场效应管放大电路(精)
场效应管放大电路的三种接法
场效应管放大电路的三种接法在电子学的世界里,场效应管(FET)就像一个神奇的小精灵,能把微弱的信号变得更强,帮助我们听见那些微乎其微的声音。
今天,我们就来聊聊场效应管放大电路的三种接法,让这个看似复杂的知识变得轻松易懂,别担心,咱们不扯那些高深的理论,尽量用生活中的比喻来解释。
那我们就开始吧!1. 共源接法先说说最常见的共源接法,这就像家里的厨房,调料多样,灵活应变。
它的输入端连接在栅极,输出端在漏极,源极接地。
这里有个小秘密:共源放大电路能提供最大的电压增益,简直是个放大高手!想象一下,你在聚会上讲笑话,大家听得津津有味,气氛嗨到顶点。
而这个放大器,就像你那幽默的讲述,信号强烈又清晰。
可是,别忘了,虽然它增益高,但相对的,输出的波形会出现反相,这就像你说笑话时,别人笑得翻了天,结果被人反向模仿,一会儿就没气氛了。
1.1 优点说到优点,先不提电压增益,咱先来看看它的宽频带。
这就像一首好歌,无论在什么场合都能传唱,基本上适应各种信号。
然后,功耗低也是它的一大亮点,像是个省电的小能手,既能让你省下电费,又能持续提供优质的放大效果。
1.2 缺点当然,没完美的事儿,缺点也是有的。
比如,输入阻抗相对较低,这就像你在开会时,越多的意见让你越难决定方向。
此外,频率特性也有点儿不太稳定,高频信号的时候,增益会下降,跟着波动得让人头疼。
2. 共栅接法接下来咱们聊聊共栅接法,它就像个稳重的长辈,虽然不太爱张扬,但却稳稳地支撑着全局。
输入信号在源极,输出在漏极,栅极连接一个固定的电压源。
这个接法最大的特点就是输入阻抗极高,就像你家里那位老好人,话虽不多,但总能吸引大家的目光。
共栅接法在高频应用中表现优异,能够有效地处理射频信号。
2.1 优点它的优点是明显的,尤其在高频放大时,不容易失真,简直是个信号保护神。
还能够实现极低的噪声,非常适合在需要清晰信号的场合使用,像是在重要场合发言,谁也不想被杂音打断。
2.2 缺点但是呢,它的电压增益相对较低,就像长辈说话时,虽然言之有物,但总给人一种不急不躁的感觉。
场效应管放大电路原理
场效应管放大电路原理场效应管放大电路原理1. 介绍场效应管(Field Effect Transistor,简称FET)是一种常用的电子器件,广泛应用于放大、开关和调节电路中。
作为一名文章写手,我将为您详细介绍场效应管放大电路的原理。
2. 场效应管概述场效应管是由源极、栅极和漏极三个主要部分组成的。
其中,栅极与源极之间的电压可以控制漏极电流的大小,从而实现信号的放大和调节。
和双极晶体管相比,场效应管具有输入电阻高、无需偏置电流等优点,因此在电子工程中得到广泛应用。
3. 场效应管放大电路的基本原理场效应管放大电路的基本原理是利用场效应管的特性来放大输入信号。
当输入信号施加在栅极上时,栅极源极间的电压将改变栅极-源极电流的大小,从而改变漏极电流。
根据场效应管工作状态的不同,可分为共源放大器、共漏放大器和共栅放大器三种。
3.1 共源放大器共源放大器是应用最广泛的一种场效应管放大电路。
在共源放大器中,输入信号通过耦合电容施加到栅极上,当信号施加后,栅极-源极电压发生变化,控制栅极-源极电流的大小,进而改变漏极电流。
共源放大器具有放大增益高、输入输出阻抗匹配等特点,适用于多种应用场景。
3.2 共漏放大器共漏放大器是场效应管放大电路的一种重要形式。
在共漏放大器中,漏极连接到电源,源极接地,输入信号通过漏极电阻耦合到栅极。
共漏放大器具有输入电阻高、输出电阻低等特点,适用于对电压放大和阻抗转换要求较高的场合。
3.3 共栅放大器共栅放大器是场效应管放大电路的另一种形式。
在共栅放大器中,信号通过源极电阻耦合到栅极,漏极连接到电源。
共栅放大器具有输入输出阻抗匹配、频率响应宽等特点,适用于高频放大和对输入频率响应要求较高的应用。
4. 实际应用案例场效应管放大电路广泛应用于各种电子设备中。
以音频放大器为例,通过合理选择场效应管的类型和工作点,可以实现对音频信号的放大和调节,保证音频设备的音质。
5. 个人观点和理解场效应管放大电路作为一种常见的放大器,具有输入电阻高、无需偏置电流、放大增益高等技术优点。
场效应管放大电路
