结构力学习题集及答案
结构力学习题及答案
结构力学习题及答案结构力学习题及答案结构力学是工程学中的重要学科之一,它研究物体在外力作用下的变形和破坏。
在工程实践中,结构力学的应用广泛,涉及到建筑、桥梁、航空航天等领域。
在学习结构力学时,练习解答一些习题是非常重要的,下面我将给大家提供一些常见的结构力学习题及其答案。
题目一:简支梁的弯矩计算已知一根长度为L的简支梁,两端受到均布载荷q。
求梁的中点处的弯矩M。
解答一:根据简支梁的受力分析,可以得出梁的弯矩与距离中点的距离x之间的关系为M=qL/8-x^2/2,其中x为距离中点的距离。
因此,中点处的弯矩M=qL/8。
题目二:悬臂梁的挠度计算已知一根长度为L的悬臂梁,端部受到集中力F作用。
求梁的端部挠度δ。
解答二:根据悬臂梁的受力分析,可以得出梁的端部挠度与力F之间的关系为δ=FL^3/3EI,其中F为作用力,E为梁的杨氏模量,I为梁的截面惯性矩。
因此,梁的端部挠度δ=FL^3/3EI。
题目三:刚度计算已知一根长度为L的梁,截面形状为矩形,宽度为b,高度为h,梁的杨氏模量为E。
求梁的刚度K。
解答三:梁的刚度可以通过计算梁的弯曲刚度和剪切刚度得到。
弯曲刚度Kb可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Kb=E*I/L。
剪切刚度Ks可以通过梁的剪切模量G和梁的截面面积A计算得到,即Ks=G*A/L。
因此,梁的刚度K=Kb+Ks=E*I/L+G*A/L。
题目四:破坏载荷计算已知一根长度为L的梁,截面形状为圆形,直径为d,梁的杨氏模量为E。
求梁的破坏载荷P。
解答四:梁的破坏载荷可以通过计算梁的破坏弯矩和破坏挠度得到。
破坏弯矩Mf可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Mf=π^2*E*I/L^2。
破坏挠度δf可以通过梁的破坏弯矩Mf和梁的刚度K计算得到,即δf=Mf/K。
因此,梁的破坏载荷P=Mf/L=π^2*E*I/L^3。
结构力学是一门综合性较强的学科,掌握结构力学的基本原理和解题方法对于工程师来说非常重要。
《结构力学习题集》(含答案)
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
Aaa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
qlll /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
ll l /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m3m3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI = 常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI = 常数 。
18、求图示刚架中D点的竖向位移。
E I = 常数 。
qll/219、求图示结构A、B两截面的相对转角,EI = 常数 。
l/3l/320、求图示结构A 、B 两点的相对水平位移,E I = 常数。
ll21、求图示结构B 点的竖向位移,EI = 常数 。
《结构力学习题集》(含答案)
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.M =15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p 21y 1y 2**ωω( a )M 17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l ll/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/2219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
(完整版)结构力学_习题集(含答案)
《结构力学》课程习题集一、单项选择题1. 弯矩图必定发生突变的截面是()。
A. 有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。
2. 图示梁中 C 截面的弯矩是()。
12kN . m 4kN 3kN / mC4m 4m 2mA.12kN.m( 下拉 );B.3kN.m( 上拉 );C.8kN.m( 下拉 );D.11kN.m( 下拉 )。
3. 静定结构有变温时,()。
A. 无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。
4. 图示桁架 a 杆的内力是()。
A.2P ;B. -2P;; D. - 3P。
P P Pda3 d5. 图示桁架,各杆EA 为常数,除支座链杆外,零杆数为()。
A. 四根;B. 二根;C.一根;D. 零根。
P PaP Pl = 6a6. 图示梁 A 点的竖向位移为(向下为正)()。
A. Pl 3 /( 24 EI ) ;B. Pl 3 /(16 EI ) ;C. 5Pl3/( 96EI );D. 5Pl3/(48 EI )。
P2 EI EIl/ 2 A l/ 27. 静定结构的内力计算与()。
A.EI 没关;B.EI 相对值相关;C.EI 绝对值相关;D.E 没关, I 相关。
8. 图示桁架,零杆的数量为:()。
A.5 ;;; D.20 。
9. 图示结构的零杆数量为()。
A.5 ;B.6 ;; D.8 。
10. 图示两结构及其受力状态,它们的内力切合()。
A. 弯矩同样,剪力不一样;B.弯矩同样,轴力不一样;C.弯矩不一样,剪力同样;D.弯矩不一样,轴力不一样。
P P P P2P 2PEI EI EI EIh 2EI EIl ll l11. 刚结点在结构发生变形时的主要特点是()。
A. 各杆能够绕结点结心自由转动;B.不变形;C.各杆之间的夹角可随意改变;D.各杆之间的夹角保持不变。
结构力学-习题集(含答案)
