山东省德州市宁津县2019-2020学年七年级上学期期末数学试题(word无答案)
19-20学年山东省德州市七年级上学期期末数学试卷 及答案解析
19-20学年山东省德州市七年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.在实数|−3|,−2,−π,−1中,最小的数是()A. |−3|B. −2C. −πD. −12.2017年我省粮食总产量为695.2亿斤,其中695.2亿用科学记数法表示为()A. 6.952×106B. 6.952×108C. 6.952×1010D. 695.2×1083.已知a2=b3(a≠0,b≠0),下列变形错误的是()A. ab =23B. 2a=3bC. ba=32D. 3a=2b4.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为()A. 3B. 2C. 1D. 05.下列说法正确的是()A. −2是单项式B. 2x−2是多项式C. 32xy3是六次单项式D. 2x+35的常数项是36.已知x=−3是方程k(x+4)−2k−x=5的解,则k值为()A. 2B. −2C. 5D. 37.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为A. x7−x9=1 B. x7+x9=1 C. 7x+9x=1 D. 9x−7x=18.在实际生产和生活中,下列四个现象:①用两颗钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A. ①②B. ①③C. ②④D. ③④9.解方程2x−12−10x+14=3时,去分母正确的是()A. 2(2x−1)−10x−1=3B. 2(2x−1)−10x+1=3C. 2(2x−1)−10x−1=12D. 2(2x−1)−10x+1=1210.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=12PB,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为().A. 30cmB. 60cmC. 120cmD. 60cm或120cm11.把如图所示的图形折成正方体,如果相对面的值相等,则2a−x+3y的值为()A. 7B. 8C. 9D. 1012.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m−n;③|m|−n;④m2−n2;⑤m3n3.A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共6小题,共24.0分)13.一个锐角的余角是38°28′5′′,则这个角的补角是______.14.12.一个多项式与x2−2x+1的差是3x−1,则这个多项式为______.15.若x+5y=−1时,则代数式2018−x−5y的值为______ .16.已知派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄比派派年龄的4倍还大1岁.当派派的妈妈40岁时,派派的年龄为________岁.17.若我们规定[x)表示大于x的最小整数,例如[3)=4,[−1.2)=−1,则下列结论:①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.其中正确的是.(填写所有正确结论的序号)18.如图,是一个运算程序的示意图,若开始输入x的值为625,则第2019次输出的结果为_____.三、计算题(本大题共1小题,共10.0分)19.解方程(1)8x=−2(x+4)(2)x+12−2=1−x−24四、解答题(本大题共6小题,共68.0分)20.计算与化简:(1)22+(−4)−(−2)+4(2)2−54×(56−49+13)(3)−54×214÷(−412)×29(4)−14−16×[3−(−3)2](5)x2+5y−4x2−3y−1(6)6a−3(a−3b)+2(2b−a)21.已知x2−2y−5=0,求3(x2−2xy)−(x2−6xy)−4y的值.22.阅读解题:解方程:|3x|=1.;解:①当3x≥0时,原方程可化为一元一次方程为3x=1,它的解是x=13②当3x<0时,原方程可化为一元一次方程为−3x=1,它的解是x=−1.3请你模仿上面例题的解法,解方程:2|x−3|+5=13.23.如图,已知数轴上点A表示的数为−7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.(1)点C表示的数是______;(2)点P表示的数是______(用含有t的代数式表示);(3)求当t等于多少秒时,点P与点C之间的距离为2个单位长度.24.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1多15件,甲、乙两2种商品的进价和售价如下表:(注:获利=售价−进价)甲乙进价(元/件)2230售价(元/件)2940(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?25.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=4∠COD,∠AOB=120°,求∠AOC的度数.-------- 答案与解析 --------1.答案:C解析:解:在实数|−3|,−2,−π,−1中,最小的数是−π.故选:C.根据有理数大小比较的法则比较即可.本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.2.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:695.2亿=69520000000=6.952×1010,故选C.3.答案:B解析:[分析]本题考查了比例的性质,主要利用了两内项之积等于两外项之积.根据两内项之积等于两外项之积对各选项分析判断即可得解.[解答]解:由a2=b3得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得:3a=2b,错误;C 、由等式性质可得:3a =2b ,正确;D 、由等式性质可得:3a =2b ,正确; 故选:B .4.答案:B解析:解:∵A 、B 两点到原点的距离相等,A 为−2, 则B 为−2的相反数,即B 表示2. 故选:B .到原点距离相等的点所表示的数互为相反数,故可知B 点表示的数为−2的相反数.本题考查数轴及相反数的性质,要正确理解到原点距离相等的两个点所表示的数即为相反数.5.答案:A解析:此题考查了单项式,多项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数. 根据单项式、多项式的概念及单项式的次数的定义解答. 解:A 、−2是单项式,正确; B 、2x−2不是整式,不是多项式,错误;C 、32xy 3是四次单项式,错误;D 、2x+35的常数项是35,错误;故选:A .6.答案:B解析:此题考查的是一元一次方程的解法,只要把已知未知数的值代入原方程,得到关于k 的一元一次方程,即可求出k 的值.把x=−3代入方程k(x+4)−2k−x=5,求出k的值即可.解:把x=−3代入方程k(x+4)−2k−x=5得:k(−3+4)−2k+3=5,解得:k=−2.故选B.7.答案:B解析:此题主要考查了由实际问题抽象出一元一次方程有关知识,直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相遇进而得出等式.解:设野鸭大雁与从北海和南海同时起飞,经过x天相遇,可列方程为:x7+x9=1.故选B.8.答案:D解析:本题主要考查两点之间线段最短和两点确定一条直线的运用,熟练掌握直线和线段的性质是关键.解:①两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线;②定出两棵树的位置就能确定同一行树所在的直线,利用的是两点确定一条直线;③从A地到B地架设电线,总是尽可沿着线段AB架设,利用的是两点之间线段最短;④把弯曲的公路改直,就能缩短路程,利用的是两点之间线段最短.故选D.9.答案:C解析:本题考查解一元一次方程,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.根据等式的性质,方程两边同时乘以4即可求解.解:2x−12−10x+14=3,方程的两边同时乘以4得:2(2x−1)−10x−1=12.故选C.10.答案:D解析:本题考查了两点间的距离,解答此题时要注意进行分类讨论,不要漏解.AP=xcm,则BP=2xcm,分为两种情况:①当含有线段AP的绳子最长时,得出方程x+x=40,②当含有线段BP的绳子最长时,得出方程2x+2x=40,求出每个方程的解,代入2(x+2x)求出即可.解:设AP=xcm,则BP=2xcm,①当含有线段AP的绳子最长时,x+x=40,解得:x=20,即绳子的原长是2(x+2x)=6x=120(cm);②当含有线段BP的绳子最长时,2x+2x=40,解得:x=10,即绳子的原长是2(x+2x)=6x=60(cm);故绳长为60cm或120cm.故选D.11.答案:A解析:本题主要考查了正方体的表面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.根据正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的值相等求出a、x、y,然后代入代数式进行计算即可得解.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“−1”是相对面,“x”与“6”是相对面,“y”与“5”是相对面,∵相对面的值相等,∴a=−1,x=6,y=5,∴2a−x+3y=2×(−1)−6+3×5=−2−6+15=7.故选A.12.答案:B解析:此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m−n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|−n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2−n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴⑤的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选B.13.答案:128°28′5′′解析:解:根据题意知这个角的补角是180°−(90°−38°28′5′′)=90°+38°28′5′′=128°28′5′′,故答案为:128°28′5′′.根据补角和余角的定义列出算式180°−(90°−38°28′5′′),进一步计算可得.本题主要考查余角和补角,解题的关键是掌握补角和余角的定义.14.答案:x2+x解析:根据题意利用整式的加减运算法则计算得出答案.【详解】解:∵一个多项式与x2−2x+1的差是3x−1∴这一个多项式是:x2−2x+1+3x−1=x2+x故答案为:x2+x本题考查了整式的加减运算,正确掌握运算法则是解题关键.15.答案:2019解析:解:∵x+5y=−1,∴原式=2018−(x+5y)=2018+1=2019,故答案为:2019原式后两项提取−1变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.答案:12解析:本题考查了一元一次方程的应用,根据再过5年派派的妈妈的年龄是派派年龄的4倍还大1岁,列出关于x的一元一次方程是解题的关键.设今年派派的年龄为x岁,则妈妈的年龄为(36−x)岁,根据再过5年派派的妈妈的年龄是派派年龄的4倍还大1岁,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入36−x−x中可求出二者的年龄差,再用40减去该年龄差即可求出当派派的妈妈40岁时派派的年龄.解:设今年派派的年龄为x岁,则妈妈的年龄为(36−x)岁,根据题意得:36−x+5=4(x+5)+1,解得:x=4,∴36−x−x=28,∴40−28=12(岁).故答案为12.17.答案:④解析:此题考查了实数的运算,仔细审题,理解[x)表示大于x的最小整数是解答本题的关键,属于基础题.根据[x)表示大于x的最小整数,结合各项进行判断即可得出答案.解:∵[x)表示大于x的最小整数,∴①[0)=1,故①错误;②若x为整数,则[x)−x=1,若x不是整数,则[x)−x≠0,故[x)−x的最小值是0错误,故②错误;③若x=1,则[x)−x=2−1=1,故③错误;④当x=0.5时,[x)−x=1−0.5=0.5成立.故④正确,故正确的是④.故答案为④.18.答案:5解析:此题考查了代数式求值,以及有理数的混合运算,找出输出的结果的变化规律是解本题的关键.把x=625代入运算程序进行计算,发现从第三次开始,输出的结果以5,1循环,据此即可得出所求.×625=125,解:当x=625时,原式=15×125=25,当x=125时,原式=15×25=5,当x=25时,原式=15×5=1,当x=5时,原式=15当x=1时,原式=1+4=5,依此类推,以5,1循环,∵(2019−2)÷2=1008…1,∴第2019次输出的结果为5,故答案为:5.19.答案:解:(1)8x=−2x−8,8x+2x=−8,10x=−8,x=−0.8;(2)2(x+1)−8=4−(x−2),2x+2−8=4−x+2,2x+x=4+2−2+8,3x=12,x=4.解析:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.20.答案:解:(1)原式=22+2−4+4=24;(2)原式=2−45+24−18=−37;(3)原式=54×94×29×29=6;(4)原式=−1−16×(−6)=−1+1=0;(5)原式=−3x2+2y−1;(6)原式=6a−3a+9b+4b−2a=a+13b.解析:(1)原式结合后,相加即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式从左到右依次计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(5)原式合并同类项即可得到结果;(6)原式去括号合并即可得到结果.此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.21.答案:解:3(x2−2xy)−(x2−6xy)−4y,=3x2−6xy−x2+6xy−4y,=2x2−4y;∵x2−2y−5=0,∴x2−2y=5,原式=2(x2−2y)=2×5=10.解析:首先去括号,合并同类项,化简后,再根据条件可得x2−2y=5,再代入求值即可.此题主要考查了整式的化简求值,关键是正确把整式进行化简.22.答案:解:当x−3≥0时,原方程可化为x−3=4它的解是x=7;当x−3<0时,原方程可化为−(x−3)=4它的解是x=−1;所以原方程的解是x=7或x=−1.解析:根据绝对值的定义,将方程|x−3|=4分为①x−3≥0,②x−3<0两种情况转化方程求解.本题考查了绝对值的定义及运用分类讨论的思想解一元一次方程.23.答案:解:(1)−1;(2)−7+2t;(3)因为PC之间的距离为2个单位长度所以点P运动到−3或1,即−7+2t=−3或−7+2t=1,即t=2或t=4.解析:此题考查了数轴,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的应用.(1)根据线段中点坐标公式可求点C表示的数;(2)根据两点之间的距离公式可求点P表示的数;(3)分P在点C左边和点C右边两种情况讨论求解.解:(1)(−7+5)÷2=−2÷2=−1.故点C表示的数是−1.故答案为:−1;(2)点P表示的数是−7+2t;故答案为:−7+2t;(3)见答案.x+15)件,24.答案:解:(1)设第一次购进甲种商品x件,则购进乙种商品(12x+15)=6000,根据题意得:22x+30(12解得:x=150,x+15=90.∴12答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29−22)×150+(40−30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.解析:本题考查的知识点是利润=售价−进价的运用和列一元一次方程解实际问题的运用及一元一次方程的解法的运用,解题关键是解答时根据题意建立方程.x+15),根据题意列出方程求出其解就可以;(1)设第一次购进甲种商品x件,则乙种商品的件数是(12(2)由利润=售价−进价作答即可.25.答案:解:∵OD平分∠AOB,∴∠AOD=∠BOD.∵∠BOC=4∠COD,∴设∠COD=x,则∠BOD=3x,AOC=2x,∵∠AOB=120°,∴2x+x+3x=120°,解得x=20°,∴∠AOC=2x=40°.解析:根据OD平分∠AOB可得出∠AOD=∠BOD,再由∠BOC=4∠COD可设∠COD=x,则∠BOD= 3x,AOC=2x,再由∠AOB=120°可得出x的值,进而得出结论.本题考查的是角的计算,熟知角平分线的定义是解答此题的关键.。
山东省德州市宁津县2019-2020学年七年级上学期期末考试数学试题(图片版)
2019-2020学年第一学期末七年级教学质量检测数学试题参考答案及评分标准一、选择题(每小题4分,共48分)1、B2、D3、A4、D5、C6、B7、B 8、B 9、A 10、D 11、D 12、B二、(每小题4分,共24分)13、对顶角相等 14、135°15、﹣a+c﹣b 16、﹣17、018、 15三、解答题:(本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤).19、(本题满分8分)解:(1)()×(﹣12)=(﹣3)+(﹣2)+6=1;………………4分(2)﹣14+(﹣2)2﹣|2﹣5|+6×(﹣)=﹣1+4﹣3+3﹣2=1.………………8分20、(本题满分10分)解:(1)去括号,得x﹣7=10﹣4x﹣2,移项,得x+4x=10+7﹣2,合并同类项,得5x=15,解得x=3,………………5分(2)去分母,得2(5x+1)﹣(2x﹣1)=6,去括号,得10x+2﹣2x+1=6,移项,合并同类项,得8x=3,系数化为1,得x=.………………10分21、(本题满分10分)解:(1)∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0; (5)分(2)∵=2x2﹣2x2﹣2+5x2﹣3=5x2﹣5,∴x=﹣时,原式=5x2﹣5=5×(﹣)2﹣5=﹣.………………10分22、(本题满分12分)解:(1)(﹣4)⊕(﹣3)=3×(﹣4)+2×(﹣3)=﹣12﹣6=﹣18;………………6分(2)原式=3×a+2×(3﹣2a)=3a+6﹣4a=﹣a+6.………………12分23、(本题满分12分)解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,………………6分(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.………………12分24、(本题满分12分)解:(1)图中有四个点,线段有=6.(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3(cm),AC=4CD=4×3=12cm;………………6分(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16(cm),②当点E在线段BA的延长线上,由线段的和差,得BE=AB+AE=18+2=20(cm).综上所述:BE的长为16cm或20cm.………………12分25、(本题满分14分)解:(1)8000﹣3000×30%=7910(元)答:王叔叔十月份税后的工资是7910元.………………4分(2)7910×=3955(元)3955﹣3000×80%=1555(元)答:买完手机后还剩下1555元.………………9分(3)设他购买的商品原价是x元.根据题意,得500+300×80%+(x﹣800)×75%=980解得x=1120答:他购买的商品原价是1120元.………………14分评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.。
【精选】2019-2020学年山东省德州五中七年级(上册)期末数学试卷(解析版).doc
