第九章_燃料电池_2012
燃料电池原理及应用ppt课件
❖ 降低成本方面也大有希望,特别是燃料电池车已取 得突破性的进展,成本将会大幅度地降低。
.
.
燃料电池不同于一般的“电池”
❖ 既然燃料电池是一种发电装置,那么就有必要说明 它被称为“电池”的原因。
❖ 在介绍燃料电池的结构之前,首先要说明与它关系 较为密切的干电池。
❖ 干电池是由电解质(溶于水时能分解出阳离子和阴离 子并导电的物质)和两个电极组成。锰电池中的锌电 极具有容易释放电子的性质,而二氧化锰电极则具 有容易得到电子的性质。当用一根导线连接央着电 解质的两个电极时,电子在导线中移动(电流),而 离子则在电解质中移动。这就是干电池产生电流的 化学原理。
❖ 由于供给燃料电池的燃料首先要通过脱硫器,所以造成酸雨 的硫化物为零排放。导致哮喘的烟尘发生量也被控制在检测 标准以下。
❖ 另外,噪声和振动也可以控制得极低。发动机等产生噪声和 振动的主要原因是其中有许多高速运转的零件。而燃料电池 没有机械部分,直接通过化学反应发电。需要动力时,也是 单个电机旋转,所以可实现无噪声平稳地运行。
.
.
影响环境的物质排放量极小
❖ 若从燃料电池本身来看,排出的物质的确只有水,但是依靠 现有技术从化石燃料中提取氢的重整过程中多少会有一些其 他物质排出。尽管如此,实际排出量比发动机或锅炉等低得 多。
❖ 通过已实用化的“磷酸型燃料电池”与柴油发动机比较加以 说明。使用燃料电池产生的氢化物相当于汽油发动机或柴油 发动机及燃气轮机的1/10—1/100。
.
高效率、分散型的发电装置
❖ 通过高压线路长距离地把从遥远的大型发电 站发出的电能输送到用户,电能损失和成本 都较高,是一种低效率的方法。
燃料电池 课件
答案:(1)C2H4+16OH--12e- 2CO32-+10H2O (2)C2H6+18OH--14e- 2CO32-+12H2O (3)C3H8+26OH--20e- 3CO32-+17H2O (4)C4H10+34OH--26e- 4CO32-+22H2O (5)CH3OH+8OH--6e- CO32-+6H2O (6)C2H5OH+16OH--12e- 2CO32-+11H2O
燃料电池
预习导引
1.燃料电池:燃料电池是使燃料与氧化剂反应直接产生电流的 一种原电池,所以燃料电池也是化学电源。它与其他电池不同,它不 是把还原剂、氧化剂全部贮存在电池内,而是在工作时,不断地从外 界输入,同时把电极反应产物不断排出电池。因此,燃料电池是名符 其实地把化学能直接转化为电能的“能量转换器”。燃料电池的正极 和负极都用多孔炭和多孔镍、铂、铁等制成。从负极连续通入氢气、 煤气、水煤气、甲烷等气体;从正极连续通入氧气或空气。电解液可 以用碱(如氢氧化钠或氢氧化钾等)把两个电极隔开。燃料电池中的 最终产物和燃烧时的产物相同。
Hale Waihona Puke (4)一般燃料电池的负极反应都是采用间接方法书写,即按上述 要求先正确写出燃料电池的总反应和正极反应,然后在电子守恒的 基础上用总反应减去正极反应即得负极反应。
2.有机物燃料电池
活动与探究 2
将铂丝插入 KOH 溶液作电极,然后向两个电极上分别通入甲烷
燃料电池-课件
严格地讲,燃料电池是电化学能量发生 器,是以化学反应发电;一次电池是电化学 能量生产装置,可一次性将化学能转变成 电能;二次电池是电化学能量的储存装置, 可将化学反应能与电能可逆转换。
16
3.1.4 燃料电池的工作原理
虽然燃料电池的种类很多并 且不同类型的燃料电池的电极反应 各有不同,但都是由阴极﹑阳极﹑ 电解质这几个基本单元构成,其工 作原理是一致的。
4
3.1.1 简介 (1)什么是燃料电池? 简单地说,燃料电池1(Fuel Cell,简称FC)是
一种将存在燃料和氧化剂中的化学能直接转化为 电能的电化学装置。
作为一种新型化学电源,燃料电池是继火电、 水电和核电之后的第四种发电方式.与火力发电 相比,关键的区别在于燃料电池的能量转变过程 是直接方式,如图 1-1 所示.
