物理学中整体法与隔离法

合集下载

整体法和隔离法

整体法和隔离法

整体法和隔离法一.整体法和隔离法在平衡中的应用1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。

在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力〔外力〕,不考虑整体内部之间的相互作用力〔内力〕。

整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的应用。

整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。

通常在分析外力对系统的作用时,用整体法。

2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。

在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。

隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。

在分析系统内各物体〔或一个物体的各个部分〕间的相互作用时用隔离法。

3.实例分析例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力〔取〕解析:〔1〕隔离法:先对物体m受力分析,如图甲所示。

由平衡条件有甲垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有乙水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。

〔2〕整体法:因此题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态〔尽管一个匀速运动,一个静止〕,故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:丙水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。

初中常见问题分析隔离法与整体法

初中常见问题分析隔离法与整体法

二、隔离法与整体法隔离法与整体法是在分析物理问题时常用的一种方法,主要指的是选研究对象的问题。

我们在研究两个或两个以上相关连物体时,常常可以取整体为研究对象称为整体法;我们也可以取某一物体为研究对象,称为隔离法。

这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。

在处理问题时,研究对象选好会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。

例题分析:在连接体中的应用:例1:如图所示,木块A 、B 质量分别为m 、M ,用一轻绳连接,在水平力F 的作用下沿光滑水平面加速运动,求A 、B 间轻绳的张力fABF分析:A 、B 有相同的运动状态,可以以整体为研究对象。

求A 、B 间作用力可以A 为研究对象。

对整体 F=(M+m )a对木块A f=ma说明:当处理两个或两个以上物体的情况时可以取整体为研究对象,也可以以个体为研究对象,特别是在系统有相同运动状态时在动量、能量问题中的应用:例2:质量分别为M 、m 的铁块、木块在水中以速度v 匀速下沉,某时刻细绳突然断裂,当木块速度为0时,求铁块的速度。

分析:以铁块、木块组成的系统为研究对象,在绳断前、断后所受合外力均为零,所以系统动量守恒。

根据题意有:(M+m )v=Mv’变化:上题中如系统以加速度a 加速下沉,当速度为v 时细绳突然断裂,过时间t 后木块速度为0,求此时铁块的速度。

分析:以系统为研究对象,在绳断前、断后系统所受合外力不变,为:(M+m)a根据动量定理有:(M+m)at=Mv’-(m+M)v例3:质量为m 、带电量为+q 的甲乙两小球,静止于水平面上,相距L 。

某时刻由静止释放,且甲球始终受一恒力F 作用,过t 秒后两球距离最短(1)求此时两球的速度(2)若甲球速度达到最大时,两球相距L/2,求开始运动时甲乙两球的加速度之比。

F分析:(1)以系统为研究对象,根据动量定理有:Ft=2mv(2)以甲球为研究对象,甲球速度最大时其所受合力为0,所以,此时两球间库仑力F’=F ,则开始时两球间库仑力为F’/4。

整体法和隔离法

整体法和隔离法
B保持静止,且F≠0。则下列描述正确的是( )
A
F
B
❖ A、B可能受到3个或者4个力的作用 ❖ B、斜面对B的摩擦力方向可能沿斜面向下 ❖ C、A对B的摩擦力可能为0 ❖ D、AB整体可能受到三个力作用
思考:
1、用整体法还是隔离法?
2、是先整体后隔离?还是先 隔离后整体?
分析方法:对于受力复杂的系统,先整体
研究对象的选择:
1、对于连结体问题,通常用隔离法,但有时也可 采用整体法.
2、如果能够运用整体法,我们应该优先采用整体 法,这样涉及的研究对象少,未知量少,方程少, 求解简便;
3、 不计物体间相互作用的内力,或物体系内的物 体的运动状态相同,一般首先考虑整体法.
4、 对于大多数动力学问题,单纯采用整体法并不 一定能解决,通常采用整体法与隔离法相结合的 方法.
G 2G
❖ 整体法:求系统外力
N
f地
F
ABC
3G
由图中可知:AB间的摩擦力为0,BC、 C与地面间的摩擦力为F。
(2)、若A、B、C一起以加速度a向右加速运动, AB、BC、C与地间的摩擦力又为多少?
(注:学生在练习本画受力分析)
❖ 练习题、如图所示,固定斜面上叠放着A、B两木块,木块 A与B的接触面是水平的,水平力F作用于木块A,使木块A、
后隔离。
N
N1
FN
f
f
F AB
FA
f f’ B mAg
G (1)、整体法
mAg
mBg
(2)、隔离法
❖ 例2、如图所示,人的质量为60kg,木板A的质量 为30kg,滑轮及绳的质量不计,若人想通过绳子拉 住木板,他必须用力的大小( )
❖ A. 225N B. 300N C. 450N D. 600N

