建筑环境03第3章热湿环境

合集下载

第三章 建筑热湿环境

第三章  建筑热湿环境

第三章建筑热湿环境1、得热量某时刻在内外扰作用下进入房间的总热量。

得热量包括:显热(对流换热和辐射换热)和潜热,它有正负之分,主要来源是:室内外温差传热、太阳辐射进入热量、室内照明、人员、设备散热等。

2、冷负荷维持室内空气热湿参数为恒定值时,在单位时间内需要的从室内除去的热量。

分为显热负荷和潜热负荷。

3、热负荷维持室内空气热湿参数为恒定值时,在单位时间内需要的从室内加入的热量。

分为显热负荷和潜热负荷。

4、空气渗透由于室内外存在压力差,从而导致室外空气通过门窗缝隙和外围护结构上的其他小孔或洞口进入室内的现象,也就是所谓的非人为组织(无组织)的通风。

原因是由于建筑存在各种门、窗和其他类型的开口,室外空气有可能进入房间,从而给房间空气直接带入热量和湿量,并即刻影响到室内空气的温湿度。

计算负荷时仅考虑渗入空气。

目前常用方法是基于实验和经验基础上的估算方法,即:缝隙法和换气次数法1、简述得热量和冷负荷之间的关系。

任一时刻房间瞬时得热量的总和未必等于同一时间的瞬时冷负荷。

得热量转换为冷负荷一般要经过幅值上衰减、时间上延迟。

2、谐波反应法和冷负荷系数法的特点、共性、区别答:(1)两种方法的特点为:①使用谐波反应法求解冷负荷a 边界条件按傅里叶级数展开b 求对单元扰量的响应(a)把室内空气温度固定(b)给出常规室内热源的对流和辐射热的比例(c)各内表面的辐射热量的分配比例(d)给出常规建筑对常规扰量的各阶衰减倍数和延迟时间c 把对单元扰量的响应进行叠加求和②使用冷负荷系数法求解a 边界条件按等时间间隔离散b求对单元扰量的响应(a)把室内空气温度固定(b)把外扰通过围护结构形成的瞬时冷负荷表述为瞬时冷负荷温差(c)不计算房间蓄热特性的影响c 把对单元扰量的响应进行叠加求和(2)两种方法的共性为:二者没有实质的区别,只是处理手法的不同而已①针对相同类型的围护结构,两者计算结果基本相同②在一定程度上反应了得热和冷负荷之间的区别③把室内空气温度作为常数④对长波辐射做了简化处理⑤忽略了透过玻璃窗的日射在围护结构内表面之间的光斑的影响⑥对辐射造成的影响做了过多的简化⑦如果被研究的房间与这些假定差的比较远,所求得的冷负荷就有较大误差(3)两种方法的区别是:①边界条件的离散方法不同②是否考虑了房间内蓄热的影响③外窗日射冷负荷的计算(4)两种方法的计算精度差不多,但经多名专家计算结果表明:谐波反应法的精度一般较高。

建筑环境学笔记03

建筑环境学笔记03

建筑环境学——李念平主编、化学工业出版社出版第一部分知识点总结第三章建筑热湿环境3.1湿热环境的基本概念影响建筑室内湿热状况的因素:室外气象条件、室内发热和产湿量、以及采暖和空调系统的运行方式。

