调递增; 因此此时函数()f x 有两个极值点;若0a <时,0∆>,但(1)10g -=>,121x x <-<, 所以当1(1,)x x ∈-,()0g x >,()0f x '>,()f x 单调递增; 当2(,+)x x ∈∞,()0g x <,()0f x '<,()f x 单调递减; 所以函数()f x 只有一个极值点.综上所述:当809a ≥≥时()f x 无极值点;当0a <时()f x 只有一个极值点;当89a >时()f x 有两个极值点. (Ⅱ)由(Ⅰ)知,当809a ≥≥时,()f x 在(0,+)∞单调递增,而(0)0f =,则当(0,+)x ∈∞时,()0f x >,符合题意; 当819a ≥≥时,(0)0g ≥,20x ≤,()f x 在(0,+)∞单调递增,而(0)0f =,则当(0,+)x ∈∞时,()0f x >符合题意;当1a >时,(0)0g <,20x >所以函数()f x 在2(0,)x 单调递减,而(0)0f =,则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,+)x ∈∞时,1'()101+1+xh x x x=-=>,()h x 在(0,+)∞单调递增,因此当(0,+)x ∈∞时,()(0)h x h >=,ln(+1)0x <于是22()+()+(1)f x x a x x ax a x <-=-,当11x a>-时,2+(1)0ax a x -<此时()0f x <不符合题意.综上所述:a 的取值范围是01a ≤≤【提示】(Ⅰ)函数2()ln(+1)+()f x x a x x =-,其中a ∈R ,(1)x ∈-+∞,.212++1()+(21)+1+1ax ax a f x a x x x -'=-=.令2()2++1g x ax ax a =-.对a 与△分类讨论可得:(1)当0a =时,此时()0f x '>,即可得出函数的单调性与极值的情况. (2)当0a >时,(98)a a =-△.①当809a ≥>时,0≤△,②当89a >时,0>△,即可得出函数的单调性与极值的情况.(3)当0a <时,0>△.即可得出函数的单调性与极值的情况. (Ⅱ)由(Ⅰ)可知:(1)当809a ≥≥时,可得函数()f x 在(0,+)∞上单调性,即可判断出. (2)当819a ≥>1时,由(0)0g ≥,可得20x ≤,函数()f x 在(0,+)∞上单调性,即可判断出.(3)当1a <时,由(0)0g <,可得20x >,利用2(0,)x x ∈时函数()f x 单调性,即可判断出;(4)当0a <时,设()ln(+1)h x x x =-,(0,+)x ∈∞,研究其单调性,即可判断出【考点】函数的极值,函数恒成立求未知数的取值范围数学试卷第19页(共21页)数学试卷第20页(共21页)数学试卷第21页(共21页)。

2015年高考理科数学山东卷-答案

2015年高考理科数学山东卷-答案
3.【答案】B
【解析】 ,需将函数 的图象向右平移 个单位,答案选B.
【提示】直接利用三角函数的平移原则推出结果即可.
【考点】三角函数的图象及其变换.
4.【答案】D
【解析】由菱形ABCD的边长为 , 可知 ,
,答案选D.
【提示】根据 代入可求.
【考点】向量的运算.
5.【答案】A
【解析】 时, 成立
当 时, 解得 ;
第6题图
【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
【考点】线性规划的问题.
7.【答案】C
【解析】 ,答案选C.
【提示】画出几何体的直观图,利用已知条件,求解几何体的体积即可.
【考点】空间几何体体积的计算.
8.【答案】B
【解析】 ,答案选B.
【提示】由题意 , ,
当 , 不成立,综上 ,答案选A.
【提示】运用零点分区间,求出零点为1,5,讨论①当 ,②当 ,③当 ,分别去掉绝对值,解不等式,最后求并集即可.
【考点】绝对值符号和分类讨论的思想.
6.【答案】B
【解析】由 得 ,借助图形可知:当 ,即 时在 时有最大值0,不符合题意;当 ,即 时有最大值 , ,不满足 ;当 ,即 时在 时有最大值 , ,不满足 ;当 时,即 时在 , 时有最大值 , ,满足 ,答案选B.
(Ⅱ)由 ,可得 , ,由余弦定理可得: ,且当 时等号成立,从而可求 ,从而得解.
【考点】三角函数单调区间,三角形的面积公式.
17.【答案】(Ⅰ)见解析
(Ⅱ)
【解析】(Ⅰ)证明:如图1,连接 , ,设 与 交于点 .
在三棱台 中, ,则 ,
而 是 的中点, ,则 ,

2015高考真题山东卷理科数学真题答案解析

2015高考真题山东卷理科数学真题答案解析

绝密★启用前本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案卸载试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)已知集合A={X|X²-4X+3<0},B={X|2<X<4},则A I B=(A)(1,3)(B)(1,4)(C)(2,3)(D)(2,4)【答案】C【解析】(2)若复数Z满足1Zii=-,其中i为虚数为单位,则Z=(A)1-i (B)1+i (C)-1-i (D)-1+i 【答案】A【解析】(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B 【解析】(4)已知ABCD 的边长为a ,∠ABC=60o ,则·=(A )-(B )- (C ) (D )【答案】D【解析】(5)不等式|X-1|-|X-5|<2的解集是(A)(-,4)(B)(-,1)(C)(1,4)(D)(1,5)【答案】A【解析】(6)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=(A)3 (B)2 (C)-2 (D)-3【答案】B【解析】(7)在梯形ABCD中,ABC=,AD//BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)(B)(C)(D)2【答案】C【解析】(8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,3),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N(μ,σ²)),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)(A)4.56% (B)13.59% (C)27.18% (D)31.74%【答案】B【解析】(9)一条光纤从点(-2,-3)射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为()(A)或(B或(C)或(D)或【答案】D【解析】(10)设函数f(x)=,则满足f(f(a))=的a取值范围是()(A)[,1](B)[0,1](C)[(D)[1, +【答案】C【解析】第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年高考理科数学山东卷(含详细答案)

2015年高考理科数学山东卷(含详细答案)

数学试卷 第1页(共42页)数学试卷 第2页(共42页)数学试卷 第3页(共42页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B )第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2430{|}A x x x =-+<,24{|}B x x =<<,则AB = ( )A .1,3()B .1,4()C .2,3()D .2,4()2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+3.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位4.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD =( )A .232a -B .234a -C .234aD .232a5.不等式|||52|1x x ---<的解集是 ( )A .(,4)-∞B .(,1)-∞C .(1,4)D .(1,5)6.已知x ,y 满足约束条件0,2,0.x y x y y -⎧⎪+⎨⎪⎩≥≤≥若z ax y =+的最大值为4,则a =( )A .3B .2C .2-D .3-7.在梯形ABCD 中,π2ABC ∠=,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,23),从中随机取一件,其长度误差落在区间(3,6)内的概率为 ( )(附:若随机变量ξ服从正态分布2(,)N μσ,则(P μσ-<ξ)68.26%μσ<+=,(2P μσ-<ξ2)95.44%μσ<+=)A .4.56%B .13.59%C .27.18%D .31.74%9.一条光线从点(2-,3-)射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34-10.设函数31,1,()2, 1,x x x f x x -⎧=⎨⎩<≥则满足()(())2f a f f a =的a 取值范围是( )A .2[,1]3B .[0,1]C .2[,)3+∞D .[1,)+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.观察下列各式:001011330122555012337777C =4C +C =4C +C +C =4C +C +C +C =4;;;;……照此规律,当n ∈*N 时,012n-12n-12n-12n-12n-1C + C + C ++ C ⋯=_______. 12.若“∀x ∈[0,4π],tan x ≤m ”是真命题,则实数m 的最小值为_______. 13.执行如图所示的程序框图,输出的T 的值为_______.14.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=_______.15.平面直角坐标系xOy 中,双曲线222211 0,0x C a b y a b>->=:()的渐近线与抛物线222C x py =:0p >()交于点O ,A ,B .若OAB △的垂心为2C 的焦点,则1C 的离心率为_______.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________?数学试卷 第4页(共42页)数学试卷 第5页(共42页) 数学试卷 第6页(共42页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设2π()sin cos cos ()4f x x x x =-+.(Ⅰ)求f x ()的单调区间;(Ⅱ)在锐角ABC △中,角A ,B ,C ,的对边分别为a ,b ,c .若2f A()=0,a =1,求ABC △面积的最大值.17.(本小题满分12分)如图,在三棱台DEF ABC -中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45︒,求平面FGH 与平面ACFD 所成的角(锐角)的大小.18.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知233n n S =+. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .19.(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .20.(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>,左、右焦点分别是1F ,2F ,以点1F 为圆心,以3为半径的圆与以点2F 为圆心,以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144 x y E a b +=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.21.(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a ∈R . (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围.3 / 14数学试卷 第10页(共42页) 数学试卷 第11页(共42页)数学试卷 第12页(共42页)最大值24a =,2a =,满足1a >,答案选B .5 / 141012121212121211++C (2C +2C +2C ++2C )2n n n n n n n -------=121)++(C +C n n --1212112121211++C +C ++C )242n n n n n n n n -------== 【提示】仔细观察已知条件,找出规律,即可得到结果.利用OAB的垂心为数学试卷第16页(共42页)数学试卷第17页(共42页)数学试卷第18页(共42页)∥平面.故BD FGH7 / 14数学试卷 第22页(共42页) 数学试卷 第23页(共42页)数学试卷 第24页(共42页)21+1+29 / 14数学试卷第28页(共42页)数学试卷第29页(共42页)数学试卷第30页(共42页)11 / 14数学试卷第34页(共42页)数学试卷第35页(共42页)数学试卷第36页(共42页)13 / 14数学试卷第40页(共42页)数学试卷第41页(共42页)数学试卷第42页(共42页)。