2019-2020学年山东省德州五中七年级(上)期末数学试卷一.选择题1.下列说法中正确的个数为()①在同一平面内不相交的两条直线叫做平行线;②平面内经过一点有且只有一条直线与已知直线垂直;③经过一点有且只有一条直线与已知直线平行;④平行同一直线的两直线平行.A.1个B.2个C.3个D.4个2.下列方程是一元一次方程的是()A.+2=5 B.+4=2x C.y2+3y=0 D.9x﹣y=23.下列方程变形正确的是()①3x+6=0变形为x+2=0 ②x+7=5﹣3x变形为4x=﹣2③=3变形为2x=15 ④4x=﹣2变形为x=﹣2.A.①③B.①②③ C.③④D.①②④4.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣5.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①②B.②③C.③④D.①④6.下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是()A.1个B.2个C.3个D.4个7.若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对8.下图是某长方体的展开图,其中错误的是()A.B.C.D.9.下列6个数中,负数出现的频率是()﹣6.1,,﹣(﹣1),(﹣2)2,(﹣2)3,﹣[﹣(﹣3)].A.83.3% B.66.7% C.50% D.33.3%10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A.31,32,64 B.31,62,63 C.31,32,33 D.31,45,46二.填空题11.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.12.已知点A在点B的北偏东62°,则点B在点A的.13.若关于x的方程ax﹣6=2的解为=﹣2,则a=.14.代数式的值等于3,则x=.15.若3a3b5n﹣2与10b3m+n a m﹣1是同类项,则m=,n=.三.解答题16.(2014秋•温州期末)如图,OA的方向是北偏东15°,OB的方向是西偏北50度.(1)若∠AOC=∠AOB,则OC的方向是;(2)OD是OB的反向延长线,OD的方向是;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是;(4)在(1)、(2)、(3)的条件下,∠COE=.17.(2015秋•德州校级期末)解方程(1)2x+1=2﹣x(2)5﹣3(y﹣)=3(3)+1=.18.(2015秋•德州校级期末)有这样一道题:“计算(2x3﹣3xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,试说明理由,并求出这个结果?19.(2015秋•德州校级期末)化简,求值(1)5x2y+{xy﹣[5x2y﹣(7xy2+xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣,y=﹣16.(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.20.(2015秋•德州校级期末)某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.(1)如果参观的学生人数36人,至少应付多少元?(2)如果参观的学生人数为48人,至少应付多少元?(3)如果参观的学生人数为一个两位数(a表示十位上的数字,b表示个位上的数字),用含a、b的代数式表示至少应付给科技馆的总金额.2019-2020学年山东省德州五中七年级(上)期末数学试卷参考答案与试题解析一.选择题1.下列说法中正确的个数为()①在同一平面内不相交的两条直线叫做平行线;②平面内经过一点有且只有一条直线与已知直线垂直;③经过一点有且只有一条直线与已知直线平行;④平行同一直线的两直线平行.A.1个B.2个C.3个D.4个【考点】平行线;垂线.【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【解答】解:①在同一平面内不相交的两条直线叫做平行线是正确的,同一平面内的两条直线不相交即平行.②平面内经过一点有且只有一条直线与已知直线垂直是正确的.③经过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.④满足平行公理的推论,正确.故选C.【点评】熟练掌握公理和概念是解决本题的关键.2.下列方程是一元一次方程的是()A.+2=5 B.+4=2x C.y2+3y=0 D.9x﹣y=2【考点】一元一次方程的定义.【分析】根据一元一次方程的定义进行解答.【解答】解:A、该方程不是整式方程,故本选项错误;B、由原方程得4x﹣7=0,符合一元一次方程的定义,故本选项正确;C、该方程中未知数的最高次数是2,属于一元二次方程,故本选项错误;D、该方程中含有2个未知数,属于二元一次方程,故本选项错误.故选:B.【点评】本题考查了一元一次方程的概念和解法.只含有一个未知数,且未知数的指数是1.3.下列方程变形正确的是()①3x+6=0变形为x+2=0 ②x+7=5﹣3x变形为4x=﹣2③=3变形为2x=15 ④4x=﹣2变形为x=﹣2.A.①③B.①②③ C.③④D.①②④【考点】解一元一次方程.【专题】计算题.【分析】各方程变形得到结果,即可做出判断.【解答】解:①3x+6=0变形为x+2=0,正确;②x+7=5﹣3x变形为4x=﹣2,正确;③=3变形为2x=15,正确;④4x=﹣2变形为x=﹣,错误,则变形正确的是①②③,故选B【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.4.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣【考点】一元一次方程的解.【专题】计算题.【分析】此题用m替换x,解关于m的一元一次方程即可.【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.【点评】本题考查代入消元法解一次方程组,可将4x﹣3m=2和x=m组成方程组求解.5.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①②B.②③C.③④D.①④【考点】多项式;数轴;倒数;整式.【分析】①根据数轴上数的特点解答;②当一个正数大于0小于或等于1时,此解困不成立;③根据整式的概念即可解答;④根据升幂排列的定义解答即可.【解答】解:①在数轴上,原点两旁的两个点所表示的数都是互为相反数,应说成“在数轴上,原点两旁的两个点如果到原点的距离相等,则所表示的数是互为相反数”;②任何正数必定大于它的倒数,1的倒数还是1,所以说法不对;③5ab,,符合整式的定义都是整式,正确;④x2﹣xy+y2是按字母y的升幂排列的多项式,正确.故选C.【点评】本题考查了相反数的概念,倒数的概念,整式的概念、多项式的排列,注意1的倒数还是1.6.下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是()A.1个B.2个C.3个D.4个【考点】垂线段最短;对顶角、邻补角.【分析】根据相关定义对各选项逐一进行判定,即可得出结论.【解答】解:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角,对;②直线延长可能有交点,错;③邻补角的两条角平分线构成一个直角,对;④直线外一点与直线上各点连接的所有线段中,垂线段最短,对.故选C.【点评】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.7.若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对【考点】多项式.【分析】根据三次三项式的定义,可得2+|m|=3,﹣(m+1)≠0,解方程即可.【解答】解:由题意可得,解得m=1.故选B.【点评】本题考查了同学们对多项式的项的系数和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中,所有字母的指数和叫做这个单项式的次数;(3)几个单项式的和叫多项式;(4)多项式中的每个单项式叫做多项式的项;(5)多项式中不含字母的项叫常数项;(6)多项式里次数最高项的次数,叫做这个多项式的次数.8.下图是某长方体的展开图,其中错误的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,D选项可以拼成一个长方体,而C选项,上底面不可能有两个,故不是长方体的展开图.故选C.【点评】解题时勿忘记四棱柱的特征及展开图的各种情形.9.下列6个数中,负数出现的频率是()﹣6.1,,﹣(﹣1),(﹣2)2,(﹣2)3,﹣[﹣(﹣3)].A.83.3% B.66.7% C.50% D.33.3%【考点】频数与频率.【专题】计算题.【分析】判断这6个数中的负数的个数,根据频率公式即可解得.【解答】解:6个数有﹣6.1,﹣|﹣|,(﹣2)3,﹣[﹣(﹣3)]这4个负数,故负数出现的频率为≈66.7%.故选B.【点评】此题考查频率的计算,频率=.10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A.31,32,64 B.31,62,63 C.31,32,33 D.31,45,46【考点】规律型:数字的变化类.【专题】规律型.【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可解出接下来的3个数.【解答】解:依题意得:接下来的三组数为31,62,63.故选B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题11.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.【考点】比较线段的长短.【专题】计算题.【分析】因为BC=AB,AB=9cm,可求出BC的长,从而求出AC的长,又因为D为AC的中点,继而求出答案.【解答】解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.12.已知点A在点B的北偏东62°,则点B在点A的南偏西62°.【考点】方向角.【分析】根据方向角的定义画出图形,利用图形可直接得出结论.【解答】解:如图所示,∵点A在点B的北偏东62°,∴∠KAB=62°.∵AK∥BG,∴∠ABG=∠KAB=62°,∴点B在点A的南偏西62°.故答案为:南偏西62°.【点评】本题考查的是方向角.熟知方向角的定义是解答此题的关键.13.若关于x的方程ax﹣6=2的解为=﹣2,则a=﹣4.【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义,把x=﹣2代入方程中,解关于a的方程即可.【解答】解:把x=﹣2代入方程得:﹣2a﹣6=2解得:a=﹣4.故答案是:﹣4.【点评】主要考查了一元一次方程的解的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.14.代数式的值等于3,则x=﹣7.【考点】解一元一次方程.【分析】根据题意,列出关于x的一元一次方程=3,通过解该方程可以求得x的值.【解答】解:由题意,得=3,去分母,得﹣1﹣x=6,移项,得x=﹣7.故答案为﹣7.【点评】本题考查解一元一次方程的解法;解一元一次方程常见的过程有去分母、去括号、移项、合并同类项、系数化为1等.15.若3a3b5n﹣2与10b3m+n a m﹣1是同类项,则m=4,n= 3.5.【考点】解一元一次方程;同类项.【专题】计算题.【分析】利用同类项的定义列出关于m与n的方程,求出方程的解即可得到m与n的值.【解答】解:根据题意得:3m+n=5n﹣2,m﹣1=3,解得:m=4,n=3.5.故答案为:4;3.5【点评】此题考查了解一元一次方程,以及同类项,熟练掌握同类项的定义是解本题的关键.三.解答题16.(2014秋•温州期末)如图,OA的方向是北偏东15°,OB的方向是西偏北50度.(1)若∠AOC=∠AOB,则OC的方向是北偏东70°;(2)OD是OB的反向延长线,OD的方向是南偏东40°;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是南偏西50°;(4)在(1)、(2)、(3)的条件下,∠COE=160°.【考点】方向角.【分析】根据方位角的概念,即可求解.【解答】解:(1)∠AOC=∠AOB=90°﹣50°+15°=55°,OC的方向是北偏东15°+55°=70°;(2)OD是OB的反向延长线,OD的方向是南偏东40°;(3)OE是∠BOD的平分线,∠BOE=90°;OE的方向是南偏西50°;(4)∠COE=90°+50°+20°=160°.【点评】解答此题的关键是画图并正确画出方位角,再结合各角的互余互补关系求解.17.(2015秋•德州校级期末)解方程(1)2x+1=2﹣x(2)5﹣3(y﹣)=3(3)+1=.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把y系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)移项合并得:3x=1,解得:x=;(2)去括号得:5﹣3y+1=3,移项合并得:﹣3y=﹣3,解得:y=1;(3)去分母得:8y﹣4+12=3y+6,移项合并得:5y=﹣2,解得:y=﹣0.4.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.18.(2015秋•德州校级期末)有这样一道题:“计算(2x3﹣3xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,试说明理由,并求出这个结果?【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到结果,即可作出判断.【解答】解:原式=2x3﹣3xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵原式的值与x的值无关,∴把x=错写为x=﹣时,原式的值不变;当y=﹣1时,原式=﹣2×(﹣1)3=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2015秋•德州校级期末)化简,求值(1)5x2y+{xy﹣[5x2y﹣(7xy2+xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣,y=﹣16.(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.【考点】整式的加减—化简求值.【分析】(1)首先利用整式的加减将原式化简后代入两个未知数的值即可求解;(2)首先将最后代数式化简为3A﹣4B,然后将A、B的值代入得到代数式,从而根据|x|=3,y2=16得到两个未知数的值求得代数式的值;(3)将代数式化简后整体代入即可求解.【解答】解:(1)原式=xy﹣4x2y,当x=﹣,y=﹣16时,原式=6(2)先化简4A+[(2A﹣B)﹣3(A+B)]=3A﹣4B,把A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2代入3A﹣4B=18xy.由条件又知x=3,y=﹣4或x=﹣3,y=4,所求值均为﹣216.(3)原式=(m﹣3n)2+3+3n﹣m=(m﹣3n)2+﹣(m﹣3n)+3,由m﹣3n+4=0可知,m﹣3n=﹣4,故原式=(﹣4)2﹣(﹣4)+3=23.【点评】本题考查了整式的加减﹣化简求值的知识,解题的关键是能够将代数式利用整式的加减的运算法则进行正确的运算,难度不大.20.(2015秋•德州校级期末)某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.(1)如果参观的学生人数36人,至少应付多少元?(2)如果参观的学生人数为48人,至少应付多少元?(3)如果参观的学生人数为一个两位数(a表示十位上的数字,b表示个位上的数字),用含a、b的代数式表示至少应付给科技馆的总金额.【考点】列代数式;有理数的混合运算.【专题】优选方案问题.【分析】(1)若参观的学生人数36人,则应买3张团体票,买6张个人票.(2)参观的学生人数为48人,分两种情况进行计算,买5张团体票应付225元,买4张团体票,8张个人票应付228元,故至少应付225元.(3)应分类讨论,当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.【解答】解:(1)若参观的学生人数36人,则应付费用:3×45+6×6=171(元)(2)参观的学生人数为48人,如买4张团体,8张个人票,应付:4×45+6×8=228(元),若买5张团体票,应付:5×45=225<228,∴至少付225元.(3)当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.【点评】本题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达,作出最优选择.。
2019-2020学年七年级(上)期末考试数学试卷(解析版)
2019-2020学年七年级(上)期末考试数学试卷一、选择题(每小题3分,共30分)1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.32.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是()A.每名学生是总体的一个个体B.样本容量是500C.样本是500名学生D.该校一定有1000名学生近视7.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.48.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣310.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825二、填空题(每小题3分,共15分)11.比较大小:1 ﹣2(填“>,<或=”)12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了元.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.17.(5分)解方程:﹣=1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?参考答案一、选择题1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.3【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.解:1+(﹣2)=﹣(2﹣1)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟练掌握有理数的加法法则是解题的关键.2.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.【分析】直接利用相反数的定义分析得出答案.解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.【分析】熟悉立体图形的基本概念和特性即可解.解:圆柱的上下底面都是圆,所以正确的是D.故选D.【点评】熟记常见圆柱体的特征,是解决此类问题的关键.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.上升﹣3℃的意义是下降3℃.解:温度先上升6℃,再上升﹣3℃的意义是温度先上升6℃,再下降3℃.故选:C.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)【分析】根据除以一个不等于0的数,等于乘这个数的倒数可得.解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D .【点评】本题主要考查有理数的除法,解题的关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是( )A .每名学生是总体的一个个体B .样本容量是500C .样本是500名学生D .该校一定有1000名学生近视【分析】根据总体,样本,个体,样本容量的定义写出即可.解:A .每名学生的视力情况是总体的一个个体,此选项错误;B .样本容量是500,此选项正确;C .样本是500名学生的视力情况,此选项错误;D .该校大约有800名学生近视,此选项错误;故选:B .【点评】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.7.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【分析】利用绝对值的代数意义求出a 的值即可.