34
35
燃料电池的效率与其规模无关,因而在保持高燃料效 率时,燃料电池可在其半额定功率下运行。
封闭体系蓄电池与外界没有物质的交换, 比能量不会 随时间变化,但是燃料电池由于不断补充燃料,随着时间延 长,其输出能量也越多。
燃料电池发电厂可设在用户附近,这样可大大减少传 输费用及传输损失。燃料电池的另一个特点是在其发电的 同时可产生热水和蒸汽。其电热输出比约为1.0,而汽轮 机为0.5。这表明在相同的电负荷下,燃料电池的热载为 燃烧发电机的2倍。
20
当反应物消耗完时电池也就不能继续提 供电能了。而燃料电池是一个敞开体系,与 外界不仅有能量的交换,也存在物质的交 换。外界为燃料电池提供反应所需的物质, 并带走反应产物。从这种意义上讲,某些 类型的电池也具有类似燃料电池的特征, 例如锌空电池,空气4由大气提供,不 断更换锌电极可以使电池持续工作。
特
燃料电池简介PPT课件
燃料
高纯H2
H2
H2
H2-CO CH4
H2-CO CH4
氧化剂
高纯O2
空气
空气
空气+CO2
空气
电解质
KOH
H3PO4 质子交换膜 (K,Li)2CO3 Y2O3,ZrO2
阳极催化剂
Pt
阴极催化剂
Pt
Pt
Pt
Pt
Pt
CHENLI
Ni
Ni, ZrO2
NiO
La-SrMnO2
6
燃料电池的分类
按燃料电池所用原始燃料的类型,可大致 分为
CHENLI
3
燃料电池的基负极和夹在正负极中间的电解质板所组 成。工作时向负极供给燃料(氢),向正极供给氧化剂(空气)。氢在负极 分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向 正极。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形 成水。
采用200℃高温下的磷酸作为其电解质
熔融碳酸盐型燃料电池(Molten Carbonate Fuel Cell,MCFC)
采用熔融态碳酸盐作为其电解质
固体氧化物型燃料电池(Solid Oxide Fuel Cell,SOFC)
采用固态电解质
固体聚合物燃料电池(Solid Polymer Fuel Cell,SPFC,又称为质子交换膜 燃料电池,Proton Exchange Membrane Fuel Cell,PEMFC)
氢燃料电池
通用汽车公司已研制成功使用液氢燃料电池产生动 力的零排放概念车“氢动一号”,该车加速快,操 作灵活,从0~100km/h加速仅16秒,最高时速可达 140km/h,续驰里程400km。
燃料电池(课件)
得失电子数目的求算
燃料分子失电子的数目,可根据整体化合价变化情况 进行求算,也可以直接根据分子所含的原子数目进行 计算。1mol的CxHyOz失去电子的数目为4x+y- 2z(碳四氢一氧减二)。我们可以计算,每个C₃H₈失电 子数为4×3+1×8=20,每个C₂H₅OH分子失电子数 为4×2+1×6-2=12。
电解质为固体电解质 (如固体氧化锆—氧 化钇)O2+4e-=2O2-。
燃料电池负极反应式的书写
产物判断规则
一般来说,负极反应物一般为燃料,常常含有碳元素和 氢元素,有时也含有氧元素。在酸性溶液(如硫酸溶液) 下,负极燃料失电子,C元素变为+4价,转化为CO₂; H元素转化为H⁺,氧元素结合H⁺转化为水。在碱性溶 液(如氢氧化钠溶液)下,负极燃料失电子,C元素转化 为碳酸根离子,+1价的氢元素不能在碱性条件下以离 子形态稳定存在,结合OHˉ生成水,氧元素变成氢氧根 离子或者水。
谢谢
燃料电池
基础知识
燃料电池(Fuel cell),是一种不经过燃烧,将燃料化学能经过电化学反 应直接转变为电能的装置。它和其它电池中的氧化还原反应一样,都是自 发的化学反应,不会发出火焰,其化学能可以直接转化为电能,且废物排 放量很低。其中燃料电池电化学反应的最终产物与燃料燃烧的产物相同
基础知识
燃料电池的两极材料都是用多孔碳、多孔镍、铂、钯等兼有催化剂特性 的惰性金属,两电极的材料相同。 燃料电池的电极是由通入气体的成分来决定。通入可燃物的一极为负极 ,可燃物在该电极上发生氧化反应;通入空气或氧气的一极为正极,氧 气在该电极上发生还原反应。
