操作系统实验报告理解Linux下进程和线程的创建并发执行过程。

合集下载

操作系统实验04 Linux 多进程编程

操作系统实验04 Linux 多进程编程

《操作系统》实验报告实验序号:实验四实验项目名称:实验04 Linux 多进程编程学号1207022103 姓名陈华荣专业、班网络工程实验地点实1-311 指导教师李桂森实验时间2014.10.26一、实验目的及要求1.通过本实验的学习,使学生掌握Linux多进程编程的基本方法。

2.实验内容:利用Linux多进程实现题目所要求的功能。

3.以学生自主训练为主的开放模式组织教学二、实验设备(环境)及要求PC机三、实验内容与步骤1、编写一个显示“HELLO”的c语言程序,并利用GCC编译,然后运行此程序。

(提示:若没有gcc,需先安装gcc编译程序)指令:Apt-get install updateApt-get install gccCd /home/normaluesrTouch helloworld.cVim helloeorld.c在helloworld里编辑进:#include<stdio.h>Int main(){Printf(“helloworld”);Return 0;}然后用gcc进行编译运行:或者直接2、进程的创建:编制一程序,利用系统调用fork()创建两个子进程。

程序运行时,系统中有一个父进程和两个子进程活动,分别让他们显示“A”、“B”和“C”,分析程序运行结果。

3、用ctrl+alt+F2切换到第二个终端(tty2)并使用另外一个用户登录(可利用第二个实验创建的用户登录),然后使用who命令查看用户登录情况。

用ctrl+alt+F1切换到第二个终端(tty1),修改第二步的程序,在每个进程退出前都加上一个sleep(20)的函数来延缓进程的退出,然后运行此程序,立即切换到tty2,使用ps -a命令查看系统运行的进程,观察程序创建的进程都有哪些?pid是多少?4、进程的管道通信:编制一程序,使用系统调用pipe()建立一管道,两个子进程P1和P2分别向管道各写一句话,父进程则从管道中读取出来并显示在屏幕。

计算机操作系统实验二

计算机操作系统实验二

计算机操作系统实验二一、实验目的本实验旨在通过实际操作,深入理解和掌握计算机操作系统中的进程与线程管理。

通过实验,我们将了解进程的创建、执行、阻塞、唤醒等状态以及线程的创建、同步、通信等操作。

同时,通过实验,我们将学习如何利用进程和线程提高程序的并发性和效率。

二、实验内容1、进程管理a.进程的创建与执行:通过编程语言(如C/C++)编写一个程序,创建一个新的进程并执行。

观察和记录进程的创建、执行过程。

b.进程的阻塞与唤醒:编写一个程序,使一个进程在执行过程中发生阻塞,并观察和记录阻塞状态。

然后,通过其他进程唤醒该进程,并观察和记录唤醒过程。

c.进程的状态转换:根据实际操作,理解和分析进程的状态转换(就绪状态、阻塞状态、执行状态)以及转换的条件和过程。

2、线程管理a.线程的创建与同步:编写一个多线程程序,创建多个线程并观察和记录线程的创建过程。

同时,使用同步机制(如互斥锁或信号量)实现线程间的同步操作。

b.线程的通信:通过消息队列或其他通信机制,实现多个线程间的通信。

观察和记录线程间的通信过程以及通信对程序执行的影响。

c.线程的状态转换:根据实际操作,理解和分析线程的状态转换(新建状态、就绪状态、阻塞状态、终止状态)以及转换的条件和过程。

三、实验步骤1、按照实验内容的要求,编写相应的程序代码。

2、编译并运行程序,观察程序的执行过程。

3、根据程序的输出和实际操作情况,分析和理解进程与线程的状态转换以及进程与线程管理的相关原理。

4、修改程序代码,尝试不同的操作方式,观察程序执行结果的变化,进一步深入理解和掌握进程与线程管理。

5、完成实验报告,总结实验过程和结果,提出问题和建议。

四、实验总结通过本次实验,我们深入了解了计算机操作系统中的进程与线程管理原理和实践操作。

在实验过程中,我们不仅学习了如何利用编程语言实现进程和线程的操作,还通过实际操作观察和分析了进程与线程的状态转换以及进程与线程管理的基本原理。

进程管理实验报告_共10篇 .doc

进程管理实验报告_共10篇 .doc

★进程管理实验报告_共10篇范文一:_进程管理实验报告进程管理实验报告一、进程与线程1.实验目的:1.通过本实验学习Linux中创建进程的方法。

2.学习系统调用fork的使用方法。

3.学习系统调用exec族调用的使用方法。

2.实验准备1.进程的创建创建一个进程的系统调用很简单,只要调用fork函数就可以了。

#includepid_tfork();当一个进程调用了fork以后,系统会创建一个子进程,这个子进程和父进程是不同的地方只有它的进程ID和父进程ID,其他的都一样,就像父进程克隆(clone)自己一样,当然创建两个一模一样的进程是没有意义的,为了区分父进程和子进程,我们必须跟踪fork调用返回值。

