半导体发光材料PPT
2024发光二极管LEDPPT课件

发光二极管LEDPPT课件•发光二极管LED基本概念与原理•发光二极管LED材料与制备技术•发光二极管LED器件结构与封装形式•发光二极管LED驱动电路设计与应用实例目录•发光二极管LED性能测试与评估方法•总结回顾与展望未来发展趋势01发光二极管LED基本概念与原理发光二极管定义及分类定义发光二极管(LED)是一种能将电能转化为光能的半导体电子元件,具有高效、环保、寿命长等特点。
分类根据发光颜色、芯片材料、封装形式等不同,LED可分为多种类型,如单色LED、双色LED、全彩LED、大功率LED等。
工作原理与发光机制工作原理LED的核心部分是由P型半导体和N型半导体组成的晶片,在PN结附近,当注入少数载流子时,会与多数载流子复合而发出光子,从而实现电能到光能的转换。
发光机制LED的发光颜色与半导体材料的禁带宽度有关,不同材料的禁带宽度不同,发出的光子能量也不同,因此呈现出不同的颜色。
此外,通过改变LED的电流、电压等参数,还可以实现亮度和颜色的变化。
主要参数及性能指标主要参数LED的主要参数包括光通量、发光效率、色温、显色指数等,这些参数决定了LED的发光效果和使用性能。
性能指标评价LED性能的指标主要有寿命、可靠性、安全性等,这些指标对于LED的应用和推广具有重要意义。
应用领域及市场前景应用领域LED广泛应用于照明、显示、指示、背光等领域,如家居照明、商业照明、景观照明、交通信号灯、户外广告屏等。
市场前景随着人们对节能环保意识的提高和LED技术的不断发展,LED市场呈现出快速增长的趋势。
未来,LED将在更多领域得到应用,市场前景广阔。
02发光二极管LED材料与制备技术如砷化镓、磷化镓等,具有高亮度、高效率、长寿命等特点。
半导体材料荧光粉材料封装材料用于LED 的波长转换,可调整LED 的发光颜色。
如环氧树脂、硅胶等,用于保护LED 芯片和提高其稳定性。
030201常用材料类型及特点通过化学气相沉积等方法在衬底上生长出所需的半导体材料。
第三讲++半导体发光材料

19
AlGaAs
AlxGa1-xAs这种三元系晶体结构的特点是在Al摩尔比x 的整个取值范围内都有几乎理想的晶格匹配。GaAs 与AlAs的晶格常数分别为0.56532nm和0.56622nm, 晶格失配小,在GaAs衬底上生长外延层时,不需要 过渡层,就能获得很高质量的AlxGa1-xAs外延层。
半导体晶体的带隙宽度必须大于所需发光波长的光子能量
h Eg
h
c
Eg
hc
Eg
(nm) 1240
Eg
Eg
hv
其中,h为普朗克常数6.626*10-34J.s, c为光速2.9979*108m/s; 1J=6.25*1018eV
可见光λ:380-780nm,可求对应半导体材料Eg
缩短少数载流子寿命 降低发光效率 SiC晶体、GaN晶体的缺陷
改进材料的生长方法,外延材料要与衬底在晶 格常数和热膨胀系数匹配。
6
作业1:调查蓝宝石作为蓝绿光LED衬底的优 缺点,在LED结构设计的过程中如何克服蓝宝 石的缺点?
7
8
可获得电导率高的P型和N型材料
为制得优良的PN结,要能呈现p型和n型两种晶体 为获得较高的结电场,P区和N区的掺杂要足够高。
发光材料是发光器件的基础,是器件性能提高的 关键
GaAs、GaP、GaAsP II-VI族二元化合物半导体发光器件进展迟缓,虽然曾
被认为是可见光和近紫外区发光器件最自然的候选材 料。 OLED的发光材料研究
15
发光材料
LED芯片用的半导体发光材料:电致发光材料, 无机,与光致发光的荧光粉材料不同
半导体材料总结ppt课件

ppt课件.
