高一数学必修1知识点总结
新高一数学必修一知识点梳理
第一章〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集.【1.1.2】集合间的基本关系(6)子集、真子集、集合相等【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义【2.2.2】对数函数及其性质(5)对数函数〖2.3〗幂函数(1)幂函数的定义一般地,函数y=x a叫做幂函数,其中x为自变量,a 是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数.如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴.〖补充知识〗二次函数(1)二次函数解析式的三种形式(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.(3)二次函数图象的性质一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.第三章函数的应用一、方程的根与函数的零点。
高一数学必修一知识点汇总
高一数学必修一知识点汇总一、集合论1、集合的定义:集合是一组物体的总体概念;2、关于集合的基本概念:①元素:集合中的单个物体叫作元素。
②子集:假设S'是S的一部分,则称S'是S的子集,用符号S'⊆S表示。
③真子集:若S'是S的真子集,即S'⊆S,且S'≠S,则称S'是S的真子集。
④空集:若集合S无任何元素,则称S为空集,空集用空大括号表示。
⑤非空集:一个集合中若至少包含一个元素,则称该集合为非空集,用花括号中部分或全部的元素表示。
3、集合的表示方法:①用花括号表示集合。
若集合中只有一个元素a,用大括号表示;若集合中有多个元素a、b、c,用逗号分开,大括号括起来表示;②用特殊字母表示、或用一些代表全体元素的约定符号表示;③用集合方程表示;④用Venn图(环形图)表示。
二、运算1、关于集合的基本运算:①并集:把两个集合中包含的所有元素连在一起构成的集合叫做这两个集合的并集,用符号“∪”表示;②交集:两个集合共同包含的元素构成的集合叫做这两个集合的交集,用符号“∩”表示;③差集:从一个集合中减去另一个集合中共有的元素,结果集合叫做这两个集合的差集,用符号“\”表示;④补集:所有不属于某一集合元素的集合叫补集,用符号“c”表示。
2、集合的应用问题:①布尔代数:用集合表达式和集合运算来代表真假,定义一般的数学公式;②概率论的应用:统计学中分类统计的应用,概率题的计算都是基于一定的事件集合;③函数的定义域和值域:把函数中x取值范围定义成集合,把函数中f(x)取值范围定义成集合;④集合的描述:描述集合是一组表达式,集合中各元素具有某种共同特征,可以用来判断元素是否属于某集合。
三、三角函数1、三角函数的定义:三角函数是一类用来表达直角三角形某边与 hypotenuse(斜边)之间的关系的数学函数;2、关于三角函数的概念:①正弦函数和余弦函数:正弦函数是一类自变量与函数值成正弦曲线的函数;余弦函数是一类变量与函数值成余弦曲线的函数;②正切函数:它是一个特殊的三角函数,它的自变量是“任意的角的正切值”,而它的函数值是“角的弧度值”;3、三角函数的性质:①正弦余弦正切函数在相同横坐标点函数均有三个周期;②正弦余弦函数在 pi/2、 3*pi/2处是奇函数,在其他点是偶函数;③正切函数在π/2、3π/2处是奇函数,在其他点是偶函数;④正弦、余弦函数在其值相等点是对称的。
高一数学必修一知识点梳理
高一数学必修一知识点梳理一、函数基础1. 函数概念- 定义:一个从集合A到集合B的映射,记作f: A → B。
- 表示法:f(x)。
- 函数图像:描述函数关系的图形。
2. 函数的性质- 单调性:函数值随自变量增加而增加(单调递增)或减少(单调递减)。
- 奇偶性:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
- 反函数:对于每个y值,存在唯一的x值满足f(x) = y。
3. 函数的运算- 四则运算:函数的加法、减法、乘法和除法。
- 复合函数:两个函数的组合,记作(f∘g)(x)。
4. 常见函数类型- 一次函数:f(x) = ax + b。
- 二次函数:f(x) = ax^2 + bx + c。
- 指数函数:f(x) = a^x。
- 对数函数:f(x) = log_a(x)。
二、集合与常用数列1. 集合概念- 定义:一组明确的、互不相同的对象构成的集合。
