-软开关技术(soft technique)
软开关技术
+
+
-
-
(5)S4作0压关断
C4充电C3放电续流iLr, B点电位升至Ui, (6)D3导通续流iLr , S3为0压导通
S 1,4 S2,3
10
8.3.4 升压斩波器的零电压转换软开关电路
+ -
主开关S为0压软开关 辅助开关S1为硬开关,但
硬导通时iLr由0上升,功耗不大 硬关断时iLr换流到VD1后S1才受Uo,功耗不大 已在功率因数校正电路应用
硬开关:
开关过程中电压和电流均不为零,出现了重叠---功率损耗 (平均功率~(1/6)断态电压*通态电流) 电压、电流变化很快,波形有过冲,导致开关噪声。 功耗与噪声随着开关频率的提高而增大
uu i
i
0
t
P
0
t
a)硬开关的开通过程
u
i
u
i
0 P
0
b)硬开关的关断过程
图7-1 硬开关的开关过程
3
8.1.1 硬开关和软开关
7
2)工作原理
S通时Cr为0压 S作0压关断后: VD因续流iL而导通 Cr与Lr串联谐振 uC先正后“负”,负值时VDs导通 --等待S零压导通
由波形:Cr电压峰值高 准谐振(—不完整谐振)
8
8.3.3 移相全桥0压开关PWM电路
目前应用最广泛的软开关电路之一 特点:电路简单。 仅增一谐振电感,使四个开关均0压开通。
第8章 软开关技术
1
第8章 软开关技术• 引言
变流装置的发展趋势 ---高频化小型化
优点:滤波器、变压器体积和重量减小 (L=XL/ω,C=GC/ω,φm ∝ U/(Nω) )
开关灭弧快 问题:开关损耗、电磁干扰增大。
电力电子技术8 软开关技术
丘东元
引 言
电力电子装置的发展趋势 小型化、轻量化 实现途径——电力电子装置高频化 可以减小滤波器、变压器的体积和重量,电力电子装 置小型化、轻量化。 开关损耗增加,电路效率严重下降,电磁干扰增大。 解决办法 —— 软开关技术 降低开关损耗和开关噪声,满足对装置的效率和电磁 兼容性的高要求 有助于进一步提高开关频率
9
8.2 软开关电路的分类
根据电路中主要开关元件开通和关断时电压电流状态, 分为 零电压电路(零电压开通) 零电流电路(零电流关断) 根据软开关技术发展的历程可以将软开关电路分成 准谐振电路 零开关PWM电路 现的软开关电路 零电压开关准谐振电路(ZVS QRC) 零电流开关准谐振电路(ZCS QRC) 零电压开关多谐振电路(ZVS MRC) 用于逆变器的谐振直流环节(Resonant DC Link)
uCE iC 无缓冲电路时 无 di 抑制电路时 dt iC uCE
有缓冲电路时 O di 有 抑制电路时 dt
t
iC A 无缓冲电路 B
D O
有缓冲电路 C uCE
6
软开关
在电路中增加一些元器件, u 通过在开关过程前后引入谐 i 振,使开关开通前电压先降 0 到零,关断前电流先降到零, P 消除了开关过程中电压、电 0 流的重叠,从而大大减小甚 至消除开关损耗; 同时,谐振过程限制了开关 过程中电压和电流的变化率, 这使得开关噪声也显著减小。
S S1 uS
O O O
t t t IL t
iLr iS1
O
uS1 O iD iS
O O O
t
t t t0 t1 t 2 t3 t4 t5
《软开关技术》课件
03
CHAPTER
软开关技术在不同领域的应 用
电力电子领域
软开关技术介绍
在电力电子领域,软开关技术是一种用于控制开关电源的先进技术。它通过在开关过程中引入谐振原 理,实现了开关器件的零电压或零电流开通与关断,从而减小了开关损耗和电磁干扰,提高了电源的 效率。
应用实例
在逆变器、直流-直流转换器、不间断电源等电力电子设备中,软开关技术被广泛应用于减小开关损耗 、提高电源效率、降低电磁干扰等方面。
智能电网
在智能电网建设中,软开关技术将发挥重要作用,保障电网的稳定 运行和节能减排。
轨道交通
在轨道交通领域,软开关技术的应用将提升列车运行的稳定性和安 全性。
产业前景
市场规模
随着软开关技术的广泛应用,其 市场规模将不断扩大,吸引更多 企业投入研发和生产。
产业链完善
软开关技术的产业链将逐渐完善 ,形成完整的研发、生产、销售 和服务体系。
降低电磁干扰有助于提高电子设备的性能稳定性,减少对周 围其他设备的干扰,同时也符合现代电子产品绿色环保的要 求。
延长设备寿命