内扰含有室内设备、照明、人员等室内热湿源外扰主要包括室外气候参数包括有室外空气温湿度、太阳辐射、风速、风向变化以及邻室的空气温湿度进入室内。

外扰和内扰对室内环境的作用形式包括有对流换热、导热和辐射。

得热量是某时刻在内外扰作用下进入房间的总热量。

围护结构壁面的热等于太阳辐射热量、长波辐射换热量、和对流换热量之和。

太阳落在围护结构表面上的三种辐射:太阳直接辐射、天空散射辐射和地面反射辐射。

室外空气综合温度解释见第二章围护结构的热物性指标:导热系数、表面传热系数、辐射系数、蓄热系数、衰减度。

温室效应解释见第二章3.2建筑围护结构的热湿结构得热:指在外部气象参数作用下,由室外传到外围护结构内表面以内的热量、室内热源散发在室内的全部热量。

围护结构的凝露有两种:表面凝露和内部凝露影响水蒸气凝结及凝结成度的主要因素:室内外水蒸气分压力、内外表面分压力、内外表面温度以及材料渗透性能。

内表面温度取决于传热量、室内外温差及维护结构热阻。

防结露措施:材料层次布置应符合水蒸气难进易出原则(方案解释见65页);设置隔气防潮层;设置通风间层或泄气沟道。

3.3以其他形式进入室内的热量和湿量室内热湿源一般包括:人体、设备和照明设施。

室内散湿形式:湿表面散湿、蒸汽散湿、人体散湿。

空气渗透:由于室内外存在压力差,从而导致室外空气通过门窗缝隙和外围护结构上的其他小孔或洞口进入室内的现象。

导致空气渗透量的室内外压力差一般为:风压、热压和室内正压。

(两季节分析见71页)空气渗透量估算方法:缝隙法和换气次数法3.4负荷与得热关系冷负荷:维持室内空气热湿参数为恒定值时,在单位时间内需要的从室内除去的热量。

分为显热负荷和潜热负荷。

热负荷:维持室内空气热湿参数为恒定值时,在单位时间内需要的从室内加入的热量。

2021年清华大学建筑环境学03第3章热湿环境-1

2021年清华大学建筑环境学03第3章热湿环境-1
《清华大学学报》, 1989年, 第5期
工程应用:缝隙法、换气次数法
12
网络平衡法原理
节点平衡:AG=0 回路压力平衡:B P=0
各支路和节点均编号。
网络关联矩阵A元素 aij: 由 i 点到 j点为1,反之为 -1,无
关为0。
基本回路矩阵B元素 bij: 由 j支路与 i 回路同向为1,反之
为 -1,无关为0。
围护结构传热 传湿
室内产热产湿
对流换热 (对流质交换)
导热 (水蒸汽渗透)
辐射
5
基本概念
得热(Heat Gain ⎯⎯ HG):某时刻在内外扰作用下
进入房间的总热量叫做该时刻的得热。如果得热<0,
意味着房间失去热量。
对流得热
显热


辐射得热
潜热
围护结构热过程特点:由于围护结构热惯性的存在, 通过围护结构的得热量与外扰之间存在着衰减和延迟 的关系。
2
)
(1
-a
o
3
)
r
2
(1 -r
2
)
(1
-a
o
4
)
r
3
(1 -a
o
4
)
(1
-r
)
r
4
21
太阳辐射在透光围护结构中的传递
阳光照射到单层半透 明薄层时,半透明薄 层对于太阳辐射的总 反射率、吸收率和透 射率是阳光在半透明 薄层内进行反射、吸 收和透过的无穷次反 复之后的无穷多项之 和。
22
太阳辐射在透光围护结构中的传递
尽管通过围护结构的热传导量不确定,但有 时又需要用“得热”的概念,那怎么定义通 过围护结构的热传导得热呢?

建筑环境学课后习题(完整版)

建筑环境学课后习题(完整版)

课后习题答案第二章建筑外环境1.为什么我国北方住宅严格遵守坐南朝北的原则,而南方(尤其是华南地区)住宅并不严格遵守此原则?答:我国分为严寒、寒冷、夏热冬冷和暖和地区,居住建筑一般总是希望夏季避免日晒,而冬季又能获得较多光照,我国北方多是严寒和寒冷地区,建筑设计时,必须充分满足冬季保暖要求,部分地区兼顾夏季防热,北部地区坐北朝南能够达到充分利用阳光日照采暖,能够减少建筑的采暖负荷,减少建筑采暖能耗,所以,我国北方住宅严格遵守坐北朝南的原则,而南方地区必须满足夏季防晒要求适当兼顾冬季保暖,所以南方住宅可以不遵守原则。

2.是空气温度的改变导致地面温度改变,还是地面温度的改变导致空气温度改变?答:互相影响的,主要是地面温度的改变对空气温度变化起主要作用,空气温度的改变一定程度上也会导致地面温度改变,因为大气中的气体分子在吸收和放射辐射时是有选择的,对太阳辐射几乎是透明体,只能吸收地面的长波辐射,因此,地面与空气的热量交换是气温上升的直接原因。

3.晴朗的夏夜,气温25℃,有效天空温度能达到多少?如果没有大气层,有效天空温度应该是多少?根据书中有效天空温度估算式(2-23)有效天空温度与近地面气温和空气的发射率有关,空气发射率又与露点温度有关,露点温度又与气温和相对湿度(或含湿量)有关,假定在晴朗的夏夜,气温为25℃,相对湿度在30%-70%之间,则tdp=6℃-19℃,有效天空温度tsky=7℃-14℃。

在某些极端条件下,tsky可以达到0℃以下。

如果没有大气层,有效天空温度应该为0 K。

4.为什么晴朗天气的凌晨书页表面容易结露或结霜?答:晴朗天空的凌晨,温度较低,云层较薄,尘埃,微小水珠,气体分子较大,太阳辐射较小,树叶主要向天空辐射长波辐射,树叶温度低于露点温度,树叶表面容易结露或结霜。

5.采用低反射率的下垫面对城市热岛有不好的影响。

如果住宅小区采用高反射率的地面铺装是否能够改善住区微气候?为什么?答:其效果不是很好,由于城市建筑的密集,植被少采用高反射率的地面铺装,虽然减少了地面对辐射的吸收,但其反射出去的辐射仍会被建筑群所吸收,另外,由于逆温层的存在,其可能会导致空气温度的开高,从而不利于住区微气候的改善。

第三章建筑热湿环境(103)

第三章建筑热湿环境(103)