2015年高考山东理科数学试题及答案解析

2015年高考山东理科数学试题及答案解析

12015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年山东,理1】已知集合2{|430}x x x -+<,{|24}B x x =<<,则A B = ()(A )()1,3(B )()1,4(C )()2,3(D )()2,4(2)【2015年山东,理2】若复数z 满足i 1i z=-,其中i 是虚数单位,则z =()(A )1i -(B )1i +(C )1i --(D )1i-+(3)【2015年山东,理3】要得到函数sin(4)3y x p=-的图象,只需将函数sin 4y x =的图像()(A )向左平移12p个单位(B )向右平移12p个单位(C )向左平移3p 个单位(D )向右平移3p个单位(4)【2015年山东,理4】已知菱形ABCD 的边长为a ,60ABC Ð= ,则BD ·CD =()(A )232a -(B )234a -(C )234a (D )232a (5)【2015年山东,理5】不等式|1||5|2x x ---<的解集是()(A )(,4)-¥(B )(,1)-¥(C )(1,4)(D )(1,5)(6)【2015年山东,理6】已知,x y 满足约束条件020x y x y y -³ìï+£íï³î若z ax y =+的最大值为4,则a =()(A )3 (B )2 (C )-2 (D )-3 (7)【2015年山东,理7】在梯形ABCD 中,2ABC pÐ=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()(A )23p (B )43p (C )53p (D )2p(8)【2015年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为()(附:若随机变量x 服从正态分布2(,)N m s ,则()68.26%P m s x m s -<<+=,(22)95.44%P m s x m s -<<+=)(A )4.56%(B )13.59%(C )27.18%(D )31.74%(9)【2015年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为()(A )53-或35-(B )32-或23-(C )54-或45-(D )43-或34-(10)【2015年山东,理10】设函数31,1,()2, 1.x x x f x x -<ì=í³î则满足()(())2f a f f a =的取值范围是()(A )2[,1]3(B )[0,1](C )2[,)3+¥(D )[1,)+¥第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2015年山东,理11】观察下列各式:0010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++= 照此规律,当*n ÎN 时,012121212121n n n n n C C C C -----++++= .(12)【2015年山东,理12】若“[0,],tan 4x x m p "Σ”是真命题,则实数m 的最小值为.的最小值为.(13)【2015年山东,理13】执行右边的程序框图,输出的T 的值为.的值为. (14)【2015年山东,理14】已知函数()x f x a b =+(0,1)a a >¹的定义域和值域都是[1,0]-,则a b +=.(15)【2015年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB D 的垂心为2C 的焦点,则1C 的离心率为.的离心率为.三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设2()sin cos cos ()4f x x x x p =-+.(Ⅰ)求()f x 的单调区间;的单调区间;(Ⅱ)在锐角ABC D 中,角,,A B C 的对边分别为,,a b c ,若()0,12Af a ==,求ABC D 面积.面积.(17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC -中,中,2,,AB DE G H =分别为,AC BC 的中点. (Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ^平面ABC ,,,45AB BC CF DE BAC ^=Ð=,求平面FGH 与平面与平面 ACFD 所成角(锐角)的大小.所成角(锐角)的大小.(18)【2015年山东,理18】(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233nn S =+.(Ⅰ)求数列{}n a 的通项公式;的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .(19)【2015年山东,理19】(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.上. (Ⅰ)求椭圆C 的方程;的方程; (Ⅱ)设椭圆2222:144x y E a b +=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ D 面积最大值.面积最大值.(21)【2015年山东,理21】(本题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R Î.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由;极值点的个数,并说明理由; (Ⅱ)若0x ">,()0f x ³成立,求a 的取值范围.的取值范围.2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年山东,理1】已知集合2{|430}x x x -+<,{|24}B x x =<<,则A B = ()()(A )()1,3(B )()1,4(C )()2,3(D )()2,4 【答案】C 【解析】2{|430}{|13}A x x x x x =-+<=<<,(2,3)A B = ,故选C . (2)【2015年山东,理2】若复数z 满足i 1iz=-,其中i 是虚数单位,则z =()(A )1i -(B )1i +(C )1i --(D )1i -+ 【答案】A 【解析】2(1i)i i i 1i z =-=-+=+,1i z =-,故选A .(3)【2015年山东,理3】要得到函数sin(4)3y x p =-的图象,只需将函数sin 4y x =的图像()的图像()(A )向左平移12p 个单位(B )向右平移12p 个单位(C )向左平移3p 个单位(D )向右平移3p 个单位个单位 【答案】B 【解析】sin 4()12y x p =-,只需将函数sin 4y x =的图像向右平移12p 个单位,故选B .(4)【2015年山东,理4】已知菱形ABCD 的边长为a ,60ABC Ð=,则BD ·CD =()()(A )232a -(B )234a - (C )234a (D )232a 【答案】D【解析】由菱形ABCD 的边长为a ,60ABC Ð=可知18060120BAD Ð=-= ,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ×=-×-=-×+=-×+= ,故选D .(5)【2015年山东,理5】不等式|1||5|2x x ---<的解集是()的解集是()(A )(,4)-¥ (B )(,1)-¥(C )(1,4)(D )(1,5) 【答案】A 【解析】当1x <时,1(5)42x x ---=-<成立;当15x £<时,1(5)262x x x ---=-<,解得4x <,则,则14x £<;当5x ³时,1(5)42x x ---=<不成立.综上4x <,故选A .(6)【2015年山东,理6】已知,x y 满足约束条件020x y x y y -³ìï+£íï³î若z ax y =+的最大值为4,则a =()() (A )3(B )2 (C )-2(D )-3 【答案】B 【解析】由z ax y =+得y ax z =-+,借助图形可知:当1a -³,即1a £-时在0x y ==时有最大值0,不符合题意;当01a £-<,即10a -<£时在1x y ==时有最大值14,3a a +==,不满足10a -<£;当10a -<-£,即01a <£时在1x y ==时有最大值14,3a a +==,不满足01a <£;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >,故选B .(7)【2015年山东,理7】在梯形ABCD 中,2ABC p Ð=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()所在的直线旋转一周而形成的曲面所围成的几何体的体积为()(A )23p (B )43p (C )53p(D )2p 【答案】C 【解析】2215121133V p p p =××-××=,故选C .(8)【2015年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为()(附:若随机变量x 服从正态分布2(,)N m s ,则()68.26%P m s x m s -<<+=,(22)95.44%P m s x m s -<<+=) (A )4.56%(B )13.59%(C )27.18%(D )31.74% 【答案】D 【解析】1(36)(95.44%68.26%)13.59%2P x <<=-=,故选D .(9)【2015年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线相切,则反射光线 所在的直线的斜率为()所在的直线的斜率为()(A )53-或35-(B )32-或23-(C )54-或45-(D )43-或34-【答案】D 【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则22|3223|1,|55|11k k d k k k ----==+=++,解得43k =-或34-,故选D .(10)【2015年山东,理10】设函数31,1,()2, 1.x x x f x x -<ì=í³î则满足()(())2f a f f a =的取值范围是()的取值范围是()(A )2[,1]3(B )[0,1](C )2[,)3+¥(D )[1,)+¥【答案】C 【解析】由()(())2f a f f a =可知()1f a ³,则121a a ³ìí³î或1311a a <ìí-³î,解得23a ³,故选C . 第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2015年山东,理11】观察下列各式:】观察下列各式:0010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++= 照此规律,当*n ÎN 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【解析】0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++021********1212121212121210121212112121212121211[()()()()]211()2422n n n n n n n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=×= (12)【2015年山东,理12】若“[0,],tan 4x x m p "Σ”是真命题,则实数m 的最小值为.的最小值为.【答案】1 【解析】“[0,],tan 4x x m p "Σ”是真命题,则tan 14m p ³=,于是实数m 的最小值为1.(13)【2015年山东,理13】执行右边的程序框图,输出的T 的值为.的值为.【答案】116【解析】11200111111236T xdx x dx =++=++=òò. (14)【2015年山东,理14】已知函数()x f x a b =+(0,1)a a >¹的定义域和值域都是[1,0]-,则a b +=.【答案】32-【解析】当1a >时1010a b a b -ì+=-í+=î,无解;当01a <<时1001a b a b -ì+=í+=-î,解得12,2b a =-=,则13222a b +=-=-.(15)【2015年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x yC a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB D 的垂心为2C 的焦点,则1C 的离心率为.的离心率为. 【答案】32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则22222222(,),(,)pb pb pb pbA B a a a a-22:2(0)C x py p =>的焦点(0,)2pF ,则22222AFpb p a a kpb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==.三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设2()sin cos cos ()4f x x x x p =-+.(Ⅰ)求()f x 的单调区间;的单调区间;(Ⅱ)在锐角ABC D 中,角,,A B C 的对边分别为,,a b c ,若()0,12Af a ==,求ABC D 面积.面积.解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x p =-++=-+=-,由222,22k x k k Z p p p p -££+Î得,44k x k k Z p p p p -££+Î, 则()f x 的递增区间为[,],44k k k Z p p p p -+Î;由3222,22k x k k Z p p p p +££+Î得3,44k x k k Z p p p p +££+Î,则()f x 的递增区间为3[,],44k k k Z p p p p ++Î.