- 表示法:大写字母表示集合,如集合A。
- 集合运算:并集、交集、补集。
2. 集合的性质- 子集:如果集合A的所有元素都属于集合B,则A是B的子集。
- 幂集:一个集合的所有子集构成的集合。
3. 常用数列- 等差数列:每一项与前一项的差是常数的数列。
- 等比数列:每一项与前一项的比是常数的数列。
- 级数:数列的和,如等差级数和等比级数。
三、解析几何1. 平面直角坐标系- 点的坐标:(x, y)表示平面上一点的位置。
- 距离公式:两点之间的距离计算。
- 斜率:直线的倾斜程度。
2. 直线方程- 点斜式:y - y1 = m(x - x1)。
- 斜截式:y = mx + b。
- 一般式:Ax + By + C = 0。
3. 圆的方程- 标准式:(x - h)^2 + (y - k)^2 = r^2。
- 一般式:Ax^2 + By^2 + Dx + Ey + F = 0。
四、初等三角函数1. 三角函数定义- 正弦、余弦、正切:基于直角三角形的边长比。
高一必修一数学课本知识点
高一必修一数学课本知识点一、整式与分式整式:只含有常数与变量及其乘积的代数式,如2x²-3xy+5。
分式:由整式作为分子与分母的比值组成的代数式,如(2x+3)/(x²-4)。
二、一次函数与方程1. 一次函数:一次函数的标准形式为y = kx + b,其中k和b为常数,自变量x的最高次数为1。
一次函数的图像为一条直线,斜率k代表直线的倾斜程度,截距b代表直线与y轴的交点。
2. 一次方程:一次方程是未知数的次数最高为1的方程,如2x + 3 = 7。
解一次方程可以通过逆运算的方式,将方程中的常数移到等号的另一侧,求出未知数的值。
三、二次函数与方程1. 二次函数:二次函数的标准形式为y = ax² + bx + c,其中a、b和c为常数且a≠0,自变量x的最高次数为2。
二次函数的图像为一条抛物线,开口方向取决于a的正负,顶点坐标为(-b/2a, f(-b/2a))。
2. 二次方程:二次方程是未知数的次数最高为2的方程,如x² + 3x - 4 = 0。
解二次方程可以使用配方法、求根公式、完成平方等方法,求出未知数的值。
四、立体几何1. 空间中的直线和平面:空间中的直线由两个不重合的点确定,平面由三个不共线的点或一个直线和一个点确定。
直线与平面的位置关系包括相交、平行和垂直。
2. 空间中的图形:空间中的图形包括直线、平面、曲面等,如球体、圆柱体、圆锥体等。
根据图形的性质和特点可以进行相关的计算和判断。
五、函数与方程1. 函数的概念和性质:函数是自变量与因变量之间的一种映射关系,常表示为y = f(x),其中x为自变量,y为因变量。
函数的性质包括定义域、值域、单调性、奇偶性等。
2. 方程的根与解集:方程的根是使得方程成立的未知数的值,解集是方程所有根的集合。
方程的解根据方程的类型和形式可以有不同的求解方法。
六、统计与概率1. 数据的收集与整理:统计学是研究收集、整理、分析和解释数据的学科。
高一必修一数学知识总结(4篇)
高一必修一数学知识总结第1篇【基本初等函数】一、指数函数(一)指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。
此时,的次方根用符号表示。
式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。
当是偶数时,正数的次方根有两个,这两个数互为相反数。
此时,正数的正的次方根用符号表示,负的次方根用符号—表示。
正的次方根与负的次方根可以合并成±(>0)。
由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,2、分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
3、实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。
注意:指数函数的底数的取值范围,底数不能是负数、零和1。
2、指数函数的图象和性质高一必修一数学知识总结第2篇二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
高一必修一数学全册知识点
高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。
高一数学必修一知识点总结人教
高一数学必修一知识点总结人教高一数学必修一是数学课程的基础,是后续学习的重要基石。
