TSP问题之动态规划法
TSP问题分析动态规划,分支界限法,蛮力法
算法综合实验报告学号: 1004111115 姓名:李宏强一、实验内容:分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。
二、程序设计的基本思想、原理和算法描述:(包括程序的数据结构、函数组成、输入/输出设计、符号名说明等)1、动态规划法(1)数据结构:利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所由一个十进制数x相对应,此x所对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。
例如:集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中,右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在集合S中;同理,集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中,则说明0,2在集合中,1不在集合中。
利用邻接矩阵表示任意两点之间的距离例如:mp[i][j]表示点i,j两点之间的距离。
(2)函数组成输入函数in()利用动态规划法算法实现的求解函数solve()主函数main()(3)输入/输出设计本程序可以通过键盘进行输入、屏幕进行输出。
(根据实际程序情况,还可以选择随机产生输入数据、将输出数据输出到文件等其它方式)这里采用随机产生输入数据,将数据输出在屏幕上的方式。
(4)符号名说明n 表示顶点个数。
mp[i][j] 表示顶点i和顶点j之间的距离。
dp[i][j] 表示顶点i经过集合S(用二进制表示的数为j)后回到起始点的最短路径和。
(5)算法描述某一个点i不经过任意点回到起始点的最短路径和为mp[i][0](默认初始点为0)dp[i][0] = mp[i][0]; (1<=i<n)点i经过集合S(二进制表示的数为j)的最短路径和为从点i经过集合S中的某一点k后再从该点出发,经过集合S-{k}的最小值。
旅行商问题的求解方法动态规划法和贪心法;算法论文
旅行商问题的求解方法摘要旅行商问题(TSP问题)时是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。
该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。
本文主要介绍用蛮力法、动态规划法、贪心法和分支限界法求解TSP问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。
矚慫润厲钐瘗睞枥庑赖。
关键字:旅行商问题;动态规划法;贪心法;分支限界法1引言旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。
研究TSP的求解方法对解决复杂工程优化问题具有重要的参考价值。
关于TSP的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。
归纳起来,目前主要算法可分成传统优化算法和现代优化算法。
在传统优化算法中又可分为:最优解算法和近似方法。
最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。
但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法和分支限界法,并对蛮力法做简单介绍,用以比较。
聞創沟燴鐺險爱氇谴净。
2正文2.1蛮力法2.1.1蛮力法的设计思想蛮力法所依赖的基本技术是扫描技术,即采用一定的策略将待求解问题的所有元素一次处理一次,从而找出问题的解。
一次处理所有元素的是蛮力法的关键,为了避免陷入重复试探,应保证处理过的元素不再被处理。
在基本的数据结构中,一次处理每个元素的方法是遍历。
残骛楼諍锩瀨濟溆塹籟。
2.1.2算法讨论用蛮力法解决TSP问题,可以找出所有可能的旅行路线,从中选取路径长度最短的简单回路。
如对于图1,我们求解过程如下:酽锕极額閉镇桧猪訣锥。
(1)路径:1->2->3->4->1;路径长度:18;(2)路径:1->2->4->3->1;路径长度:11;(3)路径:1->3->2->4->1;路径长度:23;(4) 路径:1->3->4->2->1;路径长度:11;(5) 路径:1->4->2->3->1;路径长度:18;(6) 路径:1->4->3->2->1;路径长度:18;从中,我们可以知道,路径(2)和(4)路径长度最短。
TSP问题的近似算法
TSP问题的近似算法近似算法是解决优化问题的一种有效方法,它可以在较短时间内得到一个接近最优解的解,而不是花费大量时间去寻找最优解。
TSP问题(Traveling Salesman Problem)是一个经典的优化问题,它的目标是找到一条经过所有城市的最短路径。
这个问题是一个经典的NP难题,意味着在合理的时间内找到准确的最优解是不可能的,最多只能得到近似解。
因此,近似算法在TSP问题中具有重要的应用价值。
常见的近似算法包括贪心算法、局部搜索算法、动态规划算法等。
下面我们将介绍其中几种经典的算法。
1. 贪心算法贪心算法是一种基于贪心策略的近似算法。
它的基本思想是每次选择当前最优解,直到得到一个接近最优解的解。
在TSP问题中,贪心算法的思路是从起点出发,每次选择距离当前城市最近的城市,直到遍历所有城市。
但是这种贪心策略往往不能得到最优解,因为它可能陷入局部最优解。
2. 局部搜索算法局部搜索算法是一种基于局部优化的近似算法。
它的基本思想是从一个随机的解出发,不断地进行局部搜索,直到得到一个接近最优解的解。
在TSP问题中,局部搜索算法的思路是从一个随机的解出发,通过交换城市的顺序来不断优化当前解,直到达到一定的迭代次数或无法继续优化为止。
这种算法的优点是效率高,缺点是易陷入局部最优解。
3. 动态规划算法动态规划算法是一种基于状态转移的近似算法。
它的基本思想是将一个复杂问题分解成若干个子问题,通过按顺序解决子问题来求解原问题。
在TSP问题中,动态规划算法通过定义状态、状态转移方程和初始状态来求解最短路径。
其时间复杂度为O(n^2*2^n),因此不适用于大规模的问题。