(Ⅱ)在锐角ABC D 中,11()sin 0,sin 222A f A A =-==,6A p =,而1a =,由余弦定理可得2212cos 23(23)6b c bc bc bc bc p =+-³-=-,当且仅当b c =时等号成立,时等号成立,即12323bc £=+-,11123sin sin 22644ABC S bc A bc bc p D +===£故ABC D 面积的最大值为234+. (17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC -中,中,2,,AB DE G H =分别为,AC BC 的中点. (Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ^平面ABC ,,,45AB BC CF DE BAC ^=Ð=,求平面FGH 与平面与平面 ACFD 所成角(锐角)的大小.所成角(锐角)的大小.解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T ,在三棱台DEF ABC -中,2AB DE =,则2AC DF =,而G 是AC 的中点,DF AC ,则//DF GC ,所以四边形DGCF 是平行四边形,T 是DC 的中点,DG FC . 又在BDC D ,是BC 的中点,则TH DB ,又BD Ë平面FGH ,TH Ì平面FGH ,故//BD 平面FGH . (Ⅱ)由CF ^平面ABC ,可得DG ^平面ABC 而,AB BC ^,45BAC Ð=,则GB AC ^,于是,,GB GA GC 两两垂直,以点G 为坐标原点,为坐标原点,,,GA GB GC 所在的直线,分别为,,x y z 轴建立空间直角坐标系,轴建立空间直角坐标系, 设2AB =,则1,22,2DE CF AC AG ====, 22(0,2,0),(2,0,0),(2,0,1),(,,0)22B C F H ---,则平面ACFD 的一个法向量为1(0,1(0,1,0),0)n =,设平面FGH 的法向量为的法向量为2222(,,)n x y z = ,则2200n GH n GF ì×=ïí×=ïî,即22222202220x y x z ì-=ïíï-+=î, 取21x =,则221,2y z ==,2(1(1,1,1,1,,2)n =,1211cos ,2112n n <>==++ ,故平面FGH 与平面ACFD 所成角(锐角)的大小为60. (18)【2015年山东,理18】(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233nn S =+.(Ⅰ)求数列{}n a 的通项公式;的通项公式; (Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .解:(Ⅰ)由233n n S =+可得111(33)32a S ==+=,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=³,而11133a -=¹,则13,13,1n n n a n -=ì=í>î.(Ⅱ)由3log n n n a b a =及13,13,1n n n a n -=ì=í>î,可得3111log 3113n n n nn a b n a n -ì=ïï==í-ï>ïî 2311123133333n n n T --=+++++ ,2234111123213333333n n n n n T ---=++++++ ,22312231211111111111111()3333333333333331121213113213319392233182313n n n n nn n n nn n n T n n n ----=+-++++-=-+++++----+=+-=+--=-××-113211243n n n T -+=-× (19)【2015年山东,理19】(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX . 125135145235245345(Ⅱ)X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ×+====-=====甲得分X 的分布列为:的分布列为:X0 -1 1 P23 114 1142211140(1)13144221EX =´+´-+´=.(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x yC a b a b+=>>的离心率为32,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.上. (Ⅰ)求椭圆C 的方程;的方程; (Ⅱ)设椭圆2222:144x yE a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ D 面积最大值.面积最大值.解:(Ⅰ)由椭圆2222:1(0)x y C a b a b +=>>的离心率为32可知32c e a ==,而222a b c =+则2,3a b c b ==,左、右焦点分别是12(3,0),(3,0)F b F b -,圆1F :22(3)9,x b y ++=圆2F :22(3)1,x b y -+= 由两圆相交可得2234b <<,即132b <<,交点222(,1())33b b±-在椭圆C 上,上,则222221(3)43134b b b b b --+=×,整理得424510b b -+=,解得21b =,214b =(舍去), 故21b =,24a =,椭圆C 的方程为2214xy +=.(Ⅱ)(i )椭圆E 的方程为221164x y+=,设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<,代入221164x y +=可得点00(2,2)Q x y --,于是22002200(2)(2)||2||x y OQ OP x y -+-==+. (ii )点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:倍:0022|22|||311kx y m m d k k --+==++,221164y kx mxy =+ìïí+=ïî,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-=.2222226416(41)(4)16(164)0k m k m k m D =-+-=+->,22221||16(164)14kAB k m k+=+-+ 22222211||||164||341646221414m m k m S AB d k m k kD +-==×××+-=++22221646122(41)m k m k ++-£×=+,当且仅当2222||164,82m k m m k =+-=+等号成立.等号成立.而直线y kx m =+与椭圆22:14x C y +=有交点P ,则2244y kx m x y =+ìí+=î有解,有解,即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解,有解,其判别式22222216416(14)(1)16(14)0k m k m k m D =-+-=+-³,即2214k m +³,则上述2282m k =+不成立,等号不成立,不成立,等号不成立,设2||(0,1]14m t k=Î+,则222||16466(4)14m k m S t t k D +-==-+在(0,1]为增函数,为增函数, 于是当2214k m +=时max 6(41)163S D =-×=,故ABQ D 面积最大值为12.(21)【2015年山东,理21】(本题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R Î.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由;极值点的个数,并说明理由;(Ⅱ)若0x ">,()0f x ³成立,求a 的取值范围.的取值范围.解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+¥, 21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-¢=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x ¢==>+,函数()f x 在(1,)-+¥为增函数,无极值点.为增函数,无极值点. 当0a >时,228(1)98a a a a a D =--=-,若809a <£时0D £,()0,()0g x f x ¢³³,函数()f x 在(1,)-+¥为增函数,无极值点.为增函数,无极值点. 若89a >时0D >,设()0g x =的两个不相等的实数根12,x x ,且12x x <, 且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x ¢Î->>单调单调 递增;当12(,),()0,()0,()x x x g x f x f x ¢Î<<单调递减;当2(,),()0,()0,()x x g x f x f x ¢Î+¥>>单调递增.单调递增. 因此此时函数()f x 有两个极值点;有两个极值点;当0a <时0D >,但(1)10g -=>,121x x <-<,所以当2(1,),()0,()0,()x x g x f x f x ¢Î->>单调单调递増;当2(,),()0,()0,()x x g x f x f x ¢Î+¥<<单调递减,所以函数只有一个极值点.单调递减,所以函数只有一个极值点.综上可知当809a ££时()f x 的无极值点;当0a <时()f x 有一个极值点;当89a >时,()f x 的有两个的有两个 极值点.极值点.(Ⅱ)由(Ⅰ)可知当809a ££时()f x 在(0,)+¥单调递增,而(0)0f =, 则当(0,)x Î+¥时,()0f x >,符合题意;,符合题意;当819a <£时,2(0)0,0g x ³£,()f x 在(0,)+¥单调递增,而(0)0f =, 则当(0,)x Î+¥时,()0f x >,符合题意;,符合题意;当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =, 则当2(0,)x x Î时,()0f x <,不符合题意;,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x Î+¥时1()1011x h x x x¢=-=>++, ()h x 在(0,)+¥单调递增,因此当(0,)x Î+¥时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a >-时2(1)0ax a x +-<,此时()0f x <,不符合题意.,不符合题意.综上所述,a 的取值范围是01a ££. 另解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+¥ 21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-¢=+-==,当0a =时,1()01f x x ¢=>+,函数()f x 在(1,)-+¥为增函数,无极值点.为增函数,无极值点. 设222()21,(1)1,8(1)98g x ax ax a g a a a a a =++--=D =--=-,当0a ¹时,根据二次函数的图像和性质可知()0g x =的根的个数就是函数()f x 极值点的个数.极值点的个数.若(98)0a a D =-£,即809a <£时,()0g x ³,()0f x ¢³函数在(1,)-+¥为增函数,无极值点.为增函数,无极值点. 若(98)0a a D =->,即89a >或0a <,而当0a <时(1)0g -³此时方程()0g x =在(1,)-+¥只有一个实数根,此时函数()f x 只有一个极值点;只有一个极值点;当89a >时方程()0g x =在(1,)-+¥都有两个不相等的实数根,此时函数()f x 有两个极值点;有两个极值点; 综上可知当809a ££时()f x 的极值点个数为0;当0a <时()f x 的极值点个数为1;当89a >时,时,()f x 的极值点个数为2. (Ⅱ)设函数2()ln(1)()f x x a x x =++-,0x ">,都有()0f x ³成立,即2ln(1)()0x a x x ++-³当1x =时,ln 20³恒成立;恒成立;当1x >时,20x x ->,2ln(1)0x a x x++³-; 当01x <<时,20x x -<,2ln(1)0x a x x++£-;由0x ">均有ln(1)x x +<成立.成立. 故当1x >时,,2ln(1)11x x x x +<--(0,)Î+¥,则只需0a ³; 当01x <<时,2ln(1)1(,1)1x x x x +>Î-¥---,则需10a -+£,即1a £.综上可知对于0x ">,都有,都有 ()0f x ³成立,只需01a ££即可,故所求a 的取值范围是01a ££. 另解:(Ⅱ)设函数2()ln(1)()f x x a x x =++-,(0)0f =,要使0x ">,都有()0f x ³成立,成立,只需函数函数只需函数函数()f x 在(0,)+¥上单调递增即可,于是只需0x ">,1()(21)01f x a x x ¢=+-³+成立,成立, 当12x >时1(1)(21)a x x ³-+-,令210x t -=>,2()(,0)(3)g t t t =-Î-¥+, 则0a ³;当12x =时12()023f ¢=>;当102x <<,1(1)(21)a x x £-+-, 令21(1,0)x t -=Î-,2()(3)g t t t =-+关于(1,0)t Î-单调递增,单调递增, 则2()(1)11(13)g t g >-=-=--+,则1a £,于是01a ££. 又当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =, 则当2(0,)x x Î时,()0f x <,不符合题意;,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x Î+¥时1()1011x h x x x¢=-=>++, ()h x 在(0,)+¥单调递增,因此当(0,)x Î+¥时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意. 综上所述,a 的取值范围是01a ££.【评析】求解此类问题往往从三个角度求解:一是直接求解,通过对参数a 的讨论来研究函数的单调性,进一步确定参数的取值范围;确定参数的取值范围;二是分离参数法,二是分离参数法,二是分离参数法,求相应函数的最值或取值范围以达到解决问题的目的;求相应函数的最值或取值范围以达到解决问题的目的;求相应函数的最值或取值范围以达到解决问题的目的;三是凭三是凭借函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,然后对参数取值范围以外的部分进行分析验证其不符合题意,即可即可确定所求. 确定所求.。