当fork调用失败的时候(内存不足或者是用户的最大进程数已到)fork返回—1,否则fork的返回值有重要的作用。

对于父进程fork返回子进程ID,而对于fork 子进程返回0,我们就是根据这个返回值来区分父子进程的。

2.关于fork的说明使用该函数时,该函数被调用一次,但返回两次,两次返回的区别是子进程的返回值是0,而父进程的返回值则是新子进程的进程ID。

将子进程ID返回给父进程的理由是:因为一个进程的子进程可以多于一个,所以没有一个函数可以是一个子进程获得其所有子进程的进程ID。

而fork函数使子进程得到的返回值是0的理由是:一个子进程只会有一个父进程,所以子进程总是可以调用函数getpid获得其父进程的进程ID。

3.系统调用exec族调用的说明父进程创建子进程后,子进程一般要执行不同的程序。

为了调用系统程序,我们可以使用系统调用exec族调用。

Exec族调用有以下五个函数:intexecl(constchar*path,constchar*arg,?);intexeclp(constchar*file,constchar*arg,?);intexecle(constchar*path,constchar*arg,?);intexecv(constchar*path,constchar*argv[]);intexecvp(constchar*file,constchar*argv[]);exec族调用可以执行给定程序。

操作系统第二次实验报告——Linux创建进程及可执行文件结构分析

操作系统第二次实验报告——Linux创建进程及可执行文件结构分析

操作系统第⼆次实验报告——Linux创建进程及可执⾏⽂件结构分析0 个⼈信息张樱姿201821121038计算18121 实验⽬的熟练Linux创建进程fork操作。

2 实验内容在服务器上⽤VIM编写⼀个程序:⼀个进程创建两个⼦进程。

查看进程树查看进程相关信息3 实验报告 3.1编写程序创建两个⼦进程1 #include<sys/types.h>2 #include<stdio.h>3 #include<unistd.h>45int main(){6 pid_t cpid1 = fork(); //创建⼦进程178if(cpid1<0){9 printf("fork cd1 failed\n");10 }11else if(cpid1==0){12 printf("Child1:pid: %d, ppid: %d\n",getpid(),getppid());13 }14else{15 pid_t cpid2 = fork(); //创建⼦进程216if(cpid2<0){17 printf("fork cd2 failed\n");18 }19else if(cpid2==0){20 printf("Child2:pid: %d, ppid: %d\n",getpid(),getppid());21 }22else{23 printf("Parent: pid :%d\n",getpid());24 }25 }26 }编译运⾏后的结果:3.2打印进程树 添加sleep函数以挂起进程,⽅便打印进程树:1 #include<sys/types.h>2 #include<stdio.h>3 #include<unistd.h>45int main(){6 pid_t cpid1 = fork();78if(cpid1<0){9 printf("fork cd1 failed\n");10 }11else if(cpid1==0){12 printf("Child1:pid: %d, ppid: %d\n",getpid(),getppid());13 sleep(30); //挂起30秒14 }15else{16 pid_t cpid2 = fork();17if(cpid2<0){18 printf("fork cd2 failed\n");19 }20else if(cpid2==0){21 printf("Child2:pid: %d, ppid: %d\n",getpid(),getppid());22 sleep(30); //挂起30秒23 }24else{25 printf("Parent: pid :%d\n",getpid());26 sleep(60); //挂起60秒27 }28 }29 }pstree -p pid #打印进程树 3.3 解读进程相关信息 3.3.1 解释执⾏ps -ef后返回结果中每个字段的含义 ps -ef输出格式 :UID PID PPID C STIME TTY TIME CMDUID: User ID,⽤户ID。