解:若a 为有理数,且|a |=2,那么a 是2或﹣2,故选:C.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.(3分)某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 【分析】由总价=单价×数量,可用含a,b的代数式表示出需付金额,此题得解.解:依题意,需付(100a+50b)元.故选:A.【点评】本题考查了列代数式,根据数量之间的关系,利用含a,b的代数式表示出需付总金额是解题的关键.9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣3【分析】根据多项式、单项式、系数、常数项的定义分别进行判断,即可求出答案.解:A.多项式x2+2x2y+1是三次三项式,此选项错误;B.单项式2x2y的次数是3,此选项错误;C.0是单项式,此选项正确;D.单项式﹣3πx2y的系数是﹣3π,此选项错误;故选:C.【点评】此题考查了多项式、单项式;把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.二、填空题(每小题3分,共15分)11.比较大小:1 >﹣2(填“>,<或=”)【分析】根据有理数的大小比较法则比较即可.解:∵负数都小于正数,∴1>﹣2,故答案为:>.【点评】本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2 .【分析】根据有理数的运算法则即可求出答案.解:原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.【点评】本题考查有理数的运算,解题的关键熟练运用有理数的运算法则,本题属于基础题型.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为 1.94×1010.【分析】根据科学记数法的表示方法:a×10n,可得答案.解:19400000000用科学记数法表示为:1.94×1010,故答案为:1.94×1010.【点评】本题考查了科学记数法,确定n的值是解题关键,n是整数数位减1.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是9 千克.【分析】设△的质量为xkg,□的质量为ykg,根据图示,列出关于x和y的二元一次方程组,解之即可.解:设△的质量为xkg,□的质量为ykg,根据题意得:,解得:,即□的质量为9kg.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了383.5 元.【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.解:132+(﹣12.5)+(﹣10.5)+127+(﹣87)+136.5+98=132﹣12.5﹣10.5+127﹣87+136.5+98=132+98+127﹣87+136.5﹣12.5﹣10.5=230+40+113.5=383.5;答:这一周食品店的盈余了383.5元.故答案为:383.5.【点评】此题主要考查了正数和负数及有理数加法在实际生活中的应用,解题的关键是熟练掌握有理数的加法法则.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.【分析】根据有理数的乘除法和加减法可以解答本题.解:﹣32﹣(﹣2)3+4÷2×2=﹣9﹣(﹣8)+4=﹣9+8+4=3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(5分)解方程:﹣=1.【分析】依次去分母、去括号、移项、合并同类项、系数化为1可得.解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:原式=3m2n﹣3mn﹣6m2n+4mn=﹣3m2n+mn,当m=1,n=2时,原式=﹣3×12×2+1×2=﹣6+2=﹣4.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?【分析】设x小时后两车相距30km,根据相距30km有两种情况分别列出方程求出即可.解:设x小时后两车相距30km,根据题意,得:(80+70)x=480﹣30或(80+70)x=480+30,解得:x=3或.答:3小时或小时后两车相距30km.【点评】此题主要考查了一元一次方程的应用,根据两车相距30km分类讨论得出是解题关键.20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了200 名学生;(2)被调查的学生中,最喜爱丁类图书的有15 人,最喜爱甲类图书的人数占本次被调查人数的40 %;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.解:(1)共调查的学生数:40÷20%=200(人);故答案为:50;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为:15,40;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠DOM为∠DON的余角.解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,∵∠AON+∠BOM=90°,∠DOM=∠MOB,∴∠AON+∠DOM=90°,∴∠NOD+∠BOM=90°,故∠DON的余角为:∠DOM,∠BOM.【点评】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.【分析】(1)根据直线、射线及线段的定义作图可得;(2)结合图形,依据点与直线的位置关系和直线与直线的位置关系逐一判断即可得.解:(1)如图所示:(2)由图知,①点C在直线AB外;②点E在直线CD上;③直线AB与直线CD相交.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握直线、射线及线段的定义和点与直线、直线与直线的位置关系.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.。
2019-2020学年七年级上学期期末考试数学试卷(解析版)
2019-2020学年七年级上学期期末考试数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣33.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b4.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解5.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是()A.35°B.55°C.70°D.110°6.运用等式性质的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果,那么a=bC.如果a=b,那么D.如果a=3,那么a2=3a27.有理数a,b在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+b>0C.|a|>|b|D.ab>08.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.1009.在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.10.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.11.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上12.如图,△AOB中,∠B=30°.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.22°B.52°C.60°D.82°13.有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m+10=43m﹣1;②=;③=;④40m+10=43m+1.其中正确的是()A.①②B.②④C.②③D.③④14.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+1二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.单项式﹣xy2的系数是.16.a的3倍与b的差的平方,用代数式表示为.17.计算:15°37′+42°51′=.18.如图,是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2时,则输出的结果为.19.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.20.在排成每行七天的日历表中取下一个3×3的方块(如图所示).若所有日期数之和为189,则n的值为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)计算:(1)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2](2)a﹣(5a﹣2b)﹣2(a﹣3b)22.(10分)解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).23.(10分)如图所示.(1)阴影部分的周长是;(2)阴影部分的面积是;(3)当x=5.5,y=4时,阴影部分的周长是多少?面积是多少?24.(10分)已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)(1)化简此多项式;(2)小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?25.(10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?26.(10分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选:C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选:B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选:D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.4.【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.5.【分析】利用角平分线的定义和补角的定义求解.【解答】解:OE平分∠COB,若∠EOB=55°,∴∠BOC=55+55=110°,∴∠BOD=180﹣110=70°.故选:C.【点评】本题考查了角平分线和补角的定义.6.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立;C、不成立,因为c必需不为0;D、因为a2=9,3a2=27,所以a2≠3a2;故选:B.【点评】主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.【分析】根据图示,可得:﹣4<a<﹣3,1<b<2,据此逐项判断即可.【解答】解:根据图示,可得:﹣4<a<﹣3,1<b<2,﹣4<a<﹣3,选项A不符合题意;∵﹣4<a<﹣3,1<b<2,∴a+b<0,选项B不符合题意;∴|a|>|b|,选项C符合题意;∵a<0,b>0,∴ab<0,选项D不符合题意.故选:C.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.9.【分析】根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,绕O点顺时针旋转90°得到的图形是.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.10.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.11.【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB上.12.【分析】根据旋转变换的性质可得∠B′=∠B,因为△AOB绕点O顺时针旋转52°,所以∠BOB′=52°,而∠A'CO是△B′OC的外角,所以∠A′CO=∠B′+∠BOB′,然后代入数据进行计算即可得解.【解答】解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选:D.【点评】本题考查的是图形的旋转及三角形外角与内角的关系,图形旋转角即为原三角形的一边与形成新三角形后该对应边的夹角.13.【分析】有m辆校车及n个学生,则无论怎么分配,校车和学生的个数是不变的,据此列方程即可.【解答】解:根据学生数不变可得:40m+10=43m+1,故④正确;根据校车数不变可得:=,故③正确.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.16.【分析】先算差,再算平方.【解答】解:所求代数式为:(3a﹣b)2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意抓住关键词,找到相应的运算顺序.17.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.18.【分析】首先根据已知一个数值转换机的示意图,逐步列出代数式并化简,最后表示出输出的结果的代数式,然后代入求值.【解答】解:根据已知一个数值转换机的示意图可得x×2=2x,(y)3=y3,(2x+y3)÷2=x+,把x=3,y=﹣2代入得3+×(﹣2)3=3+(﹣4)=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值问题的理解和掌握.关键是首先根据示意图正确列出代数式,再代入求值.19.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.20.【分析】根据日历表中的数据列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:n﹣8+n﹣7+n﹣6+n﹣1+n+n+1+n+6+n+7+n+8=189,解得:n=21,则n的值为21,故答案为:21【点评】此题考查了一元一次方程的应用,弄清日历时候数据的规律是解本题的关键.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣;(2)a﹣(5a﹣2b)﹣2(a﹣3b)=a﹣5a+2b﹣2a+6b=﹣6a+8b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【分析】(1)阴影部分的周长等于各边长的和,将各边长相加即可;(2)阴影部分的面积等于大长方形的面积减去小长方形的面积;(3)将x=5.5,y=4代入(1)(2)即可.【解答】解:(1)阴影部分的周长:y+2y+y+y+2x+2x=4x+6y,故答案为4x+6y;(2)阴影部分的面积2x•2y﹣y•(2x﹣x﹣0.5x)=3.5xy,故答案为3.5xy;(3)当x=5.5,y=4时,阴影部分的周长为4x+6y=4×5.5+6×4=46,阴影部分的面积为3.5xy=3.5×5.5×4=77.【点评】本题考查了代数式的值,正确列出代数式是解题的关键.24.【分析】(1)原式去括号合并即可得到结果;(2)由x,y互为倒数,得到xy=1,原式整理后即可求出y的值.【解答】解:(1)3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)=3x2+6(y2+xy﹣2)﹣3x2﹣6y2﹣4xy+4x+4=3x2+6y2+6xy﹣12﹣3x2﹣6y2﹣4xy+4x+4=2xy+4x﹣8;(2)∵x,y互为倒数,∴xy=1,∴2xy+4x﹣8=4x﹣6=0,解得:x=,则y=.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.25.【分析】(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m.根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50y=或者60×y+50﹣60×y=400,解得y=.答:爸爸第一次追上小明后,在第二次相遇前,再经过或分钟,小明和爸爸相距50m.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.26.【分析】(1)MN的长为3﹣(﹣1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【解答】解:(1)MN的长为3﹣(﹣1)=4.(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,PN+PM=8,不合题意.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5.(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.【点评】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.。
【推荐】2019-2020学年山东省德州五中七年级(上册)期末数学试卷(解析版).doc