这种偏置电路的特点是: 栅极直流偏压直接由电源UGG经电阻Rg供给,因为3DO1是耗 尽型MOS管,故 UGS = - UGG。由于场效应管输入电阻很大, 所以 Ig = 0 。栅偏压是由固定的外加电源供给的,故称为固 定偏置电路。此电路是共源极放大电路。
⑵ 自给栅偏压偏置电路
这种偏置电路的特点是: 在源极上接一个电阻RS,外加电压UDD产生的ID就会在RS 上产 生压降URS ,由于Ig = 0,所以可以得 :UGS = - URS = - ID RS 。 这种电路栅 偏压是由漏极电流流过源极电阻产生的,故称为 自给偏压电路。增强型MOS管不采用此种这种方式。
(mA) ID UGS = 0 V
6
击穿区
rN小
可变电阻区
5
4 3 2
UGS = -1V 放 大 区 UGS = -2V UGS = -3V UGS = -4V
4 8 12 16 20 24
rN大
1 0
截止区
BUDSS
UDS(V)
⑶ 截止区 当|UGS|≥|UP|时,导电沟道完全夹断,电阻rn最大, 漏极电流 ID = 0,管子截止。
id
T2 T1 Id0
T3
Q0
ugso
ugs
从图可以看出当 UGS选在零工作 点,则温度变化时,漏极电流 ID 不变。T1,T2,T3为不同的温度 曲线。
4. 场效应管结构对称,应用灵活 ,方便。有时漏极和源极 可以互换使用,但是当衬底与源极相连在一起是不能互换使 用的。
5. 场效应管的制造工艺简单,有利于大规模集成。 6. 由于MOS场效应管输入电阻高达10¹² KΩ,故受外界静电 场感应产生的电荷不容易泄露,会在栅极上产生很高的电场 强度会引起 SiO2绝缘层击穿损坏管子。焊接时,应将电烙铁 外壳可靠接地。 7. 由于场效应管的跨导小,组成放大电路时,在相同负载 电阻的情况下,其电压放大倍数比三极管放大电路低。
场效应管放大电路
场效应管放大电路
一、实验要求
(1)建立场效应管放大电路。
(2)分析场效应管放大电路的性能
二、实验内容
(1)建立结型场效应管共源放大电路。
结型场效应管取理想模式。
用信号发生器产生频率为lkHz、幅值为10mV的正弦信号。
(2)打开仿真开关,用示波器观察场效应管放大电路的输入波形和输出波形。
测量输出波形的幅值,计算电压放大倍数。
(3)建立如图3-3所示的场效应管放大电路的直流通路。
打开仿真开关,利用电压表和电流表测量电路静态参数。
三、实验电路原理图
结型场效应管共源放大电路
场效应管放大电路的直流通路
四、实验结果及分析
1、函数信号发生器
输入信号输出信号波形:
分析:
共源放大电路的电压放大倍数为10。
输出波形的幅值为100mv。
2、场效应管放大电路的直流通路大电路的直流通路
分析:
根据实验数据可得,场效应管的漏源电压为15.076V,栅源电压为0.411V,漏极电流为0。
.05mA。
电压表和电流表测到的栅源电压,漏源电压,漏极电流。
五、实验结论
与双极型晶体管放大电路的共发射极、共集电极和共基极电路相对应,场效应管放大电路也有三种基本组态:共源电路、共漏电路、共栅电路。
其电路结构与分析方法与双极型晶体管放大电路类似。
第四章场效应管放大电路
N沟道MOS管,在VGS<VT时,不能形成导电 沟道,管子处于截止状态;只有当VGS≥VT时,才有沟 道形成。 VT——开启电压。
这种在VGS=0时没有沟道,只有VGS≥VT时才能 形成感生导电沟道的MOS管称为增强型MOS管。
第四章 场效应管放大电路
→形成由栅极指向P型
衬底的纵向电场
+
→将靠近栅极下方的空 穴向下排斥
-
→形成耗尽层。
第四章 场效应管放大电路
现假设vDS=0V,在s、g间加一电压vGS>0V 当vGS增大时→耗尽层增宽,并且该大电场会 把衬底的自由电子吸引到
耗尽层与绝缘层之间,形
成一N型薄层,构成漏-源 之间的导电沟道,称为反
N沟道耗尽型 MOS管 与 N沟 道 增 强型MOS管基本相 似。
区别:耗尽型
MOS 管 在 vGS=0 时 ,漏-源极间已有 导电沟道产生;
增强型MOS管要
在vGS≥VT时才出现 导电沟道。
5.1.5
第四章 场效应管放大电路
N沟道耗尽型MOSFET 在栅极下方的SiO2 层中掺入了大量的金 属正离子。所以当 vGS=0 时 , 这 些 正 离 子 已经感应出反型层, 形成了沟道。
夹断区
VT
2VT
第四章 场效应管放大电路
①截止区: vGS<vT
无导电沟道,iD=0,管子处于截止区.