室内产热与产湿 • 室内湿源包括人员、水面、产湿设备
– 散湿形式:直接进入空气 – 得热往往考虑围护结构和家具的蓄热,“得湿” 一般不考虑“蓄湿”
• 湿源与空气进行质交换同时一般伴随显热交换
– 有热源湿表面:水分被加热蒸发,向空气加入了 显热和潜热,显热交换量取决于水表面积 – 无热源湿表面:等焓过程, 室内空气的显热转化为潜热 – 蒸汽源:可仅考虑潜热交换
常规的送风方式空调需 要去除荷与得热有关,但不一定相等 • 决定因素
– 空调形式
• 送风:负荷=对流部分
• 辐射:负荷=对流部分+辐射部分
– 热源特性:对流与辐射的比例是多少? – 围护结构热工性能:蓄热能力如何?如果内表面 完全绝热呢? – 房间的构造(角系数)
• 总得热:HGsolar=HGglass,τ + HGglass,a
通过玻璃窗的得热 • 可利用对标准玻璃的得热 SSGDi 和 SSGdif 进行修正
来获得简化计算结果:
实际照射面积比
窗的有效面积系数
HGsolar = ( SSGDi X s + SSGdif )CsCn X glassFwindow
• 增透覆层(保证可见光的透过率)~太阳光过滤成“冷光源”! • 高透光型(冬季型、高近红外线透过率),低透光型(遮阳型)
(5)中空玻璃(双层玻璃、中间抽真空、加充氩气、氪气)
• 吸热玻璃与LOW-E玻璃的组合
2、当量室外气温~室外空气综合温度tz
太阳直射 辐射 大气长波 • 辐射 太空散射 辐射 对流换 热
冷负荷温差法
常用的负荷求解法 • 稳态算法
– 不考虑建筑蓄热,负荷预测值偏大
• 动态算法,积分变换求解微分方程
– 冷负荷系数法、谐波反应法:夏季设计日动态模 拟。

第三章 建筑热湿环境

第三章  建筑热湿环境
• 将具有低红外发射率、高红外反射率的金属(铝、铜、银、锡等)采用真 空沉积技术,在普通玻璃表面沉积一层极薄的金属涂层 • 透光性良好,吸收率低,反辐射对建筑物的热作用
• 一层普通玻璃和一层low-e玻璃的光谱透射率 反射率
透射率
第二节 建筑围护结构的热湿传递
HGwind ,sol (SSGDi X s SSGdif )CsCn X wind Fwind
HGwind ,cond K wind Fwind (t a,out t a,in )
• 不同类型的透光围护结构的传热系数差别很大,类型相同,工艺
水平不同,传热系数的差别也很大
• low-e膜或low-e玻璃可以有效降低玻璃窗的总传热系数
第一节 太阳辐射对建筑物的热作用
• 低辐射玻璃(low-e玻璃)
第三章 建筑热湿环境
主要内容
• 建筑环境中重要的部分
• 第一节 太阳辐射对建筑物的热作用 • 第二节 建筑围护结构的热湿传递
• 第三节 以其他形式进入室内的热量和湿量
• 第四节 冷负荷与热负荷
• 第五节 典型负荷计算方法原理介绍
第三章 建筑热湿环境
• 建筑热湿环境是如何形成的?
• 外扰:室外气象参数、邻室的空气温湿度
• 玻璃吸收太阳辐射造成的房间得热量:
HG glass ,a
Rout ( I Di aDi I dif adif ) Rout Rin
第二节 建筑围护结构的热湿传递
• 标准太阳得热量SSG
SSG I Di glass , Di I dif glass ,dif I Di ( Di Rout ( I Di a Di I dif a dif ) Rout Rin

03第3章热湿环境

03第3章热湿环境
阳光照射到双层半透 明薄层时,还要考虑 两层半透明薄层之间 的无穷次反射,以及 再对反射辐射的透过。
假定两层材料的吸收 百分比和反射百分比 完全相同,两层的吸 收率相同吗?
11
室外空气综合温度
Solar-air Temperature
大气长 波辐射
太阳直 射辐射
太空散 射辐射
对流 换热
环境长波辐射
第三章
建筑热湿环境
1
建筑热湿环境是如何形成的?
是建筑环境中最重要的内容 主要成因是外扰和内扰的影响和建筑
本身的热工性能 外扰:室外气候参数,邻室的空气温
湿度 内扰:室内设备、照明、人员等室内
热湿源
2
基本概念
围护结构的热作用过程:无论是通过围护结 构的传热传湿还是室内产热产湿,其作用形 式包括对流换热(对流质交换)、导热(水 蒸汽渗透)和辐射三种形式。
可见光
近红外线 长波红外线
0.8
普通玻璃的光谱透射率
6
太阳辐射在透光围护结构中的传递
低透low-e玻璃
将具有低发射率、高红 外反射率的金属(铝、 铜、银、锡等),使用 真空沉积技术,在玻璃 表面沉积一层极薄的金 属涂层,这样就制成了 Low-e (Low-emissivity) 玻璃。对太阳辐射有高 透和低透不同性能。
对流
反射
透过
透过
外遮阳:
对流
只有透过
和吸收中
的一部分
成为得热
36
窗玻璃间遮阳
Double-skin Facade
pw2 n
h floor n
ex
out gla
pw1 o
d
37
通风双 层玻璃 窗,内 置百页