软开关技术能够减小开关过程中产生的应力,从而降低对设备中元器件的损耗, 延长了设备的使用寿命。
设备寿命的延长有助于减少维修和更换成本,同时也减少了电子废弃物的产生, 有利于环境保护。
元器件选择
01
02
03
电力电子器件
如绝缘栅双极晶体管( IGBT)、功率MOSFET等 ,具有高耐压、大电流、 低导通电阻等优点。
无源元件
如电容、电感等,用于实 现能量的储存和转换。
控制电路
用于产生控制信号,调节 开关的导通和关断时间。
电路设计
01
02
《软开关技术》课件
混合型软开关电路
结合电压型和电流型电路的特点,实现更高效的软开关。
控制策略
恒定电压控制
保持输出电压恒定,通过调节占空比或频率来实现软 开关。
恒定电流控制
保持输出电流恒定,通过调节占空比或频率来实现软 开关。
恒功率控制
保持输出功率恒定,通过调节占空比或频率来实现软 开关。
软开关技术
CATALOGUE
目 录
• 软开关技术概述 • 软开关技术的优点 • 软开关技术的应用领域 • 软开关技术的实现方式 • 软开关技术的发展趋势 • 软开关技术的前景展望
01
CATALOGUE
软开关技术概述
软开关技术的定义
软开关技术是指在电力电子变换器中 ,利用控制技术实现功率开关管的零 电压开通和零电流关断的一种新型开 关技术。
01
通过调节脉冲宽度来控制开关的导通和关断时间,实现软开关
。
脉冲频率调制(PFM)
02
通过调节脉冲频率来控制开关的导通和关断时间,实现软开关
。
脉冲相位调制(PPM)
03
通过调节脉冲相位来控制开关的导通和关断时间,实现软开关
。
电路拓扑结构
电压型软开关电路
通过在开关管两端并联电容来实现软开关。
电流型软开关电路
高效率的电源能够减小散热需求,降低散热成本,同时减小电源体积和重 量,提高电源的便携性和可靠性。
降低电磁干扰
01
软开关技术能够减小开关过程 中电压和电流的突变,从而降 低电磁干扰(EMI)。
02
降低电磁干扰有助于提高电子 设备的电磁兼容性(EMC),使 其在复杂电磁环境中稳定工作 。
03
降低电磁干扰还可以减小对周 围电子设备的干扰,提高整个 系统的稳定性。
第7章软开关技术
第7章软开关技术一. 软开关技术:降低开关损耗和开关噪声、进一步提高开关频率。
1.硬开关:开关过程中电压和电流均不为零,出现了重叠。
●电压、电流变化很快,波形出现明显得过冲,导致开关噪声。
2.软开关:在原电路中增加了小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。
●降低开关损耗和开关噪声。
3.零电压开关和零电流开关●零电压开通:开关开通前其两端电压为零——开通时不会产生损耗和噪声。
●零电流关断:开关关断前其电流为零——关断时不会产生损耗和噪声。
●零电压关断:与开关并联的电容能延缓开关关断后电压上升的速率,从而降低关断损耗。
●零电流开通:与开关串联的电感能延缓开关开通后电流上升的速率,降低了开通损耗。
4.当不指出是开通或是关断,仅称零电压开关和零电流开关。
靠电路中的谐振来实现。
5.软开关电路的分类●根据开关元件开通和关断时电压电流状态,分为零电压电路和零电流电路两大类。
●根据软开关技术发展的历程可以将软开关电路分成准谐振电路、零开关PWM电路和零转换PWM电路。
●每一种软开关电路都可以用于降压型、升压型等不同电路,可以从基本开关单元导出具体电路。
6.准谐振电路:准谐振电路-准谐振电路中电压或电流的波形为正弦半波,因此称之为准谐振。
是最早出现的软开关电路。
●特点:●谐振电压峰值很高,要求器件耐压必须提高;●谐振电流有效值很大,电路中存在大量无功功率的交换,电路导通损耗加大;●谐振周期随输入电压、负载变化而改变,因此电路只能采用脉冲频率调制PFM方式来控制。
分类:零电压开关准谐振电路、零电流开关准谐振电路、电压开关多谐振电路、用于逆变器的谐振直流环节电路7.零开关PWM电路●引入了辅助开关来控制谐振的开始时刻,使谐振仅发生于开关过程前后。
●零开关PWM电路可以分为:零电压开关PWM电路零电流开关PWM电路●特点:●电路在很宽的输入电压范围内和从零负载到满载都能工作在软开关状态。
●电路中无功功率的交换被削减到最小,这使得电路效率有了进一步提高。
什么是电力电子中的软开关技术?