②可变电阻区: vDS< vGS-vT
iD
K n [2(GS
T
)DS
2 DS
]
Kn
nCox
2
(W L
)
单位:mA V 2
52场效应管放大电路
解:由于IG=0,栅极和源极上的电压分别为
VG
VS
V V G VS G S V V G S 0 V V S S ID R (1 S 0 ( 4 I1 D )V 4 0 ID )VID IV D2 G .8 2S .m 1 844 m 或 4 0 A A 1 * .2 4 .8 m 1 4 A 1 .3 RV G 6 0 不合VR理SSS 设MOS管工作在饱和区,则 ID1.41mA
反相,电压放大倍数大于1;输出电阻=RD。 (3) 场效应管源极跟随器输入输出同相,电压放
大倍数小于1且约等于1;输出电阻小。
例5.2.4:设 V D D 5 V ,R d 3 .9 k ,V G S 2 V场效应管的参数为
V T 1 V ,K n 0 .8 m A /V 2 , 0 .0 2 V 1当MOS管工作于饱和区时
VDS QVDD IDR QS
MOS场效应管放大电路分析(3)
3结、i论i共:漏放大电G 路动D态id参数计算
输出电阻Ro: Ro
G
vo
| vs 0
io
D
idRL
+VDD
(相+似1),共性漏能R电G也2路相与似V+共g。s 集电路g结mV构gs
+ RG2RG1 vgs
D gmvgs
(V2i)因为Av≈1,S-共漏电路电+ 路 也(的-称3R)O源小共极。R漏跟G电1随路器的。RRSO比共R源L 电-路Vo
5.2 场效应管放大电路
场效应管的三个电极g、s、d和三极管的 三个电极b、e、c的作用相对应。用场效应管 组成的放大电路也有相应的共源、共漏、共栅 三种不同的接法,为使场效应管放大电路能够 正常工作,也应建立合适的静态工作点,并使 静态工作点稳定,所不同的是场效应管是电压 控制器件,需要建立合适的栅源电压,也叫栅 极偏置电压(栅偏压)。
MOS场效应管放大电路解读
2.67K
五、应用举例
•
• 3、计算电压放大倍数 Au 。
•
Au
gmRS // RL
0.258 //1000
1 gmRS // RL 1 0.258 //1000
0.67
注意事项
(1)在使用场效应管时,要注意漏源电压 UDS、漏源电流ID、栅源电压UGS及耗散功率等 值不能超过最大允许值。
• 从表中可以看出,rgs和rds数值很大,可以忽略;跨 接在g~d之间的电容Cgd可以用与晶体管分析相同的方法 折合到输入和输出回路:
•
•
Cgs Cgs (1 K )Cgd , (K gm RL )
•
Cds
Cds
K
•
1
C
gd
,
K
•
(K gm RL )
场效应管的高频等效模型
• 由于输出回路的时间常数比输入回路小得多,可忽
1.08
0
解之,得:ID1 1.52mA, ID2 0.535mA
由于I D1
1.52mA
I
,
DSS
不合
题意,舍去。故:
IDQ 0.535mA
UGSQ 1.08V
U DSQ VDD I DQ (RD RS )
16 0.535 (10 8) 6.37V
五、应用举例
• 2、计算输入电阻Ri和输出电阻RO Ri RG RG1 // RG2 1 0.16 // 0.04 1.03M RO RD 10K
(2)场效应管从结构上看漏源两极是对称 的,可以互相调用,但有些产品制作时已将衬 底和源极在内部连在一起,这时漏源两极不能 对换用。
(3)结型场效应管的栅源电压UGS不能加 正向电压,因为它工作在反偏状态。通常各极 在开路状态下保存。
场效应管放大电路
第五章 场效应管放大电路1、 图1所示场效应管工作于放大状态,ds r 忽略不计,电容对交流视为短路。
跨导为m 1ms g =。
(1)画出电路的交流小信号等效电路;(2)求电压放大倍数uA 和源电压放大倍数us A ;(3)求输入电阻i R 和输出电阻oR 。
题图12、电路如图2所示,场效应管的m 11.3ms g =,ds r 忽略不计。