2019-2020学年山东省德州五中七年级(上)期末数学试卷一.选择题1.下列说法中正确的个数为()①在同一平面内不相交的两条直线叫做平行线;②平面内经过一点有且只有一条直线与已知直线垂直;③经过一点有且只有一条直线与已知直线平行;④平行同一直线的两直线平行.A.1个B.2个C.3个D.4个2.下列方程是一元一次方程的是()A.+2=5 B.+4=2x C.y2+3y=0 D.9x﹣y=23.下列方程变形正确的是()①3x+6=0变形为x+2=0 ②x+7=5﹣3x变形为4x=﹣2③=3变形为2x=15 ④4x=﹣2变形为x=﹣2.A.①③B.①②③ C.③④D.①②④4.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣5.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①②B.②③C.③④D.①④6.下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是()A.1个B.2个C.3个D.4个7.若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对8.下图是某长方体的展开图,其中错误的是()A.B.C.D.9.下列6个数中,负数出现的频率是()﹣6.1,,﹣(﹣1),(﹣2)2,(﹣2)3,﹣[﹣(﹣3)].A.83.3% B.66.7% C.50% D.33.3%10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A.31,32,64 B.31,62,63 C.31,32,33 D.31,45,46二.填空题11.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.12.已知点A在点B的北偏东62°,则点B在点A的.13.若关于x的方程ax﹣6=2的解为=﹣2,则a=.14.代数式的值等于3,则x=.15.若3a3b5n﹣2与10b3m+n a m﹣1是同类项,则m=,n=.三.解答题16.(2014秋•温州期末)如图,OA的方向是北偏东15°,OB的方向是西偏北50度.(1)若∠AOC=∠AOB,则OC的方向是;(2)OD是OB的反向延长线,OD的方向是;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是;(4)在(1)、(2)、(3)的条件下,∠COE=.17.(2015秋•德州校级期末)解方程(1)2x+1=2﹣x(2)5﹣3(y﹣)=3(3)+1=.18.(2015秋•德州校级期末)有这样一道题:“计算(2x3﹣3xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,试说明理由,并求出这个结果?19.(2015秋•德州校级期末)化简,求值(1)5x2y+{xy﹣[5x2y﹣(7xy2+xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣,y=﹣16.(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.20.(2015秋•德州校级期末)某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.(1)如果参观的学生人数36人,至少应付多少元?(2)如果参观的学生人数为48人,至少应付多少元?(3)如果参观的学生人数为一个两位数(a表示十位上的数字,b表示个位上的数字),用含a、b 的代数式表示至少应付给科技馆的总金额.2019-2020学年山东省德州五中七年级(上)期末数学试卷参考答案与试题解析一.选择题1.下列说法中正确的个数为()①在同一平面内不相交的两条直线叫做平行线;②平面内经过一点有且只有一条直线与已知直线垂直;③经过一点有且只有一条直线与已知直线平行;④平行同一直线的两直线平行.A.1个B.2个C.3个D.4个【考点】平行线;垂线.【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【解答】解:①在同一平面内不相交的两条直线叫做平行线是正确的,同一平面内的两条直线不相交即平行.②平面内经过一点有且只有一条直线与已知直线垂直是正确的.③经过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.④满足平行公理的推论,正确.故选C.【点评】熟练掌握公理和概念是解决本题的关键.2.下列方程是一元一次方程的是()A.+2=5 B.+4=2x C.y2+3y=0 D.9x﹣y=2【考点】一元一次方程的定义.【分析】根据一元一次方程的定义进行解答.【解答】解:A、该方程不是整式方程,故本选项错误;B、由原方程得4x﹣7=0,符合一元一次方程的定义,故本选项正确;C、该方程中未知数的最高次数是2,属于一元二次方程,故本选项错误;D、该方程中含有2个未知数,属于二元一次方程,故本选项错误.故选:B.【点评】本题考查了一元一次方程的概念和解法.只含有一个未知数,且未知数的指数是1.3.下列方程变形正确的是()①3x+6=0变形为x+2=0 ②x+7=5﹣3x变形为4x=﹣2③=3变形为2x=15 ④4x=﹣2变形为x=﹣2.A.①③B.①②③ C.③④D.①②④【考点】解一元一次方程.【专题】计算题.【分析】各方程变形得到结果,即可做出判断.【解答】解:①3x+6=0变形为x+2=0,正确;②x+7=5﹣3x变形为4x=﹣2,正确;③=3变形为2x=15,正确;④4x=﹣2变形为x=﹣,错误,则变形正确的是①②③,故选B【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.4.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣【考点】一元一次方程的解.【专题】计算题.【分析】此题用m替换x,解关于m的一元一次方程即可.【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.【点评】本题考查代入消元法解一次方程组,可将4x﹣3m=2和x=m组成方程组求解.5.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①②B.②③C.③④D.①④【考点】多项式;数轴;倒数;整式.【分析】①根据数轴上数的特点解答;②当一个正数大于0小于或等于1时,此解困不成立;③根据整式的概念即可解答;④根据升幂排列的定义解答即可.【解答】解:①在数轴上,原点两旁的两个点所表示的数都是互为相反数,应说成“在数轴上,原点两旁的两个点如果到原点的距离相等,则所表示的数是互为相反数”;②任何正数必定大于它的倒数,1的倒数还是1,所以说法不对;③5ab,,符合整式的定义都是整式,正确;④x2﹣xy+y2是按字母y的升幂排列的多项式,正确.故选C.【点评】本题考查了相反数的概念,倒数的概念,整式的概念、多项式的排列,注意1的倒数还是1.6.下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是()A.1个B.2个C.3个D.4个【考点】垂线段最短;对顶角、邻补角.【分析】根据相关定义对各选项逐一进行判定,即可得出结论.【解答】解:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角,对;②直线延长可能有交点,错;③邻补角的两条角平分线构成一个直角,对;④直线外一点与直线上各点连接的所有线段中,垂线段最短,对.故选C.【点评】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.7.若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对【考点】多项式.【分析】根据三次三项式的定义,可得2+|m|=3,﹣(m+1)≠0,解方程即可.【解答】解:由题意可得,解得m=1.故选B.【点评】本题考查了同学们对多项式的项的系数和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中,所有字母的指数和叫做这个单项式的次数;(3)几个单项式的和叫多项式;(4)多项式中的每个单项式叫做多项式的项;(5)多项式中不含字母的项叫常数项;(6)多项式里次数最高项的次数,叫做这个多项式的次数.8.下图是某长方体的展开图,其中错误的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,D选项可以拼成一个长方体,而C选项,上底面不可能有两个,故不是长方体的展开图.故选C.【点评】解题时勿忘记四棱柱的特征及展开图的各种情形.9.下列6个数中,负数出现的频率是()﹣6.1,,﹣(﹣1),(﹣2)2,(﹣2)3,﹣[﹣(﹣3)].A.83.3% B.66.7% C.50% D.33.3%【考点】频数与频率.【专题】计算题.【分析】判断这6个数中的负数的个数,根据频率公式即可解得.【解答】解:6个数有﹣6.1,﹣|﹣|,(﹣2)3,﹣[﹣(﹣3)]这4个负数,故负数出现的频率为≈66.7%.故选B.【点评】此题考查频率的计算,频率=.10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A.31,32,64 B.31,62,63 C.31,32,33 D.31,45,46【考点】规律型:数字的变化类.【专题】规律型.【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可解出接下来的3个数.【解答】解:依题意得:接下来的三组数为31,62,63.故选B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题11.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.【考点】比较线段的长短.【专题】计算题.【分析】因为BC=AB,AB=9cm,可求出BC的长,从而求出AC的长,又因为D为AC的中点,继而求出答案.【解答】解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.12.已知点A在点B的北偏东62°,则点B在点A的南偏西62°.【考点】方向角.【分析】根据方向角的定义画出图形,利用图形可直接得出结论.【解答】解:如图所示,∵点A在点B的北偏东62°,∴∠KAB=62°.∵AK∥BG,∴∠ABG=∠KAB=62°,∴点B在点A的南偏西62°.故答案为:南偏西62°.【点评】本题考查的是方向角.熟知方向角的定义是解答此题的关键.13.若关于x的方程ax﹣6=2的解为=﹣2,则a=﹣4.【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义,把x=﹣2代入方程中,解关于a的方程即可.【解答】解:把x=﹣2代入方程得:﹣2a﹣6=2解得:a=﹣4.故答案是:﹣4.【点评】主要考查了一元一次方程的解的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.14.代数式的值等于3,则x=﹣7.【考点】解一元一次方程.【分析】根据题意,列出关于x的一元一次方程=3,通过解该方程可以求得x的值.【解答】解:由题意,得=3,去分母,得﹣1﹣x=6,移项,得x=﹣7.故答案为﹣7.【点评】本题考查解一元一次方程的解法;解一元一次方程常见的过程有去分母、去括号、移项、合并同类项、系数化为1等.15.若3a3b5n﹣2与10b3m+n a m﹣1是同类项,则m=4,n= 3.5.【考点】解一元一次方程;同类项.【专题】计算题.【分析】利用同类项的定义列出关于m与n的方程,求出方程的解即可得到m与n的值.【解答】解:根据题意得:3m+n=5n﹣2,m﹣1=3,解得:m=4,n=3.5.故答案为:4;3.5【点评】此题考查了解一元一次方程,以及同类项,熟练掌握同类项的定义是解本题的关键.三.解答题16.(2014秋•温州期末)如图,OA的方向是北偏东15°,OB的方向是西偏北50度.(1)若∠AOC=∠AOB,则OC的方向是北偏东70°;(2)OD是OB的反向延长线,OD的方向是南偏东40°;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是南偏西50°;(4)在(1)、(2)、(3)的条件下,∠COE=160°.【考点】方向角.【分析】根据方位角的概念,即可求解.【解答】解:(1)∠AOC=∠AOB=90°﹣50°+15°=55°,OC的方向是北偏东15°+55°=70°;(2)OD是OB的反向延长线,OD的方向是南偏东40°;(3)OE是∠BOD的平分线,∠BOE=90°;OE的方向是南偏西50°;(4)∠COE=90°+50°+20°=160°.【点评】解答此题的关键是画图并正确画出方位角,再结合各角的互余互补关系求解.17.(2015秋•德州校级期末)解方程(1)2x+1=2﹣x(2)5﹣3(y﹣)=3(3)+1=.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把y系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)移项合并得:3x=1,解得:x=;(2)去括号得:5﹣3y+1=3,移项合并得:﹣3y=﹣3,解得:y=1;(3)去分母得:8y﹣4+12=3y+6,移项合并得:5y=﹣2,解得:y=﹣0.4.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.18.(2015秋•德州校级期末)有这样一道题:“计算(2x3﹣3xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,试说明理由,并求出这个结果?【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到结果,即可作出判断.【解答】解:原式=2x3﹣3xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵原式的值与x的值无关,∴把x=错写为x=﹣时,原式的值不变;当y=﹣1时,原式=﹣2×(﹣1)3=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2015秋•德州校级期末)化简,求值(1)5x2y+{xy﹣[5x2y﹣(7xy2+xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣,y=﹣16.(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.【考点】整式的加减—化简求值.【分析】(1)首先利用整式的加减将原式化简后代入两个未知数的值即可求解;(2)首先将最后代数式化简为3A﹣4B,然后将A、B的值代入得到代数式,从而根据|x|=3,y2=16得到两个未知数的值求得代数式的值;(3)将代数式化简后整体代入即可求解.【解答】解:(1)原式=xy﹣4x2y,当x=﹣,y=﹣16时,原式=6(2)先化简4A+[(2A﹣B)﹣3(A+B)]=3A﹣4B,把A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2代入3A﹣4B=18xy.由条件又知x=3,y=﹣4或x=﹣3,y=4,所求值均为﹣216.(3)原式=(m﹣3n)2+3+3n﹣m=(m﹣3n)2+﹣(m﹣3n)+3,由m﹣3n+4=0可知,m﹣3n=﹣4,故原式=(﹣4)2﹣(﹣4)+3=23.【点评】本题考查了整式的加减﹣化简求值的知识,解题的关键是能够将代数式利用整式的加减的运算法则进行正确的运算,难度不大.20.(2015秋•德州校级期末)某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.(1)如果参观的学生人数36人,至少应付多少元?(2)如果参观的学生人数为48人,至少应付多少元?(3)如果参观的学生人数为一个两位数(a表示十位上的数字,b表示个位上的数字),用含a、b 的代数式表示至少应付给科技馆的总金额.【考点】列代数式;有理数的混合运算.【专题】优选方案问题.【分析】(1)若参观的学生人数36人,则应买3张团体票,买6张个人票.(2)参观的学生人数为48人,分两种情况进行计算,买5张团体票应付225元,买4张团体票,8张个人票应付228元,故至少应付225元.(3)应分类讨论,当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.【解答】解:(1)若参观的学生人数36人,则应付费用:3×45+6×6=171(元)(2)参观的学生人数为48人,如买4张团体,8张个人票,应付:4×45+6×8=228(元),若买5张团体票,应付:5×45=225<228,∴至少付225元.(3)当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.【点评】本题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达,作出最优选择.。
2019-2020学年度七年级数学上学期期末考试试卷附解答
2019-2020学年度七年级数学上学期期末考试试卷一、选择题(本大题共小10题,每小题3分,共30分) 1.-5的相反数是( )A .-15B .15C .-5D .5 2.单项式-3ab 的系数和次数分别是( )A .一3、2B .-3、1C .2、-3D .3、23.下列说法正确的是( )A .符号相反的数互为相反数B .一个数的绝对值越大,表示它的点在数轴上越靠右C .a 总是大于0D .一个数的绝对值越大,表示它的点在数轴上离原点越远 4.用四舍五入法对2.098176取近似值,其中正确的是( )A .2.0(精确到0.01)B .2.098(精确到千分位)C .2.0(精确到十分位)D .2.0981(精确到0.0001) 5.如图,已知点O 在直线AB 上,∠BOC =90°,则∠AOE 的余角是( )A .∠COEB .∠BOC C .∠BOED .∠AOE6.如图所示是一种包装盒的展开图,厂家准备在包装盒的两个对面都印上醒目的产品商标图案(用图中的○R 表示),则印有商标图案的另一个面为( )A .AB .BC .DD .E7.如图,C 是AB 的中点,D 是BC 的中点,下列等式不正确的是( )A .CD =AD -BCB .CD =AC -DBC .CD =13AB D .CD =12AB -DB8.几个人共同种一批树苗,如果每人种10棵,则剩下6颗树苗未种;如果每人种12颗,则缺6树苗,若设参与种树的有x 人,则可列方程为( ) A .10x -6=12x +6 B .10x +6=12x -6 C .10+6x =12-6x D .10x +6=12-69.有一列数a 1,a 2,…a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2019等于( )A .2019B .2C .-1D .1210.如图,线段CD 在线段AB 上,且CD =2,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .31 二、填空题(本大题共6小题,每小题3分,共18分)11.2018年12月7日,DC 漫画公司出品的电影《海王》在大陆上映,上映后不到十天,电影票房就突破了10亿,请将数据10亿用科学计数法表示为 . 12.已知一个角为53°17′,则它的补角为 .13.若2x m -1+6=0是关于x 的一元一次方程,则m 的值为 . 14.如图,将三角形ABC 纸片沿MN 折叠,使点A 落在点A ʹ处,若∠A ʹMB =50°,则∠AMN 度.CEA B®ED C BAAC DB ACDB15.己知多式x -3y -1的值为3,则代数式1-12x +32y 的值为 . 16.已知线段AB =20,点C 在BA 的延长线上,点D 在直线AB 上,AC =12,BD =16,点M 是线段CD的中点,则AM 的长为 . 三、解答题(本大题共8小题,共72分) 17.计算:(1) (8分)(1)12-(-18)+(-7)+(-15) (2)-23÷49×(-23)218.(8分)解方程322x +-1=214x --215x +19.(8分) 先化简,再求值:5(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =12、b =13.20.(8分) 如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.(1)若∠AOB =40°,∠DOE =30°,求∠BOD 的度数; (2)若∠AOD 与∠BOD 互补,且∠DOE =35°,求∠AOC 的度数.C MBA A'NCEDBO21.(8分) 下列两个式:2-13=2×13+1,5-23=5×23+1.给出定义如下:我们称使等式a-b=ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b),数对(2,13),和(5,23)都是“共生有理数对”.(1)数对(-2,1)和(3,12)中是“共生有理数对”的是;(2)若(a,-52)是“共生有理数对”,求a的值.22.(10分) 某校七年级(1)班想买一些运动器材供班上同学阳光体育课使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!(1)根据这段对话,你能算出蓝球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐:①套装打折:五个篮球和五个排球为一套装,套装打八折;②满减活动:999减100,1990减200;两种活动不重复参与,学校打算买15个篮球,至少13个排球作为奖品,请问如何安排更划算,此时花费多少钱?23.(10分) 如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出+AP OBEF的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP-mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.A BOA BO备用图24.(12分) 如图1,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC ,∠COE =140°,将一直角三角板AOB 的直角顶点放在点O 处,一条直角边OA 在射线OD 上,另一边OB 在直线DE 上方,将直角三角板绕着点O 按每秒10°的速度逆时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到如图2的位置时,OA 恰好平分∠COD ,求此时∠BOC 的度数;(2)若射线OC 的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA 、OC 、OD 中的某 一条射线是另两条射线所成夹角的角平分线?若存在,请求出t 的取值,若不存在,请说明理由; (3)若在三角板开始转动的同时,射线OC 也绕O 点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC 平分∠BO D .直接写出t 的值.(本题中的角均为大于0°且小于180°的角)答案一、选择题(本大题共小10题,每小题3分,共30分) 1.-5的相反数是( )A .-15B .15C .-5D .5{答案}D .2.