什么是电力电子中的软开关技术?在当今的电力电子领域,软开关技术正扮演着越来越重要的角色。
那么,究竟什么是软开关技术呢?要理解软开关技术,我们首先得从电力电子电路中的开关说起。
在传统的电力电子电路中,开关的开通和关断过程往往不是理想的。
当开关开通时,电流会从零逐渐上升;而当开关关断时,电压会从零逐渐上升。
这种非理想的开关过程会导致开关损耗的产生。
开关损耗主要包括导通损耗和开关过程中的损耗。
导通损耗是由于开关在导通状态下存在一定的电阻,电流通过时会产生功率损耗。
而开关过程中的损耗则更为复杂,在开关开通和关断的瞬间,电压和电流会有重叠的时间段,这期间会产生较大的功率损耗,并且还会引起电磁干扰等问题。
为了降低这些损耗,提高电力电子装置的效率和性能,软开关技术应运而生。
软开关技术的核心思想是让开关在电压或电流为零的时候进行开通或关断,从而减少甚至消除开关过程中的损耗。
具体来说,软开关技术可以分为零电压开关(Zero Voltage Switching,ZVS)和零电流开关(Zero Current Switching,ZCS)两种类型。
零电压开关是指在开关开通前,其两端的电压已经降为零,这样在开通瞬间就不会有电压和电流的重叠,从而大大降低了开通损耗。
实现零电压开关的常见方法是在开关两端并联一个电容,利用电路中的电感和电容的谐振,使得开关两端的电压在开通前降为零。
零电流开关则是在开关关断前,通过电路的设计让流过开关的电流先降为零,从而避免了关断时电压和电流的重叠,降低了关断损耗。
通常通过在开关支路串联电感来实现零电流关断。
软开关技术的实现需要依靠合理的电路拓扑结构和控制策略。
常见的软开关电路有准谐振电路、零开关 PWM 电路和零转换 PWM 电路等。
准谐振电路是最早出现的软开关电路之一,它利用电感和电容的谐振来实现软开关,但存在着电压和电流应力大、工作频率不固定等缺点。
零开关 PWM 电路在准谐振电路的基础上进行了改进,通过引入辅助开关,实现了恒定频率的控制,同时降低了电压和电流应力。
软开关技术讲解
软开关技术综述摘要软开关技术是利用在零电压、零电流条件下控制开关器件的导通和关断,有效地降低了电路的开关损耗和开关噪声因而在电力电子装置中得到广泛应用。
本文在讲述软开关技术的原理及分类的基础上,主要回顾了软开关技术的由来和发展历程,以及发展现状和未来的发展趋势。
关键词:软开关技术原理发展历程发展趋势一.引言:根据开关元件的工作状态,可以把开关分成硬开关和软开关两类。
硬开关是指开关元件在导通和关断过程中,流过器件的电流和元件两端的电压在同时变化;软开关是指开关元件在导通和关断过程中,电压或电流之一先保持为零,一个量变化到正常值后,另一个量才开始变化直至导通或关断过程结束。
由于硬开关过程中会产生较大的开关损耗和开关噪声。
开关损耗随着开关频率的提高而增加,使电路效率下降,阻碍了开关频率的提高;开关噪声给电路带来了严重的电磁干扰问题,影响周边电子设备的正常工作。
为了降低开关的损耗和提高开关频率,软开关的应用越来越多。
电力电子装置中磁性元件的体积和重量占很大比例,从电机学相关知识知道,使变压器、电力电子装置小型化、轻量化的途径是电路的高频化。
但是, 传统的开关器件工作在硬开关状态,在提高开关频率的同时,开关损耗和电磁干扰也随之增加。
所以,简单地提高开关频率显然是不行的。
软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压) 按正弦或准正弦规律变化。
当电流自然过零时, 使器件关断(或电压为零时, 使器件开通) , 从而减少开关损耗。
它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。
当开关频率增大到兆赫兹级范围, 被抑制的或低频时可忽视的开关应力和噪声, 将变得难以接受。
谐振变换器虽能为开关提供零电压开关和零电流开关状态, 但工作中会产生较大的循环能量, 使导电损耗增大。
为了在不增大循环能量的同时, 建立开关的软开关条件, 发展了许多软开关PWM技术。