操作系统进程管理实验报告

操作系统进程管理实验报告

操作系统进程管理实验报告一、引言在现代计算机科学中,操作系统的进程管理是确保系统高效运行的关键环节。

本实验旨在通过观察和分析操作系统的进程管理行为,深入理解进程的创建、运行和终止过程,以及操作系统如何对进程进行调度和资源分配。

二、实验目标1、理解进程的基本概念、进程状态及转换。

2、掌握进程的创建、终止和调度方法。

3、观察和分析进程在运行过程中的资源消耗和调度行为。

4、分析操作系统对进程的资源分配和调度策略对系统性能的影响。

三、实验环境与工具本实验在Linux操作系统上进行,使用GNU/Linux环境下的工具进行进程的创建、监控和调度。

四、实验步骤与记录1、创建进程:使用shell命令“fork”创建一个新的进程。

记录下父进程和子进程的PID,以及它们在内存中的状态。

2、进程状态观察:使用“ps”命令查看当前运行进程的状态,包括进程的PID、运行时间、CPU使用率等。

同时,使用“top”命令实时监控系统的CPU、内存等资源的使用情况。

3、进程调度:在“crontab”中设置定时任务,观察系统如何根据预设的调度策略分配CPU资源给各个进程。

4、资源分配:通过修改进程的优先级(使用“nice”命令),观察系统如何调整资源分配策略。

5、终止进程:使用“kill”命令终止一个进程,并观察系统如何处理该进程占用的资源。

五、实验结果与分析1、创建进程:通过“fork”系统调用,成功创建了一个新的进程,并获取了父进程和子进程的PID。

在内存中,父进程和子进程的状态分别为“running”和“ready”。

2、进程状态观察:使用“ps”命令可以看到父进程和子进程的状态均为“running”,同时显示了它们的CPU使用率和运行时间等信息。

通过“top”命令,可以实时监控系统的CPU、内存等资源的使用情况,为进一步分析提供了数据支持。

3、进程调度:在“crontab”中设置定时任务后,系统会根据预设的调度策略以及各个进程的运行状态,动态地分配CPU资源给各个进程。

《操作系统》实验二

《操作系统》实验二

《操作系统》实验二一、实验目的本实验旨在加深对操作系统基本概念和原理的理解,通过实际操作,提高对操作系统设计和实现的认知。

通过实验二,我们将重点掌握进程管理、线程调度、内存管理和文件系统的基本原理和实现方法。

二、实验内容1、进程管理a.实现进程创建、撤销、阻塞、唤醒等基本操作。

b.设计一个简单的进程调度算法,如轮转法或优先级调度法。

c.实现进程间的通信机制,如共享内存或消息队列。

2、线程调度a.实现线程的创建、撤销和调度。

b.实现一个简单的线程调度算法,如协同多任务(cooperative multitasking)。

3、内存管理a.设计一个简单的分页内存管理系统。

b.实现内存的分配和回收。

c.实现一个简单的内存保护机制。

4、文件系统a.设计一个简单的文件系统,包括文件的创建、读取、写入和删除。

b.实现文件的存储和检索。

c.实现文件的备份和恢复。

三、实验步骤1、进程管理a.首先,设计一个进程类,包含进程的基本属性(如进程ID、状态、优先级等)和操作方法(如创建、撤销、阻塞、唤醒等)。

b.然后,实现一个进程调度器,根据不同的调度算法对进程进行调度。

可以使用模拟的方法,不需要真实的硬件环境。

c.最后,实现进程间的通信机制,可以通过模拟共享内存或消息队列来实现。

2、线程调度a.首先,设计一个线程类,包含线程的基本属性(如线程ID、状态等)和操作方法(如创建、撤销等)。

b.然后,实现一个线程调度器,根据不同的调度算法对线程进行调度。

同样可以使用模拟的方法。

3、内存管理a.首先,设计一个内存页框类,包含页框的基本属性(如页框号、状态等)和操作方法(如分配、回收等)。

b.然后,实现一个内存管理器,根据不同的内存保护机制对内存进行保护。

可以使用模拟的方法。

4、文件系统a.首先,设计一个文件类,包含文件的基本属性(如文件名、大小等)和操作方法(如创建、读取、写入、删除等)。

b.然后,实现一个文件系统管理器,包括文件的存储和检索功能。

操作系统原理第一次实验

操作系统原理第一次实验
图二
内容三:敲通如下程序,写出运行结果,分析程序功能。
#include <stdio.h>
#include <pthread.h>
void *ptest(void *arg)
{
printf(" This is the new thread!" );
return(NULL);
}
main()
3
{
pthread_t tid;
实验一进程管理、管道通信
一.实验名称:
进程管理、管道通信
二.实验目的:
1、熟悉linux下利用gcc、gdb编译、调试C程序
2、掌握进程的概念,明确进程的含义
3、认识并了解并发执行的实质
4、掌握进程间无名管道的通信
三.实验准备:
1、预习linux下利用gcc编译c程序。
2、参考课件及资料掌握进程的创建过程。
thread!”返回值为空,程序休眠后结束程序。
图三
内容四:敲通管道通信(课件)例题,写出运行结果,分析程序功能
#include<stdlib.h>
#include<stdio.h>
voidmain()
{
int x,fd[2];
char buf[30],s[30]; pipe(fd); while((x=fork())==-1); if(x==0)
3、参考课件及资料掌握进程的并发执行。
4、参考课件及资料掌握进程间无名管道的通信。
四.实验内Байду номын сангаас:
内容一:敲通如下程序,分析运行结果。
#include <stdio.h>
main()

嵌入式linux实验报告

嵌入式linux实验报告

嵌入式操作系统Linux实验报告专业:计算机科学与技术班级:13419011学号:1341901124姓名:武易组员:朱清宇实验一Linux下进程的创建一实验目的1.掌握Linux下进程的创建及退出操作2.了解fork、execl、wait、waitpid及之间的关系二实验内容创建进程,利用fork函数创建子进程,使其调用execl函数,退出进程后调用wait或waitpid清理进程。

三实验过程1.进程的创建许多进程可以并发的运行同一程序,这些进程共享内存中程序正文的单一副本,但每个进程有自己的单独的数据和堆栈区。

一个进程可以在任何时刻可以执行新的程序,并且在它的生命周期中可以运行几个程序;又如,只要用户输入一条命令,shell进程就创建一个新进程。

fork函数用于在进程中创建一个新进程,新进程是子进程。

原型如下:#include<sys/types.h> /* 提供类型pid_t的定义 */#include<unistd.h> /* 提供函数的定义 */pid_t fork(void);使用fork函数得到的子进程是父进程的一个复制品,它从父进程处继承了整个进程的地址空间fork系统调用为父子进程返回不同的值,fork调用的一个奇妙之处就是它仅仅被调用一次,却能够返回两次,它可能有三种不同的返回值:在父进程中,fork返回新创建子进程的进程ID;✓在子进程中,fork返回0;✓如果出现错误,fork返回一个负值;用fork创建子进程后执行的是和父进程相同的程序,子进程可以通过调用exec函数以执行另一个程序。

当进程调用一种exec函数时,该进程的用户空间代码和数据完全被新程序替换,从新程序的启动例程(例如其m a i n函数)开始执行。

调用e x e c并不创建新进程,进程I D并未改变,只是用另一个新程序替换了当前进程的正文、数据、堆和栈段。

e x e c函数原型execl,execlp,execle,execv,execve和execvp2.进程的退出一个进程正常终止有三种方式:由main()函数返回;调用exit()函数;调用_exit()或_Exit()函数。

《操作系统实训(Linux)——习题解答、例题解析、实验指导》-王红-电子教..

《操作系统实训(Linux)——习题解答、例题解析、实验指导》-王红-电子教..