总结以上是常见的几种近似算法,在实际运用中可以根据问题的特点选择合适的算法。
虽然这些算法不能得到准确的最优解,但它们可以在短时间内得到一个接近最优解的解,具有重要的实际应用价值。
动态规划求解TSP问题
f5(i, )=min{Cij+f6(1, )}=Ci1, d5(i, 1), i=2, 3, 4, 5 f5(i, )的值列表如下:
1
i 2
f5(i, ) 2
5 3
5 1 2 7
2
2 3 3
3
4 5
7
2 5
6
4 4
5
7
对于k=4, 有
f4(i, S4)=min{Cij+f5(j, S5)}, jS4, f4(i, S4。并且有 xn=(i, ), i=2, 3, …, n,
xn+1=(1, )
4
动态规划模型构造
决策变量:dk=(i, j), 其中i为当前所在的城市, j为下一站将要到达的城市。 状态转移方程:若当前的状态为 xk=(i, Sk) 采取的决策为 dk=(i, j) 则下一步到达的状态为 xk+1=T(xk, dk)=(j , Sk\{j})
9
(i, S3) (2, {3, 4}) (2, {3, 5})
J {3} {4} {3} {5}
Cij 3 5 3 1
S4 {4} {3} {5} {3}
Cij+f4(j, S4) 3+f4(3, {4})=3+6=9* 5+f4(4, {3})=5+11=16 3+f4(3, {5})=3+11=14* 1+f4(5, {3})=1+13=14*
(1, S1) (1, {2, 3, 4, 5})
J {2} {3} {4} {5}
Cij 2 7 2 5
S2 {3, 4, 5} {2, 4, 5} {2, 3, 5} {2, 3, 4}
动态规划法,回溯法,分支限界法求解TSP问题实验报告材料
TSP问题算法实验报告指导教师:季晓慧姓名:辛瑞乾学号: 1004131114 提交日期: 2015年11月目录总述 (2)动态规划法 (3)算法问题分析 (3)算法设计 (3)实现代码 (3)输入输出截图 (6)OJ提交截图 (6)算法优化分析 (6)回溯法 (6)算法问题分析 (6)算法设计 (7)实现代码 (7)输入输出截图 (9)OJ提交截图 (10)算法优化分析 (10)分支限界法 (10)算法问题分析 (10)算法设计 (10)实现代码 (11)输入输出截图 (15)OJ提交截图 (16)算法优化分析 (16)总结 (16)总述TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。
动态规划法算法问题分析假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。
首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5]={1,3},x[6]={2,3},x[7]={1,2,3}。
设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。
算法设计输入:图的代价矩阵mp[n][n]输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度1.初始化第0列(动态规划的边界问题)for(i=1;i<n;i++)dp[i][0]=mp[i][0]2.依次处理每个子集数组x[2^n-1]for(i=1;i<n;i++)if(子集x[j]中不包含i)对x[j]中的每个元素k,计算d[i][j]=min{mp[i][k]+dp[k][j-1]};3.输出最短路径长度。
动态规划解TSP问题
用动态规划方法编程求解下面的问题:某推销员要从城市v1 出发,访问其它城市v2,v3,…,v6 各一次且仅一次,最后返回v1。
D 为各城市间的距离矩阵。
问:该推销员应如何选择路线,才能使总的行程最短?⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=012201622561801011274516804323415105019232125301801250403020100654321v v v v v v D1、变量设定阶段k :已遍历过k 个结点,k=1,2…6,7。
K=1表示刚从V1出发,k=7表示已回到起点V1状态变量Xk=(i ,Sk):已遍历k 个结点,当前位于i 结点,还未遍历的结点集合为Sk 。
则X1=(1,{2,3,4,5,6}),X6=(i ,Φ),X7=(1,Φ)决策变量Uk=(i ,j):已遍历k 个结点,当前位于i 结点,下一个结点选择j 。
状态转移方程:X k+1 = T(Xk ,Uk) = (j ,Sk-{j}) 第k 阶段的指标函数Vk = D[i,j]。
最优指标函数Fk(Xk) = Fk(i ,Sk):已遍历k 个结点,当前从i 结点出发,访问Sk中的结点一次且仅一次,最后返回起点V1的最短距离。
则Fk(i ,Sk) = min{ D[i,j] + F k+1(j ,Sk-{j}) } 1≤k ≤6 F 7(X7) = F 7(1,Φ) = 02、分析:(1)k=6时,F6(i ,Φ) = min{D[i,1] + F7(X7)} = D[i,1] i=2,3,4,5,6(6)k=1时,F1(1,S1) = min{D[1,j] + F2(j,S2)}3、伪代码和时间复杂度为方便计算,结点编号改为0到5.(1)用一张二维表格F[][]表示F(i,Sk),行数是n,列数是2n-1。
(2)行号表示当前所在的结点i。
列号对应的五位二进制表示表示{V5,V4,V3,V2,V1}的一个子集,1表示在集合中,0表示不在集合中。
简述哈密顿的周游列国问题及其解答
简述哈密顿的周游列国问题及其解答哈密顿的周游列国问题,也被称为旅行商问题(TSP,Traveling Salesman Problem),是一种典型的组合优化问题。
问题的背景可以描述为:假设有一个旅行商人,他需要在一系列城市之间旅行,并且每座城市只允许访问一次。
问题的目标是找到一条最短的路径,使旅行商人可以访问所有城市并返回起点城市。
这个问题的重要性在于它具有很高的复杂性,是一个NP-困难(Non-Deterministic Polynomial-time hard)问题。