软开关技术讲解
软开关技术综述摘要软开关技术是利用在零电压、零电流条件下控制开关器件的导通和关断,有效地降低了电路的开关损耗和开关噪声因而在电力电子装置中得到广泛应用。
本文在讲述软开关技术的原理及分类的基础上,主要回顾了软开关技术的由来和发展历程,以及发展现状和未来的发展趋势。
关键词:软开关技术原理发展历程发展趋势一.引言:根据开关元件的工作状态,可以把开关分成硬开关和软开关两类。
硬开关是指开关元件在导通和关断过程中,流过器件的电流和元件两端的电压在同时变化;软开关是指开关元件在导通和关断过程中,电压或电流之一先保持为零,一个量变化到正常值后,另一个量才开始变化直至导通或关断过程结束。
由于硬开关过程中会产生较大的开关损耗和开关噪声。
开关损耗随着开关频率的提高而增加,使电路效率下降,阻碍了开关频率的提高;开关噪声给电路带来了严重的电磁干扰问题,影响周边电子设备的正常工作。
为了降低开关的损耗和提高开关频率,软开关的应用越来越多。
电力电子装置中磁性元件的体积和重量占很大比例,从电机学相关知识知道,使变压器、电力电子装置小型化、轻量化的途径是电路的高频化。
但是, 传统的开关器件工作在硬开关状态,在提高开关频率的同时,开关损耗和电磁干扰也随之增加。
所以,简单地提高开关频率显然是不行的。
软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压) 按正弦或准正弦规律变化。
当电流自然过零时, 使器件关断(或电压为零时, 使器件开通) , 从而减少开关损耗。
它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。
当开关频率增大到兆赫兹级范围, 被抑制的或低频时可忽视的开关应力和噪声, 将变得难以接受。
谐振变换器虽能为开关提供零电压开关和零电流开关状态, 但工作中会产生较大的循环能量, 使导电损耗增大。
为了在不增大循环能量的同时, 建立开关的软开关条件, 发展了许多软开关PWM技术。
《软开关技术 》课件
基于电容的软开关技术
电容器:用于存储电能,实现 电能的平滑过渡
开关原理:通过改变电容器的 充放电状态,实现开关功能
应用领域:广泛应用于电力电 பைடு நூலகம்、新能源等领域
优点:开关速度快、损耗低、 可靠性高
基于变压器的软开关技术
原理:通过控制变 压器的初级和次级 绕组,实现电压和 电流的平滑过渡
优点:可以实现高 功率因数、低谐波、 高效率等优点
硬开关技术:开关的切换过程是瞬间完成的,开关损耗较大
软开关技术:开关的导通时间可以控制,可以实现更精确的电流控制
硬开关技术:开关的切换过程无法控制,电流控制精度较低
软开关技术:开关的导通时间可以控制,可以实现更稳定的电压输出
硬开关技术:开关的切换过程无法控制,电压输出稳定性较差
软开关技术在电力电子领域的应用优势
软开关技术的实现方式
零电压开关 (ZVS):在开 关管两端电压为 零时进行开关操 作,实现零电压 开关。
零电流开关 (ZCS):在开 关管电流为零时 进行开关操作, 实现零电流开关。
谐振开关:利用 谐振电路实现开 关管的开关操作, 提高开关效率。
软开关技术在电 力电子设备中的 应用:如逆变器、 整流器、直流电 源等。
软开关技术的分类
零电压开关(ZVS)
零电流开关(ZCS)
零电压零电流开关 (ZVZCS)
谐振开关(RCS)
软开关技术在电力电 子领域的应用
软开关技术的应用场景
电动汽车:如电机驱动、电 池管理系统等
电力系统:如高压直流输电、 柔性交流输电等
电力电子设备:如开关电源、 逆变器、电机驱动等
太阳能和风能发电系统:如 逆变器、功率调节器等
04 软开关技术的优势
第8章-软开关技术
谐振直流环
结果:输入直流电压被转换成一系列高频脉冲(周期回零)电 压波。S1~谐振开关
零电流开关 S开通时,激发Lr、Cr串联谐振,为 器件关断创造零电流条件。
零电压开关 S关断时,激发Lr、Cr并联谐振,为 器件开通创造零电压条件。 简单的谐振开关只适合开关数量少的场合(如DC→DC)。 对DC→AC逆变器,通常采用谐振环。