第三章 建筑环境学热湿环境

第三章 建筑环境学热湿环境

高多少?
4.1 太阳辐射对建筑物的热作用 4.1.3 室外空气综合温度 3 天空辐射(夜间辐射)
围护结构外表面与环境的长 波辐射换热QL包括大气长波辐射以及来自地面和周围建 筑和其他物体外表面的长波辐 射。如果仅考虑对天空 的大气长波辐射和对地面的长波辐射,则有:
QL w[ xsky (T T ) xg g (T T )]
实际由内表面传入室内的热量 为: t Qenv ( x ) | x x 这部分热量将以对流换热和长 波辐射的形式向室内传播。 只有对流换热部分直接进入 空气。
x=0
x=
Qenv
3.2 建筑围护结构的热湿传递与得热 3.2.2 通过非透明围护结构的热传导
板壁各层温度随室外温度的变化
4.1 太阳辐射对建筑物的热作用 4.1.2 半透明物体对太阳光辐射的吸收反射和透过
阳光照射到双层半透 明薄层时,还要考虑两 层半透明薄层之间的无 穷次反射,以及再对反 射辐射的透过。 假定两层材料的吸 收百分比和反射百分比 完全相同,两层的吸收 率相同吗?
4.1 太阳辐射对建筑物的热作用 4.1.3 室外空气综合温度
由于热惯性存在,通过围护结构的传热量和温度的 波动幅度与外扰波动幅度之间存在衰减和延迟的关系。 衰减和滞后的程度取决于围护结构的蓄热能力。
3.2 建筑围护结构的热湿传递与得热 3.2.2 通过非透明围护结构的热传导
均质板壁的一维不稳定导热过程
t t t t c x x x c x
4.1 太阳辐射对建筑物的热作用 4.1.2 半透明物体对太阳光辐射的吸收反射和透过
3 太阳辐射在玻璃中传递过程
玻璃对辐射的选择性
普 通 玻 璃 的 光 谱 透 过 率

《建筑热湿环境》课件

《建筑热湿环境》课件

湿环境
1 湿度的影响
湿度对人体健康和建筑材料有着重要影响, 需要合理控制室内空气湿度。
2 室内空气湿度的控制
通过通风、空调和湿度控制设备等手段,可 以控制室内空气湿度,提供良好的湿环境。
3 湿度的测量方法
使用湿度计等工具可以准确测量室内湿度, 帮助评估建筑热湿环境。
4 利用建筑设计降低室内湿度
采用合适的建筑设计和材料选择可以帮助降 低室内湿度,提供舒适的湿环境。
在建筑计过程中, 需要充分考虑热湿环 境对建筑舒适度和节 能性的影响。
建筑节能与热湿环境
节能建筑的目标
节能建筑的目标是通过合理的 热湿环境设计和能源利用,减 少建筑能耗。
热湿环境的影响
热湿环境对建筑能耗有着直接 的影响,需要在设计中考虑节 能需求。
节能建筑的热湿环境 设计
采用绝缘材料、合理的通风和 空调系统等措施,可以实现节 能建筑的良好热湿环境。
参考文献
1. 张XX,施XX. 建筑热湿环境[M]. 上海:上海科技出版社,2008. 2. Smith A, Johnson B. Understanding Building Physics: Principles and Applications[J]. London: Taylor & Francis, 2013.
重要性
了解建筑热湿环境对于提供舒适的居住环境和设计节能建筑至关重要。
热环境
热平衡
热平衡是指建筑内的热量输入 和输出达到平衡状态,在此基 础上实现舒适的温度。
人体热舒适度
人体热舒适度受到环境温度和 湿度的影响,建筑设计应考虑 提供舒适的热环境。
降低室内温度的方法
通过建筑设计和热量控制技术, 可以降低室内温度,提供更舒 适的热环境。

第3章建筑热湿环境ppt课件

第3章建筑热湿环境ppt课件

5. 室外温度谐波传至平壁内表面时的总衰减度和总相位延
迟 tz
o
n
D
0.9e 2 S1
n S2 Y1,w
S1 Y1,w S2 Y2,w
o
tz
n
Sm Ym1,w Ym,w w
4
4-8
4.1 影响室内热环境的物理因素
4.1.1 太阳辐射与室外空气综合温度
1. 大气透明度

大气质量:m
反应日射强度到达 表面的路程大小
IN = I0 P m
m = L’/L = 1/sin
为什么太阳高度角 接近0º和90º时垂直 面的日射量都小?

4-9
4.1.1 太阳辐射与室外空气综合温度
w ( t ww ) s I I y
ww
w ( t z w
4-16
4. 室外空气综合温度
tw
+
td(I)
=
tz
室外空气温度 当量空气温度 室外空气综合温度
Iy/w工程处理:
tz tw
sI
w
垂直面: Iy/w = 0;
水平面: Iy/w = 3.5~4.0℃。
如果忽略围护结构外表
面与天空和周围物体之
的物理因素
计算方法
人体生理学 和心理学
热湿环境 评价
合太 温阳 度辐
射 与 综
构非 的透 热明 工体 性围 能护

构半 的透 热明 工体 性围 能护

非稳光 稳定学 定特特 特性性 性
得热负荷概念
稳定计算方法 冬夏
谐波反应法 围护结构负荷
冷负荷系数法 人,照明,设备 空气渗透负荷
湿 量 计 算
生心热 理理舒 学学适 基基性

《建筑环境学》习题部分参考答案

《建筑环境学》习题部分参考答案

《建筑环境学》习题部分参考解答第二章 建筑外环境1、 为什么我国北方住宅严格遵守坐北朝南的原则,而南方并不严格遵守?答:太阳光在垂直面上的直射强度为θβcos cos ,⋅⋅=N z c I I ,对于地理位置的地区βcos ⋅N I 就是不能人为改变的。