第2章进程管理进程是操作系统中非常重要的概念,进程管理是操作系统最为重要的功能之一。

12.1 基本结构图2进程管理基本知识结构图(见下页)进程管理进程的概念进程的描述进程控制进程的创建与终止进程通信线程程序的顺序执行程序的并发执行进程的概念及特征进程的状态及转换Linux进程的状态Linux进程的PCBLinux进程的系统调用进程的阻塞与唤醒进程的同步与互斥临界资源锁机制信号量进程控制块信号量的应用及同步举例进程的同步与互斥进程控制块的组织方式共享存储器机制消息传递机制管道通信机制信号通信机制线程的概念线程的特点2.2 知识点2.2.1 进程的概念1.程序的顺序执行我们把一个具有独立功能的程序独占处理机,直到最后结束的过程称为程序的顺序执行。

程序顺序执行时的特征为:顺序性、封闭性和可再现性。

4顺序性是指,程序执行时严格按照程序的语句或指令的顺序执行。

封闭性是指,程序执行的结果只有程序本身才可以改变,而与其它外界因素无关。

可再现性是指,只要输入的初始条件相同,则无论何时重复执行该程序,结果都是相同的。

52.程序的并发执行所谓程序的并发性,是指多道程序在同一时间间隔内同时发生。

63.进程的概念及特征(1)进程的概念进程是操作系统中最基本、最重要的概念之一。

进程可以如下定义:进程是程序的一次执行。

进程是可以和别的进程并发执行的计算。

进程就是一个程序在给定活动空间和初始条件下,在一个处理机上的执行过程。

进程是程序在一个数据集合上的运行过程,它是系统进行资源分配和调度的一个独立单位。

进程是动态的,有生命周期的活动。

内核可以创建一个进程,最终将由内核终止该进程使其消亡。

7(2)进程与程序的区别进程和程序是两个完全不同的概念,但又有密切的联系。

8(3)进程的特征进程具有动态性、并发性、独立性、异步性及结构性的特征。

4.进程的状态及转换在操作系统中,进程通常至少有三种基本状态:就绪状态、执行状态和阻塞状态。

910程执行完成或撤消阻塞状态就绪状态进程创建调度用片间时进等待某事件发生如I/O 请求外部事件发生进程的基本状态及转换图完5.Linux进程的状态Linux系统内核在进程控制块中用state成员描述进程当前的状态,并明确定义了5种进程状态。

实验五 进程的并发执行 实验报告

实验五 进程的并发执行 实验报告

实验五进程的并发执行实验目的1、理解并发进程的基本概念和执行特征;2、理解进程的资源继承和并发执行;3、理解进程的资源竞争和互斥实现。

实验原理1.用到的系统调用(1) 创建子进程fork( )pid=fork( )pid==-1:进程创建失败pid==0:子进程创建成功并且执行子进程pid>0:子进程创建成功并且执行父进程(2) 进程终止 exit(int status)父进程在子进程末尾置exit(0)终止子进程,子进程向父进程发软中断信号。

status是子进程返回给父进程的整数,以备查考(3) 进程等待 wait(int status)父进程通过wait(0)等待子进程终止,直到收到子进程发来的进程终止软中断信号后被唤醒。

(4) 进程互斥 lockf(fd,function,size)fd:被锁定的文件标识stdin==0stdout==1function:对锁定对象的控制0:开锁1:加锁size==0:表示从调用Lockf( )后开始锁定实验设备一台电脑以及Linux系统结果预测(1)进程的资源继承A:Before fork…SonBefore fork…FatherB:Before fork…SonFathe(2)进程的并发执行AAACCCBBB……BBAAACCC……(3) 进程的并发控制代码A:daughter1Daughter2……Children1Children2……代码B: son…daughter……….son…children……(4) 进程的多次创建程序A输出6个test;程序B输出14个test。

实验步骤实验结果(1) 进程的资源继承(2) 进程的并发执行(3) 进程的并发控制(4) 进程的多次创建仙女屋实验分析(1)printf某些内容时,操作系统仅仅是把该内容放到了stdout的缓冲队列里,并没有实际显示到屏幕上。

因此fork后,子进程得到这份拷贝。

而当printf中含有\n时,printf将刷新stdout,因此子进程无法得到这份拷贝,fork 也就只输出一次了。

操作系统实验2进程管理报告

操作系统实验2进程管理报告

实验一进程管理一、实验目的:1.加深对进程概念的理解,明确进程和程序的区别;2.进一步认识并发执行的实质;3.分析进程争用资源的现象,学习解决进程互斥的方法;4.了解Linux系统中进程通信的基本原理;二、实验预备内容:1.阅读Linux的sched.h源码文件,加深对进程管理概念的理解;2.阅读Linux的fork()源码文件,分析进程的创建过程;三、实验环境说明:1.此实验采用的是Win7(32bit)下虚拟机VMware-workstation-10.0.4 build-2249910;2.ubuntu 版本3.19.0;3.直接编写c文件在终端用命令行执行;4.虚拟机分配8G内存中的1024M;5.虚拟机名称knLinux;6.ubuntu用户名kn;四、实验内容:1.进程的创建:a)题目要求:编写一段程序,使用系统调用fork() 创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。