谐振环
基本思想: 使直流母线电压或电流以较高频率振荡; 恒定的直流电压或电流变成高频脉动的直流电压或电流; 出现周期性的过零点; 给挂在该母线上的所有开关器件创造零电压或零电流开通 和关断条件。
8 软开关技术
开通损耗和关断损耗均近似为零
8 软开关技术
软开关分类: 零电流开关(zero current switch, ZCS) 在电流为零时进行切换 零电压开关(zero voltage switch, ZVS) 在电压为零时进行切换
为使电压或电流为零,用L、C构成串联或并联谐振电路来实 现,形成正弦波,在过零时接通或断开开关,进行能量切换。 软开关技术→谐振开关技术
软开关技术
软开关技术软开关技术开发的原因硬开关是不管开关管上的电压或电流,强行接通或关断开关管。
当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。
若是感性负载,在开关晶体管关断时会感应出尖峰电压。
开关频率越高,关断越快,该感应电压越高。
此电压加在开关器件两端,容易造成器件击穿。
若是容性负载,在开关晶体管导通瞬间的尖峰电流大。
因此,当开关晶体管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式全部耗散在该器件内。
频率越高,开通电流尖峰越大,从而会引起开关管的过热损坏。
另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。
显然频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。
最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。
随着频率的提高和电路中的di/dt和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。
上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的提高。
近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。
和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢上升到断态值,所以关断损耗近似为零。
由于器件关断前电流已经下降到零,便解决了感性关断问题。
理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压也为零,解决了容性开通问题。
同时,开通时,二极管反向恢复过程已经结束,因此二极管反向恢复问题不存在。
什么是软开关技术软开关技术还有助于电磁骚扰水平的降低,其原因是开关晶体管在零电压的情况下导通和在零电流的情况下关断,同时快恢复二极管也是软关断的,这可以明显减小功率器件的di/dt和du/dt,从而可以减小电磁干扰的电平。
软开关技术及其应用
软开关技术及其应用1.软开关技术的简介1.1软开关技术的基本概念软开关:在原电路中增加了小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。
降低开关损耗和开关噪声。
近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。
和硬开关工作不同,理想的软关断过程是电流先降到零,电压在缓慢上升到断态值,所以关断损耗近似为零。
由于器件关断前电流已下降到零,解决了感性关断问题。
理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压亦为零,解决了容性开通问题。
同时,开通时,二极管反向恢复过程已经结束,因此二极管方向恢复问题不存在。
1.2软开关技术的工作原理图一软开关的开关、关断过程通过在开关过程前后引入谐振,使开关开通前电压先降到零,关断前电流先降到零,就可以消除开关过程中电压、电流的重叠,降低他们的变化率,从而大大减小甚至消除开关消耗。