《结构力教》课程习题集之阳早格格创做一、单选题1. 直矩图肯定爆收突变的截里是(D).A.有集结力效率的截里;B.剪力为整的截里;C.荷载为整的截里;D.有集结力奇效率的截里.2. 图示梁中C截里的直矩是(D).A.12kN.m(下推);B.3kN.m(上推);C.8kN.m(下推);D.11kN.m(下推).3. 静定结构有变温时,(C).A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力.4. 图示桁架a杆的内力是(D).A.2P;B.-2P;C.3P;D.-3P.5. 图示桁架,各杆EA 为常数,除收座链杆中,整杆数为( A ).A.四根;B.二根;C.一根;D.整根.6. 图示梁A 面的横背位移为(背下为正)( C ).A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl .7. 静定结构的内力估计与( A ).无关;相对付值有关;千万于值有关;无关,I 有关.8. 图示桁架,整杆的数目为:(C ).;;;.9. 图示结构的整杆数目为(C ).;;;.10. 图示二结构及其受力状态,它们的内力切合(B ).A.直矩相共,剪力分歧;B.直矩相共,轴力分歧;C.直矩分歧,剪力相共;D.直矩分歧,轴力分歧.11. 刚刚结面正在结构爆收变形时的主要特性是(D ).A.各杆不妨绕结面结心自由转化;B.稳定形;C.各杆之间的夹角可任性改变;D.各杆之间的夹角脆持稳定.12. 若荷载效率正在静定多跨梁的基础部分上,附属部分上无荷载效率,则(B).A.基础部分战附属部分均有内力;B.基础部分有内力,附属部分不内力;C.基础部分无内力,附属部分有内力;D.不通过估计,无法推断.13. 图示桁架C 杆的内力是(A).A.P;B.-P/2;C.P/2;.14. 用单位荷载法供二截里的相对付转角时,所设单位荷载应是(D).A.一对付大小相等目标好异的集结荷载;B.集结荷载;C.直矩;D.一对付大小相等目标好异的力奇.15. 用图乘法供位移的需要条件之一是:(B).A.单位荷载下的直矩图为背去线;B.结构可分为等截里直杆段;C.所有杆件EI为常数且相共;D.结构必须是静定的.16. 普遍正在画制效率线时,所施加的荷载是一个(B).A.集结力奇;B.指背稳定的单位移动集结力;C.单位力奇;D.集结力.17. 下图中各图乘截止精确的是(D).A. B. C. D.S=y0 S=1y1+2y2 S=y0 S=y018. 图示伸臂梁,B收座左侧截里'B的剪力效率线精确的是(A).A. B.C. D.19. 利用机动法做静定梁效率线的本理是(A).A.真功本理;B.叠加本理;C.仄稳条件;D.变形条件.20. 图示伸臂梁的效率线为哪个量值的效率线(C).A.QA F左;B.QA F;C.QA F右;D.RA F.21. 图示结构,超静定次数为( B ).A.9;B.12;C.15;D.20.22. 力法圆程中的系数δki表示的是基础结构由(B).A.X i爆收的沿X k目标的位移;B.X i=1爆收的沿X k目标的位移;C.X i=1爆收的沿X i目标的位移;D.X k=1爆收的沿X i目标的位移.23. 对付称结构正在对付称荷载效率下,其(A).A.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移对付称;B.直矩图战轴力图对付称,剪力图对付称;变形与位移阻挡付称;C.直矩图战轴力图对付称,剪力图对付称,变形与位移对付称;D.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移阻挡付称.24. 力法的基础已知力是通过变形协做条件决定的,而位移法基础已知量是通过( A )条件决定的.A.仄稳;B.物理;C.图乘法;D.变形协做.25. 图示结构,超静定次数为(A).A.4;B.5;C.6;D.7.26. 图示结构的超静定次数为( C ).A.3;B.4;C.5;D.6.27. 挨启对接三个刚刚片的复铰,相称于去掉( C )个拘束?A.2;B.3;C.4;D.5.28. 图示结构C截里不为整的是( D ).A.横背位移;B.直矩;C.轴力;D.转角.29. 力法的基础已知量是( A ).A.多余已知力;B.收座反力;C.独力的结面线位移;D.角位移.30. 对付于下图所示结构,下列叙述精确的是( D ).A.A面线位移为整;B.AB杆无直矩;C. AB杆无剪力;D. AB杆无轴力.31. 位移法典范圆程中主系数一定( B ).A.等于整;B.大于整;C.小于整;D.大于等于整.32. 正在位移法中,将铰接端的角位移,滑动收撑端的线位移动做基础已知量( B ).A.千万于不可;B.不妨,但是不必;C.一定条件下不妨;D.必须.33. 估计刚刚架时,位移法的基础结构是( C ).A.单跨静定梁的集中体;B.静定刚刚架;C.单跨超静定梁的集中体;D.超静定铰结体.34. 正在位移法基础圆程中,k ij代表( A ).⊿j=1时,由于⊿j=1正在附加拘束i处爆收的拘束力;⊿i=1时,由于⊿i=1正在附加拘束j处爆收的拘束力;C.⊿j=1时,正在附加拘束j处爆收的拘束力;D.⊿i=1时,正在附加拘束i处爆收的拘束力.35. 位移法的基础已知量是( C ).A.收座反力;B.杆端直矩;C.独力的结面位移;D.多余已知力.二、推断题36. 有多余拘束的体系一定是几许稳定体系.(X)37. 形成二元体的链杆不妨是复链杆.(√)38. 每一个无铰启关框皆有3个多余拘束.(√)39. 如果体系的估计自由度等于其本量自由度,那么该体系不多余拘束.(√)40. 若体系的估计自由度小于大概等于整,则该体系一定是几许稳定体系.(X)41. 对付于静定结构,改变资料的本量大概者改变横截里的形状战尺寸,不会改变其内力分散,也不会改变其变形战位移.(X)42. 下图所示二相共的对付称刚刚架,启受的荷载分歧,但是二者的收座反力是相共的.(X)43. 温度改变,收座移动战制制缺面等果素正在静定结构中均引起内力.(X)44. 图示结构火仄杆件的轴力战直矩均为0.(X)45. 正在荷载效率下,刚刚架战梁的位移主假如由于各杆的蜿蜒变形引起.(√)46. 用机动法做得下图(a)所示结构Q左效率线如图(b)所示.b(X)47. 效率线的正背号仅表示本量的内力(大概反力)与假设的目标是可普遍.(√)48. 静定结构指定量值的效率线经常由直线段组成的合线,合面位于铰结面战欲供截里处.(√)49. 荷载的临界位子必定有一集结力效率正在效率线顶面,若有一集结力效率正在效率线顶面也必为一荷载的临界位子.(X)50. 一组集结移动荷载效率下,简收梁的千万于最大直矩不可能出当前跨中截里.(X)51. 力法的基础体系是不唯一的,且不妨是可变体系.(X)52. n次超静定结构,任性去掉n个多余拘束均可动做力法基础结构.(X)53. 图(a)对付称结构可简化为图(b)去估计.(X)54. 下图所示结构的超静定次数是n=8.(X)55. 超静定结构正在荷载效率下的内力估计与各杆刚刚度相对付值有关.(√)56. 超静定结构正在收座移动、温度变更效率下会爆收内力.(√)57. 超静定结构中的杆端力矩只与决于杆端位移.(X)58. 位移法的基础结构有多种采用.(X)59. 位移法是估计超静定结构的基础要领,不克不迭供解静定结构.(X)60. 位移法圆程的物理意思是结面位移的变形协做圆程.(X)三、估计题161. 供下图所示刚刚架的直矩图.62. 用结面法大概截里法供图示桁架各杆的轴力.63. 