《整体法与隔离法》课件

《整体法与隔离法》课件

03
整体法与隔离法的比较
应用场景的比较
整体法
适用于分析系统整体的运动状态和平衡状态,如分析物体的平动、转动等。
隔离法
适用于分析系统内各部分之间的相互作用和运动状态,如分析连接体之间的相对 运动和相互作用。
分析方法的比较
整体法
将系统整体作为研究对象,通过整体 的运动状态和平衡条件来求解未知量 。
04
整体法与隔离法的实例 分析
实例一:桥梁分析
总结词
桥梁分析是整体法的典型应用
详细描述
在桥梁分析中,将桥梁作为一个整体来考虑,研究其静载和动载下的受力情况,从而确定桥梁的安全性和稳定性 。整体法能够全面地考虑桥梁的整体性能,避免了对各个部分的孤立分析。
实例二:建筑结构分析
总结词
建筑结构分析是隔离法的常见应用
05
实际应用中的选择建议
根据问题特性选择分析方法
简单问题
对于一些简单的问题,可以直接使用整体法或隔离法进行分析。如果问题涉及整体的运 动状态或受力情况,可以选择整体法;如果问题只关注部分或某个物体的运动状态或受
力情况,可以选择隔离法。
复杂问题
对于复杂的问题,可能需要结合整体法和隔离法的优点,进行综合分析。可以先用整体 法分析物体的运动状态或受力情况,再根据需要用隔离法对某个物体或部分进行详细分
02
隔离法概述
定义与特点
定义
隔离法是将研究对象从整体中隔离出来,对其进行分析的方 法。
特点
隔离法注重研究对象的独立性和特殊性,通过深入研究对象 的内在规律和特性,揭示其在整体中的作用和地位。
隔离法的应用场景
机械系统Байду номын сангаас
经济学

高中物理整体法、隔离法受力分析专题讲解

高中物理整体法、隔离法受力分析专题讲解

受力分析、物体的平衡1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。

隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。

当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。

2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。

整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a =0)时,命题要研究的是外力,而非内力时,选整体为研究对象。

(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。

(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。

3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。

考点二:共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件 在共点力作用下物体的平衡条件是合力为零,即0F =合。

3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。

(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。

(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。

(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。

二 小力学专题3 整体法与隔离法—2021届高三物理一轮复习讲义

二  小力学专题3  整体法与隔离法—2021届高三物理一轮复习讲义

专题3 整体法与隔离法1. 整体法和隔离法:连接体、叠加问题首先想到整体隔离法,尤其是求底层物体与地面、墙壁等接触的摩擦力与弹力问题时,优先选择整体法,对于力少的物体采用隔离法分析;①初级整体法:系统各个物体都处于平衡状态,例如一个物体匀速,一个静止,分析整体合力为0;②中级整体法:系统各个物体有共同的加速度,一般先隔离系统一部分求到加速度,再对整体用牛二;(牛顿定律中会详细分析)③一些物体是平衡的,一些物体有加速度;∑ F 外⋅⋅⋅+++= 332211a m a m a m或者∑ F 外x ⋅⋅⋅+++=3x 32x 21x 1a m a m a m , ∑F 外y ⋅⋅⋅+++= 3y 32y 21y 1a m a m a m 。

2.整体法的口诀整体法的三个层次:初级-中级-高级外力整体内隔离,优先分析简单体;初级整体都平衡,中级整体共加速;高级整体随意用,矢量性与系统性。

注意:内力与外力、天生的外力初级整体例1.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3∶4B.4∶3C.1∶2D.2∶1例2.质量均为m的a、b两木块叠放在水平面上,如图3所示,a受到斜向上与水平面成θ角的力F 作用,b受到斜向下与水平面成θ角等大的力F作用,两力在同一竖直平面内,此时两木块保持静止,则()A.b对a的支持力一定等于mgB.水平面对b的支持力可能大于2mgC.a、b之间一定存在静摩擦力D.b与水平面之间可能存在静摩擦力例3.a、b两个质量相同的球用线连接,a球用线挂在天花板上,b球放在光滑斜面上,系统保持静止,以下图示哪个是正确的()例4.(多选)如图所示,质量为m、顶角为α的直角劈和质量为M的正方体放在两竖直墙和一水平面间,处于静止状态。

若不计一切摩擦,则()A.水平面对正方体的弹力大小为(M+m)gB.墙面对正方体的弹力大小为mgtan αC.正方体对直角劈的弹力大小为mg cos αD.直角劈对墙面的弹力大小为mg sin α例5.如图所示,两个光滑金属球a、b置于一个桶形容器中,两球的质量m a>m b,对于图中的两种放置方式,下列说法正确的是()A.两种情况对于容器左壁的弹力大小相同B.两种情况对于容器右壁的弹力大小相同C.两种情况对于容器底部的弹力大小相同D.两种情况两球之间的弹力大小相同例6.如图所示,水平地面粗糙,竖直墙面光滑,A是一个光滑圆球,B是与A半径相等的半圆球,A、B均保持静止。