所以要使I c,z 取最佳值,只有使θ尽可能小。

在冬季,太阳就是从东南方向升起,从西南方向落下,而坐北朝南的布局就保证了在冬季能最大限度的接收太阳辐射。

北方气候寒冷、冬夏太阳高度角差别大,坐北朝南的布局可以使建筑物冬季获得尽可能多的太阳辐射,夏季获得的太阳辐射较小。

但在南方尤其就是北回归线以南,冬夏太阳高度角差不多,所以建筑物就是否坐北朝南影响不太大。

2、 就是空气温度改变导致地面温度改变,还就是地面温度改变导致空气温度改变?答:大气中的气体分子在吸收与放射辐射能时具有选择性,它对太阳辐射几乎就是透明体,直接接受太阳辐射的增温就是非常微弱。

主要靠吸收地面的长波辐射而升温。

而地面温度的变化取决于太阳辐射与对大气的长波辐射。

因此,地面与空气的热量交换就是气温升降的直接原因,地面温度决定了空气温度。

3、 晴朗的夏夜,气温25℃,有效天空温度能达到多少? 如果没有大气层,有效天空温度应该就是多少?答:有效天空温度的计算公式为:4144])70.030.0)(026.032.0(9.0[o d d sky T S e T T +--=查空气水蒸气表,可知:t =25℃时,e d =31、67mbar查表2-2,T d =32、2+273、15=305、35 K,另外,T 0=25+273、15=298、15 K∴ 计算得:T sky =100×(74、2-9、4S)1/4如果没有大气层,可以认为S =1,则计算求得:T sky =283、7 K4、 为什么晴朗天气的凌晨树叶表面容易结露或结霜?答:由于晴朗夜空的天空有效温度低,树叶表面与天空进行长波辐射,使得叶片表面温度低于空气的露点温度,所以出现结露或结霜现象。

03-建筑环境学

03-建筑环境学

4.空气平均流速 周围空气的流动速度是影响人体的对流散热 和水分蒸发散热的主要因素之一。 气流速度大时,人体的对流蒸发散热增强,亦 即加剧了空气对人体的冷却作用。我国对室 内空气平均流速的计算值为:夏季≤0.3m/s, 冬季≤ 0.2m/s。
5.围护结构内表面及其他表面的温度 周围物体表面温度的高低,决定了人体辐射 散热的强度。 在同样的室内空气参数条件下 ,如果围护结构内表面的温度高,人体会增加 热感;内表面的温度低,则会增加冷感。 我国《民用建筑热工设计规范》对建筑围护 结构内表面温度的要求是:冬季要保证内表面 最低温度不低于室内空气的露点温度,即保证 内表面不结露;夏季要保证内表面最高温度不 高于室外空气计算最高温度。
到达地面的太阳辐射强度的大小取决于 地球对太阳的相对位置(亦即地理、纬度、 季节、昼夜等),即与太阳射线对地面的高度 角和它通过大气层的路程等因素有关,此外, 还与大气透明度有关。

2.建筑物各表面所受到的太阳辐射强度 直射辐射(见图3-6)
图3-6 太阳射线与建筑物 表面间
散射辐射
太阳总辐射强度
气温季节性变化也呈周期性。全国各地的最 热月份一般在7~8月,最冷月份在1月。图3-10给出 了北京、西安、上海三个地区10年(1961~1970)的 平均气温变化曲线。
(三)室外空气湿度的变化
空气的相对湿度取决于空气干球温度和含湿量,如 果空气的含湿量保持不变,干球温度增高,则相对湿度变 小,干球温度降低,则相对湿度加大。 就一昼夜内的大气而论,含湿量变化不大(可看作定 值),而大气的相对湿度的变化规律正好与干球温度的变化 规律相反,即中午相对湿度低,早晚相对湿度高。 综上所述,在太阳辐射强度与室外气候的周期综合作 用下,对建筑环境产生必然的影响。