试观察记录屏幕上的显示结果,并分析原因。

b)程序设计说明:一个父进程,两个子进程,分别输出显示a,b,c。

c)源代码:d)运行结果:e)分析:由输出结果可知,运行结果不唯一,可以是abc,acb,bca等多种情况。

因为在程序中,并没有三个进程之间的同步措施,所以父进程和子进程的输出顺序是随机的。

在试验次数足够大的情况下,6中顺序都有可能出现:abc, acb, bac, bca, cab, cba。

2.进程的控制:a)修改已经编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。

i.程序设计说明:将第一个程序中输出字符的语句改为输出parent process和childprocess1&2的语句。

ii.源代码:iii.运行结果:iv.分析:发现在结果中,运行结果同第一个程序,但是在一个进程输出语句的中途不会被打断,语句都是完整的。

线程控制实验报告(3篇)

线程控制实验报告(3篇)

第1篇一、实验背景线程是操作系统中实现并发执行的基本单位,它允许程序在同一时间内执行多个任务。

线程控制实验旨在通过实际操作,加深对线程概念、线程同步与互斥机制的理解,并掌握线程的创建、同步与互斥方法。

二、实验目的1. 理解线程的概念及其在操作系统中的作用。

2. 掌握线程的创建、同步与互斥方法。

3. 熟悉线程调度与同步在实际编程中的应用。

4. 通过实验,提高对多线程编程的理解和实际操作能力。

三、实验环境操作系统:Windows 10编程语言:Java开发工具:Eclipse四、实验内容1. 线程的创建与启动实验步骤:(1)创建一个名为ThreadDemo的Java类,继承自Thread类。

(2)在ThreadDemo类中重写run()方法,实现线程要执行的任务。

(3)在main方法中创建ThreadDemo类的实例,并调用start()方法启动线程。

实验代码:```javapublic class ThreadDemo extends Thread {@Overridepublic void run() {// 线程要执行的任务System.out.println("线程运行:" +Thread.currentThread().getName());}public static void main(String[] args) {ThreadDemo threadDemo = new ThreadDemo();threadDemo.start(); // 启动线程}}```2. 线程同步与互斥实验步骤:(1)创建一个名为SyncDemo的Java类,包含一个共享资源和一个同步方法。

(2)在SyncDemo类中,使用synchronized关键字声明同步方法,实现线程间的同步。

(3)在main方法中创建多个ThreadDemo类的实例,并启动线程,观察线程同步与互斥的效果。

实验代码:```javapublic class SyncDemo {private int count = 0;public synchronized void increment() {count++;System.out.println(Thread.currentThread().getName() + ":count=" + count);}public static void main(String[] args) {SyncDemo syncDemo = new SyncDemo();Thread thread1 = new Thread(() -> {for (int i = 0; i < 5; i++) {syncDemo.increment();}});Thread thread2 = new Thread(() -> {for (int i = 0; i < 5; i++) {syncDemo.increment();}});thread1.start();thread2.start();}}```3. 线程通信实验步骤:(1)创建一个名为ThreadCommunication的Java类,包含一个共享资源和一个同步方法。

操作系统上机实验报告

操作系统上机实验报告

操作系统上机实验报告计算机科学与技术学院操作系统上机实验报告实验名称:进程和线程实验⽬的:理解unix/Linux下进程和线程的创建、并发执⾏过程。

实验内容:1.进程的创建2.多线程应⽤实验步骤:⼀、进程的创建下⾯这个C程序展⽰了UNIX系统中⽗进程创建⼦进程及各⾃分开活动的情况。

1、实验指导fork( )创建⼀个新进程。

系统调⽤格式:pid=fork( )参数定义:int fork( )fork( )返回值意义如下:0:在⼦进程中,pid变量保存的fork( )返回值为0,表⽰当前进程是⼦进程。

>0:在⽗进程中,pid变量保存的fork( )返回值为⼦进程的id值(进程唯⼀标识符)。

-1:创建失败。

如果fork( )调⽤成功,它向⽗进程返回⼦进程的PID,并向⼦进程返回0,即fork( )被调⽤了⼀次,但返回了两次。

此时OS在内存中建⽴⼀个新进程,所建的新进程是调⽤fork( )⽗进程(parent process)的副本,称为⼦进程(child process)。

⼦进程继承了⽗进程的许多特性,并具有与⽗进程完全相同的⽤户级上下⽂。

⽗进程与⼦进程并发执⾏。

2、参考程序代码/*process.c*/#include#includemain(int argc,char *argv[]){int pid;/* fork another process */pid = fork();if (pid < 0) { /* error occurred */fprintf(stderr, "Fork Failed");exit(-1);}else if (pid == 0) { /* child process */ execlp( "/bin/ls", "ls",NULL);}else {/* parent process *//* parent will wait for the child to complete */ wait(NULL);printf( "Child Complete" );exit(0);}}3、编译和运⾏$gcc process.c –o processs4、运⾏$./process5、思考(1)系统是怎样创建进程的?⽤fork()系统调⽤创建。

操作系统实验报告

操作系统实验报告

操作系统实验报告一、实验目的本次操作系统实验的主要目的是通过实际操作和观察,深入理解操作系统的工作原理和关键机制,包括进程管理、内存管理、文件系统以及设备管理等方面。

同时,培养我们解决实际问题的能力,提高对操作系统相关知识的综合运用水平。

二、实验环境本次实验使用的操作系统为 Windows 10 和 Linux(Ubuntu 2004 LTS),实验所使用的编程工具包括 Visual Studio Code、gcc 编译器等。

三、实验内容及步骤(一)进程管理实验1、进程创建与终止在 Windows 系统中,使用 C++语言编写程序,通过调用系统 API函数创建新的进程,并观察进程的创建和终止过程。