量为1mol,在标准状况下为22.4L,D错误;【答案】C
真题突破
(2019·全国高考真题)利用生物燃料电池原理研究室温下氨 的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意 图如下所示。下列说法错误的是
燃料电池
燃料电池的电极是燃料发生氧化反应与氧化剂发生还原反应的电化学反应场所,其性能的好坏关键在于触媒 的性能、电极的材料与电极的制程等。
电极主要可分为两部分,其一为阳极(Anode),另一为阴极(Cathode),厚度一般为200-500mm;其结 构与一般电池之平板电极不同之处,在于燃料电池的电极为多孔结构,所以设计成多孔结构的主要原因是燃料电 池所使用的燃料及氧化剂大多为气体(例如氧气、氢气等),而气体在电解质中的溶解度并不高,为了提高燃料 电池的实际工作电流密度与降低极化作用,故发展出多孔结构的的电极,以增加参与反应的电极表面积,而此也 是燃料电池当初所以能从理论研究阶段步入实用化阶段的重要关键原因之一。
目前,氢燃料电池的发电热效率可达65%~ 85%,重量能量密度500~ 700Wh/kg,体积能量密度1 000~ 1 200Wh/L,发电效率高于固体氧化物燃料电池 。氢燃料电池在30~ 90℃下运行,启动时间很短,0~ 20s内即可达 到满负荷工作,寿命可以达到10年,无震动,无废气排放,大批量生产成本可降到100~ 200美元/kW 。将氢燃料电 池用于电动车,与燃油汽车比较,除成本外,各方面性能均优于现有的汽车。只要进一步降低成本,预计不久就会有 实用的电动车问世。
燃料电池
电池类型
01 基本介绍
03 技术原理
目录
02 原理和发展 04 组成结构
05 优点
07 几种
目录
06 应用和研究 08 现状
基本信息
燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、 热能发电和原子能发电之后的第四种发电技术。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由 能部分转换成电能,不受卡诺循环效应的限制,因此效率高;另外,燃料电池用燃料和氧气作为原料,同时没有机 械传动部件,故排放出的有害气体极少,使用寿命长。由此可见,从节约能源和保护生态环境的角度来看,燃料 电池是最有发展前途的发电技术。
第09章 氢燃料电池课件
第9章氢燃料电池本章主要内容:1.燃料电池基本原理2.燃料电池热力学和反应动力学3.燃料电池的电荷管理4.燃料电池内的质量传递5.燃料电池的一维数值模型9.1 燃料电池简介燃料电池(Fuel Cell,FC)是一种直接将储存在燃料和氧化剂中的化学能高效地转化为电能的发电装置。
这种装置的最大特点是由于反应过程不涉及到燃烧,因此其能量转换效率不受“卡诺循环”的限制,能量转换效率高达60~80%。
实际使用效率是普通内燃机的2~3倍。
另外,它还具有燃料多样化、排气干净、噪声小、环境污染低、可靠性高及维修性好等优点。
燃料电池被认为是21世纪全新的高效率、节能、环保的发电方式之一。
9.1.1 原理燃料电池是一种能量转换装置。
它按电化学原理,即原电池(如日常所用的锌锰干电池)的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能。
对于一个氧化还原反应,如:[O]+[R]→P式中,[O]代表氧化剂,[R]代表还原剂,P代表反应产物。
原则上可以把上述反应分为两个半反应,一个为氧化剂[O]的还原反应,一个为还原剂[R]的氧化反应,若e代表电子,即有:以最简单的氢氧反应为例,即为如图9-1所示,氢离子在将两个半反应分开的电解质内迁移,电子通过外电路定向流动、作功,并构成总的电的回路。
氧化剂发生还原反应的电极称为阴极,其反应过程称为阴极过程,对外电路按原电池定义为正极。
还原剂或燃料发生氧化反应的电极称为阳极,其反应过程称阳极过程,对外电路定义为负极。