请用叠加法做下图所示静定梁的M 图.64. 做图示三铰刚刚架的直矩图.65. 做图示刚刚架的直矩图.四、估计题266. 用机动法做下图中E M 、L QB F 、R QB F 的效率线.67. 做图示结构F M 、QF F 的效率线.68. 用机动法做图示结构效率线L Q B F F M ,.69. 用机动法做图示结构R Q B C F M ,的效率线.70. 做图示结构QB F 、E M 、QE F 的效率线.五、估计题371. 用力法做下图所示刚刚架的直矩图.72. 用力法供做下图所示刚刚架的M 图.73. 利用力法估计图示结构,做直矩图.74. 用力法供做下图所示结构的M 图,EI=常数.75. 用力法估计下图所示刚刚架,做M 图.六、几许构制分解 76.77.78.79.80.81.82.83.84.85.七、估计题4(略)……问案一、单选题1. D2. D3. C4. D5. A6. C7. A8. C9. C10. B11. D12. B14. D15. B16. B17. D18. A19. A20. C21. B22. B23. A24. A25. A26. C27. C28. D29. A30. D31. B32. B34. A35. C二、推断题36. Х37.√38.√39.√40. Х41. Х42. Х43. Х44. Х45.Ö46. Х47.√48.√49. Х50. Х51. Х53. Х54. Х55.√56.√57. Х58. Х59. Х60. Х三、估计题161. 解:与完齐为钻研对付象,由0A M =∑,得2220yB xB aF aF qa +-= (1)(2分)与BC 部分为钻研对付象,由0C M =∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联坐解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xA F qa =-(1分)由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分) 则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)直矩图(3分)62. 解:(1)推断整杆(12根).(4分)(2)节面法举止内力估计,截止如图.每个内力3分(3×3=9分)63. 解:(7分)(6分)64. 解:由0B M=∑,626P RA F F =⨯,即2P RA F F =(↓)(2分) 由0y F =∑,2P RB RA F F F ==(↑)(1分)与BE 部分为断绝体0E M =∑,66yB RBF F =即2P yB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分)故63DE DA yA PM M F F ===(内侧受推)(2分) 63CB CE yB P M M F F ===(中侧受推)(2分)(3分)65. 解:(1)供收座反力.对付完齐,由0x F =∑,xA F qa =(←)(2分)0A M =∑,22308RC F a qa qa ⨯--=,178RC F qa =(↑)(2分)(2)供杆端直矩.0AB DC M M ==(2分)2BA BC xA M M F a qa ==⨯=(内侧受推)(2分)2248CB CD a a qa M M q ==⨯⨯=(中侧受推)(2分) (3分)四、估计题266. 解:(1)C M 的效率线(4分)(2)L QB F 的效率线(4分)(2)R QB F 的效率线(4分)67. 解:(1)F M 的效率线(6分)(2)QF F 的效率线(6分)68. 解:F M 效率线(6分)L Q B F 效率线(6分)69. 解:Q Bc F M ,效率线(6分) R Q B c F M ,效率线(6分)70. 解:(1)QB F 的效率线.(4分)E M 的效率线.(4分)QE F 的效率线.(4分)五、估计题371. 解:(1)本结构为一次超静定结构,与基础体系如图(a )所示.(2分)(2)典型圆程11110P X δ+∆=(2分)(3)画制P M 、1M 分别如图(b )、(c )所示.(3分)(a ) (b )(c ) (d )(4)用图乘法供系数战自由项.333111433l l l EI EI δ=+=(2分)232112217()22336P l Pl Pl Pl l Pl EI EI-⨯∆=++⨯=-(2分) (5)解圆程得1178P X =(1分) (6)利用11P M M X M =+画制直矩图如图(d )所示.(2分)72. 解:1)采用基础体系(2分)那是一次超静定刚刚架,可去掉B 端火仄拘束,得到如下图所示的基础体系.2)列力法圆程(2分)3)画制基础体系的Mp 图战单位直矩图,估计系数、自由项(6分,Mp 图战单位直矩图各2分,系数每个1分,截止过失得一半分)解圆程得: 1128ql X =(1分) 做M 图:11PX MM M =+(3分) 73. 解:(2分) (3分)(1分)(2*4=8分)74. 解:与基础体系如图(2分)列力法基础圆程:11110p X δ+∆=(2分)1M 图(1.5分) p M 图(1.5分)3113l EI δ= (2分) 418p ql EI ∆=-(2分)代进力法圆程得 138ql X =(1分) M 图(2分)75. 解:(1)采用基础体系如图(a )所示(2分)(a )(2)列力法圆程.11112210P X X δδ++∆=(1分)21122220P X X δδ++∆=(1分) (3)分别做P M 、1M 战2M 图(1*3=3分) (4)供系数战自由项.2241111315()32428Pqa a qa a a a qa EI EI ∆=-⋅⋅⋅+⋅⋅=-⋅(1分) 422111()224P qa qa a a EI EI ∆=-⋅⋅⋅=-(1分)3111124()233a a a a a a a EI EIδ=⋅⋅⋅+⋅⋅=(1分) 322112()233a a a a EI EI δ=⋅⋅⋅=(分)3122111()22a a a a EI EI δδ==⋅⋅⋅=(分)将上述数据代进基础圆程得137X qa =,2328X qa =(1分)(5)利用叠加法做直矩图如图.(2分)六、几许构制分解76. 图中,刚刚片AB、BE、DC由不共线的三个铰B、D、E对接,组成一个大刚刚片,再战天基前提用不相接也不齐仄止的三链杆贯串,组成不多余拘束的几许稳定体系(5分).77. 如图所示的三个刚刚片通过不正在共背去线上的A、B、C三个铰二二贯串形成无多余拘束的夸大刚刚片,正在此前提上依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)组成无多余拘束的几许稳定体系.