本文将为你总结高一数学必修一的主要知识点,希望能够帮助你更好地学习和掌握这些内容。
第一章相似与全等1. 相似三角形的判定条件- AAA 相似判定法:两个三角形对应角相等。
- AA 相似判定法:两个三角形有两个对应角相等,且对应边成比例。
- SAS 相似判定法:两个三角形的对应两边成比例,且夹角相等。
2. 相似三角形的性质和应用- 长度比例关系:对应边比例相等,对应角相等。
- 面积比例关系:面积比例等于边长比例的平方。
- 重心、垂心、外心、内心等的位置关系。
- 相似三角形的几何应用。
3. 全等三角形的判定条件- SSS 全等判定法:两个三角形的三边对应相等。
- SAS 全等判定法:两个三角形有两边及其夹角对应相等。
- ASA 全等判定法:两个三角形有两个角及其夹边对应相等。
- AAS 全等判定法:两个三角形有两个角及其对边对应相等。
4. 全等三角形的性质和应用- 证明等腰三角形的性质。
- 证明直角三角形的性质。
- 证明等边三角形的性质。
第二章平面向量1. 向量的概念及运算- 平面向量的定义和表示。
- 向量的加法、减法和数乘。
- 向量的数量积和向量积。
2. 向量的应用- 向量几何问题的分析与处理。
- 判断向量共线和垂直的方法。
- 平行四边形和三角形的面积计算。
第三章二次函数1. 二次函数的图像特征- 平移变换和伸缩变换。
- 最值点和零点的性质。
- 对称轴和对称点的关系。
2. 二次函数的性质与应用- 二次函数的单调性与求解方程。
- 二次函数与一次函数的关系。
- 二次函数在几何中的应用。
3. 二次函数图像的绘制- 根据函数的参数绘制函数图像。
- 根据函数图像确定函数的参数。
第四章导数与微分1. 导数的概念和性质- 导数的定义与几何意义。
- 导数的四则运算法则。
- 导数与函数图像的关系。
2. 导数的应用- 导数表示函数的变化率。
高一数学必修一知识点归纳总结
高一数学必修一知识点归纳总结
一、平面解析几何
1. 平面直角坐标系
- 坐标轴及坐标点的表示方法
- 点的坐标与距离公式的应用
2. 直线的方程
- 斜率的概念和计算方法
- 截距的概念和计算方法
- 一般式和标准式的相互转换
- 平行、垂直直线的关系及判定方法
3. 圆的方程
- 圆的定义及相关概念
- 圆的标准方程及一般方程
- 圆与直线的位置关系
- 相交弦和切线的性质
4. 配对法
- 二次曲线的配对法及示意图
- 配对法解题步骤与技巧
二、函数及立体几何
1. 函数的概念与性质
- 定义域和值域的计算方法- 函数的奇偶性判断
- 函数的单调性判断
- 函数图象与函数值的关系2. 一次函数和二次函数
- 一次函数的表示和性质
- 一次函数的图象和变换
- 二次函数的表示和性质
- 二次函数的图象和变换
3. 立体几何基础知识
- 空间几何体的定义及性质- 线段的长度和空间角的计算- 平行线与平面的关系
三、概率与统计
1. 随机事件与概率
- 随机事件的概念和表示方法- 概率的定义和性质
- 事件的联合、互斥与对立关系
2. 组合与样本空间
- 组合的概念和计算方法
- 样本空间的定义和计算方法
- 事件的排列组合与计数方法
3. 统计与抽样
- 总体、样本和样本均值的概念
- 随机抽样的方法和步骤
- 样本统计量的计算及应用
以上为高一数学必修一的知识点归纳总结,对于复复数学知识有一定的帮助。
需要注意理解概念和掌握计算方法,搞清楚基本原理,灵活运用到实际问题的解题中。
高一必修一数学知识点考点
高一必修一数学知识点考点第一章:集合与常用逻辑1. 集合及其表示方法- 集合的定义和基本概念- 集合的表示方法:列举法、描述法和定语从句法- 包含关系与相等关系2. 集合的运算- 交集、并集和差集的含义与计算- 互斥事件与对立事件的关系- 集合的运算律:交换律、结合律、分配律3. 常用逻辑符号与命题- 命题的概念与性质- 非、与、或、异或等逻辑运算符号的意义与运算规则 - 命题的合取范式与析取范式第二章:函数与方程1. 函数的概念与性质- 函数的定义及其基本性质- 定义域、值域和象集的概念- 函数的分类:一次函数、二次函数、指数函数、对数函数等2. 初等函数的图像与性质- 一次函数、二次函数、指数函数、对数函数等常用函数的图像特征- 函数的单调性、奇偶性和周期性等性质- 函数与方程的关系:函数方程、隐函数、显函数等3. 方程与不等式- 方程与等式的概念及其解的求解方法和性质- 一元一次方程和一元二次方程的解法- 不等式的概念和性质,不等式的解集表示方法第三章:平面几何1. 