主板供电全解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主板供电全解析
首先来认识一下CPU供电电路的器件,找一片技嘉X48做例子。
上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWM Controller)、MOSFET驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。下面我们分开来看。
(图)PWM控制器(PWM Controller IC)
在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生。
MOSFET驱动芯片(MOSFET Driver)
MOSFET驱动芯片(MOSFET Driver)。在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥 MOS管。很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。
早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。换句话说它相当于两个8脚驱动芯片,每两相电路用一个这样的驱动芯片。
MOSFET,中文名称是场效应管,一般被叫做MOS管。这个黑色方块在供电电路里表现为受到栅极电压控制的开关。每相的上桥和下桥轮番导通,对这一相的输出扼流圈进行充电和放电,就在输出端得到一个稳定的电压。每相电路都要有上桥和下桥,所以每相至少有两颗MOSFET,而上桥和下桥都可以用并联两三颗代
替一颗来提高导通能力,因而每相还可能看到总数为三颗、四颗甚至五颗的MOSFET。
下面这种有三个引脚的小方块是一种常见的MOSFET封装,称为D-PAK(TO-252)封装,也就是俗称的三脚封装。中间那根脚是漏极(Drain),漏极同时连接到MOS管背面的金属底,通过大面积焊盘直接焊在PCB上,因而中间的脚往往剪掉。这种封装可以通过较大的电流,散热能力较好,成本低廉易于采购,但是引线电阻和电感较高,不利于达到500KHz以上的开关频率。
下面这种尺寸小一些的黑方块同样是MOSFET,属于SO-8系列衍生的封装。原本的SO-8封装是塑料封装,内部是较长的引线,从PN结到PCB之间的热阻很大,引线电阻和电感也较高。现有CPU、GPU等芯片需要MOSFET器件在较高电流和较高开关频率下工作,因而各大厂家如瑞萨、英飞凌、飞利浦、安森美、Vishay 等对SO-8封装进行了一系列改进,演化出WPAK、LFPAK、LFPAK-i、 POWERPAK、POWER SO-8等封装形式,通过改变结构、使用铜夹板代替引线、在顶部或底部整合散热片等措施,改善散热并降低寄生参数,使得SO-8的尺寸内能通过类似D- PAK的电流,还能节省空间并获得更好的电气性能。目前主板和显卡供电上常见这种衍生型。在玩家看来,SO-8系的YY度要好于D-PAK,但实际效果要根据电路设计、器件指标和散热情况来判断,而原始的SO-8因为散热性能差,已经不适应大电流应用了。
另外,近日IR公司的DirectFET封装也在一些主板上出现了,同样是性能非常棒的封装,看上去也非常YY,找到实物大图以后会补充进来。输出扼流圈(Choke),也称电感(Inductor)。每相一般配备一颗扼流圈,在它的作用下输出电流连续平滑。少数主板每相使用两颗扼流圈并联,两颗扼流圈等效于一颗。主板常用的输出扼流圈有环形磁粉电感、DIP电感(外形为全封闭或半封闭)或SMD电感等形态,上图为半封闭式的DIP铁粉芯一体型功率电感。
上面是两种铁氧体电感,外观都是封闭式。左边是DIP直插封装,内部为线绕式结构,感值0.80微亨(“R”相当于小数点)。右边是SMD表贴封装,内部匝数少,感值0.12微亨要小很多。
上面是三种环形电感。环形电感的磁路封闭在环状磁芯里,因而磁漏很小,磁芯材料为铁粉(左一)或Super-MSS等其它材料。随着板卡空间限制提高和每相电流的提升,磁路不闭合的磁罐结构封闭铁氧体电感、一体成型式铁粉芯电感以其更高的饱和电流,越来越多地取代了环形电感,但是在电源里因为各种具体应用的特点,环形电感还在被大量使用。
输出滤波的电解电容(Electrolytic Capacitor)。供电的输出部分一般都会有若干颗大电容(Bulk Capacitor)进行滤波,它们属于电解电容。电容的容量和ESR影响到输出电压的平滑程度。电解电容的容量大,但是卷绕式结构带来较高的ESL,致使高频特性不好。
除了铝电解电容外,CPU供电部分常见固态电容。我们常见的固态电容称为铝-聚合物电容,属于新型的电容器。它与一般铝电解电容相比,性能和寿命受温度影响更小,而且高频特性好一些,ESR低,自身发热小。关于固态电容的诸多优点我们就不再细说了。
Hi-c Cap
此外还能见到钽电容和钽-聚合物电容(图:三洋POSCAP系列)等,性能也比一般的铝电解电容优异得多,钽-聚合物电容具有好于一般固态电容的ESR、高频特性和更小的尺寸。网上已经有很详细的介绍。
插座中央这种电容叫做多层陶瓷电容(MLCC),它的单颗容量比电解电容小很多,然而高频特性好很多,ESR很低,在芯片旁边第一时间对负载动态变化做出响应。电解电容高频特性不好,因而主板CPU插座周围和CPU插座内部会有几十颗MLCC用作高频去耦,和大容量的电解电容搭配,提供更好的滤波效果和动态性能。近年来高端板卡开关频率较高的数字供电电路,就利用MLCC高频特性好的特点,直接使用很多颗MLCC进行滤波,但是总容量上不去,只有很高的开关频率才适合用。
输入滤波的大电容也是电解电容,它为多相供电电路提供源源不断的能量,同时防止MOS管开关的纹波和尖峰脉冲对其它电路形成串扰,也可以滤除电源电压中掺杂的纹波干扰。输入滤波电容同样可能用固态电容。分辨输入滤波电容和输出滤波电容的方法是看额定电压,输出电容的额定电压一般是6.3V、2.5V 之类的数值,而输入滤波电容要接在+12V输入上,额定电压往往是16V。
输入电路有时会串联一个扼流圈。这个扼流圈的作用是防止负载电流的纹波成分影响到上一级电路。它的形状可能是线圈绕在棒子上,也可能是绕在环形磁芯上的线圈。