23
23
GaAs电学性质
电子迁移率高达 8000cm2 VS
GaAs中电子有效质量为自由电子的1/15, 是硅电子的1/3
用GaAs制备的晶体管开关速度比硅的快 3~4倍
高频器件,军事上应用
ppt课件.
24
24
本征载流子浓度
T 3 0 0 K n i 1 .3 1 0 6/c m 3
体心原子的划分,属于每个晶胞 1
ppt课件.
9
9
(c)面心立方晶体 6个面中心各有1个原子, 6*1/2=3原子; 8个顶角各有1个原子,8*1/8=1个原子。 每个面心立方晶胞有4个原子。
ppt课件. 面心原子的划分,属于每个晶胞 110/2
10
(2)半导体材料的能带结构
间接带隙结构 直接带隙结构
∶ ∶
ppt课件.
4
4
按组成
元素半导体 无机半导体
化合物半导体
有机半导体
按结构
晶体
单晶半导体 多晶半导体
非晶、无定形半导体
ppt课件.
5
5
3.半导体材料的基本性质及应用
(1)半导体的晶体结构 (2)半导体的能带结构 (3) 半导体的杂质和缺陷 (4) 半导体的电学性质 (5) 半导体的光学性质
带隙大小
ppt课件.
11
11
(3) 半导体的杂质和缺陷
轻掺杂
掺杂浓度为1017 cm-3 杂质离子100%电离
中度掺杂 掺杂浓度为1017~1019 cm-3 载流子浓度低于掺杂浓度
重掺杂 掺杂浓度大于1019 cm-3
ppt课件.
12
12
硅中的杂质
1. n型掺杂剂:P,As,Sb
半导体光电材料基础-4PPT课件

:电子的亲和能
W:电子的功函数 Eg:禁带宽度
两种半导体紧密
接触时,电子
(空穴)将从
n(p)型半导体流
向p(n)型半导体,
直至费米能级相
P型
N. 型
等为止。
5
5.1 异质结及其能带图
(1)不考虑界面态时的能带图 突变反型(pn)异质结能带图(形成异质结后)
交界面两边形成空间电 荷区(x1-x2),产生内建电 场。
EcEv0.76eV
交界面两侧半导体中的 内建电势差VD1,VD2由掺 杂浓度、空间电荷区 (势垒区)宽度和相对 . 介电常数共同决定。 8
5.1 异质结及其能带图
(1)不考虑界面态时的能带图 突变反型(np) 异质结能带图
N型
P型
形成异质结前
.
N型
P型
形成异质结后 9
5.1 异质结及其能带图
异质结具有许多同质结所所不具有的特性,往往具 有更高的注入效率。
反型异质结:由导电类型相反的两种不同的半导体 单晶材料构成。如:p-nGe-GaAs(p型Ge与n型GaAs)
同型异质结:由导电类型相同的两种不同的半导体 单晶材料构成。如:n-nGe-GaAs(n型Ge和n型GaAs)
异质结的能带图对其特性起着重要作用。在不考虑
导带阶 Ec 12
价带阶
E v E g 2 E g 1 1 2
E c E vE g2E g1
以上式子对所有突变异
P型
N型.