平面内的基本图形与性质- 点、线、线段、射线和角的概念与基本性质- 直线的分类:平行线、垂直线、相交线等- 三角形的分类:等边三角形、等腰三角形、直角三角形等2. 三角形的面积和周长- 三角形的面积公式及其推导- 三角形的周长计算方法- 与三角形相关的重要定理:海伦公式、正弦定理、余弦定理等3. 圆的性质与圆的应用- 圆的定义及其基本性质- 弧的概念与弧长、弦长的计算方法- 圆的切线与切点的概念及其性质第四章:立体几何1. 空间几何体的基本概念- 简单体与复合体的概念与区别- 空间直线、平面、立体角等的定义和性质- 空间几何体的分类与性质:球体、柱体、锥体等2. 直线与平面的位置关系- 平行关系、垂直关系和斜率关系的概念- 平面与平面的位置关系:相交、平行、垂直等- 平面与直线的交点的分类:内交点、外交点等3. 空间几何体的表面积和体积- 立体几何体的表面积计算方法- 立体几何体的体积计算方法- 相似立体几何体的表面积和体积的比较第五章:数据统计与概率1. 数据的收集与整理- 数据的概念与数据的收集方法- 数据的整理与分析方法:频数分布表、频率分布直方图等- 分类数据与数值数据的概念和处理方法2. 数据的图表表示与分析- 数据的图表表示方法及其选择技巧- 直方图、折线图、饼图等常用图表的绘制和分析- 统计指标(平均数、中位数、众数、四分位数等)的计算和比较3. 概率与统计- 随机事件与样本空间的概念- 概率的定义和性质- 古典概型、几何概型和统计概型的应用以上是高一必修一数学知识点的考点概述,希望能对你有所帮助。
高一数学必修第一册知识点
高一数学必修第一册知识点一、集合与简单逻辑1. 集合的概念与表示方法·集合的定义:集合是由一些确定的事物组成的整体。
·集合的表示方法:列举法、描述法和符号法。
2. 集合的运算·交集运算:集合A与集合B的交集,记作A∩B,表示属于A且属于B的元素的集合。
·并集运算:集合A与集合B的并集,记作A∪B,表示属于A或属于B的元素的集合。
·差集运算:集合A与集合B的差集,记作A-B,表示属于A但不属于B的元素的集合。
·互斥:两个集合没有交集,即两个集合的交集为空集。
3. 子集与包含关系·子集:集合A中所有的元素都是集合B的元素,则称集合A为集合B的子集,记作A⊆B。
·真子集:集合A是集合B的子集且A≠B,则称集合A为集合B的真子集,记作A⊂B。
·包含关系:若A⊆B且B⊆A,则称集合A与集合B相等,记作A=B。
4. 简单逻辑·命题:陈述句,可以判断真假的陈述。
·命题的连接词:与(∧)、或(∨)、非(¬)。
·合取范式:由若干命题使用与、或、非连接而成的式子。
二、函数与方程1. 函数的定义与性质·函数:对于集合A和B,如果对于A中的每个元素都有唯一确定的B中的元素与之对应,则称该对应关系为函数。
·定义域与值域:定义域是指函数中自变量的取值范围,值域是指函数中因变量的取值范围。
2. 函数的表示与求值·函数的表示方法:用解析式、图像、数据表等形式表示函数。
·函数的求值:将自变量的值代入函数中,计算出对应的因变量的值。
3. 一次函数与二次函数·一次函数:函数表达式为y=ax+b,其中a和b为常数,a≠0。
·二次函数:函数表达式为y=ax²+bx+c,其中a、b、c为常数,a≠0。
4. 方程的解与解法·方程的解:能够使方程成立的未知数的值。
(完整版)高一数学必修一知识点汇总
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
高一数学必修1知识点大全
高一数学必修1知识点大全一、集合。
1. 集合的概念。
- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成一个集合,每个自然数就是这个集合的元素。
- 集合通常用大写字母表示,如A、B、C等,元素用小写字母表示,如a、b、c等。
- 元素与集合的关系:如果a是集合A的元素,就说a∈ A(读作“a属于A”);如果a不是集合A的元素,就说a∉ A(读作“a不属于A”)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如,集合A = {1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
一般形式为{xp(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。
例如,{xx是大于2的整数}。
- 区间表示法:对于数集,还可以用区间表示。