这意味着,目前还没有有效的算法可以在多项式时间内解决该问题,但可以通过一些启发式算法和近似算法来求得较优解。
下面将详细介绍哈密顿的周游列国问题的背景、解法思路和不同的求解方法。
一、问题背景哈密顿的周游列国问题最早由爱德华·哈密顿在19世纪提出。
他的目标是寻找爱尔兰的一种最短路径,使其可以访问爱尔兰的每个城市。
但是,该问题的一般化形式出现在20世纪,成为了一个经典的组合优化问题。
在TSP问题中,城市之间的距离可以表示为距离矩阵。
该矩阵的每个元素表示两个城市之间的距离或成本。
二、求解思路求解哈密顿的周游列国问题的基本思路是穷举所有可能的路径,并选择最短路径作为解。
但是,由于问题的复杂性,穷举所有可能路径的数量是非常庞大的,因此无法用常规方法解决。
三、精确解法1.动态规划解法动态规划是解决哈密顿的周游列国问题的一种精确解法。
基本思路是建立一个状态转移方程,并使用动态规划的方法求解。
具体步骤如下:(1)定义子问题:记d(S, i)为从起点城市出发,访问集合S中的城市,最后到达城市i的最短路径长度。
(2)递推关系:根据子问题,可以得到状态转移方程:d(S, i) = min{d(S-{i}, j) + dist(j, i) | j∈S-{i}}其中,dist(j, i)表示从城市j到城市i的距离。
(3)边界条件:当集合S中没有城市时,d(S, i)的值为dist(起点城市, i)。
TSP问题——动态规划
TSP问题——动态规划 Traveling Salesman Problem Description: Time Limit: 4sec Memory Limit:256MB 有编号1到N的N个城市,问从1号城市出发,遍历完所有的城市并最后停留在N号城市的最短路径长度。
Input: 第⼀⾏整数 T :T组数据(T<=20) 每个case 读⼊⼀个N( 2 <= N <= 20),接着输⼊N⾏,第i⾏有两个整数 xi , yi 表⽰第 i 个城市坐标轴上的坐标。
Output: 每个case输出⼀个浮点数表⽰最短路径。
四舍五⼊保留两位⼩数。
Sample Input: 1 4 0 0 1 0 1 1 0 1 Sample Output: 3.41 经典难题!数据开到这么⼩就知道没有那么简单的复杂度了,⼀般的算法,即爆搜,复杂度为 o( n! ) ,我们这⾥采⽤的动态规划算法, 算法复杂度已经从阶乘级降到了o( ( n^2 )*( 2^n ) ) (看起来也是相当恐怖的,不过像这种经典难题这种复杂度对我来说已经不错了)。
开始说说思路,⼀开始马上想到的必然是搜索,搜索必然超时,于是某⼤神直接告诉我——记忆化搜索,记忆化搜索能做的动规就能做,写递归太⿇烦了于是动规! 题⽬中起点终点确定,我们可以考虑⽤⼀个⼆维dp数组来保存⼀个状态——dp[i]{V}表⽰从结点0到结点 i 途经V中所有节点的最短路径长(这⾥的V是⼀个集合) 于是状态转移⽅程可以为:dp[i]{V}=min( dp[i]{V} , dist[i][j]+dp[j]{V-{j}} ) (j 属于 V) ⼤思路定好了,我们来考虑细节部分,主要有以下部分: 1)建图等等:结构体point,距离函数dist; 2)集合V的表⽰:⼆进制数,即010表⽰三个数的集合第⼆个有,其余⽆; 3)dp过程的范围:1 ~ n-1 (最⼤可能为 1 ~ 18 ); 于是我们可以敲代码啦!#include <bits/stdc++.h>const double INF=10e7;using namespace std;int T,n,cnt;double a[25][25],dp[25][1100000];struct point{ //结点结构体int x,y;}pt[25];double d(point a,point b){ //结点间距离return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}int main(){scanf("%d",&T);while(T--){cnt=1;scanf("%d",&n);for(int i=2;i<n;i++) cnt<<=1; //组合数(除起点终点外)for(int i=0;i<n;i++) //输⼊scanf("%d %d",&pt[i].x,&pt[i].y);for(int i=0;i<n;i++) //建边for(int j=0;j<n;j++)a[i][j]=d(pt[i],pt[j]);for(int i=0;i<n;i++) //初始化for(int j=0;j<cnt;j++)dp[i][j]=INF;for(int i=0;i<n;i++) //起点确定,定下初始条件dp[i][0]=a[i][0];for(int i=1;i<cnt;i++) //从有元素考虑起for(int j=1;j<n-1;j++){for(int k=1;k<n-1;k++){if((1<<k-1)&i) //k is in the setdp[j][i]=min(dp[j][i],a[j][k]+dp[k][i-(1<<k-1)]); //状态转移⽅程}}double ans=INF;for(int i=1;i<n;i++)ans=min(ans,dp[i][cnt-1]+a[i][n-1]);printf("%.2lf\n",ans);}return 0;} 之前动态规划也是做了不少的基础例题,这道题算是动态规划的第⼀次成功应⽤,还是蛮开⼼的,软创得加油啊! 。
TSP问题分析动态规划-分支界限法-蛮力法教学文案
T S P问题分析动态规划-分支界限法-蛮力法算法综合实验报告学号: 1004111115 姓名:李宏强一、实验内容:分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。
二、程序设计的基本思想、原理和算法描述:(包括程序的数据结构、函数组成、输入/输出设计、符号名说明等)1、动态规划法(1)数据结构:①利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。
例如:集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中,右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在集合S中;同理,集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中,则说明0,2在集合中,1不在集合中。