(5分)78. 如图所示的三个刚刚片通过共背去线上的A、B、C三个铰二二贯串形成了瞬变体系.(5分)79. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)80. 如图依次裁撤二元体(1,2)、(3,4)、剩下刚刚片Ⅰ战天里刚刚片Ⅱ通过一铰战不过该铰的链杆组成了几许稳定体系,故本量系是无多余拘束的几许稳定体系.(5分)81. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)82. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)83. 如图以铰接三角形ABC为基础刚刚片,并依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)产死夸大刚刚片,其战天里刚刚片通过铰A战节面B 处链杆组成了几许稳定体系,11杆为多余拘束,故本量系为含有1个多余拘束的几许稳定体系.(5分)84. 如图依次裁撤二元体(1,2)、(3,4)、(5,6),刚刚片Ⅱ战天里刚刚片Ⅰ通过相接于共一面的三根链杆组成了瞬变体系.(5分)85. 如图依次裁撤二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)、(11,12)后只剩下天里刚刚片,故本量系是无多余拘束的几许稳定体系.(5分)七、估计题4(略)……。
《结构力学习题集及标准答案》(下)-2a
第九章 结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复力作用下的振动称为自由振动。
3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。
6、图示组合结构,不计杆件的质量,其动力自由度为5个。
7、忽略直杆的轴向变形,图示结构的动力自由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。
二、计算题:10、图示梁自重不计,求自振频率ω。
l l /411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。
l /2l /212、求图示体系的自振频率ω。
l l0.5l 0.513、求图示体系的自振频率ω。
EI = 常数。
ll 0.514、求图示结构的自振频率ω。
l l15、求图示体系的自振频率ω。
EI =常数,杆长均为l 。
16、求图示体系的自振频率ω。
杆长均为l 。
17、求图示结构的自振频率和振型。
l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。
B2m2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。
EIEIW20、图示刚架横梁∞=EI 且重量W 集中于横梁上。
求自振周期T 。
EIEIWEI 221、求图示体系的自振频率ω。
各杆EI = 常数。
a aa22、图示两种支承情况的梁,不计梁的自重。
求图a 与图b 的自振频率之比。
l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求水平自振周期T 。
结构力学习题资料
结构力学复习题一、单选题1、①下图结构的自由度为。
(A)0 (B)-1 (C)-2 (D)1正确答案(B)②下图结构的自由度为。
(A)0 (B)-1 (C)-2 (D)1 正确答案(C)③下图结构的自由度为。
(A)0 (B)-1 (C)-2 (D)1 正确答案(A)④下图结构的自由度为。
(A)0 (B)-1 (C)-2 (D)1 正确答案(D)2、①分析下图所示体系的几何组成为。
(A)几何不变,无多于约束(B)几何可变(C)几何瞬变(D)几何不变,有多于约束正确答案(A)②分析下图所示体系的几何组成为。
(A)几何不变,无多于约束(B)几何可变(C)几何瞬变(D)几何不变,有多于约束正确答案(D)③分析下图所示体系的几何组成为。
(A)几何不变,无多于约束(B)几何可变(C)几何瞬变(D)几何不变,有多于约束正确答案(D)④分析下图所示体系的几何组成为。
(A)几何不变,无多于约束(B)几何可变(C)几何瞬变(D)几何不变,有多于约束正确答案(B)3、①指出下列结构的零杆个数为。
(A)2 (B)3 (C)4 (D)5正确答案(C)②指出下列结构的零杆个数为。
(A)9 (B)10 (C)11 (D)12 正确答案(C)③指出下列桁架的类型。
(A)简单桁架(B)联合桁架(C)组合桁架(D)复杂桁架正确答案(B)④指出下列桁架的类型。
(A)简单桁架(B)联合桁架(C)组合桁架(D)复杂桁架正确答案(A)⑤指出下列结构的单铰个数为。
(A)13 (B)14 (C)15 (D)16正确答案(D)4、①指出下列结构的超静定次数为。
(A)2 (B)3 (C)4 (D)5 正确答案(B)②指出下列结构的超静定次数为。
(A)2 (B)3 (C)4 (D)5 正确答案(C)③指出下列结构的超静定次数为。
(A)2 (B)3 (C)4 (D)5 正确答案(A)④指出下列结构的超静定次数为。
(A)2 (B)3 (C)4 (D)5 正确答案(B)⑤指出下列结构的超静定次数为。
《结构力学习题集》平面体系的几何组成分析附答案
平面体系的几何组成分析一、判断题:1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。
2、图中链杆1和2的交点O 可视为虚铰。
O二、分析题:对下列平面体系进行几何组成分析。
3、 4、CDBCDB5、 6、A CDBEABCDE7、 8、ABCD GE FA BCDEFGHK11、 12、1234513、 14、15、 16、17、 18、1245321、 22、123456781234523、 24、12345625、 26、27、 28、31、32、33、BA CFDE三、在下列体系中添加支承链杆,使之成为无多余约束的几何不变体系。
34、35、平面体系的几何组成分析(参考答案)1、(O)2、(X)3、7、9、10、11、13、14、17、18、19、20、22、23、25、27、28、30、31、32、33、均是无多余约束的几何不变体系。
4、8、12、29、均是几何瞬变体系。
5、15、均是几何可变体系。
6、21、24、26、均是有一个多余约束的几何不变体系。
16、是有两个多余约束的几何不变体系。
结构力学习题集(下)_结构的动力计算习题与答案
结构⼒学习题集(下)_结构的动⼒计算习题与答案第九章结构的动⼒计算⼀、判断题:1、结构计算中,⼤⼩、⽅向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复⼒作⽤下的振动称为⾃由振动。