(完整word)2015年高考山东理科数学试题及答案解析,推荐文档

(完整word)2015年高考山东理科数学试题及答案解析,推荐文档

2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第I 卷(共50 分)(7)【2015年山东,理 7】在梯形 ABCD 中,ABC - , AD//BC , BC 2AD 2AB 2 .将梯形 ABCD(9)【2015年山东,理9】一条光线从点(2, 3)射出,经y 轴反射与圆(x3)2 (y 2)2 1相切,则反射光线所在的直线的斜率为 ( )/八5亠 33亠 254 4亠 3(A )一或一(B ) -或(C )—或一(D )—或3 5234 53 4(10)【2015年山东,理 10】设函数 f(x)3x 1,x 2 ,x 1 !,则满足 1. f(f(a))2f(a)的取值范围是()、选择题:本大题共 【2015年山东,理(A ) 1,3 (1) 10小题,每小题5分,在(C ) 2,3((D )) 2,4(2) 【2015年山东,理 2】若复数z 满足 —i ,其中i 是虚数单位,则1 i(3) (4) (5) (6) (A) 1 i (B) 1 i (C ) 1 i (D)【2015年山东,理 3】要得到函数y(A )向左平移个单位(B )12【2015年山东,理 3 2(A) 尹【2015年山东,理 (A) ( ,4)【2015年山东,理 (A) 34】5】6】已知菱形 (B)Sin (4X3)的图象,只sin 4x 的图像 向右平移 个单位(C )向左平移一个单位(D )向右平移12 3ABCD 的边长为 a , ABC 60°,则????????( 3 2 a 4 个单位3(C ) 不等式|x 1| |x 5| (B ) ( ,1)已知x,y 满足约束条件 (B) 22的解集是3 2a 4)(1,4))3 2(D ) -a (C ) 02若z ax y 的最大值为 (C ) -2(D ) (1,5) 4,则(D) -3(A )—4(B )(C ) 5333(8)【2015年山东,理8】已知某批零件的长度误差(单位: 毫米) 服从正态分布(D) 2N(0,32),从中随机取一件, 服从正态分布N (2),则P()68.26%, P( 2 2 ) 95.44%)(A) 4.56% (B) 13.59% (C ) 27.18% (D) 31.74%绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) 其长度误差落在区间3,6内的概率为( )(附:若随机变量第II卷(共100 分) :■、填空题:本大题共5小题,每小题5分(11)【2015年山东,理11】观察下列各式:照此规律,当n N*时,C 20n 1c 2n 1c ;n43;(14) __________________________________________________________________________________________【2015年山东,理14】已知函数f(x) a x b (a 0,a 1)的定义域和值域都是[1,0],则a b _________________________2 2(15) 【2015年山东,理15】平面直角坐标系 xOy 中,双曲线 G :笃 爲1(a 0,b 0)的渐近线与抛物线a bC2:x 2py(p 0)交于点O,A,B ,若 OAB 的垂心为G 的焦点,贝U G 的离心率为 _______________ .三、解答题:本大题共 6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设f (x) sin xcosx cos (x ).4(I)求f(x)的单调区间;A(n)在锐角ABC 中,角A,B,C 的对边分别为a,b,c ,若f( ) 0,a 1,求 ABC 面积.2(17) 【2015年山东,理17】(本小题满分12分)如图,在三棱台 DEF ABC 中,AB 2DE,G,H 分别为AC, BC 的中点.(I)求证:BD//平面FGH ;2 3 74 C•‘2 52 7 14 c CO4';1G1G1GO1O 3 O 50 7 L c c c c L(12) 【2015年山东,理 (13) 【2015年山东,理12】右 “ x [0, _],tan x413】执行右边的程序框图,m ”是真命题,则实数m 的最小值为 ________n 1C 2n 1(n)若CF 平面ABC, AB BC,CF DE, BAC 45o,求平面FGH 与平面ACFD所成角(锐角)的大小.(18) 【2015年山东,理18】(本小题满分12分)设数列{a.}的前n项和为S n,已知3n 3 .(I)求数列{a n}的通项公式;(H)若数列{b n}满足a n b n log3耳,求数列也}的前n项和「.(19) 【2015年山东,理19】(本小题满分12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为三位递增数”(如137, 359, 567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数” 的三个数字之积不能被5 整除,参加者得0 分;若能被 5 整除,但不能被10 整除,得-1 分;若能被10 整除,得 1 分.(I)写出所有个位数字是5的三位递增数”;(H)若甲参加活动,求甲得分X的分布列和数学期望EX .2 2(20) 【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy中,已知椭圆C:笃厶1(a b 0)的a b离心率为_!,左、右焦点分别是F I,F2,以F l为圆心,以3为半径的圆与以F2为圆心,以1为半径的圆相2交,交点在椭圆C 上.(I)求椭圆C的方程;2 2(n)设椭圆E:二笃1, P为椭圆C上的任意一点,过点P的直线y kx m交椭圆E于A,B两点,4 a2 4b2射线PO交椭圆E于点Q •⑴求|OQ-I的值;(ii)求ABQ面积最大值.|OP|(21)【2015年山东,理21】(本题满分14分)设函数f(x) ln(x 1) a(x2x),其中a R .(I)讨论函数f(x)极值点的个数,并说明理由;(H)若x 0,f(x) 0成立,求a的取值范围.2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第I 卷(共50 分)【答案】Bx y 0(4)【2015年山东,理 4】已知菱形 ABC D 的边长为a ,ABC 60',则????•????()3 2 (A ) ^a (B ) 3 2 a 43 2 (C ) — a43 2(D)〒【答案】D【解析】由菱形ABCD 的边长为a ,AB C 60o 可知 BAD 18C f 60o 120o ,uu uiur uur BD CD (AD uuu uu iuu u A uiu r AD uur 2 AB a acos12C °2 a -a 2,故选D . 2 (5)【2015年山东,理 5】不等式|x 1| |x 5| 2的解集是( )(A ) ( ,4) (B )( ,1)(C ) (1,4)(D ) (1,5) 【答案】A【解析】当x 1时,1x (5 x)4 2成立; 当1 x5 时,x 1 (5x) 2x 62,解得 x 4,则【解析】y sin4(x —),只需将函数y sin4x 的图像向右平移一个单位,故选 B .12 121 x 4 ;当 x 5 时,x 1(x 5) 4 2不成立.综上x4,故选A .」、选择题:本大题共 (1)【2015年山东,, (A ) 1,3 【答案】C 【解析】A {x|x 2 4x (2)【2015年山东,(A ) 1 i 【答案】A 【解析】z (1 i)i(3)【2015年山东, (A )向左平移10小题,每小题5分,在4x 30} , B{x|2 x( (D)) 2,43 0} {x|1 x 3} , AI B (2,3),故选 C .2】 i 2 i理3】 若复数z 满足zi ,其中 1 ii 是虚数单位,则 (B) 1(C )1 i(D)要得到函数i ,故选A .Sin(4x3)的图象,只需将函数sin 4x 的图像个单位(B )向右平移—个单位(C )向左平移—个单位(D )向右平移1212—个单位3x y 2若z ax y 的最大值为4,则a y 0即0 a 1时在x y 1时有最大值a 1 4,a 3,不满足0 a 1 ;当a时有最大值2a 4,a2,满足a 1,故选B .(7)【2015 年山东,理 7】在梯形 ABCD 中, ABC - , AD//BC , BC 2AD 2AB 2 2绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(6)【2015年山东,理6】已知x,y 满足约束条件 (A ) 3 ( B ) 2【答案】B【解析】由z ax y 得y ax z ,借助图形可知:当(C ) -2(D) -3a 1,即 a1时在x y 0时有最大值0,不符合题y 1时有最大值a1 4,a 3,不满足 1 a 0;当 1 1,即a 1时在x 2,y 0将梯形ABCDa 1,即1 a 0时在x(12)【2015年山东,理12】若“ x [0,—],tanx m ”是真命题,贝U 实数m 的最小值为 _________4【答案】1【解析】“ x [0,-],ta nx m "是真命题,则 m tan 1,于是实数m 的最小值为1.2(A ) 3 (B) 43 (C )5【答案】C1 【解析】V 12 2 -12 1 5 ,故选 C .3 3(8)【2015年山东,理 8】已知某批零件的长度误差(单位: 毫米) 服从正态分布 其长度误差落在区间3,6内的概率为() (附: 若随机变量P()68.26%, P( 22 )95.44%)(A ) 4.56%(B ) 13.59%(C ) 27.18%(D) 21【解析】P(36) -(95.44% 68.26%) 13.59%,故选 D .(9)【2015年山东,理9】一条光线从点(2, 3)射出,经y 轴反射与圆(x 3)2 (y 2)2 1相切,则反射光线 所在的直线的斜率为( )(A )5十3一或 一 (B )2 54 (C )-或 4(D )-或-3 5234 53 4【答案】D【解析】( 2, 3)关于 y 轴对称点的坐标为 (2, 3), 设反射光线所在直线为 y 3 k(x 2),即 kx y 2k 3 0 ,则 d1 3k2 仝 3|1,|5k 5|k 2 1 , 解得k4或- 故选D ..k 2 13 4(10)【2015年山东, 理10】设函数f(x)3x x 1,x 1 1则满足 f(f(a)) 2心) 的取值范围是()2 ,x 1.(A ) [|,1] (B ) [0,1](C ) 12 ) ■3,)(D ) [1,) 【答案】C【解析】由f(f(a))2f(a)可知f (a) 1,则aa1或 a 1 ,解得a 2 故选C .2 13a 1 13第II 卷(共100 分):■、填空题:本大题共 5小题,每小题5分 (11)【2015年山东,理11】观察下列各式:2 3 7 4 0・ 5 52 7 4CC o4';1G1a1G o 1O 30 50 7 CCCC照此规律,当n N*时,C 2『 34 ;C 2n 1 C 2n 1—n 1L C 2n 1【解析】C 2n 1 C 2n 1 CL L1 02 (2C 2n 12[(C2n 1 Cj ;) (C2n 1 C 2n 2)C2n 1 丿1厂0 1 —2 亠n 1 (C 2n 1 C2n 1 C2n 1 LC2n 1 2(C 2n 1。

2015年山东高考理科数学试题和答案解析

2015年山东高考理科数学试题和答案解析

2015年高考山东省理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πR 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k n p k (1-p )n-k(k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}{2430A x x x =-+<,}{24B x x =<<,则A B ⋂=A. ()1,3B. ()1,4C. ()2,3D. ()2,4 2. 若复数z 满足1zi i=-,其中i 是虚数单位,则z = A. 1i - B. 1i + C. 1i -- D. 1i -+ 3. 要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图象A. 向左平移12π个单位 B. 向右平移12π个单位 C. 向左平移3π个单位 D. 向右平移3π个单位4. 已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD = A. 232a -B. 234a - C. 234a D. 232a5. 不等式152x x ---<的解集是A. (),4-∞B. (),1-∞C. ()1,4D. ()1,56. 已知满足,x y 约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =A. 3B. 2C. 2-D. 3- 7. 在梯形ABCD 中,2ABC π∠=,AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为A.23π B. 43π C. 53π D. 2π 8. 已知某批零件的误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附若随机变量ξ服从正态分布2(,)N μσ,则00()68.26P μσζμσ-<<+=,00(22)95.44P μσζμσ-<<+=,)A. 004.56B. 0013.59C. 0027.18D. 0031.749. 一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为 A. 5335--或 B. 3223--或 C. 5445--或 D. 4334--或 10.设函数31,1,()2, 1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的a 的取值范围是A. 2,13⎡⎤⎢⎥⎣⎦ B. []0,1C. 2,3⎡⎫+∞⎪⎢⎣⎭ D. [)1,+∞二、填空题:本大题共4小题,每小题4分,共16分.11. 观察下列各式: 0014C =; 011334C C +=;01225554C C C ++=;0123377774C C C C +++=;dx输出结束照此规律,当*n N ∈时012121212121____n n n n n C C C C -----++++=12. 若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值是_________ 13. 执行右边的程序框图,输出的T 的值为________14. 已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则_____a b +=15. 平面直角坐标系xOy 中,双曲线1:C 22221(0,0)x y a b a b-=>>的渐近线与抛物线22:2(0)C x py p +>交于点,,.O A B 若OAB ∆的垂心为2C 焦点,则1C 的离心率为______ 三、解答题:本大题共6小题16. 设2()sin cos cos ()4f x x x x π=-+(1)求()f x 的单调区间(2)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c .若()02Af =,1a =,求ABC ∆面积的最大值 17.如图,在三棱台DEF ABC -中,2AB DE =,,G H 分别为,AC BC 的中点(1)求证:BD FGH 平面(2)若⊥CF 平面ABC ,AB ⊥BC ,CF DE =,45BAC ∠=,求平面FGH 与平面ACFD 所成的角(锐角)的大小18. 设数列{}n a 的前n 项和为n S ,已知233n n S =+ (1)求{}n a 的通项公式(2)若数列{}n b 满足3log 2n n a b =,求{}n b 的前n 项和n TA19. 设n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等)在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分 (1) 写出所有个位数字是5的“三位递增数”(2) 若甲参加活动,求甲得分X 的分布列与数学期望EX20. 平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,左、右焦点分别是12,F F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上(1)求椭圆C 的方程(2)设椭圆2222:144x y E a b +=,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 与,A B 两点,射线PO 交椭圆E 与点Q(i )求OQ OP的值(ii )求ABQ ∆面积的最大值21. 设函数2()ln(1)()f x x a x x =++-,其中a R ∈ (1)讨论()f x 函数级值点的个数,并说明理由 (2)若0,()0x f x ∀>≥成立,求a 的取值范围。