②利用邻接矩阵表示任意两点之间的距离例如:mp[i][j]表示点i,j两点之间的距离。
(2)函数组成①输入函数in()②利用动态规划法算法实现的求解函数solve()③主函数main()(3)输入/输出设计本程序可以通过键盘进行输入、屏幕进行输出。
(根据实际程序情况,还可以选择随机产生输入数据、将输出数据输出到文件等其它方式)这里采用随机产生输入数据,将数据输出在屏幕上的方式。
(4)符号名说明① n 表示顶点个数。
② mp[i][j] 表示顶点i和顶点j之间的距离。
③ dp[i][j] 表示顶点i经过集合S(用二进制表示的数为j)后回到起始点的最短路径和。
(5)算法描述①某一个点i不经过任意点回到起始点的最短路径和为mp[i][0](默认初始点为0)dp[i][0] = mp[i][0]; (1<=i<n)②点i经过集合S(二进制表示的数为j)的最短路径和为从点i经过集合S中的某一点k后再从该点出发,经过集合S-{k}的最小值。
TSP-动态规划
动态规划算法总体思想 :
在每种情况下, 列出各种可能的局部解, 然后按 某些条件, 从局部解(或中间解)中挑选出可能产生 最佳解的结果,而扬弃其余。
TSP问题
从某一城市出发,遍历各城市一次且 仅一次,最后返回原地,求最短路径。 分析: 令T(Vi;V)表示从Vi出发, 经V各点一次, 最后返回Vi的路径 模型 T(Vi;V)=min{dij+T(Vj;V\{vj})} 要求的问题是:
TSP问题
从某一城市出发,遍历各城市一次且 仅一次,最后返回原地,求最短路径。 (3) T(V2;V3,V4)=20 T(V3;V2,V4)=19 T(V4;V2,V3)=18 (4) T(V1;V2,V3,V4)=min{d12+T(V2;V3, V4), d13+T(V3; V2,V4), d14+T(V4;V2,V3)} =min{6+20,7+19,9+18} =26 故最短路径为:1,2,4,3,1 1,3,4,2,1
TSP问题
复杂性估计:
T(V1;V2,V3,V4)
T(V2;V3,V4)
T(V2;V3) T(V2;V4)
T(V3;V2,V4)
T(V3;V2) T(V3;V4)
T(V4;V2,V3) T(V4;V2) T(V4;V3)
T(v34; φ)
T(V2;φ)
T(v3; φ)
算法总体思想
结论 :
动态规划虽然提供了一种解法,但也不是一种可 行的算法。
算法总体思想
最佳原理 :
假设为了解决某一优化问题,需要依次作出n个 决策D1,D2,…,Dn,如若这个决策是最优的,对于任 何一个整数k,1<k<n,不论前面k个是怎样的,以 后的最优决策只取决于由前面决策所确定的当前状态, 即以后的决策 DK+1,Dk+2,…,Dn也是当前最优的。
TSP的几种求解方法及其优缺点
TSP的几种求解方法及其优缺点TSP(Traveling Salesman Problem)是一种NP-hard问题,其目标是找到一条路径,使得旅行商经过所有城市并返回原始城市的总距离最小。
由于TSP在实际应用中具有广泛的应用,很多研究者提出了多种方法来解决TSP问题。
本文将介绍几种常见的TSP求解方法及其优缺点。
1.枚举法枚举法是最简单直观的方法,它遍历所有可能的路径,并选择总距离最小的路径作为最优解。
由于TSP问题的解空间随问题规模呈指数级增长,这种方法只适用于规模较小的问题。
枚举法的优点是保证找到最优解,缺点是耗时较长。
2.最近邻法最近邻法从一个起始城市出发,每次选择与当前城市距离最近的未访问城市作为下一个城市。
直到所有城市都被访问一遍,并返回原始城市。
最近邻法的优点是简单易实现,缺点是容易陷入局部最优解,从而得不到整体最优解。
3.插入法插入法从初始路径开始,将未访问的城市不断插入到已访问城市之间,直到所有城市都被访问一遍。
插入方法有多种,比如最短边插入、最长边插入和最佳位置插入等。
插入法的优点是相对于最近邻法来说,可以得到更好的解。
缺点是算法复杂度较高,计算时间较长。
4.遗传算法遗传算法是一种群体智能算法,模拟生物进化的过程,通过遗传操作寻找优秀的解。
在TSP问题中,遗传算法可以将城市路径看作染色体,并通过选择、交叉和变异等操作进行优化。
遗传算法的优点是能够快速找到次优解,并且对于规模较大的问题也适用。
缺点是需要调节大量参数,算法收敛速度较慢。
5.动态规划动态规划是一种由上而下的分治思想,将原问题分解为若干子问题,通过求解子问题的最优解来求解原问题。
在TSP问题中,可以通过建立状态转移方程来求解最优路径。
动态规划的优点是求解过程中可以剪枝,避免重复计算,能够得到精确解。
缺点是算法时间复杂度较高,不适用于大规模问题。
以上是几种常见的TSP求解方法及其优缺点。
不同的方法适用于不同的问题规模和实际应用场景。
TSP问题之动态规划法PPT课件
序号 0 1 2 3 4 5 6 7
集合表示 000 001 002 003 012 013 023 123
.
11
动态规划法(一)
动态规划法: 定义:将每个子问题只求解一次,并将其解保存在一个表格中,当需要再次
求解此子问题时,只是简单地通过查表获得该子问题的解,从而避免了大量 的重复计算。 特点:最优子结构、自底向递归、子问题相互重叠。
d(0, {1, 2, 3})=min{
C01+ d(1, { 2, 3}),
3 6 7
C02+ d(2, {1, 3}), C03+ d(3, {1, 2}) }
C
(
ci j
)
这是最后一个阶段的决策,它必须依据d(1, { 2, 3})、
5 6 3
4 7
2 5
3
2
d(2, {1, 3})和d(3, {1, 2})的计算结果,而:
d(1, {2, 3})=min{C12+d(2, {3}), C13+ d(3, {2})} d(2, {1, 3})=min{C21+d(1, {3}), C23+ d(3, {1})} d(3, {1, 2})=min{C31+d(1, {2}), C32+ d(2, {1})}
继续写下去: d(1, {2})= C12+d(2, {}) d(1, {3})= C13+d(3, {})
动态规划法使用的条件:问题符合最优性原理
.