3、单⾃由度体系其它参数不变,只有刚度EI 增⼤到原来的2倍,则周期⽐原来的周期减⼩1/2。
4、结构在动⼒荷载作⽤下,其动内⼒与动位移仅与动⼒荷载的变化规律有关。
5、图⽰刚架不计分布质量和直杆轴向变形,图a 刚架的振动⾃由度为2,图b 刚架的振动⾃由度也为2。
6、图⽰组合结构,不计杆件的质量,其动⼒⾃由度为5个。
7、忽略直杆的轴向变形,图⽰结构的动⼒⾃由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同⼀体系在不考虑阻尼和考虑阻尼时的⾃振频率,ω与ωD 的关系为ωω=D 。
⼆、计算题:10、图⽰梁⾃重不计,求⾃振频率ω。
l l /411、图⽰梁⾃重不计,杆件⽆弯曲变形,弹性⽀座刚度为k ,求⾃振频率ω。
12、求图⽰体系的⾃振频率ω。
l l0.5l 0.513、求图⽰体系的⾃振频率ω。
EI = 常数。
ll 0.514、求图⽰结构的⾃振频率ω。
l l15、求图⽰体系的⾃振频率ω。
EI =常数,杆长均为l 。
16、求图⽰体系的⾃振频率ω。
杆长均为l 。
17、求图⽰结构的⾃振频率和振型。
l /218、图⽰梁⾃重不计,W EI ==??2002104kN kN m 2,,求⾃振圆频率ω。
B2m2m19、图⽰排架重量W 集中于横梁上,横梁EA =∞,求⾃振周期ω。
EIEIW20、图⽰刚架横梁∞=EI 且重量W 集中于横梁上。
求⾃振周期T 。
EIEIWEI 221、求图⽰体系的⾃振频率ω。
各杆EI = 常数。
a aa22、图⽰两种⽀承情况的梁,不计梁的⾃重。
求图a 与图b的⾃振频率之⽐。
l /2/2(a)l /2l /2(b)23、图⽰桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求⽔平⾃振周期T 。
结构力学习题及答案
构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。
假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。
题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。
〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。
〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。
习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。
(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。
结构力学-习题集(含答案)
《结构力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《结构力学》(编号为06014)共有单选题,判断题,计算题1,计算题2,计算题3,计算题4,几何构造分析等多种试题类型,其中,本习题集中有[计算题4]等试题类型未进入。
一、单选题1.弯矩图肯定发生突变的截面是()。
A.有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。
2.图示梁中C截面的弯矩是()。
4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。
3.静定结构有变温时,()。
A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。
4.图示桁架a杆的内力是()。
A.2P;B.-2P;C.3P;D.-3P。
5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为()。
A.四根;B.二根;C.一根;D.零根。
Pal = a P PP66. 图示梁A 点的竖向位移为(向下为正)( )。
A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl 。
PEI EI A l/l/2227. 静定结构的内力计算与( )。
A.EI 无关;B.EI 相对值有关;C.EI 绝对值有关;D.E 无关,I 有关。
8. 图示桁架,零杆的数目为:( )。
A.5;B.10;C.15;D.20。
9. 图示结构的零杆数目为( )。
A.5;B.6;C.7;D.8。
10. 图示两结构及其受力状态,它们的内力符合( )。
A.弯矩相同,剪力不同;B.弯矩相同,轴力不同;C.弯矩不同,剪力相同;D.弯矩不同,轴力不同。
PPll11. 刚结点在结构发生变形时的主要特征是( )。
A.各杆可以绕结点结心自由转动;B.不变形;C.各杆之间的夹角可任意改变;D.各杆之间的夹角保持不变。
结力复习题及答案
结力复习题及答案一、选择题1. 根据胡克定律,弹簧的弹性系数与弹簧的形变成正比,与弹簧的原长成反比。
()A. 正确B. 错误答案:B2. 静定结构和超静定结构的主要区别在于()。
A. 材料的强度B. 连接的刚度C. 受力的复杂性D. 内力的分布情况答案:D二、填空题1. 在结构力学中,______是指在给定外力作用下,结构内部各点的应力和应变状态。
答案:应力分析2. 梁的挠度计算中,通常采用______法或______法。
答案:弯矩分配;弯矩平衡三、简答题1. 简述结构力学中,静定结构和超静定结构的定义及其区别。
答案:静定结构是指在给定的外力作用下,结构的内力和位移可以通过静力平衡方程唯一确定的结构。
超静定结构则是指在给定的外力作用下,结构的内力和位移不能仅通过静力平衡方程唯一确定,需要额外的几何约束条件。
两者的主要区别在于超静定结构比静定结构多出了一些内部的几何约束,这些约束使得超静定结构在受力时能够产生更多的内力分布情况。
2. 描述梁的弯曲正应力和剪切应力的计算公式。
答案:梁的弯曲正应力计算公式为:\[ \sigma = \frac{My}{I} \]其中,\( \sigma \) 表示正应力,\( M \) 表示弯矩,\( y \) 表示距离中性轴的距离,\( I \) 表示截面惯性矩。
梁的剪切应力计算公式为:\[ \tau = \frac{VQ}{It} \]其中,\( \tau \) 表示剪切应力,\( V \) 表示剪力,\( Q \) 表示剪力臂,\( I \) 表示截面惯性矩,\( t \) 表示截面厚度。
四、计算题1. 给定一个简支梁,其长度为L,均布荷载为w,求梁的最大弯矩和最大挠度。