单项式-3ab 的系数和次数分别是( )A .一3、2B .-3、1C .2、-3D .3、2{答案}A .3.下列说法正确的是( )A .符号相反的数互为相反数B .一个数的绝对值越大,表示它的点在数轴上越靠右C .a 总是大于0D .一个数的绝对值越大,表示它的点在数轴上离原点越远 {答案}D .4.用四舍五入法对2.098176取近似值,其中正确的是( )A .2.0(精确到0.01)B .2.098(精确到千分位)C .2.0(精确到十分位)D .2.0981(精确到0.0001) {答案}B .5.如图,已知点O 在直线AB 上,∠BOC =90°,则∠AOE 的余角是( )A .∠COEB .∠BOC C .∠BOED .∠AOE {答案}A .6.如图所示是一种包装盒的展开图,厂家准备在包装盒的两个对面都印上醒目的产品商标图案(用图中的○R 表示),则印有商标图案的另一个面为( ) B EDC 图1OED C AB图2CEA BA .AB .BC .D D .E{答案}D .7.如图,C 是AB 的中点,D 是BC 的中点,下列等式不正确的是( )A .CD =AD -BCB .CD =AC -DBC .CD =13ABD .CD =12AB -DB {答案}C .8.几个人共同种一批树苗,如果每人种10棵,则剩下6颗树苗未种;如果每人种12颗,则缺6树苗,若设参与种树的有x 人,则可列方程为( ) A .10x -6=12x +6 B .10x +6=12x -6 C .10+6x =12-6x D .10x +6=12-6 {答案}B .9.有一列数a 1,a 2,…a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2019等于( )A .2019B .2C .-1D .12{答案}C .{解析}a 1=2,a 2=1-12=12,a 3=1-2=-1,a 4=1-(-1)=2,结果是2、12、-1循环,2019是3的整数倍. 故选C .10.如图,线段CD 在线段AB 上,且CD =2,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .31 {答案}B .{解析}图中以A ,B ,C ,D 这四点中任意两点为端点的线段有AC 、AD 、AB 、CD 、CB 、DB 共6条, ∴AC +AD +AB +CD +CB +DB =3AB +CD =3AB +2,∵线段AB 的长度是一个正整数,∴这个数只能比3的整数倍大2. 故选B .二、填空题(本大题共6小题,每小题3分,共18分)11.2018年12月7日,DC 漫画公司出品的电影《海王》在大陆上映,上映后不到十天,电影票房就突破了10亿,请将数据10亿用科学计数法表示为 . {答案}1×10912.已知一个角为53°17′,则它的补角为 . {答案}126°43′13.若2x m -1+6=0是关于x 的一元一次方程,则m 的值为 . {答案}2 14.如图,将三角形ABC 纸片沿MN 折叠,使点A 落在点A ʹ处,若∠A ʹMB =50°,则∠AMN 度.{答案}65°®E D C BA AC DACDB C MBAA'N15.己知多式x -3y -1的值为3,则代数式1-12x +32y 的值为 . {答案}-1{解析}由x -3y -1=3得x -3y =4,∴1-12x +32y =1-32x y +=1-2=-1. 16.已知线段AB =20,点C 在BA 的延长线上,点D 在直线AB 上,AC =12,BD =16,点M 是线段CD的中点,则AM 的长为 . {答案}4或12{解析}本题有两种情况:D 在线段AB 上或D 在AB 的延长线上如图:当D 在线段AB 上时,CD =16,AM =4;当D 在AB 的延长线上时,CD =48,AM =12. 三、解答题(本大题共8小题,共72分) 17.计算:(1) (8分)(1)12-(-18)+(-7)+(-15) (2)-23÷49×(-23)2 {答案}(1)原式=8 (2) 原式=-818.(8分)解方程322x +-1=214x --215x +{答案}去分母:10(3x +2)-20=5(2x -1)-4(2x +1) 去括号:30x +20-20=10x -5-8x -4 移项:30x -10x +8x =-5-4 合并同类项:28x =-9 系数化为1:x =-92819.(8分) 先化简,再求值:5(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =12、b =13. {答案}原式=15a 2b -5ab 2-ab 2-3a 2b =12a 2b -6ab 2当a =12,b =13时,原式=12×(12)2×13-6×12×(13)2=23.20.(8分) 如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.(1)若∠AOB =40°,∠DOE =30°,求∠BOD 的度数; (2)若∠AOD 与∠BOD 互补,且∠DOE =35°,求∠AOC 的度数.{答案}(1)因为OB 平分∠AOC ,OD 平分∠COE 所以∠AOB =∠BOC ,∠COD =∠DOE又因为∠AOB =40°,∠DOE =30°ACD B M A C D BM A CEDB所以∠BOC=40°,∠COD=30°所以∠BOD=∠BOC+∠COD=70°(2)由题意得:∠AOD+∠BOD=180°因为OD平分∠COE,∠DOE=35°所以∠COD=35°设∠AOB=x,则∠AOD=2x+35°,∠BOD=x+35°所以2x+35°+x+35°=180°所以x=110 3°所以∠AOC=2x=220 3°21.(8分) 下列两个式:2-13=2×13+1,5-23=5×23+1.给出定义如下:我们称使等式a-b=ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b),数对(2,13),和(5,23)都是“共生有理数对”.(1)数对(-2,1)和(3,12)中是“共生有理数对”的是;(2)若(a,-52)是“共生有理数对”,求a的值.{答案}(1)(3,1 2 )(2)因为若(a,-52)是“共生有理数对”所以a-(-52)=a×(-52)+1解得:a=-37.22.(10分) 某校七年级(1)班想买一些运动器材供班上同学阳光体育课使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!(1)(2)六一儿童节店里搞活动有两种套餐:①套装打折:五个篮球和五个排球为一套装,套装打八折;②满减活动:999减100,1990减200;两种活动不重复参与,学校打算买15个篮球,至少13个排球作为奖品,请问如何安排更划算,此时花费多少钱?{答案}(1) 设一个篮球的价格为x元,则一个排球的价格为(x-30)元依题意:3x+5(x-30)=600-30解得:x=90答:一个篮球为90元,一个排球为60元(2)若选方案①则有两种选择:班长买2套:5×(90+60)×0.8×2+5×90+3×60=1830元 或者一共买3套:5×(90+60)×0.8×3=1800元 若选方案②:15×90+13×60=2130元>1999所以2130-200=1930元因为1930>1830>1800,所以选择方案①并且买3套最划算 答:选择方案①并且买3套最划算,此时花费1800元 .23.(10分) 如图,点O 为原点,A 、B 为数轴上两点,AB =15,且OA :OB =2:1,点P 从点B 以每秒4个单位的速度向右运动.(1)A 、B 对应的数分别为 、 ;(2)当点P 运动时,分别取BP 的中点E ,AO 的中点F ,请画图,并求出+AP OBEF的值;(3)若当点P 开始运动时,点A 、B 分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m ,使得3AP +2OP -mBP 为定值?若存在,请求出m 的值以及这个定值;若不存在,请说明理由.{答案} (1) -10、5(2)画图如下:解:因为点E 、F 分别为BP 、AO 的中点 所以OF =12AO ,BE =12BP 所以EF =OF +OB +BE =12AO +OB +12BP 所以AP OBEF +=1122AO OB BP OB AO OB PB +++++=21122AO OB BP AO OB BP ++++=2.(或者:设运动时间为t ,则AP =15+4t ,EF =5+5+12×4t =10+2t ,则AP +OB =20+4t =2EF ) (3)设运动时间为t 秒,则点P 对应的数:5+4t ;点A 对应的数:-10+2t ;点B 对应的数:5+5t ; 所以AP =5+4t -(-10+2t )=2t +15;OP =5+4t ;BP =t 所以3AP +2OP ﹣mBP =3(2t +15)+2(5+4t )-mt =(14-m )t +55 所以当m =14时,为定值5524.(12分) 如图1,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC ,∠COE =140°,将一直角三角板AOB 的直角顶点放在点O 处,一条直角边OA 在射线OD 上,另一边OB 在直线DE 上方,将直角三角板绕着点O 按每秒10°的速度逆时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到如图2的位置时,OA 恰好平分∠COD ,求此时∠BOC 的度数;(2)若射线OC 的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA 、OC 、OD 中的某 一条射线是另两条射线所成夹角的角平分线?若存在,请求出t 的取值,若不存在,请说明理由; (3)若在三角板开始转动的同时,射线OC 也绕O 点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC 平分∠BO D .直接写出t 的值.(本题中的角均为大于0°且小于180°的角)ABOA BO备用图F PE A B O{答案}(1)解:∠COE=140°所以∠COD=180°-∠COE=40°又因为OA平分∠COD所以∠AOC=12∠COD=20°因为∠AOB=90°所以∠BOC=90°-∠AOC=70°(2)存在①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2②当OC平分∠AOD时,∠AOC=∠DOC,即10°t-40°=40°,解得:t=8③当OD平分∠AOC时,∠AOD=∠COD,即360°-10°t=40°,解得:t=32综上所述:t=2,t=8 或32(3) 12或372{设运动时间为t,则有①当90+10t=2(40+15t)时,t=12②当270-10t=2(320-15t)时,t=37 2BOE DC图1E DCA B图2。
德州市2020年七年级上学期数学期末考试试卷C卷
德州市2020年七年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)-2的相反数是()A . -2B . 2C .D . -2. (2分)(2014·嘉兴) 2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A . 3.844×108B . 3.844×107C . 3.844×109D . 38.44×1093. (2分) (2020八上·覃塘期末) 9的算术平方根是()A . ﹣3B . ±3C . 3D .4. (2分) (2022七上·滨江期末) 下列说法中,正确的是()A . 是单项式,次数为2B . 和是同类项C . 是多项式,次数为6D . 的系数是55. (2分) (2019八下·东莞期中) 下列计算正确的是()A .B .C .D .6. (2分)等式成立的条件是().A .B .C .D .7. (2分)(2020·南昌模拟) 已知矩形的长和宽是方程的两个实数根,则矩形的对角线的长为()A .B .C .D .8. (2分)(2020·北京模拟) 下列说法正确是①函数中自变量的取值范围是.②若等腰三角形的两边长分别为3和7,则第三边长是3或7.③一个正六边形的内角和是其外角和的2倍.④同旁内角互补是真命题.⑤关于的一元二次方程有两个不相等的实数根.A . ①②③B . ①④⑤C . ②④D . ③⑤9. (2分) (2016七上·嘉兴期末) 如图,面积为5的正方形ABCD的顶点A在数轴上,且表示的数为1,若AD=AE,则数轴上点E所表示的数为()A .B .C .D .10. (2分) (2016七上·南昌期末) 按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是466;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共10分)11. (1分) (2017七上·天门期中) 多项式2(x2﹣3xy﹣y2)﹣(x2+2mxy+2y2)中不含xy项,则m=________.12. (1分) (2020八下·哈尔滨期中) 已知a、b、c是△ABC三边的长,且满足关系式 ||=0,则△ABC的形状是________.13. (1分) (2016七上·嘉兴期末) 若-3x3my3与2xy3n是同类项,则(m-n)2的值是________.14. (1分) (2016七上·嘉兴期末) 若代数式4x与的值相等,则x的值是________.15. (1分) (2016七上·嘉兴期末) 若a、b互为相反数,m、n互为倒数,则2015a+2014b+mnb的值为________.16. (1分) (2016七上·嘉兴期末) 对任意四个有理数a,b,c,d,定义:,已知,则x=________.17. (1分) (2016七上·嘉兴期末) 已知线段AB=6cm,在直线AB上画线段AC=2 cm,则线段BC的长是________18. (1分) (2016七上·嘉兴期末) 某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程________19. (1分) (2016七上·嘉兴期末) 有理数a,b在数轴上的位置如图,化简: =________20. (1分) (2016七上·嘉兴期末) 按照下述规律排下去,那么第10行从左边数到第5个数是________第1行 1第2行-2 3第3行-4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15…………三、解答题 (共6题;共43分)21. (5分) (2016七上·宁江期中) 0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)22. (10分) (2019七下·平舆期末)(1)计算:;(2)解方程: .23. (5分)先化简,再求值:,其中a是方程x2+x=6的一个根.24. (5分) (2016七上·嘉兴期末) 根据下列条件画图,如图示点A、B、C分别代表三个村庄:①画射线AC,画线段AB②若线段AB是连结A村和B村的一条公路,现C村庄也要修一条公路与A、B两村庄之间的公路连通,为了减少修路开支,C村庄应该如何修路?请在同一图上用三角板画出示意图,并说明画图理由.25. (10分) (2016七上·嘉兴期末) 如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,(1)求∠DOE的度数;(2)若OF⊥OE,求∠COF的度数.26. (8分) (2016七上·嘉兴期末) 为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:例如:某户居民1月份用水8立方米,应收水费为2×6+4×(8-6)=20(元).请根据上表的内容解答下列问题:(1)若某户居民2月份用水5立方米,则应收水费________元;(2)若某户居民3月份交水费36元,则用水量为________立方米;(3)若某户居民4月份用水a立方米(其中6<a<10),请用含a的代数式表示应收水费________元.(4)若某户居民 5、6 两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水x立方米,请用含x的代数式表示该居民5、6两个月共交水费多少元?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共43分)21-1、22-1、22-2、23-1、24-1、25-1、25-2、26-1、26-2、26-3、26-4、。
2019-2020学年度第一学期七年级数学期末质量检测(七年级数学试题)
2019-2020学年度第一学期七年级数学期末质量检测七年级数学试题考生须知:1.试题共6页,含三道大题,26道小题,满分100分.考试时间90分钟;2.答题前填写好自己的姓名、班级、考号等信息;3.请将答案正确填涂在答题卡上,选择题、作图题用2B铅笔作答,其它试题用黑色字迹签字笔作答.一、选择题(本大题共有16个小题,在每题所给出的四个选项中,只有一项是符合题目要求的,其中前10个小题每题3分,后6个小题每题2分,共42分)1.将﹣2.9,﹣1.9,0,﹣3.9这四个数在数轴上表示出来,排在最左边的数是()A.0B.﹣1.9C.﹣2.9D.﹣3.92.如图所示的图形中,可用∠AOB,∠1、∠O是三种方法标识同一个角的是()A .B .C .D .3.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段4.如图,根据某机器零件的设计图纸上信息,判断该零件长度(L)尺寸合格的是()A.9.68mm B.9.97mmC.10.1mm D.10.01mm第3题图第4题图5.下列单项式中,与a 2b 是同类项的是( ) A .ab 2B .2a 2bC .a 2b 2D .3ab6.下列说法中,正确的是( ) A .有理数包括整数和分数 B .一个代数式不是单项式就是多项式C .几个有理数相乘,若负因数的个数是偶数个,则积为正数D .绝对值等于它本身的数是0、1 7.下列等式变形正确的是( ) A .如果﹣0.5x =8,那么x =﹣4 B .如果x =y ,那么x ﹣2=y ﹣2 C .如果mx =my ,那么x =yD .如果|x |=|y |,那么x =y8.已知单项式12x a +1y 3的次数是5,那么a 的值是( )A .﹣1B .3C .﹣3D .19.如果a ﹣b =13,那么3(b ﹣a )﹣1的值为( )A .﹣2B .0C .4D .210.一个多项式与5a 2+2a ﹣1的和是6a 2﹣5a +3,则这个多项式是( ) A .a 2﹣7a +4B .a 2﹣3a +2C .a 2﹣7a +2D .a 2﹣3a +411.下列各式,运算结果为负数的是( ) A .﹣(﹣2)﹣(﹣3) B .(﹣2)×(﹣3) C .﹣|﹣2﹣3|D .﹣2÷(﹣3)12.下列方程变形过程正确的是( ) A .由5x =﹣2x ﹣3,移项得5x ﹣2x =3B .由2x -13=1+x -32,去分母得2(2x ﹣1)=1+3(x ﹣3) C .由2(2x ﹣1)﹣3(x ﹣3)=1,去括号得4x ﹣2﹣3x ﹣9=1D .把x 0.7﹣0.17-0.2x 0.03=1中的分母化为整数,得10x 7﹣17-20x 3=1 13.如图,下列关系式中与图不符合的式子是( ) A .AD ﹣CD =AB +BC B .AC ﹣BC =AD ﹣BD C .AC ﹣BC =AC +BDD .AD ﹣AC =BD ﹣BC第13题图14.代数式9﹣x 比代数式4x ﹣2小4,则x =( ) A .3B .75C .35D .﹣115.如图,∠AOB =90°,把∠AOB 顺时针旋转50°得到∠COD ,则下列说法正确的是( )A .∠AOC 与∠BOD 互余B .∠BOC 的余角只有∠AOC C .∠BOC =50°D .∠AOD =140°16.周末小明一家去爬山,上山时每小时走3km ,下山时按原路返回,每小时走5km ,结果上山时比下山多花13h ,设下山所用时间为xh ,可得方程( ) A .5x =3(x ﹣13)B .5x =3(x +13)C .5(x ﹣13)=3xD .5(x +13)=3x二、填空题(本大题共有3个小题,17、18题,每小题3分,19题每空2分,共4分,总计10分)17.若|x ﹣2|与(y +3)2互为相反数,则(x +y )2018= .18.某天数学课上,老师讲了整式的加减.放学后,小明回到家拿出课堂笔记,认真地复习老师课堂上讲的内容,他突然发现一道题:(﹣x 2+3yx ﹣12y 2)﹣(﹣12x 2+●xy ﹣52y 2)=﹣12x 2﹣xy +■y 2,其中●、■两处的数字被钢笔水弄污了,那么这两处地方的数字之积应是 .19.如图,下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,则第6个图形中共有 个三角形;若第n 个图形中共有86个三角形,则n 的值为 .三、解答题(本大题共有7个小题,要求写出必要的解题过程,共48分)20.(6分)阅读下面解题过程: 计算:(﹣15)÷(13﹣32﹣3)×6第15题图CDOB解:原式=(﹣15)÷(﹣256)×6 …………………………………………(第一步) =(﹣15)÷(﹣256×6) …………………………………………(第二步) =(﹣15)÷(﹣25)………………………………………………(第三步) =﹣35. ………………………………………………………………(第四步)回答:(1)上面解题过程中有两个错误,第一处是第几步?第二处是第几步?(2)请写出正确的解题过程.21.(6分)如图,点C 为线段AB 上一点,AC =8cm ,CB =6cm ,点M 、N 分别是AC 、BC 的中点. (1)求线段MN 的长;(2)若AC +BC =a cm ,其他条件不变,直接写出线段MN 的长为 .22.(6分)先化简,再求值:3x 2﹣[7x ﹣(4x ﹣3)﹣2x 2],其中x 满足x -12+3=6+x 4.23.(7分)学校组织同学到博物馆参观,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会合,出租车的收费标准是:起步价为7元,3千米后每千米收1.5元,不足1千米的按1千米计算.请你回答下列问题: (1)小明乘车2.6千米,应付费 元.(2)小明乘车x (x 是大于3的整数)千米,应付费多少钱?(3)小明身上仅有15元钱,乘出租车到距学校9千米远的博物馆的车费够不够?请说明理由.第21题图24.(7分)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2,BC =1,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且CO =28,求p .25.(8分)某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少15个.该小组共有多少人?计划做多少个“中国结”? 根据题意,小明、小红分别列出了尚不完整的方程如下:小明:5x □( )=4x □( ); 小红:y □( )5=y □( )4.(1)根据小明、小红所列的方程,其中“□”中是运算符号,“( )”中是数字,请你分别指出未知数x 、y 表示的意义. 小明所列的方程中x 表示 , 小红所列的方程中y 表示 ;(2)请选择小明、小红中任意一种方法,完整的解答该题目.第24题图26.(8分)如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方(如图1).(1)将图1中的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BO C.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM 与∠NOC的数量关系,并说明理由.。