图9-1燃料电池工作原理示意图燃料电池与常规电池不同,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐中。
当它工作(输出电流并做功)时,需要不间断地向电池内输入燃料和氧化剂,并同时排出反应产物。
因此,从工作方式上看,它类似于常规的汽油或柴油发电机。
由于燃料电池工作时要连续不断地向电池内送入燃料和氧化剂,所以燃料电池使用的燃料和氧化剂均为流体(即气体和液体)。
燃料电池简介ppt课件
2023-10-27
目录
• 燃料电池概述 • 燃料电池的特点 • 燃料电池的应用场景 • 燃料电池的发展现状与趋势 • 燃料电池的未来挑战与机遇 • 总结与展望
01
燃料电池概述
燃料电池的定义
燃料电池是一种将化学能直接转化为电能的发电装置。
它由正负极、电解质和外部电路组成,通过反应将燃料和氧化剂中的化学能转化 为电能。
要点一
固定电源
燃料电池可以作为一种可靠的固定电源,为家庭、商业 和工业用途提供电力。它们可以在断电或电力故障时提 供电力,并具有更高的能源效率和更低的维护成本。
要点二
分布式能源
燃料电池也可以作为一种分布式能源,为社区提供电力 。例如,一些城市已经开始使用燃料电池作为其分布式 能源的一部分,以减少对传统电网的依赖。
03
未来,燃料电池将成为一种重 要的能源转换方式,为人类的 生产生活提供更加清洁、高效 的能源解决方案。
05
燃料电池的未来挑战与机遇
技术挑战
01
02
03
材料问题
燃料电池的电解质、电 极和膜等关键材料仍需改 进,以提高其性能和稳定 性。
催化剂问题
在燃料电池中,催化剂 是促进反应的重要元素, 但目前催化剂的性能仍需 提升。
高效环保
总结词
燃料电池是一种高效和环保的能源转换技术。
详细描述
燃料电池通过将氢气和氧气结合产生电能和水蒸气,这个过程不会产生任何有害的排放物。此外,由于其高效 能量转换,燃料电池可以减少能源浪费,提高能源利用效率。
快速充电
总结词
燃料电池可以在短时间内完成充电。
详细描述
与传统的电池技术相比,燃料电池的充电速度更快。这是因为燃料电池的能量密度高,并且可以连续 供电,而不需要长时间的充电过程。
燃料电池
燃料电池的构造
燃 料
阴 极
电解质
阳 极
氧 化 剂
工作原理
首先应使燃料离子化,以便进行电极反应。由于大部分的燃料为有机 化合物且为气体,这就要求电极具有催化剂的特性也就是“电催化” 作用),并且为多孔质材料,以增大燃料气、电解液和电极三者的三相 接触界面,促进电子授受反应的进行。
三相区:发生电子授受反应的气、液、固三相接触界面称为三相区。
燃料电池的基本介绍、 原理及应用
演讲人:
主要内容
产生 发展历史 发展 工作原理 碱性燃料电池
固体氧化物燃料电池
燃料电池 分类 磷酸盐燃料电池 质子交换膜燃料电池 直接甲醇燃料电池 熔融碳酸盐燃料
应用
现状及前景
燃料电池的诞生及发展
燃料电池的定义:燃料电池的名称是由L. Mond和C. Langer两位化
乎不排放SOX与NOX、,也减轻了对大气的污染。当燃料电池以纯
氢为燃料时,它的排放产物只是纯水。
所用燃料广泛: 全球正在以非常快的速度耗尽几十亿年来大自然所储存的能源与 资源。如煤、石油等化石燃料及天然气等,这些都是非再生能源, 用完后是无法再补充的。而核能的安全性又受质疑,太阳能的能 量密度又低,是否能够取代现有的能源使用方式,还是个问号。 对于燃料电池而言,只要是含有氢原子的物质(例如天然气、石油、 煤炭等汽化产物,或是沼气、酒精、甲醇等),都可以作为燃料使 用。因此,燃料电池非常符合能源多元化,可以减缓主流能源的 耗竭。
这种多孔电极称为气体扩散电极或三相电极。
燃料电池与传统电池
相同点:都是将活性物质的化学能转化为电能。 不同点:燃料电池本身不存储活性物质(反应物),而只是一个 催化转换元件。形象的说它是一个能量转换装置。
化学电源工艺学第9章 燃料电池
四、分类(Classification)
1. 2. 所用燃料:直接型,间接型,再生型 工作温度:低温,中温,高温,超高温
3.