答案:最大弯矩发生在梁的中点,其值为:\[ M_{\text{max}} = \frac{wL^2}{8} \]最大挠度也发生在梁的中点,其值为:\[ \delta_{\text{max}} = \frac{5wL^4}{384EI} \]其中,\( E \) 表示材料的弹性模量,\( I \) 表示截面惯性矩。
结构力学习题集答案
结构力学习题集答案结构力学是土木工程和机械工程中的一个重要分支,它主要研究结构在外力作用下的内力、变形和稳定性问题。
结构力学习题集通常包含了各种类型的题目,旨在帮助学生更好地理解和掌握结构力学的基本概念和计算方法。
以下是一些结构力学习题集的典型答案示例:# 结构力学习题集答案题目1:单跨梁的弯矩和剪力计算解答:对于一个简单的单跨梁,当受到集中荷载或均布荷载时,我们可以通过静力平衡方程来计算其弯矩和剪力。
例如,对于一个跨度为\( L \)的单跨简支梁,在中点施加一个集中荷载\( P \),其最大弯矩为\( M_{max} = \frac{PL}{4} \),剪力为\( V = -P \)(负号表示方向)。
题目2:桁架结构的内力分析解答:桁架结构的内力分析通常采用节点法或截面法。
以节点法为例,首先列出所有节点的平衡方程,然后解这些方程来求得节点处的反力。
接着,利用这些反力计算各杆件的内力。
题目3:框架结构的侧移和弯矩图解答:对于框架结构,侧移可以通过虚功原理或能量方法来计算。
弯矩图的绘制则需要考虑荷载作用下各层的弯矩分布。
例如,对于一个多层框架结构,在顶层施加一个均布荷载,其侧移和弯矩图会随着层数的增加而逐渐减小。
题目4:稳定性分析解答:稳定性分析主要关注结构在临界荷载作用下的失稳行为。
对于一个细长的柱体,其临界荷载可以通过欧拉公式\( P_{cr} =\frac{\pi^2EI}{(KL)^2} \)来计算,其中\( E \)是材料的弹性模量,\( I \)是截面惯性矩,\( K \)是有效长度系数,\( L \)是柱体的长度。
结论结构力学习题集的答案需要根据具体的题目条件和要求来确定。
掌握基本的力学原理和计算方法是解决这些问题的关键。
通过不断的练习和分析,可以提高解决实际工程问题的能力。
请注意,上述内容仅为示例,实际的习题集答案应根据具体的题目来编写。
如果需要针对特定题目的详细解答,请提供具体的题目信息。
结构与力学试题及答案
结构与力学试题及答案一、选择题(每题2分,共20分)1. 以下关于结构力学的描述,哪一项是不正确的?A. 结构力学是研究结构在外力作用下的应力、应变和位移的学科B. 结构力学只研究静力平衡问题C. 结构力学是土木工程、机械工程等工程领域的重要基础学科D. 结构力学的研究对象包括梁、板、柱等构件答案:B2. 简支梁在均布荷载作用下的最大弯矩发生在:A. 梁的中点B. 梁的支点C. 梁的四分之一点D. 梁的任意点答案:B3. 在结构力学中,下列哪一项不是结构分析的基本原则?A. 力的平衡B. 力的可传递性C. 力的可加性D. 力的不可分解性答案:D4. 梁的剪力图和弯矩图的零点分别位于:A. 梁的支点B. 梁的中点C. 梁的四分之一点D. 梁的任意点答案:A5. 根据能量原理,下列哪一项不是结构力学分析中常用的方法?A. 虚功原理B. 虚位移原理C. 虚力原理D. 虚应力原理答案:C6. 在结构力学中,下列哪一项不是静定结构的特点?A. 内部无多余约束B. 内力可以通过静力平衡方程求解C. 内部有多余约束D. 变形可以通过几何方程求解答案:C7. 受弯构件的应力分布规律是:A. 线性分布B. 抛物线分布C. 正弦波分布D. 指数分布答案:B8. 梁的挠度计算公式中,下列哪一项是不需要的?A. 梁的截面惯性矩B. 梁的长度C. 梁的截面面积D. 梁的弹性模量答案:B9. 在结构力学中,下列哪一项不是结构稳定性分析的内容?A. 屈曲分析B. 振动分析C. 疲劳分析D. 极限承载力分析答案:C10. 根据材料力学,下列哪一项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D二、填空题(每题2分,共20分)1. 梁的弯矩M可以表示为:\[ M = \frac{EI}{\rho^2} \],其中E 是材料的弹性模量,I是截面的惯性矩,\(\rho\)是梁的________。
答案:曲率半径2. 根据结构力学,梁的剪力V和弯矩M之间的关系可以用微分方程表示为:\[ \frac{dV}{dx} = -M \],其中x是梁的________。
大学结构力学知识考试练习题及答案151
大学结构力学知识考试练习题及答案11.[单选题]试对图示结构进行几何组成分析 。
class="fr-fic fr-dii cursor-hover">A)几何不变无多余约束B)几何可变C)几何不变有多余约束答案:A解析:2.[单选题]图a所示结构,EI=常数,取图b所示体系为力法基本体系,则下述结果中错误的是class="fr-fic fr-dii cursor-hover">A)B)class="fr-fic fr-dii">C)class="fr-fic fr-dii">答案:C解析:3.[单选题]图示结构AB杆杆端弯矩MBA(设左侧受拉为正)为class="fr-fic fr-dii cursor-hover">A)PaB)-3PaC)3PaD)2Pa答案:C解析:4.[单选题]叠加原理用于求解静定结构时,需要满足的条件是( )。
A)应变是微小的B)位移微小且材料是线弹性的C)位移是微小的D)材料是理想弹性的答案:B解析:5.[单选题]下列说法正确的是( )。
A)单位荷载法计算位移的单位荷载根据计算方便进行假设B)虚功原理包括平衡条件和几何条件C)虚功中的位移状态是不能进行虚设的D)利用一个假定的虚拟单位力状态可能求出多个位移答案:B解析:6.[单选题]结构力学的研究对象是A)单根杆件B)杆件结构C)板壳结构D)实体结构答案:B解析:7.[单选题]设同跨度的三铰拱和曲梁,在相同荷载作用下,同一位置截面的弯矩Mk1( )和Mk2( )之间的关系为( )。
A)Mk1>Mk2B)Mk1=Mk2C)Mk1<Mk2D)无法判别答案:C解析:8.[单选题]图示刚架支座A处的水平反力为(设向左为正)class="fr-fic fr-dii cursor-hover">A)10kNB)20kNC)5kND)6.67kN答案:D解析:9.[单选题]图示体系的几何组成性质为 。
清华大学《结构力学习题集》
清华⼤学《结构⼒学习题集》第三章静定结构的位移计算⼀、判断题:1、虚位移原理等价于变形谐调条件,可⽤于求体系的位移。
2、按虚⼒原理所建⽴的虚功⽅程等价于⼏何⽅程。
3、在⾮荷载因素(⽀座移动、温度变化、材料收缩等)作⽤下,静定结构不产⽣内⼒,但会有位移且位移只与杆件相对刚度有关。
4、求图⽰梁铰C 左侧截⾯的转⾓时,其虚拟状态应取:5、功的互等、位移互等、反⼒互等和位移反⼒互等的四个定理仅适⽤于线性变形体系。