2015高考真题山东卷理科数学真题答案解析

2015高考真题山东卷理科数学真题答案解析

本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案卸载试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)已知集合A={X|X²-4X+3<0},B={X|2<X<4},则A B=(A)(1,3)(B)(1,4)(C)(2,3)(D)(2,4)【答案】C【解析】(2)若复数Z满足1Zii=-,其中i为虚数为单位,则Z=(A)1-i (B)1+i (C)-1-i (D)-1+i 【答案】A【解析】(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B 【解析】(4)已知ABCD 的边长为a ,∠ABC=60o ,则错误!未找到引用源。

·错误!未找到引用源。

=(A )- 错误!未找到引用源。

(B )- 错误!未找到引用源。

(C ) 错误!未找到引用源。

(D ) 错误!未找到引用源。

2015年普通高等学校招生全国统一考试理科数学(山东卷)(含答案全解析)

2015年普通高等学校招生全国统一考试理科数学(山东卷)(含答案全解析)

2015年普通高等学校招生全国统一考试山东理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015山东,理1)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)答案:C解析:A={x|x2-4x+3<0}={x|1<x<3},B={x|2<x<4},结合数轴,知A∩B={x|2<x<3}.2.(2015山东,理2)若复数z满足z=i,其中i为虚数单位,则z=()A.1-iB.1+iC.-1-iD.-1+i答案:A解析:∵z1−i=i,∴z=i(1-i)=i-i2=1+i.∴z=1-i.3.(2015山东,理3)要得到函数y=sin4x−π的图象,只需将函数y=sin 4x的图象()A.向左平移π个单位B.向右平移π个单位C.向左平移π个单位D.向右平移π3个单位答案:B解析:∵y=sin4x−π3=sin4 x−π12,∴只需将函数y=sin 4x的图象向右平移π12个单位即可.4.(2015山东,理4)已知菱形ABCD的边长为a,∠ABC=60°,则BD·CD=()A.-32a2 B.-34a2 C.34a2 D.32a2答案:D解析:如图设BA=a,BC=b.则BD·CD=(BA+BC)·BA=(a+b)·a=a2+a·b=a2+a·a·cos 60°=a2+1a2=3a2.5.(2015山东,理5)不等式|x-1|-|x-5|<2的解集是()A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)答案:A解析:当x≤1时,不等式可化为(1-x)-(5-x)<2,即-4<2,满足题意;当1<x<5时,不等式可化为(x-1)-(5-x)<2,即2x-6<2,解得1<x<4; 当x≥5时,不等式可化为(x-1)-(x-5)<2,即4<2,不成立.故原不等式的解集为(-∞,4).6.(2015山东,理6)已知x,y满足约束条件x−y≥0,x+y≤2,y≥0.若z=ax+y的最大值为4,则a=()A.3B.2C.-2D.-3答案:B解析:由约束条件画出可行域,如图阴影部分所示.线性目标函数z=ax+y,即y=-ax+z.设直线l0:ax+y=0.当-a≥1,即a≤-1时,l0过O(0,0)时,z取得最大值,z max=0+0=0,不合题意;当0≤-a<1,即-1<a≤0时,l0过B(1,1)时,z取得最大值,z max=a+1=4,∴a=3(舍去);当-1<-a<0时,即0<a<1时,l0过B(1,1)时,z取得最大值,z max=2a+1=4,∴a=3(舍去);当-a≤-1,即a≥1时,l0过A(2,0)时,z取得最大值,z max=2a+0=4,∴a=2.综上,a=2符合题意.7.(2015山东,理7)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案:C解析:由题意可得旋转体为一个圆柱挖掉一个圆锥.V圆柱=π×12×2=2π,V圆锥=13×π×12×1=π3.∴V几何体=V圆柱-V圆锥=2π-π=5π.8.(2015山东,理8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%答案:B解析:由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ−2σ<ξ<μ+2σ)−P(μ−σ<ξ<μ+σ)=95.44%−68.26%2=13.59%.9.(2015山东,理9)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.-53或-35B.-32或-23C.-5或-4D.-4或-3答案:D解析:如图,作出点P(-2,-3)关于y轴的对称点P0(2,-3).由题意知反射光线与圆相切,其反向延长线过点P0.故设反射光线为y=k(x-2)-3,即kx-y-2k-3=0.∴圆心到直线的距离d=1+k=1,解得k=-4或k=-3.10.(2015山东,理10)设函数f (x )= 3x −1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A. 23,1 B.[0,1]C. 2,+∞ D.[1,+∞)答案:C解析:当a=2时,f (2)=4,f (f (2))=f (4)=24,显然f (f (2))=2f (2),故排除A,B .当a=2时,f 2 =3×2-1=1,f f 2 =f (1)=21=2. 显然f f 2 =2f 23 .故排除D . 综上,选C .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.(2015山东,理11)观察下列各式: C 10=40; C 30+C 31=41; C 50+C 51+C 52=42; C 70+C 71+C 72+C 73=43; ……照此规律,当n ∈N *时,C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1= . 答案:4n-1解析:观察各式有如下规律:等号左侧第n 个式子有n 项,且上标分别为0,1,2,…,n-1,第n 行每项的下标均为2n-1.等号右侧指数规律为0,1,2,…,n-1.所以第n 个式子为C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1=4n-1. 12.(2015山东,理12)若“∀x ∈ 0,π4,tan x ≤m ”是真命题,则实数m 的最小值为 . 答案:1解析:由题意知m ≥(tan x )max .∵x ∈ 0,π,∴tan x ∈[0,1], ∴m ≥1.故m 的最小值为1.13.(2015山东,理13)执行下边的程序框图,输出的T 的值为 .答案:11解析:初始n=1,T=1.又 10x n d x=1n +1x n+1|01=1n +1, ∵n=1<3,∴T=1+1=3,n=1+1=2; ∵n=2<3,∴T=32+12+1=116,n=2+1=3; ∵n=3,不满足“n<3”,执行“否”,∴输出T=11.14.(2015山东,理14)已知函数f (x )=a x +b (a>0,a ≠1)的定义域和值域都是[-1,0],则a+b= . 答案:-3解析:f (x )=a x +b 是单调函数,当a>1时,f (x )是增函数,∴ a −1+b =−1,a 0+b =0,无解.当0<a<1时,f (x )是减函数,∴ a −1+b =0,a 0+b =−1,∴ a =12,b =−2. 综上,a+b=1+(-2)=-3.15.(2015山东,理15)平面直角坐标系xOy 中,双曲线C 1:x 2a 2−y 2b2=1(a>0,b>0)的渐近线与抛物线C 2:x 2=2py (p>0)交于点O ,A ,B.若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .答案:3解析:双曲线的渐近线为y=±ba x.由y =ba x ,x 2=2py ,得A 2bp a ,2b 2p a 2.由 y =−b a x ,x 2=2py ,得B −2bp a ,2b 2p a2 .∵F 0,p为△OAB 的垂心,∴k AF ·k OB =-1.即2b 2p a 2−p 22bpa−0· −b a =-1,解得b 2a2=54,∴c 2a 2=94,即可得e=32.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2015山东,理16)设f (x )=sin x cos x-cos 2 x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若f A 2=0,a=1,求△ABC 面积的最大值.解:(1)由题意知f (x )=sin2x −1+cos 2x +π2 =sin2x −1−sin2x =sin 2x-1.由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π+2k π≤2x ≤3π+2k π,k ∈Z ,可得π+k π≤x ≤3π+k π,k ∈Z .所以f (x )的单调递增区间是 −π+kπ,π+kπ (k ∈Z );单调递减区间是 π+kπ,3π+kπ (k ∈Z ).(2)由f A 2 =sin A-12=0,得sin A=12,由题意知A 为锐角,所以cos A= 32.由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+ 3bc=b 2+c 2≥2bc ,即bc ≤2+ 3,且当b=c 时等号成立. 因此12bc sin A ≤2+ 34. 所以△ABC 面积的最大值为2+ 3. 17.(本小题满分12分)(2015山东,理17)如图,在三棱台DEF-ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF=DE ,∠BAC=45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形.可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解法一:设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=1AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC.又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点,所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(2,0,0),C(0,2,0),D(0,0,1).可得H2,2,0,F(0,2,1),故GH=2,2,0,GF=(0,.设n=(x,y,z)是平面FGH的一个法向量,则由n·GH=0,n·GF=0,可得x+y=0,2y+z=0.可得平面FGH的一个法向量n=(1,-1,2).因为GB是平面ACFD的一个法向量,GB=(2,0,0),所以cos<GB,n>=GB·n|GB|·|n|=222=12.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.解法二:作HM⊥AC于点M,作MN⊥GF于点N,连接NH.由FC⊥平面ABC,得HM⊥FC,又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH即为所求的角.在△BGC中,MH∥BG,MH=1BG=2,由△GNM ∽△GCF ,可得MN FC=GMGF,从而MN= 66.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM ⊥MN ,因此tan ∠MNH=HM = 3,所以∠MNH=60°.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.18.(本小题满分12分)(2015山东,理18)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3, 当n>1时,2S n-1=3n-1+3,此时2a n =2S n -2S n-1=3n -3n-1=2×3n-1,即a n =3n-1,所以a n = 3,n =1,3n−1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n>1时,b n =31-n log 33n-1=(n-1)·31-n . 所以T 1=b 1=1;当n>1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n-1)×31-n ), 所以3T n =1+(1×30+2×3-1+…+(n-1)×32-n ),两式相减,得2T n =2+(30+3-1+3-2+…+32-n )-(n-1)×31-n =2+1−31−n 1−3−1-(n-1)×31-n =13−6n +3n, 所以T n =13−6n +3n.经检验,n=1时也适合. 综上可得T n =1312−6n +34×3n. 19.(本小题满分12分)(2015山东,理19)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望EX.解:(1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意知,全部“三位递增数”的个数为C 93=84,随机变量X 的取值为:0,-1,1,因此P (X=0)=C 83C 93=23,P (X=-1)=C 42C 93=114,P (X=1)=1-114−23=1142. 所以X 的分布列为则EX=0×23+(-1)×114+1×1142=421. 20.(本小题满分13分)(2015山东,理20)平面直角坐标系xOy 中,已知椭圆C :x 22+y 2b2=1(a>b>0)的离心率为3,左、右焦点分别是F 1,F 2.以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程; (2)设椭圆E :x 24a 2+y 24b2=1,P为椭圆C 上任意一点.过点P 的直线y=kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E于点Q.①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解:(1)由题意知2a=4,则a=2.又c =3,a 2-c 2=b 2,可得b=1,所以椭圆C 的方程为x 2+y 2=1.(2)由(1)知椭圆E 的方程为x 2+y 2=1. ①设P (x 0,y 0),|OQ |=λ,由题意知Q (-λx 0,-λy 0).因为x 02+y 02=1,又(−λx 0)2+(−λy 0)2=1, 即λ24 x 024+y 02 =1,所以λ=2,即|OQ ||OP |=2. ②设A (x 1,y 1),B (x 2,y 2),将y=kx+m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-16=0, 由Δ>0,可得m 2<4+16k 2. ①则有x 1+x 2=-8km 1+4k2,x 1x 2=4m 2−161+4k2.所以|x 1-x 2|=4 16k 2+4−m 21+4k2.因为直线y=kx+m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S=12|m||x 1-x 2|=2 16k 2+4−m 2|m |1+4k2=2 (16k 2+4−m 2)m 21+4k2=2 4−m 1+4k2m 1+4k2.设m 21+4k2=t.将y=kx+m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx+4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2. ②由①②可知0<t ≤1,因此S=2 (4−t )t =22+4t . 故S ≤2 ,当且仅当t=1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6 3.21.(本小题满分14分)(2015山东,理21)设函数f (x )=ln(x+1)+a (x 2-x ),其中a ∈R . (1)讨论函数f (x )极值点的个数,并说明理由; (2)若∀x>0,f (x )≥0成立,求a 的取值范围. 解:(1)由题意知函数f (x )的定义域为(-1,+∞),f'(x )=1+a (2x-1)=2ax 2+ax−a +1. 令g (x )=2ax 2+ax-a+1,x ∈(-1,+∞).当a=0时,g (x )=1,此时f'(x )>0,函数f (x )在(-1,+∞)单调递增,无极值点; 当a>0时,Δ=a 2-8a (1-a )=a (9a-8).①当0<a ≤8时,Δ≤0,g (x )≥0,f'(x )≥0,函数f (x )在(-1,+∞)单调递增,无极值点;②当a>89时,Δ>0,设方程2ax 2+ax-a+1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-1,所以x 1<-1,x 2>-1. 由g (-1)=1>0,可得-1<x 1<-1.所以当x ∈(-1,x 1)时,g (x )>0,f'(x )>0,函数f (x )单调递增, 当x ∈(x 1,x 2)时,g (x )<0,f'(x )<0,函数f (x )单调递减, 当x ∈(x 2,+∞)时,g (x )>0,f'(x )>0,函数f (x )单调递增. 因此函数有两个极值点. 当a<0时,Δ>0,由g (-1)=1>0,可得x 1<-1.当x ∈(-1,x 2)时,g (x )>0,f'(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f'(x )<0,函数f (x )单调递减; 所以函数有一个极值点.综上所述,当a<0时,函数f (x )有一个极值点; 当0≤a ≤8时,函数f (x )无极值点; 当a>89时,函数f (x )有两个极值点. (2)由(1)知,①当0≤a ≤8时,函数f (x )在(0,+∞)上单调递增, 因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;②当8<a ≤1时,由g (0)≥0,得x 2≤0,所以函数f (x )在(0,+∞)上单调递增.又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意; ③当a>1时,由g (0)<0,可得x 2>0. 所以x ∈(0,x 2)时,函数f (x )单调递减;因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意; ④当a<0时,设h (x )=x-ln(x+1). 因为x ∈(0,+∞)时,h'(x )=1-1=x>0, 所以h (x )在(0,+∞)上单调递增. 因此当x ∈(0,+∞)时,h (x )>h (0)=0, 即ln(x+1)<x.可得f (x )<x+a (x 2-x )=ax 2+(1-a )x , 当x>1-1a时,ax 2+(1-a )x<0, 此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].。