同时,谐振过程限制了开关过程中电压电流的变化率,这使得开关噪声显著减小。
理想开关过程:零压导通零压关断,开通和关断零损耗零噪声。
2.软开关电路的种类及特点根据电路中主要的开关元件是零电压开通还是零电流关断,可以将软开关电路分成零电压电路和零电流电路两大类。
通常,一种软开关电路要么属于零电压电路,要么属于零电流电路。
但也有个别电路中,有些开关是零电压开通,另一些开关是零电流关断的。
根据软开关技术发展的历程,可以将软开关电路分成以下三种:1)准谐振电路. 是最早出现的软开关电路。
准谐振电路中电压或电流的波形为正弦半波,谐振的引入使得电路的开关损耗和开关噪声大大下降,谐振周期随输入电压、负载变化而改变,因此电路只能采用脉冲频率调制方式来控制。
准谐振电路可以分为零电压开关准谐振电路、零电流开关准谐振电路、零电压开关多谐振电路和用于逆变器的谐振直流环。
2) 零开关PWM电路.电流和电压基本上是方波。
开关承受的电压明显降低。
电路不采用开关频率固定的PWM控制方式。
开关电源 软开关技术
对元件性能要求高
软开关技术要求电路元件具有 更高的耐压和耐流能力,以及
更快的开关速度。
兼容性问题
在某些应用中,软开关技术可 能与现有硬件或标准不兼容,
需要进行适配或修改。
05
软开关技术的实际应用案例
案例一:LED驱本
详细描述
降低开关损耗
通过控制开关的电压和 电流,软开关技术可以 有效地降低开关过程中 的电压和电流应力,从 而减小开关损耗,提高
电源效率。
减小电磁干扰
由于软开关技术可以控 制开关过程中的电压和 电流波形,因此可以减 小开关过程中产生的电 磁干扰,提高电源的电
磁兼容性。
延长开关寿命
通过降低开关过程中的 电压和电流应力,软开 关技术可以延长开关器 件的寿命,降低电源维
03
软开关技术的工作原理
软开关技术的电路结构
电路组成
软开关技术通常由主电路、控制电路和辅助电路组成。主电路负责实现电能转 换,控制电路负责调节开关状态,辅助电路则提供必要的支持功能。
工作模式
根据电路结构和控制方式的不同,软开关技术有多种工作模式,如零电压开通、 零电流关断、零电压关断等。
软开关技术的控制方式
01
脉冲宽度调制(PWM)
通过调节脉冲宽度来控制开关的占空比,从而实现电压和电流的调节。
PWM控制方式简单、易于实现,但可能会产生较高的开关损耗。
02
脉冲频率调制(PFM)
通过调节脉冲频率来控制输出电压或电流,PFM控制方式具有较低的开
关频率,可以减小电磁干扰和开关损耗,但可能会影响输出性能。
03
混合调制(PWM+PFM)
开关电源的应用与发展
应用
软开关技术课件
8.1.1 硬开关和软开关
硬开关:
开关过程中电压和电流均不为零,出现了重叠。 电压、电流变化很快,波形出现明显得过冲,导 致开关噪声。
uu i
u
i
i
i
u
0
t0
P
P
0
t0
a)硬开关的开通过程
b)硬开关的关断过程
图8-1 硬开关的开关过程
软开关:
在原电路中增加了小电感、电容等谐振元件,在开 关过程前后引入谐振,消除电压、电流的重叠。 降低开关损耗和开关噪声。
高功率因数校正AC/DC变换器
移相全桥软开关DC/DC变换器
AC
输入电压及电 感电流、 输出 电压及电流和 主开关管漏极 电压采样电路
功率开关驱 动电路
UC3855A
功率开关驱 动电路
UC3875
输出电压及电 流、原边电感电 流和四个开关管 漏极电压采样电
路
高功率因数校正软开关AC/DC 变换主电路
Lr
D1
Uin
Tr
Cr
CO
RO
Tr1
零电压转换PWM电路波形图
vg
Tr
Tr1
Vo
vds
Is
ids
iL
Vo
vD
iD T0T1T2T3 T4
Is
T5T6
T0
零电压转换PWM电路一周期内各 运行模式分析
模式
1
2
3
4
5
6
7
时间段 T0 ~ T1 T1 ~ T2 T2 ~T3 T3 ~T4 T4~T5 T5 ~T6 T6 ~ T0
现代电力电子装置的发展趋势