试求共漏放大电路的源电压增益us A 、输入电阻i R 和输出电阻oR 。
图23、 放大电路如图3所示,已知场效应管的DSS 1.6mA I =,p U = -4V ,ds r 忽略不计,若要求场效应管静态时的GSQ 1V U =-,各电容均足够大。
试求:(1)g1R 的阻值;(2)uA 、i R 及o R 的值。
图34、图4(a)所示电路中的场效应管的转移特性为图4(b)所示,试求解该电路的GS U 、D I 和DS U 。
图45、电路如图5所示,已知FET 的I DSS = 3mA 、U P = -3V 、U (BR)DS = 10V 。
试问在下列三种条件下,FET 各处于哪种状态?(1) R d = 3.9k Ω;(2) R d = 10k Ω;(3) R d = 1k Ω。
VT+V DD R gR d图56、源极输出器电路如图6所示,已知场效应管在工作点上的互导m 0.9ms g ,ds r 忽略不计,其他参数如图中所示。
求电压增益u A 、输入电阻i R 和输出电阻oR 。
图6填空题1、双极型半导体三极管是器件,而场效应管属于器件。
2、对于MOSFET,用来描述栅源电压对漏极电流控制能力大小的参数称为。
3、在MOSFET中,在漏源电压一定的条件下,用以描述漏极电流与栅源电压之间关系的曲线称为。
4、在N沟道的MOSFET的电路中,若栅源电压已大于开启电压,漏源电压在某一变化区域内,漏极电流会随着漏源电压的增大而增大,说明此时MOSFET工作于区。
5、在构成放大器时,可以采用自给偏压电路的场效应管是场效应管。
场效应管基本放大电路高级教学
gm
2 U GS (th)
I DO I DQ
RG g
d
•
gm U gs
•
•
Ui
U gs
Rd
•
UO
2 10 2.5 2.5mA/V _ 4
_S
_
•
Au gmRd 2.5 3 7.5
Ro Rd 3K
精编课件
31
3、基本共漏放大电路的动态分析
(1)、估算静态工作点:
+VDD
VGG=UGSQ+IDQRS
精编课件
38
四、布置作业
1、P143 2.16
UGS(th)=2V IDO=4mA代替图(b)
2、预习:2. 7 2.8
精编课件
39
精编课件
40
Ro
Rs
//
1 gm
交流等效电路
RG
g
•
U
gs
S
_
•
•
Ui
gm U gs
Rs
•
UO
_
d
_
•
Rg
_
•
UO
IO
g
S
•
I RS
•
gm UO
Rs
d
•
UO
_
精编课件
35
例2.6.2
解:(1)、首先求出gm:
+VDD
gm
2 U GS (th)
I DO I DQ
2
Rg
T
u1_
Rs
VGG
u
_
O
8 2.5 2.98mS
uO
_
G u gs
id D
场效应管放大电路
场效应管放大电路场效应管放大电路与双极型晶体管放大电路类似,也有与之对应的三种基本组态:共源(共射)、共漏(共集)和共栅极(共基极)。
1.直流偏置及静态分析场效应管放大电路有两种常用的直流偏置方式:自给偏压和分压式偏置。
由于耗尽型(包括结型)管子在时就有漏极电流,利用这一电流在源极电阻上产生的电压给管子供应直流偏置,因此自给偏压仅适合于耗尽型管子。
分压式偏置方式,利用分压电阻供应的栅极直流电位和源极电阻上产生的直流压降共同建立栅源间极的直流偏置。
调整分压比可以使偏置电压为正或为负,使用敏捷,适合于各种场效应管。
场效应管放大电路的静态分析有图解法和解析法两种。
图解法与双极型晶体管放大电路的图解法类似,读者可对比学习。
解析法是依据直流偏置电路分别列出输入、输出回路电压电流关系式,并与场效应管工作在恒流区(放大区)漏极电流和的关系联立求解获得静态工作点。
2.动态分析场效应管放大电路的动态分析也有图解法和微变等效电路法两种。
它与双极型晶体管放大电路的分析法类似,读者可对比学习。
在双极型晶体管放大电路动态分析中,通常给出了管子的β值,而在场效应管放大电路分析中则需要利用解析法计算跨导gm。
例如耗尽型管子的由下式求得:上式表明gm与IDQ有关,IDQ越大,gm也就越大。