2019-2020年初一上学期数学期末试卷及答案
2019-2020年初一上学期数学期末试卷及答案注意事项: 本试卷共三大题25小题,共4页,满分150分.考试时间120分钟. 1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名;再用2B 铅笔把对应考号的标号涂黑.2.选择题和判断题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效. 4.考生不能..使用计算器.必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.一、细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的. ) 1.3-的相反数是( ).A .13B .13-C .3D .3-2.下列生活或生产现象中,可用公理“两点之间,线段最短”来解释的现象有( ).A .用两个钉子就可以把木条固定在墙上B .把弯曲的公路改直,就能缩短路程C .植树时,只要定出两棵树的位置,就能确定同一行树所在的直线D .以上说法都不能用此公理解释 3.下列式子中正确的是( ).A .―3―2=―1B .325a b ab +=C .550xy yx -=D .77--= 4.若10x -<<,则230x x ,,的大小关系是( ).A .230x x <<B .320x x <<C .320x x <<D .230x x <<5.从左面看如图所示的几何体可得到的平面图形是( ).6.如图所示正方体的平面展开图是( ).正面第5题--图7.把一个周角七等分,求每一份是多少?下列用四舍五入法取近似值正确的是( ). A .51.4 (精确到0.01) B .51.42(精确到0.01)C .5126' (精确到分)D .5125'(精确到分) 8.若3x =,则x x -=( ). A .0B .0或3C .3或6D .0或69.如图,分别在长方形ABCD 的边DC 、BC 上取两 点E 、F ,使得AE 平分∠DAF ,若∠BAF = 60°, 则∠DAE =( ). A .45° B .30° C .15°D .60°10.已知方程332x x -=的解为2a +,则关于x 的方程32()3x x a a --=的解为( ).A .-1B .1C .-5D .5二、耐心填一填(本题有6个小题,每小题3分,共18分) 11.用科学记数法表示200900,应记作 . 12.单项式2mx y 的次数为5,则m = .13.数轴上表示数-2和3之间的所有整数(包括-2和3两个数)的和等于 . 14.容量是56升的铁桶,装满油,共取出2次,每次均为x 升,桶内还剩油 升. 15.将两块直角三角尺的直角(即90AOB COD ∠=∠=)顶点重合为如图的位置,则可得到AOC BOD ∠=∠, 请写出得到这个结论的根据: .16.某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆. 现在停车场有50辆中、小型汽车,这些汽车共缴纳停车费230元. 则该停车场内停放的中型汽车有 辆.三、用心答一答(本大题有9小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(本题满分10分,每小题5分)(1)23(1)2(2)4-⨯+-÷ (2)922(3)a b a b ---A 第9题--图第22题--图18.(本题满分12分,第1小题5分,第2小题7分) (1)解方程: 35=5x x -+ (2)当x 等于什么数时,代数式2+13x 的值与代数式5116x -+的值相等,并求出此时代数式2+13x 的值.19.(本题满分10分) (1)已知:如图,线段a ;请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹,以答卷上的图为准.) ① 画线段AB=a② 画线段AB 的中点O ,画AOB ∠的平分线OM ; ③ 以O 为顶点画出表示东南西北的十字线(按照 上北下南,左西右东的规定),画出表示北偏西30的射线OC .(2)请求出在(1)题所画的图形中∠AOM 与∠AOC 的度数.20.(本题满分10分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米?21.(本题满分10分)学校田径队的小翔在400米跑测试时,先以6米/秒的速度跑完大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分5秒,问小翔在离终点处多远时开始冲刺?第Ⅱ卷(50分)22.(本题满分12分)如图,在直线l 上取A ,B 两点,使AB=10厘米,若在l 上再取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度.a第19题--图23.(本题满分13分)甲、乙两人同时从相距4千米的两地出发,甲每小时走2千米,乙每小时走3千米,小狗随甲一起同向出发,每小时跑5千米.(1)若甲、乙两人相向而行(如图①),经过多少时间后小狗先与乙相遇?(2)若甲、乙两人同时同向而行(如图②),小狗在C 地碰到乙时,甲是否到达了B 地?请说明理由.(3)若甲、乙两人相向而行,小狗碰到乙的时候它就往甲这边跑,碰到甲时又往乙这边跑,碰到乙的时候再往甲这边跑……就这样一直跑下去,直到甲乙两人相遇为止,问这只狗一共跑了多少路程?24.(本题满分13分)探索与发现:将连续的奇数1,3,5,7,9…,排成如图的数表,问: (1)十字框中的五个数的和与15有什么关系? (2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于2009吗?若能,请求出这五 个数;若不能,请说明理由.25.(本题满分12分)已知关于x 的方程323a x bx --=的解是2x =,试求代数式[]+2542)43a ba ab ---( 的值. 4千米A地 B 地 C 地A 地4千米B 地第23题--图图①图②第24题--图 (3735)3331272523211715131197531。
2019-2020学年七年级(上)期末数学试卷(含答案)
2019-2020学年七年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列四个数中,在﹣2到0之间的数是()A.3 B.1 C.﹣3 D.﹣13.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b4.下列图形中,不是三棱柱的表面展开图是()A.B.C.D.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A.B.C.D.6.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104B.64×105 C.6.4×106D.0.64×1077.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是38.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为5人9.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110 B.120 C.130 D.14010.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110° D.145°12.若a、b两数在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.>0二、填空题(本小题共4小题,每小题3分,共12分)13.﹣的倒数是.14.如果2a﹣b=1,则4a﹣2b﹣1=.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB=.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、解答题(本大题共8小题,共52分)17.计算:(1)﹣7+13﹣6+20(2)(﹣+﹣)×(﹣24)18.先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.19.解方程:(1)4﹣3x=6﹣5x;(2)﹣1=.20.如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?23.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以=∠BOC.所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°.(2)由(1)可知∠BOE=∠COE=﹣∠COD=°.所以∠AOE=﹣∠BOE=°.24.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.一、选择题(本题共12个小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.故选:B.2.下列四个数中,在﹣2到0之间的数是()A.3 B.1 C.﹣3 D.﹣1【解答】解:∵3>0,1>0,﹣3<﹣2,﹣2<﹣1<0,∴在﹣2到0之间的数是﹣1.故选:D.3.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b【解答】解:A、3a和4b不是同类项,不能合并,故本选项错误;B、字母不应去掉.故本选项错误;C、字母的指数不应该变,故本选项错误;D、符合合并同类项的法则,故本选项正确.故选D.4.下列图形中,不是三棱柱的表面展开图是()A.B.C.D.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选D.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A.B.C.D.【解答】解:A、可以通过旋转得到两个圆柱,故本选项正确;B、可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C、可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D、可以通过旋转得到三个圆柱,故本选项错误.故选:A.6.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104B.64×105 C.6.4×106D.0.64×107【解答】解:将6 400 000用科学记数法表示为6.4×106.故选C.7.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是3【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是2+1=3,只有D正确,故选:D.8.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为5人【解答】解:A、正确.从扇形统计图中看出:该班喜欢乒乓球的学生占30%,是最多的,故正确.B、正确.喜欢排球与篮球的学生均占20%,一样多,故正确.C、正确.因为25%÷20%=1.25,喜欢足球的人数是喜欢排球人数的1.25倍,故正确.D、错误.班喜欢其他球类活动的占5%,故错误.故选D.9.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110 B.120 C.130 D.140【解答】解:设标签上的价格为x元,根据题意得:0.7x=80×(1+5%),解得:x=120.故选B.10.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定【解答】解:从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为两点之间,线段最短.故选:B.11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110° D.145°【解答】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.12.若a、b两数在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.>0【解答】解:∵a<0<b,﹣a>b,∴a+b<0,∴选项A不正确,选项B正确;∵a<0<b,∴ab<0,∴选项C不正确;∵a<0<b,∴<0,∴选项D不正确.故选:B.二、填空题(本小题共4小题,每小题3分,共12分)13.﹣的倒数是﹣.【解答】解:(﹣)×(﹣)=1,所以﹣的倒数是﹣.故答案为:﹣.14.如果2a﹣b=1,则4a﹣2b﹣1=1.【解答】解:∵2a﹣b=1,∴4a﹣2b=2,∴4a﹣2b﹣1=2﹣1=1.故答案为:1.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB=145°.【解答】解:(1)∵∠ACD=∠ECB=90°,∴∠ACB=180°﹣35°=145°,故答案为145°.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.三、解答题(本大题共8小题,共52分)17.计算:(1)﹣7+13﹣6+20(2)(﹣+﹣)×(﹣24)【解答】解:(1)﹣7+13﹣6+20=6﹣6+20=20(2)(﹣+﹣)×(﹣24)=(﹣)×(﹣24)+×(﹣24)﹣×(﹣24)=18﹣4+9=2318.先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.19.解方程:(1)4﹣3x=6﹣5x;(2)﹣1=.(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)4﹣3x=6﹣5x,移项,得5x﹣3x=6﹣4,合并同类项,得2x=2,系数化为1,得x=1;(2)去分母,得3(x+1)﹣6=2(2﹣x),去括号,得3x+3﹣6=4﹣2x,移项、合并同类项,得5x=7,系数化为1,得x=.2如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.【解答】解:如图所示:21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)扇形统计图中,“电视”所对应的圆心角的度数为:(1﹣40%﹣26%﹣9%﹣10%)×360°=54°;(3)“报纸”的人数为:1000×10%=100.补全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×(26%+40%)=80×66%=52.8(万人).22.李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?【解答】解:设他推车步行了x分钟,依题意得:80x+250(15﹣x)=2900,解得x=5.答:他推车步行了5分钟.23.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+ ∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°.所以∠AOE=∠AOB﹣∠BOE=155°.【解答】解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°,所以∠AOE=∠AOB﹣∠BOE=155°.故答案为(1)∠COE;∠COE;90;(2)∠DOE(或者90°);25;∠AOB(或者180°);155.24.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为4.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为6或2.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为:4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4﹣2=6,∴A′表示的数为6,故答案为:6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=,∴x=4﹣=,故答案为:;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为,点E表示的数为,由题意可得方程:4﹣x﹣x=0,解得:x=,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.。
2019-2020学年山东省德州五中七年级(上册)期末数学试卷(解析版).doc