建筑环境学第三章建筑环境中的空气环境

建筑环境学第三章建筑环境中的空气环境

第三章建筑环境中的空气环境建筑环境中的空气环境使人们生活和工作中最重要的环境之一。

一、建筑环境的室内空气环境主要由热环境,湿环境和空气品质等构成。

1.热环境:一般指室内空气的温度。

2.湿环境:一般指室内空气中所含水蒸气的量。

3.空气品质:一般指室内空气中有害气体的含量。

室内空气品质除直接影响人类的健康之外,还间接影响生产和工作的效率。

二、室内空气环境的重要性1.室内环境是人们接触最频繁,最密切的环境之一。

(大约80%时间人在室内度过)2.室内污染物的来源和种类日趋增多。

(燃料,各种油,装饰材料等)至今发现室内空气的污染物约有300种。

3.建筑物密闭程度增加,室内污染物不易扩散,增加人类接受污染的机会。

4.病态建筑:室内污染物聚积,室外新鲜不能正常进入室内,造成室内空气品质恶化,称为病态建筑。

(sick building syndrome-SBS)室内空气质量研究已经形成建筑环境科学领域内的一个新的重要的组成部分。

第一节空气污染的指标与来源一、室内空气污染物1.污染物的来源:室内人员活动释放物,建筑及装饰材料,室内设备,室外传入物等。

2.污染物的分类:化学、物理、生物等。

分为固体颗粒,微生物和有害气体。

二、空气环境指标1.阈值:空气中传播的物质的最大浓度,在该浓度下日复一日的停留在这种环境中的所有工作人员几乎无有害影响。

实质是确定污染物允许浓度标准。

1)阈值的不同定义方法:i)时间加权平均阈值。

它表示正常的8h工作日或35h工作周的时间加权平均浓度值,长期处于该浓度下的所有工作人员几乎均无有害影响。

ii)短期暴露极限阈值。

它表示工作人员暴露时间为15min以内的最大允许浓度。

iii)最高限度阈值。

它表示即使是瞬间也不应超过的浓度。

2)室内空气品质:i)定义:空气中没有已知的污染物达到公认的权威机构所确定的有害浓度指标,并且处于这种空气中的绝大多数人(≥80%)对此没有表示不满意。

ii)可接受的室内空气品质:空调空间中绝大多数人没有对室内空气表示不满意,并且空气中没有已知的污染物达到了可能对人体产生严重健康威胁的浓度。

建筑环境学之热湿环境培训课件

建筑环境学之热湿环境培训课件
综合温度是否相同? 请试算一下盛夏太阳下的室外空气综合温
度比空气温度高多少?
26
天空辐射
(夜间辐射,有效辐射)
围护结构外表面与环境的长波辐射换热QL包括大气 长波辐射以及来自地面和周围建筑和其他物体外表面
的长波辐射。如果仅考虑对天空的大气长波辐射和对
地面的长波辐射,则有:
QL
w[( xsky
15
非透光围护结构外表面所吸收 的太阳辐射热
不同的表面对辐射的波长有选择性,黑色表 面对各种波长的辐射几乎都是全部吸收,而 白色表面可以反射几乎90%的可见光。
围护结构的表面越粗糙、颜色越深,吸收率 就越高,反射率越低。
反射
吸收
16
太阳辐射在透光围护结构中的传递
吸收
反射
透射
吸收率+反射率+透射率=1
护结构内表面上,即Qshw=0。
此时,通过该围护结构传入室内的热量就被定义为通 过非透光围护结构的得热。主要反映了室外气象参数 和室内气温相对固定的影响,剔除了内表面辐射等复
杂因素的影响:HGwall = HGwall ,conv+HGwall,lw
36
通过非透光围护结构的得热
内表面辐射导致的传热量差值
尽管通过围护结构的热传导量不确定,但有 时又需要用“得热”的概念,那怎么定义通 过围护结构的热传导得热呢?
35
通过非透光围护结构的得热
为了定义通过非透光围护结构的得热HGwall,采用了
以下假定条件
假定除所考察的围护结构内表面以外,其他各室内表面的温 度均与室内空气温度一致
室内没有任何其他短波辐射热源发射的热量落在所考察的围
38
通过非透光围护结构的得热
通过非透光围护 VS 通过非透光围护

建筑热湿环境.ppt

建筑热湿环境.ppt
成水蒸气,即由液态变为气态。
§1 太阳辐射对建筑物的热作用
一、围护结构外表面所吸收的太阳辐射热
1.非透光围护结构
不同的表面对辐射的波长有选择性,黑色表面对各种波长的辐射几乎都 是全部吸收,而白色表面可以反射几乎90%的可见光。
围护结构的表面越粗糙、颜色越深,吸收率就越高,反射率越低。
反射
吸收
§1 太阳辐射对建筑物的热作用
galss


10 1 r2 r 2n 10 2n
n0

10 1 r2 1 r 2 1 0 2
§1 太阳辐射对建筑物的热作用
两层半透明薄层的总透过率为:
galss

1 2
n0
1 2
n
1 2 1 12
空气的平均折射指数n=1.0;
在太阳光谱范围内,玻璃的平均折射指数n=1.526。
§1 太阳辐射对建筑物的热作用
射线单程通过半透明薄层的吸收百分比 0
对应其波长的材料的消光系数 K
射线在半透明薄层中的行程L
取决于:
半透明薄层对太阳辐射的吸收现象与大气层对太阳光辐射的吸 收规律相同,即不同波长的辐射按指数关系衰减:
低透low-e玻璃
§1 太阳辐射对建筑物的热作用
玻璃的吸收百分比a0 :
单层玻璃窗
入射
单程通过的吸收率
1
A
反射率 r
(1 -r
)(1 -a
o
2
)
r
C
(1 -r
2
)
(1
-a
o
2
)
r
(1 -r
)(1 -a
o
4
)
r