- 开区间(a,b)={xa < x < b};- 闭区间[a,b]={xa≤slant x≤slant b};- 半开半闭区间(a,b]= {xa < x≤slant b},[a,b)={xa≤slant x < b};- 无穷区间(-∞,+∞)=R,(a,+∞)={xx > a},[a,+∞)={xx≥slant a},(-∞,b)={xx < b},(-∞,b]={xx≤slant b}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(读作“A包含于B”)或B⊇ A(读作“B包含A”)。
如果A⊆ B且B⊆ A,那么A = B。
- 真子集:如果A⊆ B,且存在元素x∈ B,x∉ A,那么集合A是集合B的真子集,记作A⊂neqq B。
- 空集:不含任何元素的集合叫做空集,记作varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A 与B的交集,记作A∩ B={xx∈ A且x∈ B}。
高一必修一数学全章知识点
高一必修一数学全章知识点一、集合与函数1. 集合的概念和表示方法2. 集合的基本运算3. 集合的关系和判定方法4. 函数的概念和表示方法5. 函数的性质和基本类型二、数与式1. 实数的概念和性质2. 整式与分式的概念和性质3. 代数式的运算规则和性质4. 同类项与合并同类项5. 因式分解的方法和应用6. 分式的运算和应用三、方程与不等式1. 方程的概念和解的概念2. 一元一次方程的解法和应用3. 一元二次方程的解法和应用4. 一元一次不等式的解法和应用5. 一元二次不等式的解法和应用6. 绝对值方程与不等式的解法和应用四、平面几何与立体几何1. 点、线、面的基本概念与性质2. 直线与线段的性质3. 角的概念与性质4. 三角形的分类与性质5. 四边形的分类与性质6. 圆的性质与定理7. 三维图形的基本概念与性质五、函数与图像1. 二次函数的图像与性质2. 一次函数的图像与性质3. 反比例函数的图像与性质4. 幂函数的图像与性质5. 指数函数的图像与性质6. 对数函数的图像与性质六、实数与三角函数1. 整式的值域与最值问题2. 三角函数的概念与性质3. 三角函数的图像与变化规律4. 三角函数的同角关系5. 三角函数的基本公式与应用七、数列与数学归纳法1. 数列的概念与表示2. 等差数列与等差数列的性质3. 等比数列与等比数列的性质4. 递推数列与递推数列的性质5. 数学归纳法的原理与应用八、概率与统计1. 随机事件与概率的概念2. 概率的运算与应用3. 组合与排列的概念与性质4. 统计图表的制作与分析5. 平均数与波动范围的计算以上是高一必修一数学全章的知识点,希望对你的学习有所帮助。
高一数学必修一知识点整理大全
高一数学必修一知识点整理大全
一、数集与复数
1、数集:实数集、整数集、有理数集、自然数集、负数集和无理数集等
2、复数:复数由实数部分和虚数部分组成,表示形式为a+bi,其中a 为实数部分,b为虚数部分;以及其实部和虚部计算方法,共轭数,复数的乘法和除法等
二、方程与不等式
1、一元一次方程的解法:唯一解法、无解法,以及利用求根公式求解等
2、不等式:不等式的解法、绝对值不等式、二次不等式和向量不等式
三、集合与函数
1、集合:一个集合由若干元素组成,可用于天空符号来表示,以及运算符号的应用;
2、函数:体景函数的定义、反函数的概念、一元函数的性质、复合函数和函数的变换
四、直线与圆
1、直线:斜率的概念,相交点的求解、两条直线的垂直关系、直线的标准方程和点斜式;
2、圆:圆的性质,圆的中点、半径和圆心的关系,同心圆的特点,圆的标准方程,圆上一点到圆心的弧长。
五、三角函数
1、三角函数的定义:余弦函数、正切函数,以及三角函数的四象性理论;
2、三角函数的应用:三角形的基本概念、余弦定理、正弦定理,以及用于解三角形的其他定理。
六、分数与比例
1、分数:基本分数的概念,真分数、假分数,特殊分数及其转换,带分数的基本运算等;
2、比例:比例具有多重性,比例的初始情况和分级表,比例的连续变化、列比较法求不确定比例等。
高一数学必修一知识归纳总结