3.三种基本放大电路的特点场效应管放大电路的组态判别与双极型晶体管放大电路类似此处不再赘述。
三种基本放大电路的性能特点如表1所示。
表1 场效应管三种基本放大电路的性能特点共源极共漏极共栅极输入电阻大大小输出电阻较大小较大电压放大倍数大小于等于1大uo与ui的相位关系反相同相同相。
场效应晶体管放大电路
N
N
G
P+ P+
UDS G
P+ P+
UDS
UGS
S
S
第3页/共34页
Sect
3.1.2 JFET特性曲线
1. 输出特性曲线:
iD f (U DS )∣ UGS const
可变电阻区 线性放大区 ID=gm UGS 击穿区
2. 转移特性曲线:
ID
I
DSS
(1
U GS UP
)
2
IDSS:饱和栅极漏极电流,
着源极、栅极的次序焊在电路上; • 电烙铁或测试仪表与场效应晶体管接触时,均
第15页/共34页
各种场效应管所加偏压极性小结
结型
N沟道(uGS<0) P沟道(uGS>0)
场效应管
绝缘栅型
增强型
耗尽型
PN沟沟道道((uuGGSS<>00)) N沟道(uGS极性任意) P沟道(uGS极性任意)
uo
u gs
g m u gs
u ds
S
GD
Id
RG
Ui
Ugs
gm Ugs RD
RL
Uo
R2
R1
S
第26页/共34页
动态分析:
G
电压放大倍数
Id
RL
D
RG
Ugs
Ui R2R1RD g源自 UgsRL Uo•
•
Ui Ugs
S
ri
•
ro
Au gm R'L
•
•
Uo gm Ugs (RD // RL )
ID(mA)
第8页/共34页
UGS=6V
场效应管的三种放大电路
和半导体三极管一样,场效应管的电路也有三种接法即共源极电路、
共漏极电路和共栅极电路。
1.共源极电路
共源极电路除有图16-13 所示的接法外,还可采用图16-14 所示的电路。
这种电路的栅偏压是由负电压UG经偏置电阻RG提供的。
该电路虽然简单.但R G不易取得过大.否则会在栅漏泄电流流过时产生较大的压降,使栅偏压发生变化.造成工作点的偏离。
共源极基本放大电路的主要参数,可由以下各式确定:
2. 共漏极电路(源极输出器)
共漏极电路如图16-15 所示。
该电路中除有源极电阻Rs提供的自偏压外,还有由R1和R2组成的分压器为栅极提供的固定栅偏压。
共漏极电路的输出与输入同相,可起到阻抗变换器的作用。
共漏极基本放大电路的主要参数可由以下各式确定:
3. 共栅极电路
共栅极电路如图16-16 所示。
偏置电路为自给偏置,当ID流经Rs 时产生压降ID·Rs,由于栅极接地,相当于源极电位比栅极高出一个ID·Rs值。
这种方法简单.栅极电压也会随信号自动调节,对工作点的稳定有好处C 该电路有良好的放大特性。
共栅极电路的输入电阻和输出电阻由下式确定:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结型
场效应管:
N沟道
P沟道
增强型 N沟道 MOS型 P沟道 耗尽型 增强型 耗尽型
§4.1 绝缘栅型场效应管( Insulated Gate Field Effect Transister)
2. 工作原理
结型场效应管没有绝缘层,只 能工作在反偏的条件下。N沟道结 型场效应管只能工作在负栅压区, P沟道的只能工作在正栅压区,否 则将会出现栅流。
ID
N沟道结型场效应管工作原理:
(1)VGS对导电沟道的影响:
(a) VGS=0,VDS=0,ID=0
VP(VGS(OFF) ):夹断电压 栅源之间是反偏的PN结, RGS>107,所以IG=0
结构动画
2. 工作原理(以N沟道增强型为例)
(1)栅源电压VGS的控制作用
(a) VGS=0时,漏源之间相当 两个背靠背的 二极管,在D、 S之间加上电压,不管VDS极 性如何,其中总有一个PN结 反向,所以不存在导电沟道。 VGS =0, ID =0
VGS必须大于0 管子才能工作。
(1)栅源电压VGS的控制作用
(4) 极间电容 :漏源电容CDS约为 0.1~1pF,栅源电容CGS和栅 漏极电容CGD约为1~3pF。