6、已知M p 、M k 图,⽤图乘法求位移的结果为:()/()ωω1122y y EI +。
7、图a 、b 两种状态中,粱的转⾓?与竖向位移δ间的关系为:δ=? 。
8、图⽰桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
9、图⽰桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
⼆、计算题:10、求图⽰结构铰A 两侧截⾯的相对转⾓?A ,EI = 常数。
11、求图⽰静定梁D 端的竖向位移 ?DV 。
EI = 常数,a = 2m 。
12、求图⽰结构E 点的竖向位移。
EI = 常数。
13、图⽰结构,EI=常数,M =?90kN m , P = 30kN 。
求D 点的竖向位移。
14、求图⽰刚架B 端的竖向位移。
15、求图⽰刚架结点C 的转⾓和⽔平位移,EI = 常数。
16、求图⽰刚架中D点的竖向位移。
EI =常数。
17、求图⽰刚架横梁中D点的竖向位移。
EI =常数。
18、求图⽰刚架中D 点的竖向位移。
E I = 常数。
19、求图⽰结构A、B两截⾯的相对转⾓,EI =常数。
20、求图⽰结构A 、B 两点的相对⽔平位移,E I = 常数。
21、求图⽰结构B 点的竖向位移,EI = 常数。
22、图⽰结构充满⽔后,求A 、B 两点的相对⽔平位移。
E I = 常数,垂直纸⾯取1 m 宽,⽔⽐重近似值取10 kN / m 3。
23、求图⽰刚架C 点的⽔平位移 ?CH ,各杆EI = 常数。
《结构力学》典型习题与解答
《结构力学》经典习题及详解一、判断题(将判断结果填入括弧内,以 √表示正确 ,以 × 表示错误。
)1.图示桁架结构中有3个杆件轴力为0 。
(×)2.图示悬臂梁截面A 的弯矩值是ql 2。
(×)ll3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。
(√ ) 4.一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。
(× ) 5.用平衡条件能求出全部内力的结构是静定结构。
( √ )6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。
(√ ) 7.超静定结构的力法基本结构不是唯一的。
(√)8.在桁架结构中,杆件内力不是只有轴力。
(×)9.超静定结构由于支座位移可以产生内力。
(√ ) 10.超静定结构的内力与材料的性质无关。
(× )11.力法典型方程的等号右端项不一定为0。
(√ )12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。
(√)13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系数的计算无错误。
(× )14.力矩分配法适用于所有超静定结构的计算。
(×)15.当AB 杆件刚度系数i S AB 3 时,杆件的B 端为定向支座。
(×)二、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。
不选、错选或多选者,该题无分。
)1.图示简支梁中间截面的弯矩为( A )qlA.82qlB.42qlC.22qlD.2 ql2.超静定结构在荷载作用下产生的内力与刚度(B)A.无关 B.相对值有关C.绝对值有关 D.相对值绝对值都有关3.超静定结构的超静定次数等于结构中(B )A.约束的数目 B.多余约束的数目C.结点数 D.杆件数4.力法典型方程是根据以下哪个条件得到的(C)。
A.结构的平衡条件B.结构的物理条件C.多余约束处的位移协调条件D.同时满足A、B两个条件5.图示对称结构作用反对称荷载,杆件EI为常量,利用对称性简化后的一半结构为(A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.M =15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p 21y 1y 2**ωω( a )M 17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
16、求图示刚架中D点的竖向位移。
EI =常数。
l ll/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/l/2219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
l l22、图示结构充满水后,求A、B两点的相对水平位移。
E I = 常数,垂直纸面取1 m 宽,水比重近似值取10 kN / m3。
23、求图示刚架C点的水平位移∆CH,各杆EI = 常数。
4m4m3m2kN/m24、求图示刚架B的水平位移∆BH,各杆EI = 常数。
3m4m 4mq7kN/m25、求图示结构C截面转角。
已知:q=10kN/m , P=10kN , EI = 常数。
P26、求图示刚架中铰C两侧截面的相对转角。
27、求图示桁架中D 点的水平位移,各杆EA 相同 。
a28、求图示桁架A 、B 两点间相对线位移 ∆AB ,EA=常数。
a 一a 一a 一29、已知b a b au u u u ]2/)([sin d cos sin 2⎰=,求圆弧曲梁B 点的水平位移,EI =常数。
A BR30、求图示结构D 点的竖向位移,杆AD 的截面抗弯刚度为EI ,杆BC 的截面抗拉(压)刚度为EA 。
a331、求图示结构D点的竖向位移,杆ACD的截面抗弯刚度为EI,杆BC抗拉刚度为EA 。
32、求图示结构S杆的转角ϕS。
( EI = 常数,EA EI a=/2)。
aaa a33、刚架支座移动与转动如图,求D点的竖向位移。
a a/a//4002234、刚架支座移动如图,c1= a / 2 0 0 ,c2= a /3 0 0 ,求D点的竖向位移。
c2a a35、图示结构B支座沉陷∆= 0.01m ,求C点的水平位移。
l/236、结构的支座A发生了转角θ和竖向位移∆如图所示,计算D点的竖向位移。
θA Dl/ll 237、图示刚架A 支座下沉 0.01l ,又顺时针转动 0.015 rad ,求D 截面的角位移。
D0.015radA0.01l l l38、图示桁架各杆温度均匀升高t o C ,材料线膨胀系数为α,求C 点的竖向位移。
a a a39、图示刚架杆件截面为矩形,截面厚度为h , h/l = 1/ 20 ,材料线膨胀系数为 α,求C点的竖向位移。
C A-3-3+t+ttt l40、求图示结构B 点的水平位移。
已知温变化t 110=℃,t 220=℃ ,矩形截面高h=0.5m ,线膨胀系数a = 1 / 105。