小型化和轻量化
对效率和电磁兼容性也有更高的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7-5) (7-6)
Poff f s
toff 0
t on t ri t fv
Ploss
toff trv t fi
1 VD I 0 f s (ton toff ) 2
线路电感 Lσ≠ 0 时开通、关断过程
VT
图7.11
安全工作区
Lσ=0时,开通轨迹ABC,关断轨迹 CBA Lσ≠ 0时,开通轨迹AQEC,关断轨 迹CBHPA Lσ改善了开通轨迹,恶化了关断轨 迹
开关状态2:t1<t<t2
T1断态,Vcr=VT1=VD。iL经D2、T2 续流,Io经D0续流。Toff=t2-t1可控, 用以调控输出电压。
8.3.1 零电压开通脉冲宽度调制(ZVS PW 变换器工作原理(续4)
开关状态3:t2<t<t3
t=t2时,关断T2, Lr 、 Cr谐振半 个周期到t3, t=t3时 Vcr=VT1=VD, iL达到负最大值。
t
VD
D
rT IO iD
T
iT
rT
iD
(a) 电路
t
t 0 t1 vT (v CE ) t2 t3 t4 t5 t6 t7 t8 t t10 9
iT
电压限制线
R E
I CM
N C
VD
vT
电流限制线 10us功率限制线
vT
t
td PT t ri
IO
B
t fv
t on PT vT iT
ts
t rv t fi
第8章
谐振开关型变换器 --软开关技术(soft-switch)
1
现代电力电子的发展------高频化
高频化带来的问题及解决方法
Lσ= 0 开关开通、关断过程
Ts
T on
T off
iT
C
v T (v CE )
i f IO
E
IO
vG
V
O
开通 断 态
通态
关断
断态
T
E
iD
Lf
R
Cf
L F
vG
G i G 或v G
(8-13)
由(8-11)和(8-13) L (0.1 ~ 0.05)T V 2I r s D o min 可确定Lr、Cr: Cr (0.1 ~ 0.05)Ts I o min 2VD
8.3.2 零电压开通脉冲频率调制 (ZVS PFM)变换器工作原理
主电路组成
工作原理
Cr
+
VG2 T2
-
D2 Lf
Io
D1
+ Lr T1 VG1 VD
Vo Cf
iL
VL D VD
R
图 8.4(a)Buck DC/DC ZVS PWM变换器电路图
8.3.2 零电压开通脉冲频率调制(ZVS PFM)变换器工作原理(续1)
无T2:不能控制Lr、Cr谐振起始时刻开 关状态2,无Toff时区2。 缺点:只有调频fs,才能调压。
安全工作区:
VT<VCEP,KJ线左侧 iT<ICM,NM线下方
Pt=VT×iT,功率限制线左下侧
全控型开关的L-C-R-D i +v i 复合缓冲器工作过程
R
RS
C
C
iT
A
iL
iR
RS
LS
LS
DS iC
CS
+ vC CS
I CM
vT C
E
vo L f
i Iovo
Io
Lf
i f Io
8.1 硬开关、LC缓冲软开关和LC谐振零 开关基本特性(续3)
LC谐振实现开关器件零电压开通和零电流关断
t1时引发Lr、Cr谐振,t2时vT 谐振至零,在t3时驱动T实 现零电压开通。 t6时引发Lr、Cr谐振, t7时iT谐振至零,在t8时切除驱动 信号实现零电流关断。
断 态 开通 过程 通态 关断 过程 断 态
8.3.1 零电压开通脉冲宽度调制(ZVS PW 变换器工作原理(续6)
开关状态4(续):t3<t<t8
t=t6时,iL=0, Vcr=VT1=0,T2早已关断, 此后VD经T1、Lr建立iT1。 t=t8时,iT1=Io,D0截止,完成T1开通过程。
8.3.1 零电压开通脉冲宽度调制(ZVS PW 变换器工作原理(续7)
Cr
+
VG2 T2
-
D2 Lf
toff
t
F A
0 VD
X K VCEO
1ms功率限制线
v T (v CE )
(c) iT、vT 轨迹
(b) 波形图