场效应管的主要参数
(5) 低频跨导 gm :表示vGS对iD的控制作用。
d iD gm = VDS d vGS
在转移特性曲线上, gm 是曲线在某点上的斜率,也可由 iD的表达式求导得出,单位为 S 或 mS。 (6) 最大漏极电流 IDM (7) 最大漏极耗散功率 PDM (8) 漏源击穿电压 V(BR)DS 栅源击穿电压 V(BR)GS
vDS /V
4.其它类型MOS管
(1)N沟道耗尽型: N沟道耗尽 型MOSFET的结构和符号如图所 示,制造时在栅极下方的绝缘层 中掺入了大量的金属正离子。所 以当VGS=0时,这些正离子已经 在感应出反型层,在漏源之间形 成了沟道。于是只要有漏源电压, 就有漏极电流存在。
各种类型MOS管的特性曲线
绝缘栅型场效应管IGFET有称金属氧化物场效应管 MOSFET( Metal Oxide Semiconductor FET)是一种利用半导体
表面的电场效应,由感应电荷的多少改变导电沟道来控制漏极 电流的器件,它的栅极与半导体之间是绝缘的,其电阻大于 109。
增强型:VGS=0时,漏源之间没有导电沟道, 在VDS作用下无iD。 耗尽型:VGS=0时,漏源之间有导电沟道, 在VDS作用下iD。
VDS ID
(2)漏源电压VDS对漏极电流ID的控制作用
(b)当VDS增加到使VGD=VT 时,沟道如图所示,靠近漏 极的沟道被夹断,这相当于 VDS增加使漏极处沟道缩减到 刚刚开启的情况,称为预夹 断。
(2)漏源电压VDS对漏极电流ID的控制作用
(c)当VDS增加到VGDVT时,沟 道如图所示。此时预夹断区域加 长,向S极延伸。 VDS增加的部分 基本降落在随之加长的夹断沟道 上, ID基本趋于不变
工作原理
(b) 0< VGS < VP VGS 耗尽层变宽
(c) |VGS | = VP , 导电沟道被全夹断
VGS控制导电沟道的宽窄,即控制ID的大小。
工作原理
(2)VDS>0 但|VGS-VDS| < | VP | ,时
ID
(a) VDS增加,d端电位 高,s端电位低,导电 沟道内存在电位梯度, 所以耗尽层上端变宽。 VDS ID
工作原理
(b) | VGS- VDS | = | VP |时, 导电沟道在a点相遇, 沟道被夹断。 VGS=0时,产生夹断时 的ID称为漏极饱和电流 IDSS
ID
工作原理
(c) VDS夹端长度 场强 ID=IDSS基本不变。
ID
J型场效应管的 工作原理动画
3. 特性曲线
VDS=10V时的 转移特性曲线
N 沟 道 绝 增 缘 强 栅 型 场 效 P 应 沟 管 道 增 强 型
各种类型MOS管的特性曲线
绝 缘 栅 场 效 应 管
N 沟
(1) 开启电压VT :在VDS为一固定数值时,能产生ID所需要的 最小 |VGS | 值。(增强) (2) 夹断电压VP :在VDS为一固定数值时,使 ID对应一微小电流 时的 |VGS | 值。(耗尽) (3) 饱和漏极电流IDSS :在VGS = 0时, VDS > |VP |时的漏 极电流。(耗尽)
(b)当栅极加有电压时,若 0<VGS<VGS(th) ( VT 称为开 启电压)时,在Sio2介质中产生 一个垂直于半导体表面的电场, 排斥P区多子空穴而吸引少子电 子。 但由于电场强度有限,吸 引到绝缘层的少子电子数量有 限,不足以形成沟道,将漏极 和源极沟通,所以不可能以形 成漏极电流ID。 0<VGS<VT , ID=0
§4.4 场效应管放大电路
场效应管的小信号模型 共源极放大电路 共漏极放大电路 共栅组态基本放大电路
4.4.1 场效应管的小信号模型
已知场效应管输出特性表达式: iD
= f (vGS , vDS )
iD vDS
VGS
iD VDS g m 其中: 低频跨导, 可从输出曲线上求出 vGS iD 1 VGS 漏极与源极间等效电阻 vDS rds
VP V -4 -4 -5.5 -4
gm mA/ V ≥2 ≥3 ≥8 ≥2
fM MHz 300 90 1000