12
动态规划法(二)
最优性原理:
对于一个具有n个输入的最优化问题,其求解过程往往可以划分 为若干个阶段,每一阶段的决策仅依赖于前一阶段的状态,由决策所 采取的动作使状态发生转移,成为下一阶段决策的依据。
基于动态规划算法的旅行商问题求解
基于动态规划算法的旅行商问题求解旅行商问题(Traveling Salesman Problem,TSP)是一个经典的组合优化问题。
它的任务是在给定一系列城市和每对城市之间的距离(或者称为成本),找到一条经过每个城市一次且回到起始城市的最短路径。
动态规划算法是求解旅行商问题的一种常用方法。
它基于以下思想:将大问题分解为若干个小问题,通过解决小问题的最优解来逐步得到大问题的最优解。
首先,我们需要定义旅行商问题的状态。
在本问题中,我们可以将状态定义为一个二元组 (i, S),它表示旅行商当前所在的城市为 i,已经遍历过的城市集合为 S。
这里的状态空间是城市集合 C 的幂集除去空集:状态空间:C = {1, 2, ..., n},其中 n 是城市的数量。
接下来,我们需要定义状态转移方程。
假设当前状态为 (i, S),我们需要求解的是到达状态 (i, C) 的最短路径。
状态转移方程可以表示为:dp[i][S] = min{dist[i][j] + dp[j][S\{j}]},其中 j∈S,j≠i其中,dp[i][S] 是从城市 i 出发,经过集合 S 中的城市,最后回到起始城市的最短路径长度。
dist[i][j] 表示城市 i 到城市 j 的距离。
S\{j} 表示从集合 S 中去掉元素 j 后的集合。
最后,我们需要定义问题的边界条件。
当集合 S 中只有一个城市 i 时,经过城市 i 后回到起始城市的路径长度就是从起始城市到达城市 i 的距离。
所以边界条件可以表示为:当 |S| = 1 时,dp[i][S] = dist[i][1]接下来,我们使用动态规划算法来解决旅行商问题。
1. 创建一个二维数组 dp[n][2^n],其中 n 是城市的数量。
初始化数组 dp 的所有元素为无穷大。
2. 对于每个城市 i,将 dp[i][∅](空集)的值设为 dist[i][1]。
3. 对于集合 S 的大小从 2 到 n-1 的每个值,依次遍历每个城市 i。
TSP的几种求解方法及其优缺点
TSP的几种求解方法及其优缺点旅行商问题(Traveling Salesman Problem,TSP)是一种典型的组合优化问题,在计算机科学和运筹学中具有重要的研究意义和应用价值。
TSP常用来描述一个旅行商在给定的一系列城市之间寻找最短路径的问题,即如何选择最短路径经过所有城市并回到起始城市。
针对TSP问题,有多种求解方法可供选择,下面将介绍一些常用的方法及其优缺点。
1.穷举法穷举法是一种非常简单和直观的方法,它会列举出所有可能路径并计算它们的总长度,然后从中选择最短的路径作为最优解。
穷举法的优点是能够保证找到最优解,但当城市数量较多时,计算量呈指数级增长,很难在合理的时间内得到结果。
2.贪婪算法贪婪算法是一种基于局部最优策略的求解方法。
它从一些城市出发,在每一步选择离当前城市最近的未访问过的城市作为下一步访问的城市,直到所有城市都访问过并回到起始城市。
贪婪算法的优点是简单、易于实现,计算速度较快。
然而,贪婪算法并不能保证得到最优解,可能会陷入局部最优解。
3.动态规划动态规划是一种通过将原问题分解为更小的子问题,并利用子问题的解来求解原问题的方法。
对于TSP问题,可以使用动态规划求解。
动态规划的优点是能够在较短的时间内找到最优解,但由于需要存储大量的中间结果,空间复杂度较高。
4.遗传算法遗传算法是一种模拟生物进化过程的求解方法。
它通过对候选解进行遗传操作(交叉、变异等),然后根据适应度函数来评估和选择较好的解进行下一轮进化,直到满足停止条件为止。
遗传算法的优点是适用于大规模问题,能够得到较优解,但其需要调整一些参数,并且收敛速度较慢。
5. Lin-Kernighan启发式算法Lin-Kernighan启发式算法是一种基于局部优化的TSP求解方法。
它采用迭代的方式,在每一步通过反转局部路径来优化当前解,直到达到停止条件。
Lin-Kernighan算法的优点是计算速度较快,对于大规模问题也有较好的效果。
(完整word版)TSP问题的动态规划解法
TSP问题的动态规划解法第十七组:3103038028 郑少斌3103038029 王瑞锋3103038035 江飞鸿3103038043 韩鑫3103055004 唐万强1.TSP问题简介旅行商问题(Traveling Salesman Problem,简称TSP, 亦称为货单郎问题)可以描述为:对于N 个城市,它们之间的距离已知,有一旅行商要从某一城市走遍所有的城市,且每一城市只能经过一次,最后回到出发的城市,问如何选择路线可使他走过的路径最短。
这是一个典型的组合优化问题。
它有很强的现实意义,可以应用于交通运输,物资调配,旅游线路设置。
对于了解某个国家地理分布也有一定的现实意义。
这个问题的解法有很多种,在这里我们尝试使用最优控制中的动态规划的相关知识来进行求解。
2.TSP问题分析对于这个问题,我们首先想到的是应用穷举法进行解答,但是这个方法时间和空间的复杂度很高。
从表面上看,TSP 问题很简单,其实则不然。
对于N 个城市的TSP,存在的可能路径为(N-1)!/2条,当N较大时,其数量是惊人的。
计算每条路经都需求出N 个距离之和,这样各种路径及其距离之和的计算量正比与N!/2.用搜索法要求就规模大的TSP是不现实的。