小力学专题3 整体法与隔离法—2021届高三物理一轮复习讲义

小力学专题3  整体法与隔离法—2021届高三物理一轮复习讲义

专题3 整体法与隔离法1. 整体法和隔离法:连接体、叠加问题首先想到整体隔离法,尤其是求底层物体与地面、墙壁等接触的摩擦力与弹力问题时,优先选择整体法,对于力少的物体采用隔离法分析;①初级整体法:系统各个物体都处于平衡状态,例如一个物体匀速,一个静止,分析整体合力为0;②中级整体法:系统各个物体有共同的加速度,一般先隔离系统一部分求到加速度,再对整体用牛二;(牛顿定律中会详细分析)③一些物体是平衡的,一些物体有加速度;∑ F 外⋅⋅⋅+++= 332211a m a m a m或者∑ F 外x ⋅⋅⋅+++=3x 32x 21x 1a m a m a m , ∑F 外y ⋅⋅⋅+++= 3y 32y 21y 1a m a m a m 。

2.整体法的口诀整体法的三个层次:初级-中级-高级外力整体内隔离,优先分析简单体;初级整体都平衡,中级整体共加速;高级整体随意用,矢量性与系统性。

注意:内力与外力、天生的外力初级整体例1.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3∶4B.4∶3C.1∶2D.2∶1例2.质量均为m的a、b两木块叠放在水平面上,如图3所示,a受到斜向上与水平面成θ角的力F 作用,b受到斜向下与水平面成θ角等大的力F作用,两力在同一竖直平面内,此时两木块保持静止,则()A.b对a的支持力一定等于mgB.水平面对b的支持力可能大于2mgC.a、b之间一定存在静摩擦力D.b与水平面之间可能存在静摩擦力例3.a、b两个质量相同的球用线连接,a球用线挂在天花板上,b球放在光滑斜面上,系统保持静止,以下图示哪个是正确的()例4.(多选)如图所示,质量为m、顶角为α的直角劈和质量为M的正方体放在两竖直墙和一水平面间,处于静止状态。

若不计一切摩擦,则()A.水平面对正方体的弹力大小为(M+m)gB.墙面对正方体的弹力大小为mgtan αC.正方体对直角劈的弹力大小为mg cos αD.直角劈对墙面的弹力大小为mg sin α例5.如图所示,两个光滑金属球a、b置于一个桶形容器中,两球的质量m a>m b,对于图中的两种放置方式,下列说法正确的是()A.两种情况对于容器左壁的弹力大小相同B.两种情况对于容器右壁的弹力大小相同C.两种情况对于容器底部的弹力大小相同D.两种情况两球之间的弹力大小相同例6.如图所示,水平地面粗糙,竖直墙面光滑,A是一个光滑圆球,B是与A半径相等的半圆球,A、B均保持静止。

高中物理教学中隔离法整体法

高中物理教学中隔离法整体法

浅谈高中物理教学中的隔离法与整体法隔离法与整体法是高中物理教学中常用的思维方法,所谓隔离法,就是把所研究的对象从整体或系统中隔离出来进行研究,这种方法称为隔离法。

所谓整体法,就是将整个系统看做一个整体,对系统进行整体研究,这种方法称为整体法。

下面就其应用介绍如下。

一、隔离法的应用1.物块a和b用轻绳相连后悬挂在轻弹簧下端静止不动,如图(甲)所示;连接a和b的绳子被烧断后,a上升到某一位置时速度的大小为v,这时b的下落速度大小为u,如图(乙)所示。

已知a和b的质量分别为m和m。

从甲状态到乙状态的过程中,弹簧的弹力作用于物块a的冲量等于多少?解:设弹力对a的冲量为i,取向上为正方向,根据动量定理:对a物体:i-mgt=mv-0(1)对b物体:-mgt=m(-u)-0(2)由(2)式得:t=,代入(1)式得:i=m(v+u)a、b都停止时相距s,s=l+s0+sa-sb=l+s02.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场方向垂直纸面向里,三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动,比较他们的质量应有()a.a油滴质量最大b.b油滴质量最大c.c油滴质量最大d.abc质量一样大解:对于a粒子:ma g=qe ma=qe/g对于b粒子:mbg+qvb=qemb=q(e-vb)/g对于c粒子:mcg=qvb+qemc=q(e+vb)/g故mc>ma>mb二、整体法的运用3.质量为m的木块在光滑水平面上以速度v1向右运动,质量为m的子弹以速度v2水平向左射入木块,要使木块停下来,必须发射子弹数目为(子弹留在木块中不穿出)()a.b.c.d.解:以n颗子弹和m组成的系统动量守恒,n颗子弹入射前为初状态,子弹入射后木块停下来为末状态,以子弹方向为正。

nmv2=m-v1=0 n=4.在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量为m1和m2的木块,m1>m2,如图所示。