§4. 2 结型场效应管(Junction type Field Effect Transister)
1. N沟道结型场效应管的结构和符号 结型场效应管是一种利用耗尽层宽度改变导电沟道的宽窄 来控制漏极电流的大小的器件。 它是在N型半导体硅片 的两侧各制造一个PN结, 形成两个PN结夹着一个 N型沟道的结构。P区即 为栅极g(G),N型硅的 一端是漏极d(D),另一 端是源极s(S)。 箭头方向表示栅结正偏 或正偏时栅极电流方向。 N沟道结型场效 应管的结构动画
ID=f(VDS)VGS=const
输出特性曲线
vGS 在恒流区,iD I D 0 ( - 1) 2 VT
I D 0是vGS 2VT时的iD值
输出特性曲线
(1) 截止区(夹断区) VGS< VT以下区域就是截止区 VGS VT ID=0
iD
(2) 放大区(恒流区) 产生夹断后,VDS增大,ID不变的 区域,VGS -VDS VP VDSID不变 处于恒流区的场效应管相当于一 个压控电流源 (3)饱和区(可变电阻区) 未产生夹断时,VDS增大,ID随着增大的区域 VGS -VDS VP VDSID 处于饱和区的场效应管相当于一个压控可变电阻
双极型和场效应型三极管的比较
双极型三极管
结构 NPN型 PNP型
C与E一般不可倒置使用 载流子 控制 噪声 温度特性 输入电阻 静电影响 集成工艺 多子扩散少子漂移 电流控制电流源CCCS(β) 较大 受温度影响较大 几十到几千欧姆 不受静电影响 不易大规模集成
场效应三极管
结型耗尽型 N沟道 P沟道 绝缘栅增强型 N沟道 P沟道 绝缘栅耗尽型 N沟道 P沟道
场效应三极管的型号
场效应三极管的型号, 现行有两种命名方法。其一是与双 极型三极管相同,第三位字母J代表结型场效应管,O代表 绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型 层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场 效应三极管,3DO6C是绝缘栅型N沟道场效应三极管。 第二种命名方法 是CS××#,CS代表 场效应管,××以数 字代表型号的序号,# 用字母代表同一型号 中的不同规格。例如 CS14A、CS45G等。
当|vGS - vDS | | vP |后,管子工作在恒流区,vDS对iD的影响 很小。实验证明,当|vGS - vDS | | VP | 时,iD可近似表示为:
vGS 2 iD I DSS (1 ) VP
IDSS是在VGS = 0, VDS > |VP | 时的漏极电流
场效应管总结
VGS<VP 时工作 PMOS 耗尽 VGS 可正可负 PMOS 增强 VGS>VP 时工作 NMOS 耗尽 VGS 可正可负 NMOS 增强 结型 P 结型 N VGS<VP 时工作 VP >0 VGS>VP 时工作 VP <0 VP VGS>VP 时工作 VT >0 相当于 PMOS 耗尽型 相当于 NMOS 耗尽型 VT VGS<VT 时工作 VT <0
1. 结构和符号(以N沟道增强型为例)
N沟道增强型MOSFET拓 扑结构左右对称,是在一 块浓度较低的P型硅上生成 一层SiO2 薄膜绝缘层,然 后用光刻工艺扩散两个高 掺杂的N型区,从N型区引 出电极作为D和S,在绝缘层 上镀一层金属铝并引出一 个电极作为G D(Drain):漏极,相当c G(Gate):栅极,相当b S(Source):源极,相当e B(Substrate):衬底
几种常用的场效应三极管的主要参数见表
参 数 型号 3DJ2D 3DJ7E 3DJ15H 3DO2E CS11C
PDM mW 100 100 100 100 100
IDSS mA <0.35 <1.2 6~11 0.35~1.2 0.3~1
VRDS V >20 >20 >20 >12
VRGS V >20 >20 >20 >25 -25
VDS ID 不变
漏源电压VDS对 沟道的影响动画
3. 特性曲线(以N沟道增强型为例)