t 1t 2t 4m B141、图示桁架由于制造误差,AE 长了1cm ,BE 短了1 cm ,求点E 的竖向位移。
A C BE2cm2cm2cm42、求图示结构A点竖向位移(向上为正)∆AV。
aaA43、求图示结构C点水平位移∆CH,EI = 常数。
2EIl3 =644、求图示结构D点水平位移∆DH。
EI= 常数。
lEI l=33 lk45、BC为一弹簧,其抗压刚度为k,其它各杆EA = 常数,求A点的竖向位移。
第四章超静定结构计算——力法一、判断题:1、判断下列结构的超静定次数。
(1)、 (2)、(a)(b)(3)、 (4)、(5)、 (6)、(7)、(a)(b)2、力法典型方程的实质是超静定结构的平衡条件。
3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。
4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。
5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。
(a)(b)X 16、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方程中∆12122t a t t l h =--()/()。
t 21t lA h (a)(b)X 17、图a 所示结构,取图b 为力法基本体系,其力法方程为。
(a)(b)1二、计算题:8、用力法作图示结构的M 图。
3m m9、用力法作图示排架的M 图。
已知 A = 0.2m 2,I = 0.05m 4,弹性模量为E 0。
q10、用力法计算并作图示结构M 图。
EI =常数。
a a11、用力法计算并作图示结构的M 图。
ql /212、用力法计算并作图示结构的M 图。
q3 m4 m13、用力法计算图示结构并作出M 图。
E I 常数。
(采用右图基本结构。
)l 2/3l /3/3l/314、用力法计算图示结构并作M 图。
EI =常数。
3m3m15、用力法计算图示结构并作M 图。
EI =常数。
2m2m 2m2m16、用力法计算图示结构并作M 图。
EI =常数。
l lql l17、用力法计算并作图示结构M 图。
E I =常数。
18、用力法计算图示结构并作弯矩图。
161kN m m m m19、已知EI = 常数,用力法计算并作图示对称结构的M 图。
l l20、用力法计算并作图示结构的M 图。
EI =常数。
a a21、用力法作图示结构的 M 图 。
EI = 常数。
2q l22、用力法作M 图。
各杆EI 相同,杆长均为 l 。
23、用力法计算图示结构并作M 图。
EI = 常数。
4m 2kN24m mm24、用力法计算并作出图示结构的M 图。
E = 常数。
25、用力法计算图示结构并作M 图。
EI =常数。
20kN3m 4m 3m26、用力法计算图示结构并作M 图。
EI =常数。
ll /2l /2l /2l /227、利用对称性简化图示结构,建立力法基本结构(画上基本未知量)。
E =常数。
l l28、用力法计算图示结构并作M 图。
E =常数。
l ll /2/2/2/229、已知EA 、EI 均为常数,用力法计算并作图示结构M 图。
l l30、求图示结构A 、D 两固定端的固端力矩,不考虑轴力、剪力的影响。
ll /231、选取图示结构的较简便的力法基本结构。
EI =常数。
6m 6m32、选择图示结构在图示荷载作用下,用力法计算时的最简便的基本结构。
PP33、用力法求图示桁架杆AC 的轴力。
各杆EA 相同。
a D34、用力法求图示桁架杆BC 的轴力,各杆EA 相同。
aD35、用力法计算图示桁架中杆件1、2、3、4的内力,各杆EA =常数。
d d d36、用力法求图示桁架DB 杆的内力。
各杆EA 相同。
4 m 4 m 4 m 4 m37、用力法作图示结构杆AB 的M 图。
各链杆抗拉刚度EA 1相同。
梁式杆抗弯刚度为EI EI a EA ,=21100,不计梁式杆轴向变形。
a38、用力法计算并作出图示结构的M 图。
已知EI =常数,EA =常数。
a a a a a39、用力法计算并作图示结构M 图,其中各受弯杆EI=常数,各链杆EA EI l =()42。
40、图示结构支座A 转动θ,EI =常数,用力法计算并作M 图。
l A θ41、图a 所示结构EI =常数,取图b 为力法基本结构列出典型方程并求∆1c 和∆2c 。
l(a)(b)42、用力法计算图示超静定梁并作M 图。
E =常数。
l /2=1I2ϕI l /243、用力法计算并作图示结构由支座移动引起的M 图。
EI =常数。
cl l l44、用力法计算并作图示结构由支座移动引起的M 图。
EI =常数。
l /245、用力法作图示结构的M 图。
EI =常数,截面高度h 均为1m ,t = 20℃,+t 为温度升高,-t为温度降低,线膨胀系数为α。
6m -t +t -t46、用力法计算图示结构由于温度改变引起的M 图。
杆件截面为矩形,高为h ,线膨胀系数为α。
l EI+10-10CC47、用力法计算并作图示结构的M 图,已知:α=0.00001及各杆矩形截面高h EI ==⨯⋅0321052.,m kN m 。
6m +10EI +30+10C CC EI48、图示连续梁,线膨胀系数为α,矩形截面高度为h ,在图示温度变化时,求M B 的值。
EI 为常数。
l C C l -10+20B C -1049、已知EI =常数,用力法计算,并求解图示结构由于AB 杆的制造误差(短∆)所产生的M 图。
a a /2/2ABEA=o o50、求图示单跨梁截面C 的竖向位移∆C V 。
l l /2/251、图示等截面梁AB ,当支座A 转动θA ,求梁的中点挠度f C 。
l θC EI BA f C/2l /2A52、用力法计算并作图示结构M 图。
E I =常数,K EI l ϕ=。
53、图b 为图a 所示结构的M 图,求B 点的竖向位移。
EI 为常数。
ql ql 23ql 26ql 28(a) (b) M 图54、求图示结构中支座E 的反力R E ,弹性支座A 的转动刚度为k 。
l l l55、用力法作图示梁的M 图。
EI =常数,已知B 支座的弹簧刚度为k 。
B Al 1k=EI/l 356、用力法计算图示结构并作M 图。
EI =常数,k EI a =353。
aa第五章超静定结构计算——位移法一、判断题:1、判断下列结构用位移法计算时基本未知量的数目。
(1)(2)(3)(4)(5)(6)EIEIEIEI 2EI EIEIEI EA EA ab EI=EI=EI=244422、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。