电解质类型:
低中温型
碱性燃料电池(AFC) 磷酸燃料電池(PAFC) 质子交换膜燃料电池(PEMFC) [直接甲醇燃料电池 (DMFC)]
高温型
熔融碳酸盐燃料电池(MCFC) 固态氧化物燃料电池(SOFC)p237 Table 9.2
图9-9碱性燃料电池憎水电极
三、 碱性燃料电池的排水和排热
• 静态排水:浓差迁移 ,减压蒸发 • 动态排水:用泵循环氢气或电解质,将水蒸 气带出燃料电池,然后将氢气流或电解质中 的水通过冷凝或蒸发等过程去除,所回收的 氢气或电解质又可以循环回燃料电池使用。
• 排热通常与排水过程结合进行
四、 碱性燃料电池的性能及其影响因素
• 2. 技术要求:高质子电导率、低气体透过率、 良好的热和化学稳定性以及足够的机械强度。
9.6 DMFC
• (-) CH3OH|全氟磺酸固体聚合物电解 质|O2(或空气)(+)
9.7 MCFC
• (-) H2(或含有CO2的重整气,或净化 煤气)| Li2CO3,K2CO3|O2(或空气)(+)
• 自由型电解质(循环式):通常在动力泵的作用下不 断通过燃料电池,带走电化学反应产生的水和热,然 后将水和热从所排出电解质中去除后再循环回燃料电 池。
• 固定型电解质通常固定地保持在多孔的电解液基体材 料中
⒉ 基体材料
• 石棉膜:主要成分为:3MgO2ּSiO2ּ2H2O
• 钛酸钾(K2TiO3)膜 • 由高温合成的钛酸钾耐氧化,且不溶于 KOH溶液中,故寿命可以大大提高,可达 石棉膜的5倍。
燃料电池工作原理、分类及组成-图文精选全文
在五六十年代,阱-空气燃料电池曾作为军用电源大力开发。
这种电池最主要的缺点是阱具有极高毒性、价格昂贵。而 且,这种电池系统需要大量辅助设备,这不仅需要消耗电 池所产生功率中的相当大一部分,而且在电池正常工作前 必须启动这些辅助设备。
因此,尽管在理论上阱氧化产生的能量比大多数其他燃料 要大得多,但阱电池在商业上似乎不大可能有重要用途。
因此与PEMFC相比,在DMFC阳极结构与作燃料时,由于阳极室充满了液 态水,DMFC质子交换膜阳极侧会始终保持在良好的 水饱和状态下。
但与PEMFC不同的是,当DMFC工作时不管是电迁 移还是浓差扩散,水均是由阳极侧迁移至阴极侧, 即对以甲醇水溶液为燃料的DMFC,阴极需排出远 大于电化学反应生成的水。
其应用目标是便携式电源及交通工具用动力电 源。
在燃料电池系统中采用液体燃料是吸引各种商业用 户的有效途径之一。
因为液体燃料储运方便,易处置。曾经考虑用作 AFC系统的液体燃料有阱(N2H4)、液氨、甲醇和 烃类。
由于AFC系统通常以KOH溶液作为电解质,KOH与某 些燃料可能产生的化学反应使得AFC几乎不能使用 液体燃料。
PAFC结构
PAFC系统
AFC
碱性燃料电池
碱性燃料电池的设计基本与质子交换膜燃料电池相似,但其使用的电 解质为水溶液或稳定的氢氧化钾基质。电化学反应:
阳极: 2H 4OH 4H2O 4e 阴极: O2 2H2O 4e 4OH
碱性燃料电池的工作温度大约80℃。因此启动也很快,但其电力密度 却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得笨拙。 不过,它们是燃料电池中生产成本最低的,因此可用于小型的固定发 电装置。
隔膜材料
• PAFC的电解质封装在电池隔膜内。隔膜材料目前采用微孔结构隔膜, 它由SiC和聚四氟乙烯组成,写作SiC-PTFE。新型的SiC-PTFE隔膜 有直径极小的微孔,可兼顾分离效果和电解质传输。
高二化学选择性必修课件燃料电池
PEMFC具有高效率、低噪音、零排放等优点。它可以在较低的温度下快速启动并具有较高的功率密度。 此外,PEMFC对燃料的纯度要求不高可以使用重整气或天然气等作为燃料来源。
05
实验操作演示与注意事项
实验器材准备和检查
01
02
03
04
燃料电池模型
确保模型完整无损,电极、电 解质等各部分正常。
电源和电压表
优缺点分析比较
优点总结
燃料电池具有能量转换效率高、污染小、噪音低、燃料来源广泛等优点。同时,不同类型 的燃料电池还具有各自独特的优点,如固体氧化物燃料电池(SOFC)可在高温下工作, 适用于大型电站等领域。