例如使用1GFLOPs 次的计算机搜索TSP 所需的时间如下表所示 城市数7152050100200加法量 3105.2⨯ 11105.6⨯ 18102.1⨯ 64105.1⨯ 157105⨯ 37410搜索时间s 5105.2-⨯1.8h350yy 48105⨯ y 14210y 35810由上可知,对于这个问题采用穷举法进行解答是不现实的,这就要求我们采用其他的方法进行解答。
3. 其他求解TSP 问题的方法*贪心法a. 所谓贪心法,就是在组合算法中,将每一步都取局部最优的求解方法。
b. 下表表示用贪心法求解TSP 的过程。
先将各城市间的距离用行列式形式表示,主对角线上用∞表示。
(完整word版)TSP问题的动态规划解法
TSP问题的动态规划解法第十七组:3103038028 郑少斌3103038029 王瑞锋3103038035 江飞鸿3103038043 韩鑫3103055004 唐万强1.TSP问题简介旅行商问题(Traveling Salesman Problem,简称TSP, 亦称为货单郎问题)可以描述为:对于N 个城市,它们之间的距离已知,有一旅行商要从某一城市走遍所有的城市,且每一城市只能经过一次,最后回到出发的城市,问如何选择路线可使他走过的路径最短。
这是一个典型的组合优化问题。
它有很强的现实意义,可以应用于交通运输,物资调配,旅游线路设置。
对于了解某个国家地理分布也有一定的现实意义。
这个问题的解法有很多种,在这里我们尝试使用最优控制中的动态规划的相关知识来进行求解。
2.TSP问题分析对于这个问题,我们首先想到的是应用穷举法进行解答,但是这个方法时间和空间的复杂度很高。
从表面上看,TSP 问题很简单,其实则不然。
对于N 个城市的TSP,存在的可能路径为(N-1)!/2条,当N较大时,其数量是惊人的。
计算每条路经都需求出N 个距离之和,这样各种路径及其距离之和的计算量正比与N!/2.用搜索法要求就规模大的TSP是不现实的。
例如使用1GFLOPs 次的计算机搜索TSP 所需的时间如下表所示 城市数7152050100200加法量 3105.2⨯ 11105.6⨯ 18102.1⨯ 64105.1⨯ 157105⨯ 37410搜索时间s 5105.2-⨯1.8h350yy 48105⨯ y 14210y 35810由上可知,对于这个问题采用穷举法进行解答是不现实的,这就要求我们采用其他的方法进行解答。
3. 其他求解TSP 问题的方法*贪心法a. 所谓贪心法,就是在组合算法中,将每一步都取局部最优的求解方法。
b. 下表表示用贪心法求解TSP 的过程。
先将各城市间的距离用行列式形式表示,主对角线上用∞表示。
tsp问题有几种方案
TSP问题有几种方案引言TSP(Traveling Salesman Problem,旅行商问题)是指给定一系列城市和每对城市之间的距离,找出一条最短路径,使得旅行商可以从起始城市出发,经过每个城市恰好一次,最后回到起始城市。
TSP问题是一个经典的组合优化问题,在计算机科学和运筹学领域被广泛研究。
本文将介绍TSP问题的几种解决方案。
1. 暴力法暴力法是最简单直接的解决TSP问题的方法。
该方法通过枚举所有可能的路径,并计算每个路径的总距离,最后找出最短路径。
但是,由于TSP问题的解空间随着城市数量的增加呈指数级增长,因此暴力法的时间复杂度非常高,不适用于大规模的问题。
2. 穷举法穷举法是改进的暴力法,通过剪枝操作减少了暴力法的时间复杂度。
穷举法一般使用深度优先搜索(DFS)或广度优先搜索(BFS)算法来遍历解空间,并在搜索过程中记录当前路径的总距离。
当搜索到目标节点时,更新最短路径。
穷举法的时间复杂度仍然很高,但相比暴力法有所改善。
3. 动态规划动态规划是一种常用的解决TSP问题的方法。
动态规划通过将原问题划分为若干子问题,并记录每个子问题的最优解,从而通过计算较小规模的问题得到整体问题的最优解。
具体来说,动态规划中的状态转移方程可以表示为:dp[S][i] = min(dp[S-{i}][j] + d[j][i]),其中 S 表示已经访问过的城市集合,i 表示当前城市,j 表示 i 的上一个访问的城市。
通过迭代计算出 dp[S][i],最后找出使得 dp[S][i] + d[i][0] 最小的 i 值作为最优路径的终点。
4. 贪心算法贪心算法是一种启发式算法,它通过贪心地选择当前最优解来逐步构建整体问题的解。
在TSP问题中,贪心算法每一步都选择离当前城市最近的未访问过的城市,直到遍历完所有城市。
然而,贪心算法并不能保证得到最优解,因为局部最优解并不一定是全局最优解。
5. 遗传算法遗传算法是一种演化算法,模拟生物进化的过程来寻找最优解。
动态规划法-回溯法-分支限界法求解TSP问题实验报告
for(int i=1;i<=n;i++)
vis[i]=x[i];
ans=cur+mp[x[n-1]][x[n]]+mp[x[n]][1];
}
}
else
{
for(int i=t;i<=n;i++)
{
if(mp[x[t-1]][x[i]]!=-1&&(cur+mp[x[t-1]][x[i]]<ans||ans==-1))
一般情况下,假设当前已确定的路径为U=(r1,r2,…,rk),即路径上已确定了k个顶点,此时,该部分解的目标函数值的计算方法(限界函数)如下:
Lb=(2∑c[ri][r(i+1)]+∑ri行不在路径上的最小元素+∑ri行最小的两个元素)/2
算法设计
输入:图G=(V,E)
输出:最短哈密顿回路
1、根据限界函数计算目标函数的下界down;采用贪心法得到上界up;
算法设计
输入:图的代价矩阵mp[n][n]