高中物理力学方法-整体法 隔离法

高中物理力学方法-整体法 隔离法

整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。

当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。

运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。

二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。

为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。

运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。

三、应用整体法和隔离法解题的方法1、合理选择研究对象。

这是解答平衡问题成败的关键。

研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。

但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。

为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。

但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。

2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。

3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。

所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。

高一物理受力分析(整体法和隔离法)

高一物理受力分析(整体法和隔离法)

受力分析—隔离法与整体法一、物体受力分析方法把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。

对物体进行正确地受力分析,是解决好力学问题的关键。

1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)2、受力分析的几个步骤.①灵活选择研究对象②对研究对象周围环境进行分析③审查研究对象的运动状态:根据它所处的状态有时可以确定某些力是否存在或对某些力的方向作出判断.④根据上述分析,画出研究对象的受力分析示意图;把各力的方向、作用点(线)准确地表示出来.3、受力分析的三个判断依据:①从力的概念判断,寻找施力物体;②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。

二、隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。

在许多问题中可以用整体法比较方便,但整体法不能求解系统的内力。

(区分内力和外力,对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现,当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。

)2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分根据地,分别列出方程,再联立求解的方法。

3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。

有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用注意:实际问题中整体法与隔离法要结合起来灵活运用........。

........................,通常先整体后隔离三、例题例1.在粗糙的水平面上有一个三角形木块,在它的两个粗糙的斜面上分别放置两个质量为m1和m2的木块,m m,12如图1所示,已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块()A. 有摩擦力作用,方向水平向右;B. 有摩擦力作用,方向水平向左;C. 有摩擦力作用,但方向不确定;图1D. 以上结论都不对。

高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。

整体法和隔离法

整体法和隔离法

整体法和隔离法一.整体法和隔离法在平衡中的应用1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。

在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。

整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的应用。

整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。

通常在分析外力对系统的作用时,用整体法。

2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。

在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。

隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。

在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。

3.实例分析例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力(取)解析:(1)隔离法:先对物体m受力分析,如图甲所示。

由平衡条件有甲垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有乙水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。

(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:丙水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。

新教科版高中物理必修1第四章第2节共点力平衡条件的应用整体法与隔离法(15张ppt)

新教科版高中物理必修1第四章第2节共点力平衡条件的应用整体法与隔离法(15张ppt)

例2 如图所示,粗糙的水平地面上有一斜劈,斜劈上一物块 正在沿斜面以速度v0匀速下滑,斜劈保持静止,则地面对斜劈的 摩擦力( )
A.等于零 B.不为零,方向向右 C.不为零,方向向左 D.不为零,v0较大时方向向左,v0较小时方向向右
解析:斜劈和物块都平衡对斜劈和物块整体受力分析知地面对斜劈的摩擦力为零,选A
体放在两竖直墙和水平面之间,处于静止状态.m与M相接触,若
不计一切摩擦,求
(1)水平面对正方体的弹力大小;
m
(2)墙面对正方体的弹力大小。
α
解(1)对M和m组成的系统进行受
M
力分析,根据平衡条件得水平面对
正方体的弹力
N=(M+m)g ①
N
(2)对M进行受力分析
F1=F2cosα ②
Mg+F2sinα=N ③
• 10、人的志向通常和他们的能力成正比例。2021/3/182021/3/182021/3/183/18/2021 2:04:48 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/3/182021/3/182021/3/18Mar-2118-Mar-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/3/182021/3/182021/3/18Thursday, March 18, 2021 • 13、志不立,天下无可成之事。2021/3/182021/3/182021/3/182021/3/183/18/2021
解析:选择环P、Q和细绳为研 究对象.在竖直方向上只受重
O
P
A
FT
力和支持力FN的作用,而环动
移前后系统的重力保持不变,
Q
故FN保持不变.取环Q为研究