缺点分析
燃料电池的缺点主要包括成本高、寿命有限、对燃料和氧化剂纯度要求高等。此外,不同 类型的燃料电池还存在一些特定的缺点,如碱性燃料电池(AFC)需要使用贵金属催化剂 等。
提供稳定的电源,并配备合适 的电压表以监测电压变化。
实验气体
如氢气、氧气等,确保气体纯 度高,无杂质。
连接线路和开关
确保连接线路畅通,开关灵活 可靠。
实验步骤详细指导
组装燃料电池模型
按照模型说明书正确组装电池各部分 ,确保电极间距、电解质浓度等参数 符合要求。
气体通入与密封性检查
将实验气体通入电池模型,检查各接 口密封性,确保无气体泄漏。
气体泄漏应急处理
电源安全
如发现气体泄漏,应立即关闭气源,迅速 撤离现场,并报告老师或实验室管理员进 行处置。
确保电源稳定可靠,避免短路或过载等情 况发生。如遇电源故障,应立即切断电源 并寻求专业人员帮助。
06
环保意义及未来发展趋势 预测
环保意义阐述
清洁能源转化
燃料电池能将氢气和氧气转化为电能和水,过程中不产生温室气 体和其他有害物质,实现清洁能源的高效转化。
燃料电池讲解通用课件
04
燃料电池汽车将成为未来交通 出行的重要选择之一,具有零 排放、高效、节能等优点。
燃料电池将成为分布式发电和 储能的重要技术之一,具有环
保、灵活、高效等优点。
燃料电池在航空、航海等领域 也将得到广泛应用,如用于无
人机、船舶等。
燃料电池的技术挑战与瓶颈
01
技术挑战
02
提高燃料电池的能量密度和功率密度需要解决材料科学、制造
燃料电池的特点
高效率、低排放、低噪音、快速充电、可靠运行、方便维护等。
燃料电池的应用领域
域
作为电动汽车、船舶、航空器 的动力源,可实现零排放、高
效率的运行。
电力领域
作为电站、备用电源等,可满 足不同场合的用电需求。
工业领域
作为工业用电源,为生产设备 提供稳定可靠的电力保障。
军事领域
实际效率
由于实际运行中存在各种 损失,如反应不完全、热 能散失等,实际效率通常 略低于理论极限值。
提高效率的方法
优化催化剂设计、降低操 作温度、提高反应气体纯 度等措施可以提高燃料电 池的能量转换效率。
燃料电池的发电特点与优势
可再生能源
高效率
燃料电池使用的氢气和氧气可以由可再生 能源如太阳能、风能等提供,因此燃料电 池是一种可再生能源发电技术。
电池壳是燃料电池的外部结构,它能够保护电池不受外界 环境的影响。
燃料电池的制造设备主要包括搅拌器、涂布机、组装设备 和测试设备等。
燃料电池的使用与维护方法
使用燃料电池时,需要确保其工作在合适的温度和压力下,并定期检查其性能和安 全性。
维护燃料电池时,需要定期更换反应介质和电极材料,并保持电池壳的清洁和完好 。
工作原理:燃料电池由阳极、阴极和电解质组成。在燃料电池中,燃料(如氢气)被送到阳极,氧化 剂(如氧气)被送到阴极。阳极和阴极之间通过电解质隔开。当燃料和氧化剂在阳极和阴极上反应时 ,电子从阳极通过外部电路流向阴极,从而产生电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、三相多孔电极
气体向电极表面输送过程: (1)气体溶解 (2)气体向电极表面附近的传质过程 (3)气体穿越双电层
气、液、固三相的界面处发生,气体反应的消耗以 及产物的疏散都需要扩散来实现。 扩散是气体电极的重要问题。
1. 气体扩散电极的特点
气体扩散电极的理论基础是“薄液膜理论 ”
图2-8 铂电极从4mol/LH2SO4溶液中 提出对氢氧化电流的影响
Chapter 9 Fuel Cell
9.1概述
一、工作原理(work principle)
反应物燃料(如H2)与氧化剂(如O2)发生电 化学反应获得电能的装置
1. Structure and reactions
working principle of fuel cell
2. Contrast with conventional chemical batteries
图9-8双孔结构碱性燃料电池电极
图9-9碱性燃料电池憎水电极
二、电解质和基体
1. 电解质:KOH水溶液:其浓度一般为(6~8) molL-1。
电解质存在方式:自由型和固定型。