输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度
1.初始化第0列(动态规划的边界问题)
for(i=1;i<n;i++)
dp[i][0]=mp[i][0]
2.依次处理每个子集数组x[2^n-1]
for(i=1;i<n;i++)
if(子集x[j]中不包含i)
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
using namespace std;
动态规划法-回溯法-分支限界法求解TSP问题实验报告
动态规划法-回溯法-分支限界法求解TSP问题实验报告TSP问题算法实验报告指导教师:季晓慧姓名:辛瑞乾学号: 1004131114 提交日期: 2015年11月目录总述 (4)动态规划法 (4)算法问题分析 (4)算法设计 (5)实现代码 (6)输入输出截图 (10)OJ提交截图 (10)算法优化分析 (10)回溯法 (11)算法问题分析 (11)算法设计 (11)实现代码 (12)输入输出截图 (17)OJ提交截图 (17)算法优化分析 (17)分支限界法 (18)算法问题分析 (18)算法设计 (19)实现代码 (20)输入输出截图 (29)OJ提交截图 (29)算法优化分析 (29)总结 (30)总述TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。
动态规划法算法问题分析假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。
首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5 ]={1,3},x[6]={2,3},x[7]={1,2,3}。
设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。
算法设计输入:图的代价矩阵mp[n][n]输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度1.初始化第0列(动态规划的边界问题)for(i=1;i<n;i++)dp[i][0]=mp[i][0]2.依次处理每个子集数组x[2^n-1]for(i=1;i<n;i++)if(子集x[j]中不包含i)对x[j]中的每个元素k,计算d[i][j]=min{mp[i][k]+dp[k][j-1]};3.输出最短路径长度。
tsp问题总结归纳
tsp问题总结归纳TSP(Traveling Salesman Problem,旅行商问题)是一类经典的组合优化问题,在数学和计算机科学领域具有重要的研究价值和实际应用。
本文将从定义、解决方法和应用三个方面,对TSP问题进行总结归纳。
一、定义TSP问题是指给定一系列城市和城市之间的距离,求解经过每个城市一次且路径最短的旅行路线。
该问题可以用图论中的欧拉图和哈密顿图来描述。
在欧拉图中,一笔画问题要求从图的一个顶点开始,经过每个边一次并回到起点;而哈密顿图中,要求从图的一个顶点开始,经过每个顶点一次而路径最短。
二、解决方法1. 穷举法:穷举法是最简单直接的解决TSP问题的方法,即尝试遍历所有可能的路径,并计算每条路径的总距离,从中选出最短的一条。
然而,由于TSP问题的复杂性,穷举法在实际应用中很少使用,因为其时间复杂度随着城市数量的增加而急剧增加。
2. 动态规划:通过将问题分解为子问题,并利用子问题的最优解构建整体最优解。
动态规划方法可以有效地解决TSP问题,但其时间复杂度仍然较高,在大规模问题中难以实施。
3. 遗传算法:遗传算法是一种基于生物进化原理的搜索算法,通过模拟遗传、突变和选择等操作,逐步优化解的质量。
遗传算法在解决TSP问题中具有良好的性能和适应性,能够处理较大规模的问题,但其结果并不一定是全局最优解。
三、应用TSP问题在实际生活和工程领域中有广泛的应用,如物流配送、路径规划、电路布线等。
通过求解TSP问题,可以帮助优化物流运输路线、节约时间和资源成本,提高效率。
结论TSP问题是一个具有理论研究价值和实际应用的经典问题,其求解方法多种多样。
穷举法虽然简单直接,但在实际问题中难以应用;动态规划方法虽然高效,但对于大规模问题仍有限制;遗传算法具有较好的适应性和性能,可以处理较大规模的问题。
TSP问题在实际应用中可以有效地优化物流和路径规划等方面,提高效率和节约成本。
通过对TSP问题的总结归纳,我们可以更好地理解和应用有关组合优化问题的解决方法,推动其在实践中的发展和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原理告诉我们,一个最优问题的任何实例的最优解是由该实例的子实例 的最优解组成。
一般来说,如果所求解问题对于最优性原理成立,则说明用动态规划方 法有可能解决该问题。而解决问题的关键在于获取各阶段问题的递推关 系式。
TSP问题之动态规划法
提纲
• 什么是TSP问题 • 一般的解决办法——穷举法 • 动态的解决办法 • 什么是动态规划法 • 使用动态规划法的条件 • 动态规划法解决常见问题
TSP问题
TSP问题的描述:
旅行家要旅行n个城市,要求经历各个城市且
仅经历一次,然后回到出发城市,并要求所走的路
程最短。
3
0
3.对V[2n-1-1]中的每一个元素k,计算d[0][2n-1-1]=min(c[0][k]+d[k][2n-1-2]);
4.输出最短路径长度d[0][2n-1-1];
从伪代码中可以看出,我们应当继续解决以下问题: • 如何表示伪代码中集合V[ j ] 呢? • 如何产生这样的一个集合V[ j ] ?