建筑环境学第3章热湿环境2.pptx

建筑环境学第3章热湿环境2.pptx
当室内空气参数在改变的过程中,负荷还受空气与家 具、内壁面热容的影响。
14
室内表面与空气的热平衡关系示意
15
室内空气的热平衡关系(空气参数恒定)
排除的对流热=室内热源对流得热 + 壁面对流换热+渗透得热
16
室内热源对流得热
室内热源总得热= 室内热源对流得热 +向室内表面的长波辐射+向室内表面的短波辐射
热源特性:对流与辐射的比例是多少? 围护结构热工性能:
蓄热能力如何?如果热容为0呢? 如果内表面完全绝热呢?
房间的构造(角系数)
注意:辐射的存在是延迟和衰减的根源!
13
得热与冷负荷的关系
冷负荷的本质是通过某个设定温度下整个房间的热 平衡算出来的,综合了各种因素作用的一个综合值;
与得热不同的是,不存在灯光造成的负荷、人员造 成的负荷……的概念。例如冬天室内有可能是热负荷 也有可能是冷负荷,而灯光和人员有降低热负荷的影 响,也可能是导致冬季还有冷负荷的原因,但只有跟 围护结构散热综合起来才能得到负荷;
Qcl,s HEconv HErad HGH HGwt all HGwt ind HGinf il Qwt all
房间的各种得热
二者之和就是从壁面 实际获得的对流热量
19
讨论:采用辐射板空调的负荷
在室内空气参数相同的情况下,采用辐射板空 调的负荷比送风空调负荷大还是小?
以夏季为例
17
壁面对流得热
Qwall,cond
通过围护结构的导热量 +本壁面获得的通过玻璃窗的日射得热
= 壁面对流换热 +本壁面向空调辐射板的辐射 +本壁面向其他壁面的长波辐射 +本壁面向热源的辐射
18
房间空气热平衡的数学表达式
对长波辐射项进行了线性化而导出

建筑环境学(3)

建筑环境学(3)
0.69
白石子屋面
油毛毡屋面
0.62
0.86
水泥瓦屋面 暗灰
2.半透明物体在太阳照射时
半透明物体对不同波长的太阳辐射的 吸收,反射和穿透有选择性。 结论:玻璃对可见光和波长为3μm 以下的短波红外线来说几乎是透明的, 但却能有效地阻止长波红外线辐射 玻璃属于半透明体:


单层半透明层中的光的行程
对流得热
显热
得 热
潜热

辐射得热
围护结构热过程特点:由于围护结构热惯性 的存在,通过围护结构的得热量与外扰之间 存在着衰减和延迟的关系。
§3-1 太阳辐射对建筑物的热作用
一、围护结构外表面所吸收的 太阳辐射得热 二、室外空气综合温度 三、夜间辐射
一.围护结构外表面所吸收的太阳辐射得热
1. 太阳照射到非透明的围护结构外表面时;


不仅考虑了来自太阳对围护结构的短波 辐射,而且反映了围护结构外表面与天 空和周围物体之间的长波辐射。

有时这部分长波辐射是可以忽略的,这 时式就简化为
t z tair

I out
例:tz=30+0.73*800/23.3=55℃
三、夜间辐射

围护结构外表面与环境的长波辐射换热包括大 气长波辐射以及来自地面和周围建筑和其他物 体外表面的长波辐射。如果仅考虑对天空的大 气长波辐射和对地面的长波辐射,则有:

HGwall = HGwall,conv + HGwall,lw
ain[t ( , ) ta ,in ( )] ar , j [t ( , ) ta ,in ( )]
j 1 m
=