高一数学必修一知识归纳总结(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修一知识归纳总结本店铺为各位同学整理了《高一数学必修一知识归纳总结》,希望对你的学习有所帮助!1.高一数学必修一知识归纳总结篇一三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+ta nAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+ 1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a =2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA)) 积化和差2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsin2.高一数学必修一知识归纳总结篇二棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
高一数学必修一知识点归纳
高一数学必修一知识点归纳一、集合与函数的概念1. 集合的定义与表示- 集合是具有某种特定性质的事物的全体。
- 常用符号表示集合,如 A = {x | x 是偶数}。
2. 集合之间的关系- 子集:如果集合A的所有元素都属于集合B,则A是B的子集。
- 真子集:A是B的子集,且A不等于B。
- 并集:集合A和集合B所有元素组成的集合。
- 交集:集合A和集合B共有的元素组成的集合。
- 补集:对于集合A,其在全集U中的补集是U中不属于A的元素组成的集合。
3. 函数的定义- 函数是将一个集合中的每一个元素映射到另一个集合中的唯一元素的对应关系。
- 函数的表示方法:y = f(x)。
4. 函数的域与值域- 域:函数中所有允许输入的x值的集合。
- 值域:函数输出的所有y值的集合。
5. 函数的性质- 单调性:函数在某个区间内,随着x的增加,y也增加(单调递增)或减少(单调递减)。
- 奇偶性:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
二、基本初等函数1. 幂函数- y = x^n,其中n是实数。
2. 指数函数- y = a^x,其中a > 0 且a ≠ 1。
3. 对数函数- y = log_a(x),其中a > 0 且 a ≠ 1。
4. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)5. 反三角函数- y = arcsin(x) 或 y = sin^(-1)(x)- y = arccos(x) 或 y = cos^(-1)(x)- y = arctan(x) 或 y = tan^(-1)(x)三、函数的图像与变换1. 函数图像的绘制- 根据函数的表达式,确定函数的图像形状。
- 选择适当的x和y值,绘制函数的图像。
2. 函数的变换- 平移:通过改变函数中x和y的值来移动图像。
- 伸缩:通过改变函数中的比例系数来改变图像的大小。
高中数学必修一最全知识点汇总
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
数学高一必修一知识点
数学高一必修一知识点1. 集合的概念与运算- 集合的定义:集合是由一些确定的、互不相同的元素所组成的整体。
- 元素与集合的关系:属于(∈)和不属于(∉)。
- 集合的表示法:列举法和描述法。
- 集合的分类:有限集合和无限集合,空集。
- 集合的运算:并集(∪)、交集(∩)、差集(-)、补集(C)、子集(⊆)和真子集(⊂)。
2. 函数的概念与性质- 函数的定义:函数是定义域到值域的映射关系。
- 函数的三要素:定义域、值域和对应法则。
- 函数的表示法:解析式、图象和列表。
- 函数的性质:单调性、奇偶性、周期性和有界性。
- 函数的运算:函数的四则运算和复合函数。
3. 指数与对数- 指数的定义:a^n表示a的n次方。
- 指数的性质:指数的乘法法则、指数的幂的乘方、指数的加减法。
- 对数的定义:如果a^x=b,则x是b的以a为底的对数,记作x=log_a(b)。
- 对数的性质:对数的换底公式、对数的四则运算。
- 指数函数和对数函数:指数函数y=a^x和对数函数y=log_a(x)的性质和图象。
4. 三角函数- 三角函数的定义:正弦、余弦、正切、余切、正割、余割。
- 三角函数的性质:周期性、奇偶性、单调性。
- 三角函数的图象:正弦函数、余弦函数的图象。
- 三角恒等式:和差公式、倍角公式、半角公式、和差化积、积化和差。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
5. 不等式- 不等式的概念:表示不等关系的式子。
- 不等式的性质:不等式的基本性质。
- 不等式的解法:一元一次不等式、一元二次不等式、绝对值不等式。
- 一元二次不等式的解集:数轴上的表示法。
- 基本不等式:算术平均数-几何平均数不等式。