Lσ=0 开通和关断开关损耗
开通电流iT上升期:iT=Io / tri 关断电流iT下降期:iT=I0 (1-t / tfi ) 若认为vT在开通关断过程中也呈线性变化在则:
动画 演示
T1通态时D0截止,vT1=vcr=0,切除 +VG,T1关断iT1从Io→0,并联电容Cr 使vT=vcr从0逐渐上升,T1软关断。 图 8.5 零电压开通ZVS PFM变换器 vT=vcr→VD后D0导通,Lr、Cr立即谐 振,所以电路8.5无开关状态2。
图8.4(a)中,T2导通使iL经D2、T2续 流,不能形成Lr、Cr谐振回路,直到 在t=t2时刻关断T2时,才能形成谐振。
D
A i S
iL
iT
C
DS
Vo
Io
i T
iS
iT
T
vT i fE D T
R
Vo R
Cif
D O
Io
C
Io C
E
PC ma
x
E
B
VD
VD O
DO
Cf
VQ
L
L
A
O
O
V Q QD
P
V CE V CE P A O P
O
VT
VT
(a)电路
图7.12(a)
VQ VD (c)开关轨迹
VCEP 160V 200V 300V
图7.12(c)
断态
VD
VQ
开通
vT T
VLS LS Io / tif
通态
关断
VD
断态
开通
vT vG Io C iT VCEP vG iT
t
vT
t1
t2 td
t3 t ri
t fv
t4
t5
ts
t6
t fi
t7 t p
t8
t 21
t 22 t 23
t 24
(b)开通关断过程波形图
软开关的基本概念
8.3.1 零电压开通脉冲宽度调制(ZVS PW 变换器工作原理
主电路组成
+ T V TLf i f=I o Io + R Vo -
工作原理 关断T2后引发LrCr谐振, 使主开关管T1的电压 vT=0。
VD
Do
Cf
图8.1(a) 硬开关电路
再对T1施加驱动信号实 现T1的零电压开通。
图 8.4(a)Buck DC/DC ZVS PWM变换器电路图
rT vT
rT
iT
Io
零电压开通:A-O-C iT 零电压关断:C-O-A C E B
vT VD
vT iT vT iT t 6 t 7 t8 t 9 t10 t
Q O VQ A P
vT t 2t3 t 4 t5
IO
vT
t1
VD VCEP
图 8.2 零电压开通、零电流关断时vT、iT、rT
开关轨迹
8.2 谐振开关型变换器的类型
8.3.1 零电压开通脉冲宽度调制(ZVS PWM)变换器工作原理(续1)
在一个开关周期Ts中,该变换器有五种开关状态。
开关状态1:T1关断, Cr充电
开关状态2:D0,D2续流 开关状态3:T2关断,Cr、Lr谐振 开关状态4:T1零电压开通 开关状态5:T2零电压开通
图 8.4(a)Buck DC/DC ZVS PWM变换器电路图
零电压开通谐振变换器和零电流关断谐振变换器。
脉冲宽度调制PWM谐振变换器和脉冲频率调制 PFM谐振变换器。 零开关谐振变换器和零转换谐振变换器。
零开关谐振变换器 零转换谐振变换器
LC谐振环节中有辅助开关管或无辅助开关管。
8.3 谐振开关型零电压开通(ZVS) 变换器
8.3.1 零电压开通脉冲宽度调制(ZVS PWM)变换器工作原理 8.3.2 零电压开通脉冲频率调制(ZVS PFM)变换器工作原理
VD
Do
Cf
R
Vo
Q
-
A
P
vT
O
VQ
VD VCEP
图8.1(a) 硬开关电路
开关轨迹
8.1 硬开关、LC缓冲软开关和LC谐振零 开关基本特性(续1)
有LC缓冲器的软开关过程
开通( A→Q→E→C):LS使工作点从A→Q,在vT= VQ<VD下iT从0→Io,然后从E→C,Pon’< Pon。 关断(C→A→P→A):iT从Io→0期间vT从0→VD,然后 在iT=0下从A→P→A,Poff’显著减小。
开关状态5:t8<t<t10
t=t9时,开通T2,此时iL=I0不变T1已是通态, vL=vT2=0,T2是零电压开通。 t=t10时,关断T1(相当于t0时软关断T1)完 成一个开关周期Ts。