HG——得热,W/m2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将具有低发射率、高红外反射率的 金属(铝、铜、银、锡等),使用真 空沉积技术,在玻璃表面沉积一层极 薄的金属涂层,这样就制成了 Low-e (Low-emissivity) 玻璃。
10
太阳辐射在玻璃中传递过程
3mm厚的普通透明玻璃对太阳辐射能 具有87%的透过率,白天来自室外的 辐射能量可大部分透过;但夜晚或阴 雨天气,来自室内物体热辐射能量的 89%被其吸收,使玻璃温度升高,然 后再通过向室内、外辐射和对流交换 散发其热量,故无法有效地阻挡室内 热量泄向室外。
QL w[(xsky xg g )Tw4 xskyTs4ky xg gTg4 ]
白天有天空辐射吗?
17
通过围护结构的显热得热
外表面对流换热
外表面日射通 过墙体导热
通过围护 结构的显 热得热
通过非透明围护结 构的热传导
两种方式机理不同
通过玻璃窗的 得热
18
通过非透明围护结构的热传导
由于热惯性存在,通过围 护结构的传热量和温度的 波动幅度与外扰波动幅度 之间存在衰减和延迟的关 系。衰减和滞后的程度取 决于围护结构的蓄热能力。
如果考虑围护结构外表面与天空和周围物体之间的长
波辐射:
tz
tair
aI
out
QL
out
如果忽略围护结构外表面与天空和周围物体之间的
长波辐射:
aI
tz
tair
out
16
天空辐射(夜间辐 射,有效辐射)
围护结构外表面与环境的长波辐射换热QL包括大气 长波辐射以及来自地面和周围建筑和其他物体外表面 的长波辐射。如果仅考虑对天空的大气长波辐射和对 地面的长波辐射,则有:
其中内表面长波辐射:
m
Ql
xij
ij
[Ti4
(
)
T
4 j
(
)]
j 1
20
通过非透明围护结构的热传导
利用室外空气综合温度简化外
边界条件:
out
[tz (
)
t(0,
)]
( x)
t x
|x0
实际由内表面传入室内的热量
x=0
为:
x=
Qenv
(x) t x
|x
这部分热量将以对流换
Qenv
热和长波辐射的形式向
12
太阳辐射在玻璃中传递过程
阳光照射到单层半透 明薄层时,半透明薄 层对于太阳辐射的总 反射率、吸收率和透 过率是阳光在半透明 薄层内进行反射、吸 收和透过的无穷次反 复之后的无穷多项之 和。
13
太阳辐射在玻璃中传递过程
阳光照射到双层半 透明薄层时,还要 考虑两层半透明薄 层之间的无穷次反 射,以及再对反射 辐射的透过。
第三章
建筑热湿环境
1
建筑热湿环境是如何形成的?
是建筑环境中最重要的内容 主要成因是外扰和内扰的影响和建筑
本身的热工性能 外扰:室外气候参数,邻室的空气温
湿度 内扰:室内设备、照明、人员等室内
热湿源
2
基本概念
围护结构的热作用过程:无论是通过围护结 构的传热传湿还是室内产热产湿,其作用形 式包括对流换热(对流质交换)、导热(水 蒸汽渗透)和辐射三种形式。
11
太阳辐射在玻璃中传递过程
Low-E中空玻璃对0.3-2.5um的太阳 能辐射具有60%以上的透过率,白天 来自室外辐射能量可大部分透过,但 夜晚和阴雨天气,来自室内物体的热 辐射约有50%以上被其反射回室内, 仅有少于15%的热辐射被其吸收后通 过再辐射和对流交换散失,故可有效 地阻止室内的热量泄向室外。
14
室外空气综合温度
太阳直
射辐射
大气长 波辐射
太空散 射辐射
对流 换热
环境长波辐射
壁体得热
地面长
波辐射 地面反射辐射
15
室外空气综
合温度 Solar-
60℃!
air Temperature
35℃!
考虑了太阳辐射的作用对表面换热量的增强,相当于 在室外气温上增加了一个太阳辐射的等效温度值。是
为了计算方便推出的一个当量的室外温度。
4
本章的任务: 阐述建筑室内热湿环境的形成原理以及室内
热湿环境与各种内外扰之间的响应关系。 一 太阳辐射对建筑物的热作用 二 建筑维护结构的热湿传递与得热 三 其他形式进入室内的热量和湿量 四 冷负荷与热负荷 五 典型负荷计算方法
5
太阳辐射
076~3μm
近红外线 45.2%
>3μm
长波红外线 2.2%
7
玻璃具有温室效应?
可见光
近红外线 长波红外线
0.8
8
太阳辐射在玻璃中传递过程
玻璃对辐射的选择性 可 见 光 和 短 波 红 外 线 能 透 过 玻 璃 , 进
入室内 建筑环境所涉及的表面温度范围决定
了其发射的辐射均为长波辐射,室内 向室外发射的长波辐射被玻璃大部阻 隔在室内
9
太阳辐射在玻璃中传递过程
围护结构传热 传湿
室内产热产湿
对流换热 (对流质交换)
导热 (水蒸汽渗透)
辐射
3
基本概念
得热(Heat Gain HG):某时刻在内外扰作用下
进入房间的总热量叫做该时刻的得热。如果得热<0,
意味着房间失去热量。
对流得热
显热


辐射得热
潜热
围护结构热过程特点:由于围护结构热惯性的存在, 通过围护结构的得热量与外扰之间存在着衰减和延迟 的关系。
室内传播。只有对流换
热部分直接进入了空气。
21
通过玻璃窗的得热
Qcond K glass Fglass [tout ( ) tin ( )]
通过玻璃板壁 的传热
透过玻璃的日射 得热
通过玻璃窗的 得热
得热与玻璃窗的 种类及其热工性能有 重要的关系。
22
玻璃窗的种类与热工性能
窗框型材有木框、铝合金框、铝 合金断热框、塑钢框、断热塑钢 框等;玻璃层间可充空气、氮、 氩、氪等或有真空夹层;玻璃层 数有单玻、双玻、三玻等,玻璃 类别有普通透明玻璃、有色玻璃、 低辐射(Low-e)玻璃等;玻璃表面 可以有各种辐射阻隔性能的镀膜, 如反射膜、low-e膜、有色遮光膜 等,或在两层玻璃之间的空间中 架一层对近红外线高反射率的热 镜膜。
紫外线
7.0%
<0.38μm
0.38~0.76μm
可见光 45.6%
6
非透 不同的表面对辐射的波长有选择性,黑色表 明围 面对各种波长的辐射几乎都是全部吸收,而
白色表面可以反射几乎90%的可见光。
护结 围护结构的表面越粗糙、颜色越深,吸收率 构外 就越高,反射率越低。 表面 所吸 收的 太阳 辐射 反射 吸收 热
19
通过非透明围护结构的热传导
非均质板壁的一维不稳定导热过程:
t
2t a( x) t
边界条件:
a( x)
x2
x
x
out [tout ( ) t(0, )] Qsolar QL
in[t( , ) tin ( )] Ql
(
Qsh
x)
t
x
|
(
x0
x)
t x

|x
t (x,0 ) = f (x)
相关文档
最新文档