6. 数列- 数列的概念:按照一定规律排列的一列数。
- 数列的表示法:通项公式和递推关系式。
- 数列的分类:等差数列、等比数列、递推数列。
- 数列的求和:等差数列求和公式、等比数列求和公式、分组求和法、错位相减法。
高一必修一数学所有知识点
高一必修一数学所有知识点【高一必修一数学所有知识点】
本文将为大家总结高一必修一数学所有的知识点,以供参考学习。
其中包括了数学基础概念、代数与函数、几何与三角、几何变换、概率与统计等几个大的知识模块。
希望能够帮助大家系统地了解和掌握高一必修一数学内容。
一、数学基础概念
1. 数的性质与数轴
2. 整数的运算与应用
3. 分数与分数运算
4. 实数及其运算规则
5. 算式与代数式
二、代数与函数
1. 代数式的语言和符号
2. 一元一次方程与方程运算
3. 二元一次方程组与解法
4. 一次函数与一次函数的应用
5. 两点间的直线方程
6. 不等式的性质与解法
7. 平方根与实数的比较
三、几何与三角
1. 二次根式的概念与运算
2. 同类图形与比例尺
3. 平行线与三角形
4. 相似三角形与三角比
5. 定比分点
6. 图形的变换与构造
四、几何变换
1. 平移、旋转和对称
2. 直线方程及其画法
3. 圆的定义与性质
4. 弧、弦和切线
5. 弧长与扇形面积
6. 面积计算与证明
五、概率与统计
1. 统计调查与图表分析
2. 基本概率与事件
3. 随机变量与概率分布
4. 平均数与位置中位数
5. 方差与标准差
以上就是高一必修一数学所有知识点的总结。
希望对大家的学习和复习有所帮助。
通过对这些知识点的透彻理解和掌握,相信可以在高中数学学习中取得不错的成绩。
当然,要想真正掌握这些知识点,还需要进行大量的练习和巩固。
希望大家加油,共同努力,取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
AÍA②真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作A B(或B A)③如果AÍB, BÍC ,那么AÍC④如果AÍB 同时BÍA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即CSA ={x | xÎS且xÏA}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
提高解题的速度。
发现解题中的错误。
4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映像。
记作“f:A B”给定一个集合A到B的映像,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f 是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A 的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B 中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
常用的函数表示法及各自的优点:1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值补充一:分段函数(参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。
在不同的围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。
例如: y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I的某个区间D的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。
区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:1 函数的单调性是在定义域的某个区间上的性质,是函数的局部性质;2 必须是对于区间D的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。
(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_(C)复合函数的单调性函数的单调性注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。