2019-2020学年山东省德州五中七年级(上)期末数学试卷一.选择题1.下列说法中正确的个数为()①在同一平面内不相交的两条直线叫做平行线;②平面内经过一点有且只有一条直线与已知直线垂直;③经过一点有且只有一条直线与已知直线平行;④平行同一直线的两直线平行.A.1个B.2个C.3个D.4个2.下列方程是一元一次方程的是()A.+2=5 B.+4=2x C.y 2+3y=0 D.9x﹣y=23.下列方程变形正确的是()①3x+6=0变形为x+2=0 ②x+7=5﹣3x变形为4x=﹣2③=3变形为2x=15 ④4x=﹣2变形为x=﹣2.A.①③B.①②③ C.③④D.①②④4.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣5.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①②B.②③C.③④D.①④6.下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是()A.1个B.2个C.3个D.4个7.若5x 2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对8.下图是某长方体的展开图,其中错误的是()A .B .C .D .9.下列6个数中,负数出现的频率是()﹣6.1,,﹣(﹣1),(﹣2)2,(﹣2)3,﹣[﹣(﹣3)].A .83.3%B .66.7%C .50%D .33.3%10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A .31,32,64B .31,62,63C .31,32,33D .31,45,46二.填空题11.已知线段AB ,延长AB 到C ,使BC=AB ,D 为AC 的中点,若AB=9cm ,则DC 的长为.12.已知点A 在点B 的北偏东62°,则点B 在点A 的.13.若关于x 的方程ax ﹣6=2的解为=﹣2,则a=.14.代数式的值等于3,则x=.15.若3a 3b5n ﹣2与10b3m+n am ﹣1是同类项,则m=,n=.三.解答题16.(2014秋?温州期末)如图,OA 的方向是北偏东15°,OB 的方向是西偏北50度.(1)若∠AOC=∠AOB ,则OC 的方向是;(2)OD 是OB 的反向延长线,OD 的方向是;(3)∠BOD 可看作是OB 绕点O 逆时针方向至OD ,作∠BOD 的平分线OE ,OE 的方向是;(4)在(1)、(2)、(3)的条件下,∠COE=.17.(2015秋?德州校级期末)解方程(1)2x+1=2﹣x (2)5﹣3(y ﹣)=3 (3)+1=.18.(2015秋?德州校级期末)有这样一道题:“计算(2x 3﹣3xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x=,y=﹣1”.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,试说明理由,并求出这个结果?19.(2015秋?德州校级期末)化简,求值(1)5x 2y+{xy ﹣[5x 2y ﹣(7xy 2+xy )]﹣(4x 2y+xy )}﹣7xy 2,其中x=﹣,y=﹣16.(2)A=4x 2﹣2xy+4y 2,B=3x 2﹣6xy+3y 2,且|x|=3,y 2=16,|x+y|=1,求4A+[(2A ﹣B )﹣3(A+B )]的值.(3)如果m ﹣3n+4=0,求:(m ﹣3n )2+7m 3﹣3(2m 3n ﹣m 2n ﹣1)+3(m 3+2m 3n ﹣m 2n+n )﹣m ﹣10m 3的值.20.(2015秋?德州校级期末)某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.(1)如果参观的学生人数36人,至少应付多少元?(2)如果参观的学生人数为48人,至少应付多少元?(3)如果参观的学生人数为一个两位数(a 表示十位上的数字,b 表示个位上的数字),用含a 、b的代数式表示至少应付给科技馆的总金额.2019-2020学年山东省德州五中七年级(上)期末数学试卷参考答案与试题解析一.选择题1.下列说法中正确的个数为()①在同一平面内不相交的两条直线叫做平行线;②平面内经过一点有且只有一条直线与已知直线垂直;③经过一点有且只有一条直线与已知直线平行;④平行同一直线的两直线平行.A.1个B.2个C.3个D.4个【考点】平行线;垂线.【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【解答】解:①在同一平面内不相交的两条直线叫做平行线是正确的,同一平面内的两条直线不相交即平行.②平面内经过一点有且只有一条直线与已知直线垂直是正确的.③经过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.④满足平行公理的推论,正确.故选C.【点评】熟练掌握公理和概念是解决本题的关键.2.下列方程是一元一次方程的是()A.+2=5 B.+4=2x C.y 2+3y=0 D.9x﹣y=2【考点】一元一次方程的定义.【分析】根据一元一次方程的定义进行解答.【解答】解:A、该方程不是整式方程,故本选项错误;B、由原方程得4x﹣7=0,符合一元一次方程的定义,故本选项正确;C、该方程中未知数的最高次数是2,属于一元二次方程,故本选项错误;D、该方程中含有2个未知数,属于二元一次方程,故本选项错误.故选:B.【点评】本题考查了一元一次方程的概念和解法.只含有一个未知数,且未知数的指数是1.3.下列方程变形正确的是()①3x+6=0变形为x+2=0 ②x+7=5﹣3x变形为4x=﹣2③=3变形为2x=15 ④4x=﹣2变形为x=﹣2.A.①③B.①②③ C.③④D.①②④【考点】解一元一次方程.【专题】计算题.【分析】各方程变形得到结果,即可做出判断.【解答】解:①3x+6=0变形为x+2=0,正确;②x+7=5﹣3x变形为4x=﹣2,正确;③=3变形为2x=15,正确;④4x=﹣2变形为x=﹣,错误,则变形正确的是①②③,故选 B【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.4.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣【考点】一元一次方程的解.【专题】计算题.【分析】此题用m替换x,解关于m的一元一次方程即可.【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.【点评】本题考查代入消元法解一次方程组,可将4x﹣3m=2和x=m组成方程组求解.5.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①②B.②③C.③④D.①④【考点】多项式;数轴;倒数;整式.【分析】①根据数轴上数的特点解答;②当一个正数大于0小于或等于1时,此解困不成立;③根据整式的概念即可解答;④根据升幂排列的定义解答即可.【解答】解:①在数轴上,原点两旁的两个点所表示的数都是互为相反数,应说成“在数轴上,原点两旁的两个点如果到原点的距离相等,则所表示的数是互为相反数”;②任何正数必定大于它的倒数,1的倒数还是1,所以说法不对;③5ab,,符合整式的定义都是整式,正确;④x2﹣xy+y2是按字母y的升幂排列的多项式,正确.故选C.【点评】本题考查了相反数的概念,倒数的概念,整式的概念、多项式的排列,注意1的倒数还是1.6.下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是()A.1个B.2个C.3个D.4个【考点】垂线段最短;对顶角、邻补角.【分析】根据相关定义对各选项逐一进行判定,即可得出结论.【解答】解:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角,对;②直线延长可能有交点,错;③邻补角的两条角平分线构成一个直角,对;④直线外一点与直线上各点连接的所有线段中,垂线段最短,对.故选C.【点评】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.7.若5x 2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对【考点】多项式.【分析】根据三次三项式的定义,可得2+|m|=3,﹣(m+1)≠0,解方程即可.【解答】解:由题意可得,解得m=1.故选B.【点评】本题考查了同学们对多项式的项的系数和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中,所有字母的指数和叫做这个单项式的次数;(3)几个单项式的和叫多项式;(4)多项式中的每个单项式叫做多项式的项;(5)多项式中不含字母的项叫常数项;(6)多项式里次数最高项的次数,叫做这个多项式的次数.8.下图是某长方体的展开图,其中错误的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,D选项可以拼成一个长方体,而C选项,上底面不可能有两个,故不是长方体的展开图.故选C.【点评】解题时勿忘记四棱柱的特征及展开图的各种情形.9.下列6个数中,负数出现的频率是()﹣6.1,,﹣(﹣1),(﹣2)2,(﹣2)3,﹣[﹣(﹣3)].A.83.3% B.66.7% C.50% D.33.3%【考点】频数与频率.【专题】计算题.【分析】判断这6个数中的负数的个数,根据频率公式即可解得.【解答】解:6个数有﹣6.1,﹣|﹣|,(﹣2)3,﹣[﹣(﹣3)]这4个负数,故负数出现的频率为≈66.7%.故选B.【点评】此题考查频率的计算,频率=.10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A.31,32,64 B.31,62,63 C.31,32,33 D.31,45,46【考点】规律型:数字的变化类.【专题】规律型.【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可解出接下来的3个数.【解答】解:依题意得:接下来的三组数为31,62,63.故选B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题11.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.【考点】比较线段的长短.【专题】计算题.【分析】因为BC=AB,AB=9cm,可求出BC的长,从而求出AC的长,又因为D为AC的中点,继而求出答案.【解答】解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.12.已知点A在点B的北偏东62°,则点B在点A的南偏西62°.【考点】方向角.【分析】根据方向角的定义画出图形,利用图形可直接得出结论.【解答】解:如图所示,∵点A在点B的北偏东62°,∴∠KAB=62°.∵AK∥BG,∴∠ABG=∠KAB=62°,∴点B在点A的南偏西62°.故答案为:南偏西62°.【点评】本题考查的是方向角.熟知方向角的定义是解答此题的关键.13.若关于x 的方程ax ﹣6=2的解为=﹣2,则a=﹣4.【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义,把x=﹣2代入方程中,解关于a 的方程即可.【解答】解:把x=﹣2代入方程得:﹣2a ﹣6=2解得:a=﹣4.故答案是:﹣4.【点评】主要考查了一元一次方程的解的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.14.代数式的值等于3,则x=﹣7.【考点】解一元一次方程.【分析】根据题意,列出关于x 的一元一次方程=3,通过解该方程可以求得x 的值.【解答】解:由题意,得=3,去分母,得﹣1﹣x=6,移项,得x=﹣7.故答案为﹣7.【点评】本题考查解一元一次方程的解法;解一元一次方程常见的过程有去分母、去括号、移项、合并同类项、系数化为1等.15.若3a 3b5n ﹣2与10b3m+n am ﹣1是同类项,则m=4,n= 3.5.【考点】解一元一次方程;同类项.【专题】计算题.【分析】利用同类项的定义列出关于m 与n 的方程,求出方程的解即可得到m 与n 的值.【解答】解:根据题意得:3m+n=5n ﹣2,m ﹣1=3,解得:m=4,n=3.5.故答案为:4;3.5【点评】此题考查了解一元一次方程,以及同类项,熟练掌握同类项的定义是解本题的关键.三.解答题16.(2014秋?温州期末)如图,OA 的方向是北偏东15°,OB 的方向是西偏北50度.(1)若∠AOC=∠AOB ,则OC 的方向是北偏东70°;(2)OD 是OB 的反向延长线,OD 的方向是南偏东40°;(3)∠BOD 可看作是OB 绕点O 逆时针方向至OD ,作∠BOD 的平分线OE ,OE 的方向是南偏西50°;(4)在(1)、(2)、(3)的条件下,∠COE=160°.【考点】方向角.【分析】根据方位角的概念,即可求解.【解答】解:(1)∠AOC=∠AOB=90°﹣50°+15°=55°,OC 的方向是北偏东15°+55°=70°;(2)OD 是OB 的反向延长线,OD 的方向是南偏东40°;(3)OE 是∠BOD 的平分线,∠BOE=90°;OE 的方向是南偏西50°;(4)∠COE=90°+50°+20°=160°.【点评】解答此题的关键是画图并正确画出方位角,再结合各角的互余互补关系求解.17.(2015秋?德州校级期末)解方程(1)2x+1=2﹣x (2)5﹣3(y ﹣)=3 (3)+1=.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把y 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)移项合并得:3x=1,解得:x=;(2)去括号得:5﹣3y+1=3,移项合并得:﹣3y=﹣3,解得:y=1;(3)去分母得:8y ﹣4+12=3y+6,移项合并得:5y=﹣2,解得:y=﹣0.4.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.18.(2015秋?德州校级期末)有这样一道题:“计算(2x 3﹣3xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x=,y=﹣1”.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,试说明理由,并求出这个结果?【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到结果,即可作出判断.【解答】解:原式=2x 3﹣3xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,∵原式的值与x 的值无关,∴把x=错写为x=﹣时,原式的值不变;当y=﹣1时,原式=﹣2×(﹣1)3=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2015秋?德州校级期末)化简,求值(1)5x2y+{xy﹣[5x2y﹣(7xy2+xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣,y=﹣16.(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.【考点】整式的加减—化简求值.【分析】(1)首先利用整式的加减将原式化简后代入两个未知数的值即可求解;(2)首先将最后代数式化简为3A﹣4B,然后将A、B的值代入得到代数式,从而根据|x|=3,y2=16得到两个未知数的值求得代数式的值;(3)将代数式化简后整体代入即可求解.【解答】解:(1)原式=xy﹣4x2y,当x=﹣,y=﹣16时,原式=6(2)先化简4A+[(2A﹣B)﹣3(A+B)]=3A﹣4B,把A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2代入3A﹣4B=18xy.由条件又知x=3,y=﹣4或x=﹣3,y=4,所求值均为﹣216.(3)原式=(m﹣3n)2+3+3n﹣m=(m﹣3n)2+﹣(m﹣3n)+3,由m﹣3n+4=0可知,m﹣3n=﹣4,故原式=(﹣4)2﹣(﹣4)+3=23.【点评】本题考查了整式的加减﹣化简求值的知识,解题的关键是能够将代数式利用整式的加减的运算法则进行正确的运算,难度不大.20.(2015秋?德州校级期末)某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.(1)如果参观的学生人数36人,至少应付多少元?(2)如果参观的学生人数为48人,至少应付多少元?(3)如果参观的学生人数为一个两位数(a表示十位上的数字,b表示个位上的数字),用含a、b 的代数式表示至少应付给科技馆的总金额.【考点】列代数式;有理数的混合运算.【专题】优选方案问题.【分析】(1)若参观的学生人数36人,则应买3张团体票,买6张个人票.(2)参观的学生人数为48人,分两种情况进行计算,买5张团体票应付225元,买4张团体票,8张个人票应付228元,故至少应付225元.(3)应分类讨论,当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.【解答】解:(1)若参观的学生人数36人,则应付费用:3×45+6×6=171(元)(2)参观的学生人数为48人,如买4张团体,8张个人票,应付:4×45+6×8=228(元),若买5张团体票,应付:5×45=225<228,∴至少付225元.(3)当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.【点评】本题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达,作出最优选择.。
山东省德州市2019-2020学年数学七上期末学业水平测试试题
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题 1.过平面上三点中的任意两点作直线,可作( ) A.1条B.3条C.1条或3条D.无数条2.如图,将一副三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=()度。
A.小于180°B.大于180°C.等于180°D.无法确定3.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM 等于线段BM ,则点M 是线段AB 的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为( ) A .1个B .2个C .3个D .4个4.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A.96+x=13(72﹣x ) B.13(96+x )=72﹣x C.13(96﹣x )=72﹣x D.13×96+x=72﹣x 5.下列说法正确的是( ) A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y3-是多项式 D.2x x 1--的常数项是16.下面合并同类项正确的是( ) A.23325x x x += B.2221a b a b -= C.0ab ab --=D.220xy xy -+=7.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是( )A .96B .86C .68D .52 8.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A.x =-4B.x =-3C.x =-2D.x =-19.下列等式变形正确的是( ) A.如果s =12ab ,那么b =2s aB.如果12x =6,那么x =3 C.如果x -3=y -3,那么x -y =0 D.如果mx =my ,那么x =y10.13的相反数是( ) A.﹣13B.3C.﹣3D.1311.计算2-(-1)的结果是( ) A.3B.1C.-3D.-112.四个有理数﹣1,2,0,﹣3,其中最小的是( ) A .﹣1 B .2 C .0 D .﹣3 二、填空题13.已知∠A=35°10′48″,则∠A 的余角是__________.14.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6,则CD=______;15.若2x ﹣3y=﹣2,那么3﹣2x+3y 的值是_____.16.小明沿街道匀速行走,他注意到每隔6分钟从背后驶过一辆1路公交车,每隔4分钟迎面驶来一辆1路公交车.假设每辆1路公交车行驶速度相同,而且1路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是________ 分钟.17.写出一个与32x y -是同类项的单项式为______.18.将图1中的正方形剪开得到图2,图2中共有4个正方形,将图2中一个正方形剪开得到图3,图3中共有7个正方形,将图3中一个正方形剪开得到图4,图4中共有10个正方形⋯⋯如此下去,则图2019中共有正方形的个数为______.19.最小的正整数是________,最大的负整数是_______,绝对值最小的数是________. 20.0.05049精确到千分位的近似值为_____________. 三、解答题21.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC=120°.将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠BOC .问:此时直线ON 是否平分∠AOC ?请说明理由.(2)将图1中的三角板绕点O 以每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角∠AOC ,则 t 的值为 秒(直接写出结果).(3)将图1中的三角板绕点O 顺时针旋转至图3,使ON 在∠AOC 的内部,试探索:在旋转过程中,∠AOM 与∠NOC 的差是否发生变化?若不变,请求出这个差值;若变化,请求出差的变化范围. 22.一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.()1求甲、乙合作多少天才能把该工程完成.()2在()1的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元. 23.先化简后求值 (1)2222332232x y xy xy x y +-+-,其中2x =,14y =-; (2)()()()323111323233326x y x y x x y -+--++,其中2x =-,3y =. 24.如图所示,一幅地图上有A ,B ,C 三地,地图被墨迹污染,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30°方向,在B 地的南偏东45°方向,你能确定C 地位置吗?25.如图是某市民健身广场的平面示意图,它是由6个正方形组成的长方形,其中C 、D 两个正当形的大小相同.已知中间最小的正方形A 的边长为1m.(1)若设图中最大正方形B 的边长是x m ,用含x 的式子表示出正方形F ,E 和C 的边长分别为_______,_______,_________.(2)观察图形的特点可知,长方形相对的两边是相等的(如图中PQ=MN ,QM=PN ),请根据这个等量关系,求出x 的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙两个工程对单独建设分别需要10天、15天完成。