质结普适 7
5.1 异质结及其能带图
(1)不考虑界面态时的能带图 突变p-nGe-GaAs异质结能带图
n-GaAs
Ec 0.07eV
Ev 0.69eV
OLED-讲义PPT课件

Blue: >8,000hrs (initial brightness ~100cd/m2, Idemutsu Kosan)
Red: >14,000hrs (initial brightness ~200cd/m2, Toray)
有机发光显示技术
•1基本概念 •2有机发光显示技术发展过程 •3有机发光材料 •4有机发光显示器件工艺技术 •5有机发光显示器件驱动技术 •6新型有机发光显示若干关键技术
彩色化,高分辨(隔离柱),寿命,器件效率(功耗) ITO薄膜技术,发光材料纯化技术,OLEDoS(微显示), AMOLED(有源),FOLED(软屏),WOLED(白光)。
1 有机发光显示基本概念
显示技术背景
发光型
显示器
受光型
CRT(阴极射线管) PDP(等离子显示器) FED(场发射显示器) LED(发光二极管) OLED(有机发光显示器) VFD(真空荧光显示器)
LCD(液晶显示器) ECD(电致变色显示器)
平板显示器
1 有机发光显示基本概念
学科发展背景
有机电子学(Organic Electronics):研究有机材料的电子过 程与有机材料光电子特性的科学。
尺寸:显示屏对角15.1英吋 驱动:低温多晶硅TFT有源驱动 点阵:1024×768(XGA )
2.3 OLED 发展现状
2003年1月9 日,索尼展示了24 英寸有机发光显
示器 。
2.3 OLED 发展现状
中国大陆OLED发展状况
Visionox Technology
半导体光电材料基础ppt课件

• 俄歇过程包括两个电子(或空穴)和一个
空穴(或电子)的相互作用,故当电子
P型
(或空穴)浓度较高时,该复合较显著。
因而PN结LED的掺杂浓度不能太高。
带-带俄歇过程
20
7.2 辐射复合与非辐射复合
7.2.2 非辐射复合过程
2)俄歇(Auger)过程
• 带-杂质能级的俄歇过 程:多子和一个陷在 禁带中的能级上的少 子的复合。
6)等电子陷阱复合
-a 0 a x
• 形成等电子杂质原子对电子(空穴)的束缚态的条 件是什么?
形成等电子杂质对电子的束缚作用是一个短程 势,可以看成是深度为V0,半径为a的方势阱。计算 表明,只有满足以下关系时,可能出现束缚态。
V0 a 2
2 2
8m*
电子有效质量大的情况容易产生等电子陷阱。一般,
14
7.2 辐射复合与非辐射复合
7.2.1 非平衡载流子的辐射复合
6)等电子陷阱复合 • 与直接跃迁相比,GaP:N 跃迁概率还是很小的。 • 另外,两个或多个N原子也可以形成等电子陷阱,
如GaAs1-xPx:NN和GaAs1-xPx:NN3
15
7.2 辐射复合与非辐射复合
V(x) V0
7.2.1 非平衡载流子的辐射复合
宽禁带材料电子有效质量较大,等电子陷阱往往发生
在宽禁带半导体中。
16
7.2 辐射复合与非辐射复合
7.2.1 非平衡载流子的辐射复合
6)等电子陷阱复合 • 如何才能形成束缚性很强的等电子陷阱?