2015年普通高等学校招生全国统一考试数学理试题精品解析(山东卷)

2015年普通高等学校招生全国统一考试数学理试题精品解析(山东卷)

2015年高考山东卷理数试题解析(精编版)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填 写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改 动,用橡皮擦干净后,再选涂其他答案标号.答案卸载试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应 的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能 使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)【2015高考山东,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则AB =( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【答案】C【解析】因为{}{}243013A x x x x x =-+<=<<, 所以{}{}{}132423AB x x x x x x =<<<<=<<.故选:C.【考点定位】1、一元二次不等式;2、集合的运算.【名师点睛】本题考查集合的概念与运算,利用解一元二次不等式的解法化简集合并求两集合的交集,本题属基础题,要求学生最基本的算运求解能力.(2)【2015高考山东,理2】若复数z 满足1zi i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+ 【答案】A【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.(3)【2015高考山东,理3】要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度. (4)【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( )(A )232a - (B )234a - (C ) 234a (D ) 232a【答案】D【考点定位】平面向量的线性运算与数量积.【名师点睛】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题,要注意结合图形的性质,灵活运用向量的运算解决问题. (5)【2015高考山东,理5】不等式152x x ---<的解集是( )(A )(-,4) (B )(-,1)(C )(1,4) (D )(1,5) 【答案】A【考点定位】含绝对值的不等式的解法.【名师点睛】本题考查了含绝对值的不等式的解法,重点考查学生利用绝对值的意义将含绝对值的不等式转化为不含绝对值的不等式(组)从而求解的能力,本题属中档题.(6)【2015高考山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a = ( )(A )3 (B )2 (C )-2 (D )-3 【答案】B【解析】不等式组020x y x y y -≥⎧⎪+≤⎨⎪≥⎩在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y =+的最大值为4,则最优解可能为1,1x y == 或2,0x y == ,经检验,2,0x y ==是最优解,此时2a = ;1,1x y ==不是最优解.故选B. 【考点定位】简单的线性规划问题.【名师点睛】本题考查了简单的线性规划问题,通过确定参数a 的值,考查学生对线性规划的方法理解的深度以及应用的灵活性,意在考查学生利用线性规划的知识分析解决问题的能力. (7)【2015高考山东,理7】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B )43π (C )53π(D )2π 【答案】C【考点定位】1、空间几何体的结构特征;2、空间几何体的体积.【名师点睛】本题考查了空间几何体的结构特征及空间几何体的体积的计算,重点考查了圆柱、圆锥的结构特征和体积的计算,体现了对学生空间想象能力以及基本运算能力的考查,此题属中档题. (8)【2015高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( ) (附:若随机变量ξ服从正态分布()2,Nμσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=。

2015年高考真题——理科数学(山东卷)含答案

2015年高考真题——理科数学(山东卷)含答案

绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项: 1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案卸载试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1) 已知集合A={X|X ²-4X+3<0},B={X|2<X<4},则A B=(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) (2)若复数Z 满足1Zi i=-,其中i 为虚数为单位,则Z= (A )1-i (B )1+i (C )-1-i (D )-1+i (3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 (4)已知ABCD 的边长为a ,∠ABC=60o ,则.=(A )- (B )- (C ) (D )(5)不等式|X-1|-|X-5|<2的解集是(A)(-,4)(B)(-,1)(C)(1,4)(D)(1,5)(6)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=(A)3 (B)2 (C)-2 (D)-3(7)在梯形ABCD中,∠ABC=,AD//BC,BC=2AD=2AB=2.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)(B)(C)(D)2(8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,3),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N(μ,σ²)),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)(A)4.56% (B)13.59% (C)27.18% (D)31.74%(9)一条光纤从点(-2,-3)射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为()(A)或(B或(C)或(D)或(10)设函数f(x)=,则满足f(f(a))=的a取值范围是()(A)[,1] (B)[0,1](C)[(D)[1,+第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年山东省高考数学试卷(理科)及答案

