【最新】人教版八年级数学下册第十七章《勾股定理(2)》公开课课件.ppt

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后作业
作业:教科书第26页第1,2题.
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/112021/1/11Monday, January 11, 2021
• 10、人的志向通常和他们的能力成正比例。2021/1/112021/1/112021/1/111/11/2021 6:03:58 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/112021/1/112021/1/11Jan-2111-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/112021/1/112021/1/11Monday, January 11, 2021 • 13、志不立,天下无可成之事。2021/1/112021/1/112021/1/112021/1/111/11/2021
八年级 下册
17.1 勾股定理(2)
课件说明
• 本课是在学习勾股定理的基础上,学习应用勾股定 理进行直角三角形的边长计算,解决一些简单的实 际问题.
课件说明
• 学习目标: 1.能运用勾股定理求线段长度,并解决一些简单的 实际问题; 2.在利用勾股定理解决实际生活问题的过程中,能 从实际问题中抽象出直角三角形这一几何模型, 利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
。2021年1月11日星期一2021/1/112021/1/112021/1/11
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/112021/1/112021/1/111/11/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/112021/1/11January 11, 2021
解:在Rt△ABC中,根据勾股 定理,得 AC2=AB2+BC2=12+22=5.
AC= 5 ≈2.24. 因为 5 大于将实木际板问的题宽转2化.2为m数,学所问以 木板能题从,门建框立内几通何模过型.,画出图形,分
析已知量、待求量,让学生掌握解 决实际问题的一般套路.
D
C
A
B
1m
2m
做一做
例2 如图,一架2.6米长的梯子AB 斜靠在一竖直 的墙AO上,这时AO 为2.4米. (1)求梯子的底端B距墙角O多少米? (2)如果梯子的顶端A沿墙下滑0.5米,
有 AB2+BC2=AC2,
可列方程,得 x2+52=( x +1)2 ,
通过解方程可得.
A
拓展提高 形成技能
今有池方一丈,葭生其中央,出水一尺,引葭赴岸, 适与岸齐.问水深、葭长各几何?
利用勾股定理解决实际问题
的一般思路:
B
C
(1)重视来自百度文库实际问题题意的
正确理解;
(2)建立对应的数学模型,
运用相应的数学知识;

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/112021/1/112021/1/112021/1/11
谢谢观看
那么梯子底端B也外移0.5米吗?
跟踪练习:教科书第26页练习2.
想一想
问题 如果知道平面直角坐标系坐标轴上任意两点 的坐标为(x,0),(0,y),你能求这两点之间的距 离吗?
拓展提高 形成技能
今有池方一丈,葭生其中央,出水一尺,引葭赴岸, 适与岸齐.问水深、葭长各几何?
分析:
B
C
可设AB=x,则AC=x+1,
(3)方程思想在本题中的运
用.
A
巩固练习
如图,一棵树被台风吹折断后,树顶端落在离底端 3米处,测得折断后长的一截比短的一截长1米,你能计 算树折断前的高度吗?
课堂小结
(1)利用勾股定理解决实际问题有哪些基本步骤? (2)你觉得解决实际问题的难点在哪里?你有什么
好的突破办法?利用勾股定理解决实际问题的 注意点是什么?请与大家交流. (3)本节课体现出哪些数学思想方法,都在什么情 况下运用?
• 学习重点: 运用勾股定理计算线段长度,解决实际问题.
说一说
勾股定理: 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么a2+b2=c2.
已知一个直角三角形的两边,应用勾股定理可以求 出第三边,这在求距离时有重要作用.
想一想
例1 一个门框的尺寸如图所示,一块长3 m,宽 2.2 m的长方形薄木板能否从门框内通过?为什么?
相关文档
最新文档