当等电子杂质原子的半径与被取代的基质原 子的半径差别很大时,晶格形变也很大,才能产 生有效的束缚较强的束缚态。
• 室温下,由于与声子相互作用较强,D-A对发光的线 光谱很难被观测到;但在低温下可以很明显地观察 到D-A对发射的线光谱。
半导体材料发光的能带理论PPT课件

hv=Eg-Ex 在间接带隙半导体中:
hv==Eg-Ex-Ep Ep为声子能量
三、纳米氧化锆发光原理
3.1 纳米氧化锆的光学特性
纳米氧化锆的光学特性就是通过光致发光分析其激发发射光谱,主要针对其光 致发光光谱的测试与讨论。
空带:原来孤立原子的电子未能形成满壳层,过渡到能带后,电子也不能填满
能带中的所有状态,这样的能带叫空带。
研究方 价带:最高的满带。
导带:最低的空带。
案 禁带:价带和导带之间的区域。
研究成 果
二、半导体材料发光理论
2.1 半导体发光分类
(1)限于发光中心内部的电子跃迁:发光中心可以从晶体内的其他杂质或从 晶格间接获得能量,也可直接受到载流子的碰撞,使发光中心电离或使电子从 基态跃迁到激发态。 (2)导带电子同价带空穴的复合:当晶体内部形成空位时,电子可由杂质中
能量守恒、准动量守恒的条件。
二、半导体材料发光理论
能量守恒:hv=跃迁前后电子能量差±Ep 准动量守恒:hk-hk'±hq=光子动量
“-”代表吸收声子,“+”代表发射声子
由于声子能量相对于光子能量较小,因此Ep可以忽略,
得到:hv=跃迁前后电子研能究量差方
研究成
案 同样忽略光子动量得到:k'-k=±q
量守恒
案 果 hk-hk'=光子动量
因为一般半导体中吸收光子动量远小于能带中电子动量,所以光子动量可忽略
不计,上式变为
hk=hk' → k=k'
即在跃迁过程中,波矢可视为不变,跃迁前状态与跃迁后状态位于同一垂直线
第1章半导体发光及器件汇总PPT课件

激子:
空穴带正电,自由电子带负电,它们之间的库仑吸引互作 用在一定的条件下会使它们在空间上束缚在一起,这样形 成的复合体称为激子。
1.2 半导体发光材料
二、典型半导体发光材料
激子的俘获:
一个电荷(电子或空穴)首先被缺陷的近程势所束缚,使 缺陷中心带电,然后再通过库仑互作用(远程势)束缚一个电 荷相反的空穴或电子,形成束缚激子 。
间接带隙半导体材料:光电探测器
1 .1 半导体及半导体发光基础
1.1.1 半导体物理基础
本征半导体:
本征半导体是纯净而不含任何杂质的理想半导体材料。
由于晶体中原子的热振动,价带中的一些电子被激发到 导带,同时在价带中留下空穴,形成电子-空穴对。因此, 本征半导体中的电子浓度与空穴浓度相等。
1 .1 半导体及半导体发光基础
1.2 半导体发光材料
二、典型半导体发光材料
GaP 间接带隙宽度2.26eV,典型的间接发光材料。在GaP中
通过掺入杂质(例如N),产生等电子陷阱,俘获激子,通 过激子复合实现发光。
在半导体发光材料中具有较高的发光效率。并且通过掺 入不同的发光中心,可以直接输出红、绿、黄灯等种不同 颜色的光。
1.2 半导体发光材料
GaN是性能优良的短波长半导体发光材料,可用于蓝光 及紫光发光器件。
1.2 半导体发光材料
二、典型半导体发光材料
InGaAsP
In1-xGax As1-yPy四元固溶体。通过组分x和y的调节,覆盖波 长范围从870nm(GaAs)至3.5μm(InAs),该范围包含了光 纤通讯波长1.3和1.55μm。光纤通讯所用1.3和1.55μm半 导体光源即主要采用InGaAsP材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可见光
0.5
◄
半导体激光器材料、发射波长和应用分类
参考文献
[1] 余金中编著.半导体光电子技术.北京:化学工业出版社,2003. [2] 方志烈编著.半导体发光材料和器件.上海:复旦大学出版社,1992. [3] Dimaria D J, Kirtley J R, Pakulis E J, et al. Appl. Phys, 1984, 56: 401. [4] Canham L T. Appl Phys Lett.1990, 57: 1046. [5] Wang J, Ning Y Q, Ren D C, et al. Micronano-electronic Technology, 2002, 8: 18. [6] Qin G G, Wang Y Q, Qiao Y P, et a1. Appl Phys Lett, 1999, 74: 2182. [7] Lockwood D J, Lu Z H, Baribeau J M. Phys Rev Lett, 1996, 76: 539. [8] Tsybeskov L, Grom G F, Fauchet P M. et a1. Appl Phys Lett, 1999, 75: 2265. [9] Zacharias M, Blasing J, Veit P, et a1. Appl Phys Lett. 1999, 74: 2614. [10] Qin G G, Heng C L, Bai G F, et a1. Appl Phys Lett, 1999, 75: 3629.