2015年山东省高考数学试卷(理科)及答案

2015年山东省高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)2.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.(5分)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2 D.a25.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4) D.(1,5)6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣37.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=.12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为.13.(5分)执行如图程序框图,输出的T的值为.14.(5分)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题16.(12分)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD 所成的角(锐角)的大小.18.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.20.(13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.21.(14分)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.2015年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)(2015•山东)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.3.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x 的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.4.(5分)(2015•山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2 D.a2【分析】由已知可求,,根据=()•=代入可求【解答】解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×cos60°=,则=()•==故选:D5.(5分)(2015•山东)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4) D.(1,5)【分析】运用零点分区间,求出零点为1,5,讨论①当x<1,②当1≤x≤5,③当x>5,分别去掉绝对值,解不等式,最后求并集即可.【解答】解:①当x<1,不等式即为﹣x+1+x﹣5<2,即﹣4<2成立,故x<1;②当1≤x≤5,不等式即为x﹣1+x﹣5<2,得x<4,故1≤x<4;③当x>5,x﹣1﹣x+5<2,即4<2不成立,故x∈∅.综上知解集为(﹣∞,4).故选A.6.(5分)(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B7.(5分)(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故选:C.8.(5分)(2015•山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.9.(5分)(2015•山东)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣【分析】点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.10.(5分)(2015•山东)设函数f(x)=,则满足f(f(a))=2f (a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2t ln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选C.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•山东)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.【分析】仔细观察已知条件,找出规律,即可得到结果.【解答】解:因为C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同,可得:当n∈N*时,C+C+C+…+C=4n﹣1;故答案为:4n﹣1.12.(5分)(2015•山东)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为1.【分析】求出正切函数的最大值,即可得到m的范围.【解答】解:“∀x∈[0,],tanx≤m”是真命题,可得tanx≤1,所以,m≥1,实数m的最小值为:1.故答案为:1.13.(5分)(2015•山东)执行如图程序框图,输出的T的值为.【分析】模拟执行程序框图,依次写出每次循环得到的n,T的值,当n=3时不满足条件n<3,退出循环,输出T的值为.【解答】解:模拟执行程序框图,可得n=1,T=1满足条件n<3,T=1+xdx,n=2满足条件n<3,T=1+xdx+x2dx=1+=,n=3不满足条件n<3,退出循环,输出T的值为.故答案为:14.(5分)(2015•山东)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:15.(5分)(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.【分析】求出A的坐标,可得=,利用△OAB的垂心为C 2的焦点,可得×(﹣)=﹣1,由此可求C1的离心率.【解答】解:双曲线C1:﹣=1(a>0,b>0)的渐近线方程为y=±x,与抛物线C2:x2=2py联立,可得x=0或x=±,取A(,),设垂心H(0,),则k AH==,∵△OAB的垂心为C2的焦点,∴×(﹣)=﹣1,∴5a2=4b2,∴5a2=4(c2﹣a2)∴e==.故答案为:.三、解答题16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.17.(12分)(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD 所成的角(锐角)的大小.【分析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明为平面ACFD的一条法向量,设平面FGH的法向量为,根据即可求出法向量,设平面FGH与平面ACFD所成的角为θ,根据cosθ=即可求出平面FGH与平面ACFD所成的角的大小.【解答】解:(Ⅰ)证明:根据已知条件,DF∥AC,EF∥BC,DE∥AB;△DEF∽△ABC,又AB=2DE,∴BC=2EF=2BH,∴四边形EFHB为平行四边形;∴BE∥HF,HF⊂平面FGH,BE⊄平面FGH;∴BE∥平面FGH;同样,因为GH为△ABC中位线,∴GH∥AB;又DE∥AB;∴DE∥GH;∴DE∥平面FGH,DE∩BE=E;∴平面BDE∥平面FGH,BD⊂平面BDE;∴BD∥平面FGH;(Ⅱ)连接HE,则HE∥CF;∵CF⊥平面ABC;∴HE⊥平面ABC,并且HG⊥HC;∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);连接BG,根据已知条件BA=BC,G为AC中点;∴BG⊥AC;又CF⊥平面ABC,BG⊂平面ABC;∴BG⊥CF,AC∩CF=C;∴BG⊥平面ACFD;∴向量为平面ACFD的法向量;设平面FGH的法向量为,则:,取z=1,则:;设平面FGH和平面ACFD所成的锐二面角为θ,则:cosθ=|cos|=;∴平面FGH与平面ACFD所成的角为60°.18.(12分)(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.19.(12分)(2015•山东)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.【分析】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X的取值为:0,﹣1,1分别求出对应的概率,即可求出分布列和期望.【解答】解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为,随机变量X的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即;当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,7,9中选择两个数字和5进行组合,即;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即.则P(X=0)==,P(X=﹣1)==,P(X=1)==,X0﹣11PEX=0×+(﹣1)×+1×=.20.(13分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:+=1(a >b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.【分析】(Ⅰ)运用椭圆的离心率公式和a,b,c的关系,计算即可得到b,进而得到椭圆C的方程;(Ⅱ)求得椭圆E的方程,(i)设P(x0,y0),||=λ,求得Q的坐标,分别代入椭圆C,E的方程,化简整理,即可得到所求值;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,运用韦达定理,三角形的面积公式,将直线y=kx+m代入椭圆C的方程,由判别式大于0,可得t的范围,结合二次函数的最值,又△ABQ的面积为3S,即可得到所求的最大值.【解答】解:(Ⅰ)由题意可知,PF1+PF2=2a=4,可得a=2,又=,a2﹣c2=b2,可得b=1,即有椭圆C的方程为+y2=1;(Ⅱ)由(Ⅰ)知椭圆E的方程为+=1,(i)设P(x0,y0),||=λ,由题意可知,Q(﹣λx0,﹣λy0),由于+y02=1,又+=1,即(+y02)=1,所以λ=2,即||=2;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,①则有x1+x2=﹣,x1x2=,所以|x1﹣x2|=,由直线y=kx+m与y轴交于(0,m),则△AOB的面积为S=|m|•|x1﹣x2|=|m|•=2,设=t,则S=2,将直线y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△>0可得m2<1+4k2,②由①②可得0<t<1,则S=2在(0,1)递增,即有t=1取得最大值,即有S,即m2=1+4k2,取得最大值2,由(i)知,△ABQ的面积为3S,即△ABQ面积的最大值为6.21.(14分)(2015•山东)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.【分析】(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.对a与△分类讨论可得:(1)当a=0时,此时f′(x)>0,即可得出函数的单调性与极值的情况.(2)当a>0时,△=a(9a﹣8).①当时,△≤0,②当a时,△>0,即可得出函数的单调性与极值的情况.(3)当a<0时,△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a时,可得函数f(x)在(0,+∞)上单调性,即可判断出.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调性,即可判断出.(3)当1<a时,由g(0)<0,可得x2>0,利用x∈(0,x2)时函数f(x)单调性,即可判断出;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),研究其单调性,即可判断出【解答】解:(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.(1)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.(2)当a>0时,△=a2﹣8a(1﹣a)=a(9a﹣8).①当时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.②当a时,△>0,设方程2ax2+ax﹣a+1=0的两个实数根分别为x1,x2,x1<x2.∵x1+x2=,∴,.由g(﹣1)>0,可得﹣1<x1.∴当x∈(﹣1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时,△>0.由g(﹣1)=1>0,可得x1<﹣1<x2.∴当x∈(﹣1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时,函数f(x)有一个极值点;当0≤a时,函数f(x)无极值点;当a时,函数f(x)有两个极值点.(II)由(I)可知:(1)当0≤a时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.又f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a时,由g(0)<0,可得x2>0,∴x∈(0,x2)时,函数f(x)单调递减.又f(0)=0,∴x∈(0,x2)时,f(x)<0,不符合题意,舍去;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),h′(x)=>0.∴h(x)在(0,+∞)上单调递增.因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,可得:f(x)<x+a(x2﹣x)=ax2+(1﹣a)x,当x>时,ax2+(1﹣a)x<0,此时f(x)<0,不合题意,舍去.综上所述,a的取值范围为[0,1].。