物理整体法与隔离法

物理整体法与隔离法

物理整体法和隔离法是两种不同的物理实验方法。

物理整体法是指在实验中将整个系统作为一个整体来考虑和研究。

在物理整体法中,实验中的各个部分相互作用,相互影响,整个系统的性质和行为是由各个部分共同决定的。

这种方法适用于研究系统的整体性质和相互作用,例如研究力学系统的整体运动、热力学系统的热平衡等。

隔离法是指在实验中将系统的某些部分与外界隔离开来,只研究被隔离部分的性质和行为。

在隔离法中,被隔离的部分与外界没有相互作用,因此可以独立地研究其性质和行为。

这种方法适用于研究系统的局部性质和行为,例如研究电路中的电流、研究热传导中的热流等。

物理整体法和隔离法在实验中的应用取决于所研究的系统和问题的性质。

有时需要综合运用这两种方法,以全面地研究系统的性质和行为。

整体法与隔离法

整体法与隔离法
处理连结体问题的方法------整体法和隔离法 1. 整体法:指对物理问题中的整个系统进行分析、研 究的方法。在力学中,就是把几个物体视为一个整体, 作为研究对象,受力分析时,只分析这一整体对象之外 的物体对整体的作用力(外力),不考虑整体内部之间 的相互作用力(内力)。 2. 隔离法:隔离法是指对物理问题中的单个物体进行 分析、研究的方法。在力学中,就是把要分析的物体从 相关的物体体系中隔离出来,作为研究对象,只分析该 研究对象以外的物体对该对象的作用力,不考虑研究对 象对其他物体的作用力。
P
θ
B
A
Q
如图所示,由于静摩擦力的作用,A静止在粗 糙水平面上,地面对A的支持力为N,若将A稍 向右移动一点,系统仍保持静止,则下列说法 中正确的是( ) A.F、N都增大 B.F、N都减小 C.F增大,N减小 D.F减小,N增大
如右图所示,质量为m的小球用水平弹簧系住,并用与 竖直方向成 角的细绳系住,小球恰好处于静止状态. 当把细绳剪断瞬间,则小球的加速度为多少?
【同例3】如图,质量m=5 kg的木块置于倾角=37、质 量M=10 kg的粗糙斜面上,用一平行于斜面、大小为50 N 的力F推物体,使木块沿静止在斜面向上匀速运动,求地 面对斜面的支持力和静摩擦力。
m F M
m F


M
【例4】如图所示,质量为M的木板悬挂在滑轮组下,上 端由一根悬绳C固定在横梁下.质量为m的人手拉住绳端, 使整个装置保持在空间处于静止状态.求 (1)悬绳C所受拉力多大? (2)人对木板的压力(滑轮的质量不计).
【练习5】如图所示,物体A、B的质量均为6kg,接触面 间的动摩擦因数μ =0.3,水平力F=30N,那么、 1)A、B间摩擦力大小为__________N, 2)水平面对B的摩擦力的大小为_________N (滑轮和绳的质量均不计,)

人教版高中物理静力学中的整体法与隔离法

人教版高中物理静力学中的整体法与隔离法

静力学中的整体法与隔离法在物理学中,把由相互作用的两个或两个以上的物体组成的研究对象称为系统。

按照系统划分的不同,可将力分为内力和外力。

系统内物体间的相互作用力为内力,系统外物体对系统的作用力称为外力。

整体法是将一组相互作用的物体作为一个整体(或一个系统)看待,这样系统内物体间的相互作用力为内力,而不是外力。

而牛顿第二定律F合=ma,F合是指研究对象所受的合外力,显然整体法不用考虑内力,简化了受力情况。

隔离法是把所研究对象从整体中隔离出来进行研究的方法。

常用在求解系统内物体间的相互作用力时采用,研究对象从系统中分离出来后,其他部分对它的作用力就成了外力。

【例】有一个直角支架AOB,AO水平放置,表面粗糙;OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡.那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是A. N不变,T变大B. N不变,T变小C. N变大,T变大D. N变大,T变小【解析】解题策略:选小环P和Q及细绳整体为研究对象,在竖直方向只受重力和支持力N的作用,所以环移动前后系统的重力不变,则N也不变.再用隔离法取小环Q为研究对象,其受力如图8所示,所以有Tcosα=mg.由于P环左移后α变小,因此T也变小.正确答案为B.1.如图所示,物体B的上表面水平,B上面载着物体A,当它们一起沿固定斜面C匀速下滑的过程中物体A受力是( )A.只受重力B.只受重力和支持力C.有重力、支持力和摩擦力D.有重力、支持力、摩擦力和斜面对它的弹力2. 如图所示,物体A靠在竖直墙面上,在力F作用下,A、B保持静止.物体B的受力个数为( )A.2 B.3C.4 D.53. 如图所示,水平地面上的L形木板M上放着小木块m,M与m间有一个处于压缩状态的弹簧,整个装置处于静止状态,下列说法正确的是( )A.M对m的摩擦力方向向右B.M对m的摩擦力方向向左C.地面对M的摩擦力方向向右D.地面对M的摩擦力方向向左4. 如图所示,物体A、B放在物体C上,水平力F作用于A,使A、B、C一起匀速运动,各接触面间的摩擦力的情况是( )A.A对C有向左的摩擦力B.C对B有向左的摩擦力C.物体C受到三个摩擦力的作用D.C对地面有向右的摩擦力5.A、B、C三物块的质量分别为M、m和m0,按如图7所示连接。