d(1, {2, 3})=min{C12+d(2, {3}), d(2, {1, 3})=min{C21+d(1, {3}), d(3, {1, 2})=min{C31+d(1, {2}),
C13+ d(3, {2})} C23+ d(3, {1})} C32+ d(2, {1})}
继续写下去: d(1, {2})= C12+d(2, {}) C32+d(2, {}) d(1, {3})= C13+d(3, {}) C31+d(1, {})
求解此子问题时,只是简单地通过查表获得该子问题的解,从而避免了大量 的重复计算。 特点:最优子结构、自底向递归、子问题相互重叠。
动态规划法使用的条件:问题符合最优性原理
动态规划法(二)
最优性原理:
对于一个具有n个输入的最优化问题,其求解过程往往可以划分
为若干个阶段,每一阶段的决策仅依赖于前一阶段的状态,由决策所 采取的动作使状态发生转移,成为下一阶段决策的依据。
7 往左下或右下走。只需要求出这个最大和即可,不必给出具体路径 38 81
0 274
4 452
动态规划法解决的常用问题(四)
近似串匹配问题 最长公共子序列问题 0/1背包问题
感谢下 载
5
1
7 66 6
22
2 73
3
3 5
TSP问题——穷举法解决
a
2
b
5 8
73
c
d
1
序号 1 2 3 4 5 6
路径
a->b->c->d->a
a->b->d->c->a
a>c->b->d->a
a->c->d->b->a
a->d->b->c->a a->d->c->b->a
路径长度
18
11
23
11
23 18
d(0, {1, 2, 3})=min{
C01+ d(1, { 2, 3}),
3 6 7
C02+ d(2, {1, 3}), C03+ d(3, {1, 2})
}
C
(
cij
)
这是最后一个阶段的决策,它必须依据d(1, { 2, 3})、
5 6 3
4 7
2 5
3
2
d(2, {1, 3})和d(3, {1, 2})的计算结果,而:
动态规划法(三)
动态规划法步骤
(1)分段:将原问题分解为若干个相互重叠的子问题; (2)分析:分析问题是否满足最优性原理,找出动态规划函
数的递推式; (3)求解:利用递推式自底向上计算,实现动态规划过程。
动态规划法解决的常用问题(一)
斐波那契数
F(n) =
0 1 F(n-1) + F(n-2)
n =0 n=1 n>=2
动态规划法解决的常用问题(二)
多段图的最短路径问题
9
4 18
45
6
02
6
2
7 8
8
56
77 9
3
4
37
6
83
65
动态规划法解决的常用问题(三)
POJ 1163 数字三角形
问题描述:在上面的数字三角形中寻找一条从顶部到底边的 路径,使得路径上所经过的数字之和最大。路径上的每一步都只能
集合的表示模型
数字 0 1 2 4 3 5 6 7
二进制表示 000 001 010 100 011 101 110 111
序号 0 1 2 3 4 5 6 7
集合表示
000 001 002 003 012 013 023 123
动态规划法(一)
动态规划法: 定义:将每个子问题只求解一次,并将其解保存在一个表格中,当需要再次
C21+d(1, {3}) C23+ d(3, {1})
C31+d(1, {2})
C32+ d(2, {1})
C23+d(3, {}) C32+d(2, {}) C13+d(3, {}) C31+d(1, {}) C12+d(2, {}) C21+d(1, {})
C10
C20
C30
思考:这个过程, 让人联想到什么?
可以把问题简化: 把求通过各点的一条最短的回路 求解从某个(任意)确定动态规划
从上面的公式把总回路长度分解: •Length(回路) =
Min{ Length(01) + Length(1…0), Length(02) + Length(2…0), Length(03) + Length(3…0) } •规范化地表达上面的公式
3
0
5
7
66 4
22
1
2 37
3 3
5
d(i,V) 表示从i点经过点集V各点一次之后回到出发点的最短距离
d(i,V‘) = min {Cik+d(k,V-{k})}
d(k,{ }) = Cik
(k≠i)
其中,Cik表示ik的距离
(k∈V')
从城市0出发,经城市1、2、3然后回到城市0的最短路径长度是:
d(2, {3})=C23+d(3, {}) d(2, {1})=C21+d(1, {})
d(3, {2})= d(3, {1})=
d(0, {1, 2, 3})
C01+ d(1, { 2, 3})
C02+ d(2, {1, 3})
C03+ d(3, {1, 2})
C12+d(2, {3}) C13+ d(3, {2})
理解原理之后,先手动地在表格中把结果写出来,结果如下:
j i
{}
{1}
{2}
{3} {1, 2} {1, 3} {2, 3}
0
1
5
8
6
7
2
6
9
5
10
3
3
12
11
14
{1, 2, 3}
10
TSP问题
1.for (i=1; i<n; i++) //初始化第0列 d[i][0]=c[i][0];
2.for (j=1; j<2n-1-1; j++) for (i=1; i<n; i++) //依次进行第i次迭代 if (子集V[j]中不包含i) 对V[j]中的每个元素k,计算d[i][j]=min(c[i][k]+d[k][j-1]);
是否最短 否 是 否 是 否 否
TSP问题——动态规划
假设找出的一条最短的回路:S0S1S2 S3S0
S0
我们可以利用结论: “S1S2 S3S0 “必然是从S1 到
S2
S0通过其它各点的一条最短路径。(如果不是,则会出现矛盾)
S1 S3
Length(总回路) = Length(S0S1) + Length(S1 S2 S3S0)