自由型电解质(循环式):通常在动力泵的作用下不 断通过燃料电池,带走电化学反应产生的水和热,然 后将水和热从所排出电解质中去除后再循环回燃料电 池。
二、特点(Characteristics)
1.不受卡诺循环限制,能量转换效率高; 2.清洁能源; 3.负载响应速度快; 4.良好的建设、运行和维护特性,应用范围广阔; 5.燃料来源广泛,副产物水和热可回收利用。 不足: 价格昂贵,高温时寿命和稳定性不理想,缺少 完善的燃料供应体系
燃料电池能量效率
(2) (微孔)隔膜电极
电池由两片用催化剂微粒制成的电极与微孔隔膜 层结合而成(如石棉纸膜)。
图2-10 双层电极示意图
图2-11 微孔隔膜电极
(3) 疏水(防水、增水)电极
通常用催化剂粉末与疏水性材料混合后辗压、喷 涂及经过适当的热处理后制成。常用的疏水材料 是聚乙烯、聚四氟乙烯等。
图 2-12 疏水电极示意图
This unit was assembled to fit within the dimensions of military Battery BA-5590 (see Sec. 6.4.2). The fuel cell is rated at approximately 20 Watts continuous and 40 Watts peak. The canister delivers hydrogen for about 110 Watt-hours of operation at a specific energy of about 160 Wh/ kg. The specific energy of the overall system is about 75 Wh/ kg. On a volume basis, the energy density of the fuel cell system is 110 Wh/L.
固态氧化物燃料电池(SOFC) 使用诸如用氧化钇稳定的氧化锆等固态陶瓷电解 质,而不用使用液体电解质。其工作温度位于 800-1000℃之间。 可供工业界用来发电和取暖,同时也具有为车辆 提供备用动力的潜力。
美国加 利福尼 亚的燃 料电池 发电厂
3C Product
Computer, Communication, Consumer Electronic Product (计算机类、通讯类、消费类电子产品)
9.2 燃料电池热力学基础
一、 燃料电池电动势
aH O RT EE ln 1 nF PH PO 2
0
2 2 2
温度系数
S E nF T P
压力系数
E lg p T
二、燃料电池效率
电池理论效率:
T
TS 1 H
2.气体扩散电极中的物质传递
气相中的物质传递 液相中的物质传递 引用极限电流密度估计气相物质传递 气相传质速度比较大 改善气体扩散,改进电极结构:减薄透气 层厚度、加大孔率、减小孔的曲折系数
3.气体扩散电极中电流分布
A). 电化学极化-欧姆极化控制
毛细孔内,电流比较集中在靠近电解液一端,越 往孔的深处,电流分布越小,甚至为零。电流密 度越大,这种电流分布不均匀性越严重。
H
水
阳极
磷酸
阴极
图9-10磷酸燃料电池结构和工作原理
双极板(导电隔板)
作用与功能: 集流作用,电的良导体 阻气功能,分隔氧化剂与还原剂 导热作用,热的良导体 通过流场确保气体均匀分布 有抗腐蚀能力
流场:双极板上要加工各种形状的沟槽,为 燃料提供进出的通道。 点状、平行、蛇形、网状沟槽
9.5 PEMFC
四、分类(Classification)
1. 所用燃料:直接型,间接型,再生型 2. 工作温度:低温,中温,高温,超高温 3. 电解质类型:
低中温型 碱性燃料电池(AFC) 磷酸燃料電池(PAFC) 质子交换膜燃料电池(PEMFC) [直接甲醇燃料电池 (DMFC)] 高温型 熔融碳酸盐燃料电池(MCFC) 固态氧化物燃料电池(SOFC) (p182 Table 10-2)
固定型电解质通常固定地保持在多孔的电解液基体材 料中
2、基体材料
石棉膜:主要成分为:3MgO2ּSiO2ּ2H2O 钛酸钾(K2TiO3)膜 由高温合成的钛酸钾耐氧化,且不溶于KOH溶液 中,故寿命可以大大提高,可达石棉膜的5倍。