2024-2025学年高一物理必修第一册(人教版)专题提升7整体法和隔离法动态平衡问题

2024-2025学年高一物理必修第一册(人教版)专题提升7整体法和隔离法动态平衡问题

象时要注意整体法和隔离法的结合。具体应用中,一般先整体后隔离。
2.整体法、隔离法的比较
项目 整体法
概念
选用
原则
隔离法
将运动状态相同的几个物体作为一个整体 将研究对象与周围物体
来分析的方法
研究系统外的物体对系统整体的作用力
分隔开的方法
研究系统内物体之间的
相互作用力
注意 受力分析时不要再考虑系统内物体间的相 一般隔离受力较少的物

FC=kxC,FA=kxA,则

=
1

=2∶1,
=2∶1,D
sin30°

正确。
方法技巧
(1)整体法研究的对象不一定是所有物体组成的系统,也可以是
其中一部分物体;隔离法研究的对象也不一定是一个物体。
(2)整体法可以减少受力的个数,但不能分析内力;隔离法对多个受力了解
比较清楚,但计算时较麻烦。
个力的方向不变,第三个力大小、方向均变化。
对点演练
2. 一个光滑小球放在挡板与斜面之间,在挡板由竖直方向缓慢逆时针转到
水平位置的过程中,下列说法正确的是( A )
A.斜面对小球的支持力一直变小
B.斜面对小球的支持力一直变大
C.挡板对小球的弹力一直变大
D.挡板对小球的弹力与斜面对小球的弹力的合力一直变大
恒力F、N对M的弹力和摩擦力共4个力,故B、C错误;物体N受到重力、M
对N的弹力和摩擦力,根据平衡条件可知,M对N的作用力即M对N的弹力和
摩擦力的合力必然与物体N受到的重力等大反向,所以物体M对N的作用力
方向竖直向上,故D正确。
1 2 3 4
2.(用解析法处理动态平衡问题) 如图所示,一晒衣架静置于水平地面上,水

什么是整体法与隔离法

什么是整体法与隔离法

一、什么是整体法与隔离法(一).整体法与隔离法的基本定义整体法——在研究物理问题时,当所研究的对象不是一个物体,而是有两个或两个以上物体构成的系统时,若不需要求出物体之间的相互作用力,可以将整个系统作为一个整体来研究;或者,一个物体的运动是由多个运动过程所组成,可以适当的组合某些运动过程或整个过程,以整体的运动情况来进行求解。

这两种情况所采取的方法均叫整体法。

隔离法——将系统中所研究的某个物体与其他物体隔离开,研究这个物体受其他物体对它的作用力;或者当物体运动是由多个运动过程组合而成时,逐个研究其运动过程,这两种情况所采取的方法叫做隔离法。

(二).整体法与隔离法在物理学发展中的作用高考越来越注重考能力,从一定意义上说方法是能力的基础。

但高考不会纯粹考方法。

方法的考查一般会采取隐性的形式,渗透在具体的物理问题中。

大纲明确指出:“要重视概念和规律的应用,使学生学会运用物理知识解释现象,分析和解决实际问题”,这就是说,不仅要运用物理知识解决实际问题,而且要有意识的领悟物理解题的思维方法。

物理学是一门研究物质世界及其运动规律的自然科学。

物理学的最小研究对象是数量级约为10-15m的微观粒子,最大研究对象是数量级约为(1026—1027)m 的宇宙。

共跨越了42—43个数量级,可以说物理学的研究范围涉及到了我们所认识到的整个世界。

那么我们又如何从如此繁杂、庞大的体系中灵活恰当的选取我们研究的对象,就成了我们方便、简捷解决问题的前提。

整体法和隔离法的掌握正是培养我们具备这种素质的良好训练。

例如,使用整体法时,不必考虑所选系统物体间的相互作用,或不用考虑各个运动阶段的详细情况,运用整体法时,由于体系中的内力都是成对出现,因此其合力必为零,这样就减少了物理量的个数,从而简化了方程;忽略无关因素,抓住主要矛盾,这样可以使复杂问题简单化。

二、整体法和隔离法的特征(一).整体法与隔离法现象表现运用整体法解决问题的思维特点,在于把物理客体作为一个整体,以整体或全过程为研究对象,从整体上把握物理现象的本质和规律,这种思维叫做整体思维,又叫做系统思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学中整体法与隔离法【高考展望】本专题主要讨论利用整体法与隔离法分析解决物理问题的方法。

整体法与隔离法是高中物理的基础知识,是高中物理中处理物理问题的常用方法和重要方法,也是历年高考热点。

整体法与隔离法不仅适用于静力学和牛顿运动定律,而且在动量定理、动量守恒定律、动能定理、机械能守恒定律、能量的转化和守恒定律、热学、电学、光学中均可应用。

【知识升华】有相互作用的两个物体或两个以上的物体所组成的比较复杂的系统,分析和解答这类问题,确定研究对象是关键。

对系统内的物体逐个隔离进行分析的方法称为隔离法;把整个系统作为一个对象进行分析的方法称为整体法。

在解决具体物理问题的时候,整体法的优点是只须分析整个系统与外界的关系,避开了系统内部繁杂的相互作用,更简洁、更本质的展现出物理量间的关系.缺点是无法讨论系统内部的情况。