GaAs的发光原理
E
hv Eg hv
P(E) (a) N型晶体
(b) P型晶体
高杂质浓度晶体内的带间跃迁
GaAs的发光原理
GaAs发光二极管主要在P区发光:
(1)μn/μp高达20左右
(2)N区的费米能级因简并处于很高的位置
(3)P区内受主很深且形成杂质带
半导体发光材料
间接带隙跃迁
h Eg
SiO2(50nm)/富硅SiO2(20nm)/n-Si结构在1000℃退 火后,正向偏压大于15V下有电致发光出现。
1990年Canham报道了室温下多孔硅的强光致发光。 近年来许多研究机构正在通过半导体杂质工程或能 带工程的方法来改善硅的发光效率,并取得一定的 进展。
杂质发光
1.等电子(杂质)中心
1.
2.
为了对量子点发光的机理进行深入研究,以求得 物理上的正确模型与解释。 在Si上制作量子点,从三维上对电子和空穴进行 限制,真正回避了硅基材料间接带隙发光效率低 的难题。
半导体发光材料器件
半导体发光材料器件
波长/μm
◄
Δ
1.5 近红外
InGaAsP激光器 通讯系统
◄
1.0
Δ Δ ◄
InGaAs激光器
谢
谢!
目录
半导体发光材料的条件 半导体发光材料 ► GaAs半导体材料 ► Si基发光材料 半导体发光材料器件
半导体发光材料的条件
合适的带隙宽度
Eg[eV ] h c 1.24 [ m]
电导率高的P型和N型晶体
用以制备优良的PN结
完整性好的优质晶体
制作高效率发光器件的必要条件
发光复合几率大
GaAs半导体材料
典型的直接跃迁型材料
最为重要且研究最多的III-V族化合物半导体
Eg~1.43eV,λ ~900nm
微波器件,半导体激光器,上转换可见光器 件的红外激发源,发光耦合器的红外发光源 等
许多材料外延生长的衬底
GaAs基本性质
闪锌矿结构
(110)自然解理面
主要缺陷
位错 化学计量比偏离 杂质偏析 显微沉淀
特点:有声子参与, 发光效率低。
Si基发光材料
硅(Si)是目前最主要的半导体,在微电子 器件材料领域占有主流地位,硅基光电子集 成是目前科学研究的热点。
光发射器件是硅基光电集成中的关键器件, 要实现硅基光电子集成,就必须解决硅基材 料的发光问题!
Si基发光材料
1984年Dimaria等人报道了,半透明Au 膜/
GaAs的发光原理
1
发 光 相 对 效 率
10-1
N型
10-2
P型
10-31018
1019
1020
杂质浓度(cm-3)
室温下用电子束激发GaAs发光时的相对效率与杂质浓度
GaAs的发光原理
E
ED
Eg
(a)低浓度
(b)中等浓度下 的杂质带
(c)高浓度 下的带尾
杂质浓度增加引起的态密度变化
直接带隙跃迁 间接带隙跃迁
半导体发光材料
发光的主要机制:
e-h的复合,释放光子
半导体发光材料
直接带隙跃迁
h Eg
特点:无声子参与, 发光效率高
半导体发光材料
直接跃迁的半导体材料
以III-V族化合物半导体以及由它们组成的三四元固溶体为主
GaAs InP
GaN
GaAsP InGaAsP ......
等电子陷阱 束缚激子
对提高间接带隙材料的发光效率起着关键作用。
2.掺Er杂质发光
发光机理:激子传递能量模型。
目前的局限:Er在Si中的固溶度仅能到1018cm-3,
发光效率较低发光强度不高。
硅基量子结构
研究集中在α-Si(Ge)/SiO2超晶格、SiGe/Si 量子阱和Si(Ge)量子点发光。 原因