在 Linux 系统中,使用 C 语言编写程序,通过 fork()系统调用创建子进程,并通过 wait()函数等待子进程的终止。

2、进程调度观察Windows 和Linux 系统中进程的调度策略,包括时间片轮转、优先级调度等。

通过编写程序模拟进程的执行,设置不同的优先级和执行时间,观察系统的调度效果。

(二)内存管理实验1、内存分配与释放在 Windows 系统中,使用 C++语言的 new 和 delete 操作符进行内存的动态分配和释放,并观察内存使用情况。

在 Linux 系统中,使用 C 语言的 malloc()和 free()函数进行内存的分配和释放,通过查看系统的内存使用信息来验证内存管理的效果。

2、虚拟内存管理研究 Windows 和 Linux 系统中的虚拟内存机制,包括页表、地址转换等。

通过编写程序访问虚拟内存地址,观察系统的处理方式和内存映射情况。

(三)文件系统实验1、文件操作在 Windows 和 Linux 系统中,使用编程语言对文件进行创建、读取、写入、删除等操作。

观察文件的属性、权限设置以及文件在磁盘上的存储方式。

2、目录操作实现对目录的创建、删除、遍历等操作。

研究目录结构和文件路径的表示方法。

操作系统实验报告

操作系统实验报告

操作系统实验报告操作系统是计算机科学中十分重要的一门课程,本次实验是关于操作系统的,通过实验,我们可以更深入地了解操作系统的相关知识和操作。

本篇文章将着重介绍本次操作系统实验的内容和实验过程中的收获。

一、实验内容本次实验内容主要涉及操作系统的进程、线程和进程同步三部分。

具体内容包括:1. 进程的创建和管理2. 线程的创建和管理3. 进程同步的实现在实验过程中,我们将分别使用C语言和Linux操作系统实现上述功能。

二、实验过程1. 进程的创建和管理在这一部分实验中,我们要创建多个进程,实现进程的调度和管理功能。

我们采用了Linux系统下的fork()函数,用于创建子进程。

在程序运行时,首先创建一个父进程,然后使用fork()函数创建四个子进程,每个子进程都有自己的进程号(pid),并在屏幕上输出该进程号以示区分。

为了实现进程的调度功能,我们在代码中加入了sleep()函数,用于将进程挂起一段时间,然后再轮流执行其他进程。

2. 线程的创建和管理在这一部分实验中,我们使用了C语言的POSIX线程库pthread.h,实现多线程的功能。

同样地,我们采用了Linux系统下的fork()函数来创建线程。

在代码运行时,我们创建了两个线程,并在屏幕上输出线程号(tid)以示区分。

为了实现线程的调度和管理功能,我们在代码中加入了pthread_join()函数,用于等待线程的执行完成。

3. 进程同步的实现在这一部分实验中,我们使用了Linux系统下的进程同步工具——信号量(semaphore)。

在代码中,我们使用sem_init()函数创建信号量,使用sem_wait()函数阻塞进程或线程,使用sem_post()函数释放进程或线程。

为了更好地理解信号量的工作原理,我们将代码分为生产者和消费者两部分,其中生产者用于向缓冲区添加数据,消费者则用于删除数据。

在这个过程中,我们需要使用信号量控制生产者和消费者的数量,避免出现生产过多或消费过多的情况。

计算机实验报告 操作系统

计算机实验报告 操作系统

计算机实验报告操作系统计算机实验报告:操作系统摘要:本实验报告旨在介绍操作系统的基本概念、功能和作用。

通过实际操作和实验验证,深入探讨了操作系统在计算机系统中的重要性,并对其不同的组成部分进行了详细的分析和解释。

本报告还介绍了操作系统的发展历程以及未来的发展趋势,以及操作系统在实际应用中的一些典型案例。

1. 引言在计算机科学中,操作系统是计算机系统的核心组成部分,它负责管理和协调计算机硬件和软件资源,为用户和应用程序提供一个友好的接口。

操作系统的功能包括进程管理、内存管理、文件系统管理、设备管理等,它的设计和实现直接影响计算机系统的性能和稳定性。

2. 操作系统的基本概念操作系统是一种系统软件,它位于硬件和应用程序之间,起到了一个桥梁的作用。

它提供了一系列的系统调用接口,使得应用程序可以方便地使用计算机的资源。

操作系统的基本概念包括内核、进程、线程、调度算法等。

2.1 内核操作系统的核心部分被称为内核,它是操作系统的最底层,直接与硬件进行交互。

内核负责处理中断、管理进程和内存、进行设备驱动等。

内核的设计和实现需要考虑性能、安全性和可靠性等因素。

2.2 进程进程是计算机中正在运行的程序的实例。

每个进程都有自己的地址空间、程序计数器和一组寄存器。

操作系统负责管理进程的创建、调度和终止,以及进程间的通信和同步。

2.3 线程线程是进程的一部分,一个进程可以有多个线程。

线程共享进程的地址空间和其他资源,但每个线程都有自己的栈和寄存器。

线程的创建和切换比进程更快,可以提高系统的并发性能。

2.4 调度算法操作系统的调度算法决定了进程和线程的执行顺序。

常见的调度算法包括先来先服务、短作业优先、时间片轮转等。

不同的调度算法适用于不同的场景和需求。

3. 操作系统的功能和作用操作系统有多个功能和作用,下面将分别进行介绍。

3.1 进程管理操作系统负责管理进程的创建、调度和终止。

它通过分配和回收资源,保证每个进程都能正常运行,并且不会干扰其他进程。

进程管理_实验报告

进程管理_实验报告

一、实验目的1. 理解Linux操作系统中进程的概念,明确进程与程序的区别。

2. 掌握Linux下进程的创建、调度、同步与通信等基本操作。

3. 学会使用Linux命令查看和管理进程。