一般来说,能用整体法的时候,优先使用整体法,这样便于减少计算量。

隔离法的优点在于能把系统内各个物体所处的状态、物体状态的变化的原因以及物体间相互作用关系分析清楚,能把物体在系统内与其他物体相互作用的内力转化为物体所受的外力,以便应用牛顿第二定律进行求解。

【方法点拨】隔离法的缺点是涉及的因素多、比较繁杂。

一般地说,对于不要求讨论系统内部情况的,首选整体法,解题过程简明、快捷;要讨论系统内部情况的,那么就必须运用隔离法了。

实际应用中,隔离法和整体法往往同时交替使用。

这种交替使用,往往是解决一些难题的关键和求解基础。

【典型例题】类型一、整体法和隔离法在平衡状态中的应用例1、(2014 浙江省金华市联考) 如图所示,质量为M、半径为R的半球形物体A放在水平地面上,通过最高点处的钉子用水平细线拉住一质量为m、半径为r的光滑球B.则()A.A对地面的压力等于(M+m)gB.A对地面的摩擦力方向向左C.B对A的压力大小为R rmg RD.细线对小球的拉力大小为r mg R【答案】AC【解析】以A、B整体为研究对象可知A对地面的压力等于(M+m)g,选项A正确;A、B整体在水平方向没有发生相对运动,也没有相对运动的趋势,A对地面没有摩擦力,选项B错误;以B为研究对象,进行受力分析可知:F2cosθ=mg,F1=mg tanθ,解得B对A的压力大小2R mg F r R+=,细线对小球的拉力大小1F =,选项C 正确,选项D 错误. 举一反三【变式】在粗糙水平面上有一个三角形木块,在它的两个粗糙斜面上分别放两个质量m 1和m 2的物体P 和Q ,如图所示.若两物体分别沿左右两斜面匀速下滑过程中,三角形木块静止,则粗糙水平面对三角形木块的下列正确中的是( )A.有摩擦力的作用,摩擦力的方向水平向右B.有摩擦力的作用,摩擦力的方向水平向左 、m 、θ、θ的数值并来给出B. 0.4C. 0.5 A【思路点拨】“将木板B 从木箱A 下面匀速抽出A 、B 整体受力分析如图乙,由题意得2c o sf F F θ+= ④ 2sinN T F F θ+222N F μ= ⑥【变式1】如图所示,轻绳的一端系在质量为物体上,另一端系在一个轻质圆环上,圆环套子在粗糙水平杆MN 上,现用水平力F 拉绳上一点,使物体处于图中实线位置,然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F 、环与杆的摩擦力F f 和环对杆的压力F N 的变化情况是( )A .F 逐渐增大,F f 保持不变,F N 逐渐增大B .F 逐渐增大,F f 逐渐增大,F N 保持不变C .F 逐渐减小,F f 逐渐增大,F N 逐渐减小D .F 逐渐减小,F f 逐渐减小,F N 保持不变【答案】D【解析】竖直方向受力较少,整体在竖直方向受两个力:重力竖直向下,环对杆的支持力必然向上,F N =mg ,所以环对杆的压力F N 保持不变。

再隔离开来看水平方向,作受力图θ减小,竖直方向:cos T F mg θ=,绳拉力F T 减小;水平方向:sin T F F θ=,则力 F 减小;再用整体法看水平方向, F=F f ,所以摩擦力F f 逐渐减小。

故正确选项为D 。

【高清课堂:牛顿第一定律、牛顿第三定律例3】【变式2】如图所示,四块质量均为m 的木块A 、B 、C 、D 被两块相同的竖直木板静止夹住。

则( )A. B 施于A 的静摩擦力大小为mg ,方向向下B.木板施于D 的静摩擦力大小为2mg, 方向向下C. C 受到静摩擦力的合力大小为mg ,方向向上D. C 施于B 的静摩擦力为0 【答案】ACD【解析】 首先对四个物体整体分析,受力如图1,2f mg =,木板施于D 的静摩擦力大小为2mg , 方向向上,B 错。