2015高考数学真题山东理科解析

2015高考数学真题山东理科解析

2015年普通高等学校招生全国统一考试(山东卷)理科数学试题解析1. 解析 由题意{}13A x x =<<,而{}24B x x =<<, 所以{}23AB x x =<<.故选C .2. 解析 因为i 1iz=-,所以()1i i =1+i z =-,所以1i z =-.故选A . 3. 解析 因为sin 4sin 4312y x x π⎡π⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以要得到sin 412y x ⎡π⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图像,只需将sin 4y x =的图像向右平移12π个单位.故选B . 4. 解析 解法一:如图所示,在菱形ABCD 中,60ABC ∠=,各边长均为a ,CD BA =,BD BA BC =+,所以()BD CD BA BC BA =+= 22BA BC BA BA +=+cos BC BA ABC ∠=2223cos 602a a a +=.故选D . 解法二:由题可求得3BD a =,BD 与CD 的夹角为30,所以BD CD =23cos302BD CD a =.故选D .5. 解析 令15y x x =---,则4,526,154,1x y x x x ⎧⎪=-<⎨⎪-<⎩……,所以原不等式同解于如下三个不等式组的解集的并集:①542x ⎧⎨<⎩?;②15262x x <⎧⎨-<⎩…;③142x <⎧⎨-<⎩,解①得:x ∈∅,解②得:14x <…;解③得:1x <.综上所述,原不等式的解集为{}4x x <.故选A .评注 本题也可数形结合,而快捷的方法则是取特殊值验证.6. 解析 作出不等式组020x y x y y -⎧⎪+⎨⎪⎩………所表示的平面区域,如图所示.依题意,z ax y =+的最大值必在()1,1A 或()2,0B 处取得.①当在()1,1A 处取得时,14a +=,则3a =,经检验,不合题意;②当在()2,0B 处取得时,204a +=,则2a =,经检验,符合题意.故选B .7. 解析 由题意,梯形ABCD 绕AD 所在直线旋转一周而形成的几何体是一个底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥所得的组合体,所以V V V =-=圆柱圆锥22112113π⨯⨯-π⨯⨯=5233πππ-=.故选C . 8. 解析 由题意,()()()13666332P P P ξξξ<<=-<<--<<=⎡⎤⎣⎦ ()195.4468.2613.592-=%%%.故选B . 9. 解析 由光的反射原理知,反射光线的反向延长线必过点()2,3-.设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为()32y k x +=-,即230kx y k ---=.由题意,圆心()3,2-到此直线的距离等于圆的半径1,即1=,所以21225120k k ++=,解得43k =-或34k =-.故选D .10. 解析 因为()()()2f a f f a =,所以()1f a ?.①当1a <时,()311f a a =-…,解得213a <…;②当1a …时,()21a f a =…,解得1a ….综上所述,23a …. 故选C .11. 解析 观察各等式两侧的规律,由归纳推理的思想,不难发现:012121C C n n --++212121C C n n n ---++=14n -. 12. 解析 由题可得,在0,4π⎡⎤⎢⎥⎣⎦上,()max tan m x …,而tan x 在0,4π⎡⎤⎢⎥⎣⎦上的最大值为1,所以1m …,即m 的最小值为1.13. 解析 输入1n =,1T =,运行第1次:13n =<,1031d 2T x x =+=⎰,2n =;运行第2次:23n =<,120311d 26T x x =+=⎰,3n =;运行第3次:3n =,输出116T =,结束.14. 解析 分情况讨论:①当1a >时,()xf x a b =+在[]1,0-上递增.又()[]1,0f x ∈-,所以()()1100f f -=-⎧⎪⎨=⎪⎩,无解;②当01a <<时,()xf x a b =+在[]1,0-上递减.又()[]1,0f x ∈-,所以()()1001f f -=⎧⎪⎨=-⎪⎩,解得122a b ⎧=⎪⎨⎪=-⎩,所以32a b +=-.15. 解析 由题意,可设OA 所在直线方程为b y x a =,则OB 所在直线方程为by x a=-,联立22b y xa x py⎧=⎪⎨⎪=⎩,解得2222,pb pb A a a ⎛⎫ ⎪⎝⎭,而抛物线的焦点0,2p F ⎛⎫ ⎪⎝⎭为ABC △的垂心,所以1OB AFk k =-,所以2222120pb pb a pb a a-⎛⎫-=- ⎪⎝⎭-,所以2254b a =,所以222c e a ==22222914a b b a a +=+=,所以32e =. 16. 解析 (1)由题意知()1cos 2sin 2sin 21sin 222222x x x x f x π⎛⎫++ ⎪-⎝⎭=-=-=1sin 22x -.由22222k x k ππ-+π+π?,k ∈Z ,可得44k x k ππ-+π+π剟,k ∈Z ;由22222k x k π3π+π+π?,k ∈Z ,可得44k x k π3π+π+π剟,k ∈Z .所以()f x 的单调递增区间是,44k k ππ⎡⎤-+π+π⎢⎥⎣⎦()k ∈Z ;单调递减区间是44k k π3π⎡⎤+π,+π⎢⎥⎣⎦()k ∈Z .(2)由1sin 022A f A ⎛⎫=-=⎪⎝⎭,得1sin 2A =,由题意知A为锐角,所以cos A =2222cos a b c bc A =+-,可得2212b c bc =+…,即2bc …b c =时等号成立,因此12sin 24ABC S bc A =△…. 所以ABC △. 17. 解析 (1)证法一:连接DG ,CD ,设CD GF O =,连接OH .在三棱台DEF ABC -中,2AB DE =,G 为AC 的中点,可得//DF GC ,DF GC =,所以四边形DFCG 为平行四边形, 则O 为CD 的中点.又H 为BC 的中点, 所以//OH BD .又OH ⊂平面FGH ,BD ⊄平面FGH ,所以//BD 平面FGH .证法二:在三棱台DEF ABC -中, 由2BC EF =,H 为BC 的中点,可得//BH EF ,BH EF =,所以四边形BHFE 为平行四边形,可得//BE HF .在ABC △中,G 为AC 的中点,H 为BC 的中点,所以//GH AB . 又GHHF H =,所以平面//FGH 平面ABED .又因为BD ⊂平面ABED ,所以//BD 平面FGH .(2)解法一:设2AB =,则1CF =.连接GB ,GD .由(1)得四边形DGCF 为平行四边形,所以//DG FC .又因为FC ⊥平面ABC ,所以DG ⊥平面ABC ,所以DG GC ⊥,DG GB ⊥.在ABC △中,由AB BC ⊥,45BAC ∠=,G 是AC 中点,所以AB BC =,GB GC ⊥,因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -,所以()0,0,0G,)B,()C ,()0,0,1D,()F ,22H ⎛⎫⎪ ⎪⎝⎭,故222GH⎛⎫= ⎪ ⎪⎝⎭,()GF =.ADFHOGE C设(),,x y z =n 是平面FGH 的一个法向量,则有00GH GF ⎧=⎪⎨=⎪⎩n n,即0x y z +=⎧⎪+=,取1x =,解得平面FGH的一个法向量(1,=-n .因为GB 是平面ACFD 的一个法向量,()2,0,0GB =,所以21cos ,22GB GB GB ===n n n,所以平面FGH 与平面ACFD 所成(锐角)的大小为60.(解法一图) (解法二图) 解法二:作HM AC ⊥于点M ,作MN GF ⊥于点N ,连接NH . 由FC ⊥平面ABC ,得HM FC ⊥.又FCAC C =,所以HM ⊥平面ACFD ,所以HN GF ⊥.又因为MN GF ⊥,HM MN M =,所以GF ⊥平面MNH ,所以GF NH ⊥,所以MNH ∠即为所求的角.在BGC △中,因为MH GC ⊥,BG GC ⊥,所以//MH BG .又因为H 为BC 的中点,所以122MH BG ==,122GM GC ==.由GNM GCF△∽△,可得MN GM FC GF =,所以6MN =.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM MN ⊥,所以tan MHMNH MN∠==60MNH ∠=,所以平面FGH 与平面ACFD 所成(锐角)的大小为60.18. 解析(1)因为233n n S =+,所以1233a =+,故13a =.当1n >时,11233n n S --=+,此时1112223323n n n n n n a S S ---=-=-=⨯,即13n n a -=,所以13,13,1n n n a n -=⎧=⎨>⎩.AHN M DFG EACB(2)由题可得当1n =时,113b =;当1n >时,()11133log 313n n n n b n ---==-, 所以当1n =时,1113T b ==; 当1n >时,123n T b b b =+++13n b +=+()()121132313n n ---⨯+⨯++-⨯① 所以()()01231132313n n T n --=+⨯+⨯++-⨯②式①-式②:()()01221223333133nnn T n ----=+++++--⨯=11213313n---+--()113n n --⨯=1363623n n +-⨯,所以13631243n nn T +=-⨯.经检验,1n =时也适合. 综上可得13631243n n n T +=-⨯. 19. 解析 (1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意,全部“三位递增数”的个数为39C 84=,随机变量X 的取值为:0,1-,1,因此()3839C 20C 3P X ===,()2439C 11C 14P X =-==,()11244439C C +C 111=C 42P X ==,所以X 的分布列为则()()0113144221E X =⨯+-⨯+⨯=. 20. 解析 (1)由题意知213a =+,所以2a =.又因为c e a ==,222a cb -=,所以1b =,所以椭圆C 的方程为2214x y +=. (2)由(1)知椭圆E 的方程为221164x y +=. ① 设()00,P x y ,OQOPλ=,则有()00,Q x y λλ--.由题可得220014x y +=,且()()22001164x y λλ--+=,即222144x y λ⎛⎫+= ⎪⎝⎭,所以2λ=,即2OQ OP =.② 设()11,A x y ,()22,B x y .将y kx m =+代入椭圆E 的方程,可得()2221484160k xkmx m +++-=,由0∆>,可得22416m k <+,则有122814kmx x k +=-+,212241614m x x k -=+,所以12x x -=. 因为直线y kx m =+与y 轴的交点坐标为()0,m ,所以AOB △的面积1212S m x x =-===. 将y kx m =+代入椭圆C 的方程,可得()222148440k x kmx m +++-=,由0∆…,可得 2214m k +….联立222241614m k m k ⎧<+⎪⎨+⎪⎩…,解得220114m k <+…,设2214m t k =+,即01t <…,因此S ==S …1t =,即2214mk =+时取得最大值由①知,ABQ △面积为3S,所以ABQ △面积的最大值为 21. 解析 (1)由题意知,函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+'=+-=++.令()221g x ax ax a =+-+,()1,x ∈-+∞.① 当0a =时,()10g x =>,此时()0f x '>,函数()f x 在()1,-+∞上单调递增,无极值点;② 当0a >时,()()28198a a a a a ∆=--=-.(ⅰ)当809a <…时,0∆…,()0g x …,()0f x '…,函数()f x 在()1,-+∞上单调递增,无极值点; (ⅱ)当89a >时,0∆>,设方程2210ax ax a +-+=的两根为1x ,2x ()12x x <.又因为1212x x +=-,所以114x <-,214x >-.由()110g -=>,可得1114x -<<-.所以当()11,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()12,x x x ∈时,()0g x <,()0f x '<,函数()f x 单调递减;当()2,x x ∈+∞时,()0g x >,()0f x '>,函数()f x 单调递增.因此函数有两个极值点.③ 当0a <时,0∆>.由()110g -=>,可得11x <-. 当()21,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()2,x x ∈+∞时,()0g x <,()0f x '<,函数()f x 单调递减,所以函数()f x 有一个极值点.综上所述,当0a <时,函数()f x 有一个极值点; 当809a 剟时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (2) 由(1)知,① 当809a剟时,函数()f x 在()0,+∞上单调递增. 因为()00f =,所以()0,x ∈+∞时,()0f x >,符合题意; ② 当819a <…时,由()00g …,得20x …,所以函数()f x 在()0,+∞上单调递增.又()00f =,所以()0,x ∈+∞时,()0f x >,符合题意;② 当1a >时,由()00g <,可得20x >,所以()20,x x ∈时,函数()f x 单调递减.因为()00f =,所以()20,x x ∈时,()0f x <,不合题意; ③ 当0a <时,设()()ln 1h x x x =-+.因为()0,x ∈+∞时,()11011x h x x x '=-=>++,所以()h x 在()0,+∞上单调递增. 因此,当()0,x ∈+∞时,()()00h x h >=,即()ln 1x x +<.可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上所述,a 的取值范围是[]0,1.。

2015年高考真题及答案——理科数学(山东卷)

2015年高考真题及答案——理科数学(山东卷)

绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项: 1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案卸载试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1) 已知集合A={X|X ²-4X+3<0},B={X|2<X<4},则A B=(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) (2)若复数Z 满足1Zi i=-,其中i 为虚数为单位,则Z= (A )1-i (B )1+i (C )-1-i (D )-1+i (3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 (4)已知ABCD 的边长为a ,∠ABC=60o ,则.=(A )-(B )-(C )(D )(5)不等式|X-1|-|X-5|<2的解集是(A )(-,4) (B )(-,1) (C )(1,4)(D )(1,5)(6)已知x,y 满足约束条件,若z=ax+y 的最大值为4,则a=(A )3 (B )2 (C )-2 (D )-3(7)在梯形ABCD 中,∠ABC=,AD//BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A )(B ) (C ) (D )2(8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,3),从中随机取一件,其长度误差落在区间(3,6)内的概率为 (附:若随机变量ξ服从正态分布N (μ,σ²)),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)(A )4.56% (B )13.59% (C )27.18% (D )31.74% (9)一条光纤从点(-2,-3)射出,经y 轴反射后与圆相切,则反射光线所在直线的斜率为() (A )或(B或(C )或 (D )或(10)设函数f(x)=,则满足f(f(a))=的a 取值范围是()(A )[,1] (B )[0,1](C )[ (D )[1,+第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年山东省高考数学试卷(理科)
一、选择题(本大题共10小题,每小题5分,共50分)
2
2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()
=i=i
3.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向左平移向右平移单位
向左平移向右平移单位

﹣的图象向右平移
4.(5分)(2015•山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()﹣a a2a2
由已知可求,,根据=
=
(==
6.(5分)(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则
7.(5分)(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将
B
几何体的体积为:.
8.(5分)(2015•山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ
=(

9.(5分)(2015•山东)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y 2
﹣或﹣或﹣或﹣或﹣
=1
或﹣.
10.(5分)(2015•山东)设函数f(x)=,则满足f(f(a))=2f(a)的a [,[

二、填空题(本大题共5小题,每小题5分,共25分)
11.(5分)(2015•山东)观察下列各式:
C=40;
C+C=41;
C+C+C=42;
C+C+C+C=43;

照此规律,当n∈N*时,
C+C+C+…+C=4n﹣1.
=4
+C=4
+C+C
+C+C+C
C+C+C+C=4
12.(5分)(2015•山东)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为1.
]
13.(5分)(2015•山东)执行如图程序框图,输出的T的值为.
的值为
T=1+xdx
T=1+xdx+x dx=1+,
的值为
故答案为:
14.(5分)(2015•山东)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=﹣.
,解得=0
解得
a+b=
15.(5分)(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,
则C1的离心率为.
的坐标,可得,利用
×)
:﹣±x
±
,,则=
×(﹣
=.
故答案为:.
三、
16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.
,由


(=0
时等号成立,从而可求bcsinA

sin2x﹣
≤2k≤,
≤2k≤,
[k,[k
(=0,
cosA=
1+bc
bcsinA
面积的最大值为
17.(12分)(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.
(Ⅰ)求证:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.
为平面
即可求出法向量,设平面
即可求出平面
为平面
,则:
,则:
|=
18.(12分)(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;
(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.
,当
==
=


=
+



19.(12分)(2015•山东)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.
(Ⅰ)写出所有个位数字是5的“三位递增数”;
(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.
的个数为,
个进行组合,即;

;第二种方案:首先选
==,=,
0 ﹣ 1
×+××=
20.(13分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1
为半径的圆相交,且交点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.
(i)求||的值;
(ii)求△ABQ面积的最大值.
|
=
的方程为+y
的方程为+
||=
,由于
,即(
|
|m||m|
,设S=2
S=2在(,即,
21.(14分)(2015•山东)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;
(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.

当a
a时,可得函数
)当
时,
a时,
=
1
1
a时,函数
a0
a
)当

>。

相关文档
最新文档