二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:gcc、gdb三、实验内容1. 进程创建与调度2. 进程同步与互斥3. 进程通信4. 进程控制四、实验步骤1. 进程创建与调度(1)编写一个C程序,创建一个子进程,并在父进程中打印出子进程的进程标识符(PID)。

```c#include <stdio.h>#include <unistd.h>#include <sys/types.h>int main() {pid_t pid;pid = fork(); // 创建子进程if (pid == 0) { // 子进程printf("子进程的PID:%d\n", getpid());} else if (pid > 0) { // 父进程printf("父进程的PID:%d,子进程的PID:%d\n", getpid(), pid); } else {printf("创建子进程失败\n");}return 0;}```(2)编译并运行程序,观察结果。

2. 进程同步与互斥(1)编写一个C程序,使用互斥锁(mutex)实现两个进程的同步。

```c#include <stdio.h>#include <stdlib.h>#include <pthread.h>pthread_mutex_t mutex;void thread_func(void arg) {pthread_mutex_lock(&mutex); // 获取互斥锁printf("线程 %ld 获取了互斥锁\n", pthread_self());sleep(1);pthread_mutex_unlock(&mutex); // 释放互斥锁return NULL;}int main() {pthread_t thread1, thread2;pthread_mutex_init(&mutex, NULL); // 初始化互斥锁pthread_create(&thread1, NULL, thread_func, (void )1);pthread_create(&thread2, NULL, thread_func, (void )2);pthread_join(thread1, NULL);pthread_join(thread2, NULL);pthread_mutex_destroy(&mutex); // 销毁互斥锁return 0;}```(2)编译并运行程序,观察结果。

操作系统linux版实验报告

操作系统linux版实验报告

操作系统实验报告(Linux版)网络142 潘豹 142999实验一观察Linux进程状态一、实验目得在本实验中学习Linux操作系统得进程状态,并通过编写一些简单代码来观察各种情况下,Linux进程得状态,进一步理解进程得状态及其转换机制。

二、实验环境硬件环境:计算机一台,局域网环境;软件环境:Linux Ubuntu操作系统,gcc编译器。

(四)查瞧“不可中断阻塞”状态(D)创建一个C程序,如uninter_status、c,让其睡眠30s代码:#include<unistd、h〉#include<stdio、h〉int main(){int i=0,j=0,k=0;for(i=0;i<1000000;i++){for(j=0;j<1000000;j++){k++;k--;}}}实验结果:(二)查瞧“暂停”状态(T)运行run_status进程,其进入R状态:代码同上:(三)查瞧“可中断阻塞”状态(S)创建一个C程序,如interruptiblie_status、c,让其睡眠30s编译链接,后台运行该程序(后接&符号),并使用ps命令查瞧运行状态代码:#include〈unistd、h>#include<stdio、h>int main(){sleep(30);return;}实验结果:(四)查瞧“不可中断阻塞”状态(D)创建一个C程序,如uninter_status、c,让其睡眠30s编译链接,后台运行该程序(后接&),并使用ps命令查瞧运行状态代码:#include〈unistd、h>#include〈stdio、h>intmain(){if(vfork()==0){sleep(300);return;}}实验结果:(五)查瞧“僵尸”进程(Z)创建一个C程序,如zombie_status、c,在其中创建一个子进程,并让子进程迅速结束,而父进程陷入阻塞编译链接,后台运行该程序(后接&),并使用ps命令查瞧运行状态(30s内)代码:#include<unistd、h>#incldue<stdio、h>int main(){if(fork()){sleep(300);}}实验结果:实验二观察Linux进程/线程得异步并发执行一、实验目得通过本实验学习如何创建Linux进程及线程,通过实验,观察Linux进程及线程得异步执行。

_进程管理实验报告

_进程管理实验报告

进程管理实验报告一、进程与线程1.实验目的:1.通过本实验学习Linux中创建进程的方法。

2.学习系统调用fork的使用方法。

3.学习系统调用exec族调用的使用方法。

2.实验准备1.进程的创建创建一个进程的系统调用很简单,只要调用fork函数就可以了。

#include<unistd.h>pid_t fork();当一个进程调用了fork以后,系统会创建一个子进程,这个子进程和父进程是不同的地方只有它的进程ID和父进程ID,其他的都一样,就像父进程克隆(clone)自己一样,当然创建两个一模一样的进程是没有意义的,为了区分父进程和子进程,我们必须跟踪fork 调用返回值。