三、 碱性燃料电池的排水和排热
静态排水:浓差迁移 ,减压蒸发 动态排水:用泵循环氢气或电解质,将水蒸气带出 燃料电池,然后将氢气流或电解质中的水通过冷凝 或蒸发等过程去除,所回收的氢气或电解质又可以 循环回燃料电池使用。 排热通常与排水过程结合进行
实际:扩散-欧姆控制
改善气体扩散:增加憎水剂的含量,但液孔数量下降,液 相电阻升高。 减小欧姆极化:减小憎水剂的含量,气孔减小,液孔增加 ,则液相电阻下降,气体扩散阻力增加。
电化学极化-欧姆极化控制:电流多分布于靠近 电解液一侧 扩散控制:电流多分布于靠近气体的一侧 实际:电化学反应最强烈之处,介于二者之间
•(-) H2(或含有CO2的重整气)|全氟磺酸固 体聚合物电解质|O2(或空气)(+)
一、质子交换膜
1.作用: 质子交换膜作为电解质为质子传递提供通道; 同时作为隔膜隔离阴阳极反应气体。 质子交换膜的性能在很大程度上决定了整个燃料电 池的性能。 2. 技术要求:高质子电导率、低气体透过率、良好 的热和化学稳定性以及足够的机械强度。
1)OH-浓度降低,影响电化学反应速率; 2)电解质粘度增加,降低了离子的扩散速率和极限电流 3)生成碳酸盐,会沉积在气体扩散电极的气孔中阻碍反 应气体的传输,还会造成氧气在电解质中的溶解度下降
9.4 PAFC
(-) H2(或含有CO2的重整气)|浓H3PO4|O2(或空气)(+)
电流 负载 氢气 氧气
质子交换膜燃料电池(PEMFC) 电解质是一片薄的聚合物膜,例如聚全氟磺酸 (poly[perfluorosulphonic]acid) Nafion膜, 质子能够渗透但不导电。 汽车和家庭应用的理想能源 直接甲醇燃料电池(DMFC) - 甲醇为燃料 - 适合车载和便携式设备
熔融碳酸盐燃料电池 (MCFC) 使用熔融的锂钾碳酸盐或锂钠碳酸盐作为电解质 。当温度加热到650℃时,这种盐就会溶化. 。 较高的和应用 (development and applications)
碱性燃料电池(AFC) 稳定的氢氧化钾电解质 主要为空间任务,包括航天飞机提供动力和饮用水
磷酸燃料电池(PAFC) 使用液体磷酸为电解质,通常位于碳化硅基质中。 可用作公共汽车的动力,已有许多发电能力为0.2 – 20 MW的工作装置被安装在世界各地,为医院, 学校和小型电站提供动力。
降低极化的措施:
① 合理选择电解液; ② 改变催化层的结构 (如增大催化层的孔率和孔径,减 小毛细孔的弯曲程度等); ③ 采用高效催化剂,气体扩散电极的催化层常常做得很 薄,因为电化学反应主要集中在催化层面向电解液一 侧很薄的区域内,厚的催化层对电极性能的改善并没 有贡献。
B). 扩散控制
电流分布集中在毛细孔面向气体的一侧,而在毛细孔面向 电解液一侧的孔壁上几乎没有电化学反应发生。
1)常规电池 -储能装置 2)燃料电池 -能量转换装置
3. contrast with heat engine热机
热力发电机:燃料—蒸汽—汽轮机—发电机—电能 (40%) 燃料—内燃机—发电机—电能
燃料电池:燃料—燃料电池—电能 (40-60%) 电池反应法拉第效率—副反应 实际输出电压与可逆电势差—极化 生成物为液态—相转变
电池实际效率 电压效率
T V C
V
V E
电流效率(法拉第效率)
C
i im
9.3 燃料电电化学动力学基础
一、 燃料电池极化行为
二、 燃料电池反应机理
1、氢的氧化机理 2、甲醇的氧化机理 3、氧的还原机理
1、氢气的阳极氧化
其具体的反应机理可能有如下几种方式: 在酸性溶液中:
燃料电池低噪声
三、FC系统 (Fuel cell systems)
空气或纯氧
天然气 甲 醇 重 油 蒸馏油 生物质 …… 富氢 气体
燃料预处理单 元
燃料电池单元
直流
直交流变换单元
交流
热量管理和控制单元
余 热 图9-3 燃料电池发电系统组成
H2的来源
1.电解水 2.重整:用化石燃料及醇类等含氢化合物通过化学 反应制备H2的过程。 甲醇 天然气、丙烷气、丁烷气 汽油、煤油等石油制品 3.煤炭气化 4.从废气、垃圾、家畜粪便中提取甲烷进行重整