2019-2020学年七年级上学期期末考试数学试卷含解析版
2019-2020学年七年级上学期期末考试数学试卷一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作( )A .﹣6℃B .﹣3℃C .0℃D .+3℃2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是( )A .﹣6B .﹣5.01C .﹣5D . 3.|﹣2|的倒数是( )A .2B .﹣2C .D .4.下列各式中,次数为5的单项式是( )A .5abB .a 5bC .a 5+b 5D .6a 2b 35.多项式﹣2x 2+2x +3中的二次项系数是( )A .﹣1B .2C .﹣2D .36.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A .①圆柱,②圆锥,③三棱柱B .①圆柱,②球,③三棱柱C .①圆柱,②圆锥,③四棱柱D .①圆柱,②球,③四棱柱 7.在数轴上表示有理数a ,﹣a ,﹣b ﹣1的点如图所示,则( )A .﹣b <﹣aB .|b +1|<|a |C .|a |>|b |D .b ﹣1<a8.已知等式3a =b +2c ,那么下列等式中不一定成立的是( )A .3a ﹣b =2cB .4a =a +b +2cC .a =b +cD .3=+9.某商店以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为.13.若x与3的积等于x与﹣16的和,则x=.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有个顶点(结果用含n的式子表示).三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷418.先化简,再求值:,其中x=﹣2,y=﹣319.解下列方程:(1)2(x+3)=5(x﹣3)(2)20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.参考答案与试题解析一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作()A.﹣6℃B.﹣3℃C.0℃D.+3℃【分析】根据负数的意义,可得气温上升记为“+”,则气温下降记为“﹣”,据此解答即可.【解答】解:因为气温上升3℃,记作+3℃,所以气温下降3℃,记作﹣3℃.故选:B.【点评】此题主要考查了负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“﹣”.2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是()A.﹣6B.﹣5.01C.﹣5D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣6<﹣5.01<﹣5<﹣,∴这四个数中,最大的数是﹣.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.|﹣2|的倒数是()A.2B.﹣2C.D.【分析】根据绝对值和倒数的定义作答.【解答】解:∵|﹣2|=2,2的倒数是,∴|﹣2|的倒数是.故选:C.【点评】一个负数的绝对值是它的相反数.若两个数的乘积是1,我们就称这两个数互为倒数.4.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b3【分析】直接利用单项式以及多项式次数确定方法分别分析得出答案.【解答】解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.【点评】此题主要考查了单项式以及多项式次数,正确把握单项式次数确定方法是解题关键.5.多项式﹣2x2+2x+3中的二次项系数是()A.﹣1B.2C.﹣2D.3【分析】根据多项式的概念即可求出答案.【解答】解:二次项系数为﹣2,故选:C.【点评】本题考查多项式的概念,解题的关键熟练运用多项式的概念,本题属于基础题型.6.三个立体图形的展开图如图①②③所示,则相应的立体图形是()A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱【分析】根据圆柱、圆锥、三棱柱表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、圆锥、三棱柱.故选:A.【点评】本题考查圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.7.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a|C.|a|>|b|D.b﹣1<a【分析】因为a与﹣a互为相反数,所以根据图示知,a<0<﹣a<﹣b﹣1,由此对选项进行一一分析.【解答】解:∵a与﹣a互为相反数,∴根据图示知,a<0<﹣a<﹣b﹣1,∴|﹣a|=|a|<|﹣b﹣1|=|b+1|,则|b+1|>|a|,故B选项错误;∴﹣b>﹣a,故A选项错误;∴|a|>|b|,故C选项错误;∴b﹣1<a,故D选项正确.故选:D.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.8.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a=b+c D.3=+【分析】根据等式的基本性质逐一判断即可得.【解答】解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a=b+c,此选项正确;D、在a≠0的前提下,两边都除以a可得3=+,故此选项不一定成立;故选:D.【点评】本题主要考查等式的性质,解题的关键是掌握等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.某商店以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元【分析】设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,根据售价﹣进价=利润,可得出关于x(y)的一元一次方程,解之即可得出x(y)的值,再利用总利润=两件衣服的售价﹣两件衣服的进价,即可得出结论.【解答】解:设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,依题意,得:a﹣x=25%x,a﹣y=﹣20%y,解得:x=0.8a,y=1.25a,∴2a﹣x﹣y=﹣0.05a,∴商店卖出这两件衣服总的情况是亏损0.05a元.故选:B.【点评】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对【分析】原方程经过移项,合并同类项,根据“该方程有无数解”,得到关于m和关于n的一元一次方程,解之,代入3m+n,计算求值即可得到答案.【解答】解:mx+=﹣x,移项得:mx+x=﹣,合并同类项得:(m+1)x=,∵该方程有无数解,∴,解得:,把m=﹣1,n=2代入3m+n得:原式=﹣3+2=﹣1,故选:A.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是2019.【分析】直接利用相反数的定义进而得出答案.【解答】解:﹣2019的相反数是:2019.故答案为:2019.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为 3.805×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:38050=3.805×104.故答案为:3.805×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.若x与3的积等于x与﹣16的和,则x=﹣8.【分析】由题意列出方程进而解方程得出答案.【解答】解:由题意可得:3x=x﹣16,解得:x=﹣8.故答案为:﹣8.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=﹣1.【分析】首先根据同类项定义可得m=3,n=4,再代入(m﹣n)9进行计算即可.【解答】解:由题意得:m=3,n=4,则(m﹣n)9=﹣1,故答案为:﹣1.【点评】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为2.【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2019﹣4=2015,2015÷4=503…3,故第2019次输出的结果是2.故答案为:2【点评】此题主要考查了数字的变化规律,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有(n+2)(n+3)个顶点(结果用含n的式子表示).【分析】由已知图形得出顶点的个数是序数分别与2、3和的乘积,据此可得.【解答】解:由图形知,当n=1时,顶点的个数为12=3×4;当n=2时,顶点的个数20=4×5;当n=3时,顶点的个数30=5×6;当n=4时,顶点的个数42=6×7;……所以第n个图形中顶点的个数为(n+2)(n+3)(个),故答案为:(n+2)(n+3).【点评】本题主要考查图形的变化规律,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)=﹣7﹣5+13﹣10=﹣22+13=﹣9;(2)﹣(﹣1)10×2+(﹣2)3÷4=﹣1×2+(﹣8)÷4=﹣2﹣2=﹣4.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:,其中x=﹣2,y=﹣3【分析】先去掉括号,然后合并同类项,再把x、y的值代入进行计算即可得解.【解答】解:原式==﹣3x+y2,把x=﹣2,y=﹣3代入﹣3x+y2=﹣3×(﹣2)+(﹣3)2=6+9=15.【点评】本题考查了整式加减,先化简然后再代入数据进行求值更加简便,整式的加减实质就是去括号,合并同类项的运算.19.解下列方程:(1)2(x+3)=5(x﹣3)(2)【分析】(1)直接去括号进而合并同类项解方程即可;(2)直接去分母进而移项合并同类项解方程即可.【解答】解:(1)2(x+3)=5(x﹣3)2x+6=5x﹣15,则3x=21,解得:x=7;(2)45﹣5(2x﹣1)=3(4﹣3x)﹣15x,整理得:14x=38,解得:x=.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.【分析】根据数轴上点的位置,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】根据题意得:a=﹣2.5,b=﹣0.5,c=1.5,则b+2>0,a+b<0,c﹣a<0,则化简得:a﹣(b+2)+2c+(a+b)﹣(c﹣a)=3a+c代入数值a=﹣2.5,b=﹣0.5,c=1.5,原式=﹣6.【点评】本题考查了合并同类项,利用绝对值的性质化简绝对值,利用合并同类项,代数数值得出答案.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.【分析】(1)根据和解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;(2)根据和解方程的定义即可得出关于m、n的二元二次方程组,解之即可得出m、n的值.【解答】解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=﹣.(2)∵关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.【点评】本题考查了一元一次方程的解、解一元一次方程以及二元二次方程组,解题的关键是:根据“和解方程“的定义列出关于m的一元一次方程;根据和解方程的定义列出关于m、n的二元二次方程组.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【分析】(1)设甲购书x本,则乙购书为(15﹣x)本,再根据总价格列出方程即可;(2)先计算7.5折后的价格,加上办卡的费用,与原来的价格差即为节省的钱数.【解答】解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=22.25答:办卡购书比不办卡购书共节省22.25元.【点评】本题考查的是一元一次方程应用中的打折销售问题,明确等量关系,并正确列出方程是解题的关键.23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.【分析】(1)根据∠MON=∠BOM+∠BON计算即可;(2)分两种情形分别计算即可.【解答】解:(1)由题意;∠MON=∠AOB+∠COD=86°+28°=114°;(2)①当0<n<54°时,如图1中,∠AOC=126°﹣n°,∠BOD=54°﹣n°,∴∠MON=∠MOC+∠COB+∠BON=(126°﹣n°)+n°+(54°﹣n°)=114°,②当60°<n<120°时,如图2中,∠AOC=126°﹣n°,∠COD=54°,∠BOD=n°﹣54°∴∠MON=∠MOC+∠COD+∠DON=(126°﹣n°)+54°+(n°﹣54°)=114°.综上所述,∠MON=114°【点评】本题考查角的和差定义,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB =PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.【解答】解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.(1)设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况,找出关于x的一元一次方程;(2)利用两点间的距离公式求出AB﹣BC=6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省德州市宁津县2019-2020学年七年级上学期期末数学试题
(word无答案)
一、单选题
(★) 1 . ﹣的相反数是()
A.B.C.﹣D.﹣
(★★) 2 . 数轴上与表示﹣1的点距离10个单位的数是()
A.10B.±10C.9D.9或﹣11
(★★) 3 . 一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()
A.2.18×106B.2.18×105C.21.8×106D.21.8×105
(★) 4 . 下列说法正确的是()
A.单项式的次数是0B.是一次单项式
C.是7次单项式D.的系数是
(★) 5 . 如图,在数轴上,小手遮挡住的点表示的数可能是()
A.﹣1.5B.﹣2.5C.﹣0.5D.0.5
(★★) 6 . 在下列有理数:,,,,,中,负数有()
A.1个B.2个C.3个D.4个
(★)7 . “汽车上雨刷器的运动过程”能说明的数学知识是()
A.点动成线B.线动成面C.面动成体D.面与面交于线
(★★) 8 . 下列变形中:
①由方程=2去分母,得 x﹣12=10;
②由方程 x= 两边同除以,得 x=1;
③由方程6 x﹣4= x+4移项,得7 x=0;
④由方程2﹣两边同乘以6,得12﹣ x﹣5=3( x+3).
错误变形的个数是()个.
A.4B.3C.2D.1
(★) 9 . 一副三角板按下图方式摆放,且∠1的度数比∠2的度数小20°,则∠1的度数为()
A.35°B.30°C.25°D.20°
(★) 10 . 如图,是一个正方体的展开图则“数”字的对面的字是( )
A.核B.心C.素D.养
(★★)11 . 若多项式与多项式的差不含二次项,则m等于()A.2B.-2C.4D.-4
(★★) 12 . 某车间有20名工人,每人每天可以生产300张桌子面或800根桌子腿,已知1张
桌子面需要配4根桌子腿,为使每天生产的桌子面和桌子腿刚好配套。
设安排名工人生产桌
子面,则以下所列方程正确的是( )
A.B.
C.D.
二、填空题
(★) 13 . 如图是一种测量角的仪器,它依据的原理是_____.
(★) 14 . 如图,是一副三角板拼成的图案,则.
(★★) 15 . 如图,
__________ .
(★★) 16 . 若互为相反数,互为倒数,则_________.
(★★) 17 . 已知单项式 x a y 3与﹣4 xy 4﹣b是同类项,那么 a﹣ b的值是 _____ .
(★★) 18 . 一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是
__________ .
三、解答题
(★★) 19 . 计算:(1)( )×(-12);(2).
(★★) 20 . 解方程:(1)x﹣7=10﹣4(x+0.5) (2) =1.
(★★) 21 . 先化简,再求值:
(1)(5a 2+2a+1)﹣4(3﹣8a+2a 2)+(3a 2﹣a),其中
(2),其中
(★★) 22 . 现定义一种新运算“⊕”:对于任意有理数x,y,都有x⊕y=3x+2y,例如
5⊕1=3×5+2×1=17.
(1)求(﹣4)⊕(﹣3)的值; (2)化简:a⊕(3﹣2a ).
(★★) 23 . 已知:如图,∠AOB 是直角,∠AOC=40°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线.
(1)求∠MON 的大小;
(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小是否发生改变?为什么?
(★★) 24 . 如图, C 为线段 AB 上一点,点 D 为 BC 的中点,且 AB =18 cm , AC =4 CD . (1
)图中共有 条线段; (2)求 AC 的长;
(3)若点 E 在直线 AB 上,且 EA =2 cm ,求 BE 的长.
(★★) 25 . 王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
(1)王叔叔十月份税后的工资是多少元?
(2)王叔叔将该月税后工资的一半存入银行,然后用余额购买一部定价为3000元的某品牌手机,恰好遇到手机店开展活动,该款手机打八折,则买完手机后还剩下多少元?
(3)某家超市正在开展促销活动,促销方案如下:若王叔叔在此次促销活动中付款980元,问他购买的商品原价是多少元?
商品原价
优惠方案
不超过500元
不打折
超过500元但不超过800元的部分
打八折
超过800元的部分
打七五折。