当fork调用失败的时候(内存不足或者是用户的最大进程数已到)fork返回—1,否则fork的返回值有重要的作用。

对于父进程fork返回子进程ID,而对于fork子进程返回0,我们就是根据这个返回值来区分父子进程的。

2.关于fork的说明使用该函数时,该函数被调用一次,但返回两次,两次返回的区别是子进程的返回值是0,而父进程的返回值则是新子进程的进程ID。

将子进程ID返回给父进程的理由是:因为一个进程的子进程可以多于一个,所以没有一个函数可以是一个子进程获得其所有子进程的进程ID。

而fork函数使子进程得到的返回值是0的理由是:一个子进程只会有一个父进程,所以子进程总是可以调用函数getpid获得其父进程的进程ID。

3.系统调用exec族调用的说明父进程创建子进程后,子进程一般要执行不同的程序。

为了调用系统程序,我们可以使用系统调用exec族调用。

Exec族调用有以下五个函数:int execl(const char *path,const char*arg,…);int execlp(const char *file, const char*arg,…);int execle(const char *path,const char*arg,…);int execv(const char *path,const char*argv[]);int execvp(const char *file, const char*argv[]);exec族调用可以执行给定程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作系统上机实验报告
实验名称:
进程和线程
实验目的:
理解unix/Linux下进程和线程的创建、并发执行过程。

实验内容:
1.进程的创建
2.多线程应用
实验步骤及分析:
一、进程的创建
下面这个C程序展示了UNIX系统中父进程创建子进程及各自分开活动的情况。

fork( )
创建一个新进程。

系统调用格式:
pid=fork( )
参数定义:
int fork( )
fork( )返回值意义如下:
0:在子进程中,pid变量保存的fork( )返回值为0,表示当前进程是子进程。

>0:在父进程中,pid变量保存的fork( )返回值为子进程的id值(进程唯一标识符)。

-1:创建失败。

如果fork( )调用成功,它向父进程返回子进程的PID,并向子进程返回0,即fork( )被调用了一次,但返回了两次。

此时OS在内存中建立一个新进程,所建的新进程是调用fork( )父进程(parent process)的副本,称为子进程(child process)。

子进程继承了父进程的许多特性,并具有与父进程完全相同的用户级上下文。

父进程与子进程并发执行。

2、参考程序代码
/*process.c*/
#include <stdio.h>
#include <sys/types.h>
main(int argc,char *argv[])
{
int pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp( "/bin/ls", "ls",NULL);
}
else {/* parent process */
/* parent will wait for the child to complete */ wait(NULL);
printf( "Child Complete" );
exit(0);
}
}
3、编译和运行
$gcc process.c –o processs
4、运行
$./process
编辑如图所示:
运行如图所示:
思考:
(1)系统是怎样创建进程的?
1,申请空白PCB(进程控制块);2,为新进程分派资源;3,初始化PCB;4,将新进程插入就绪队列;
(2)扩展程序,在父进程中输出1到5,在子进程中输出6-10,要求父子
进程并发输出;记录实验结果,并给出简单分析。

实验结果如图:
二、多线程应用
编写unix/Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。

下面是一个最简单的多线程程序 example1.c。

下面的示例中,要使用到两个函数,pthread_create和pthread_join,并声明了一个pthread_t型的变量。

函数pthread_create用来创建一个线程,它的原型为:
extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr,void *(*__start_routine) (void *), void *__arg));
第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。

这里,我们的函数thread不需要参数,所以最后一个参数设为空指针。

第二个参数我们也设为空指针,这样将生成默认属性的线程。

当创建线程成功时,函数返回0,若不为0则说明创建线程失败,常见的错误返回代码为EAGAIN和EINVAL。

前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。

创建线程成功后,新创建的线程则运行参数三和参数四确定的函数,原来的线程则继续运行下一行代码。

函数pthread_join用来等待一个线程的结束。

函数原型为:
extern int pthread_join __P ((pthread_t __th, void **__thread_return));
第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。

这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。

一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。

它的函数原型为:
extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));
唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给 thread_return。

2、参考程序代码
/* thread.c*/
#include <stdio.h>
#include <pthread.h>
void thread(void)
{
int i;
for(i=0;i<3;i++)
printf("This is a pthread.\n");
}
int main(int argc,char *argv[])
{
pthread_t id;
int i,ret;
ret=pthread_create(&id,NULL,(void *) thread,NULL); if(ret!=0){
printf ("Create pthread error!\n");
exit (1);
}
for(i=0;i<3;i++)
printf("This is the main process.\n");
pthread_join(id,NULL);
return (0);
}
3、编译和运行
编译此程序:
gcc example1.c -lpthread -o example1 -lpthread:使用线程库
运行example1,得到如下结果:
This is the main process.
This is a pthread.
This is the main process.
This is the main process.
This is a pthread.
This is a pthread.
再次运行,可能得到如下结果:
This is a pthread.
This is the main process.
This is a pthread.
This is the main process. This is a pthread.
This is the main process. 编辑过程如图所示:
执行如图所示:
实验总结:在实验中很多粗心造成的问题,比如指令输错字母,代码写错字母,没有注意是否需要空格等。

通过课堂的理论知识学习和实验课的上机实验,让我更能理解操作系统的知识。

4、思考
(1)程序运行后,进程thread中有几个线程存在?
3个
(2)为什么前后两次运行结果不一样?
单核的cpu在处理多线程时每次只能执行一跳指令,也就是说无论你的程序有多少个线程,每一时刻执行的也只是一个线程里的代码,cpu会轮流给每个线程分配时间片,时间片分配到哪个线程头上,哪个线程里的代码就执行。

但是多核cpu就不一样了,他可以同时执行多个线程里的代码,这才是真正的“多线程”。

所以你那段程序,在单核的电脑上跑应该是没有问题的,但是在多核cpu的电脑上出现的结果就会有很大的随机性。

5、程序的扩展
试在本程序中再添加一个或多个其他线程,观测运行结果,充分理解多线程的含义。

多添加一个线程,将会多一行This is a pthread.和 This is the main process.
结果如图所示:。

相关文档
最新文档