对A ,取A 为研究对象受力如图2,A 要平衡,右侧必然受向下的静摩擦力(等于mg ),A 正确。

对C 选项,C 处于静止,合力为零,受力如图3,C 受到静摩擦力的合力大小应等于C 的重力,方向向上。

C 正确。

对D 选项,分析B 受力,受力如图4,B 受重力,A 对它的摩擦力大小为mg ,方向向上, 可见B 已经平衡了,所以C 对B 没有静摩擦力,D 正确。

类型二、整体法和隔离法在动力学问题中的应用由于系统内物体间没有相对运动,即整体内每个物体都具有相同的速度和加速度,这是整体所受的合力提供整体运动的加速度。

这种情况利用整体法,更容易把握整体的受力情况和整体的运动特点。

对于“连接体”求相互作用力问题,先利用整体法求出加速度,再利用隔离法求出相互作用力。

例3、如图所示光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用不可伸长的轻绳相连,木块间的最大静摩擦力是mg μ,现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( )A.35mg μ34mg μ C.32mg μ D. 3mg μ【答案】B【思路点拨】求“轻绳对m 的最大拉力”是典型的“连接体”问题,应该应用整体法和隔离法求解。

【解析】先利用整体法:以四个木块为研究对象,由牛顿第二定律得6F ma = ① 再利用隔离法:绳的拉力最大时,m 与2m 间的摩擦力刚好为最大静摩擦力mg μ, 以2m (右边的)为研究对象,受力图如图,则2F mg ma μ-= ②由于根据① ②不能求出轻绳对m 的最大拉力,再隔离右上方的m ,对其进行受力分析如图有 mg T ma μ-= ③,联立以上三式得34T mg μ= 故B 正确。

【总结升华】应明确解题思路:应用整体法和隔离法求解;理解“最大拉力”与“最大静摩擦力”相对应。

举一反三【变式1】如图所示,水平地面上两个完全相同的物体A 和B 紧靠在一起,在水平推力F 的作用下运动,F AB 代表A 、B 间的作用力,则( )A.若地面是完全光滑的,则F AB =FB.若地面是完全光滑的,则12AB F F = C.若地面的动摩擦因数为μ,则F AB =FD.若地面的动摩擦因数为μ,则12AB F F =【答案】BD【解析】设物体的质量为m ,且与地面间有摩擦,A 、B 加速度相同,以整体为研究对象, 由牛顿第二定律有22F mg ma μ-=,隔离B ,由牛顿第二定律有AB F mg ma μ-= 联立解得12AB F F =. 若地面是完全光滑的,同理12AB F F =.故选项BD 正确。

【变式2】光滑的水平面上叠放有质量分别为m 和m /2的两木块。

下方木块与一劲度系数为k 的弹簧相连,弹簧的另一端固定在墙上,如图所示。

已知两木块之间的最大静摩擦力为f ,为使这两个木块组成的系统象一个整体一样地振动,系统的最大振幅为( )A .f kB .2f kC .3f kD .4f k【答案】C【解析】物体做简谐运动,取整体为研究对象,弹簧的弹力充当回复力。

取上面的小物块为研究对象,则是由静摩擦力充当回复力。

当两物体间的摩擦力达到最大静摩擦力时,两物体达到了简谐运动的最大振幅。

又因为两个物体具有共同的加速度,根据牛顿第二定律对小物体有12f ma =,取整体有1()2kx m m a =+,两式联立可得3f x k=,答案为C 。

类型三、整体法和隔离法在动能定理、能量转化和守恒定律中的应用例4、(2015 福建卷)如图,质量为M 的小车静止在光滑的水平面上,小车AB 段是半径为R 的四分之一圆弧光滑轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点,一质量为m 的滑块在小车上从A 点静止开始沿轨道滑下,重力加速度为g 。

(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车,已知滑块质量2M m =,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC 间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度v m ;②滑块从B 到C 运动过程中,小车的位移大小s 。

【答案】:(1)3mg (2)①m v =②s=L /3 【解析】(1)由图知,滑块运动到B 点时对小车的压力最大,从A 到B ,根据动能定理:2102B mgR mv =- 在B 点: 2B N v F mg m R-= 联立解得: F N =3mg ,根据牛顿第三定律得,滑块对小车的最大压力为3mg(2)①若不固定小车, 滑块到达B 点时,小车的速度最大,根据动量守恒可得:mv ′=Mv m从A 到B ,根据能量守恒:22m 1122mgR mv Mv ='+联立解得:m v =②设滑块到C 处时小车的速度为v ,则滑块的速度为2v ,根据能量守恒:2211(2)22mgR m v Mv mgL μ=++解得:v =小车的加速度:12mg a g M μμ== 根据22m 2v v as -= 解得:s=L /3举一反三【变式】如图所示,A 、B 是位于水平面上的质量相等的小滑块,离墙壁距离分别为2L 和L ,与水平面间的动摩擦因数均为μ,今给A 以某一向左的初速度使A 向左滑动,假定A 、B 之间及B 与墙壁之间的碰撞时间很短,且均无能量损失,若要使A 始终不向右滑动,A 的初速度最大不超过多大?【答案】0v 【解析】A 以0v 向左作匀减速运动,与B 碰后速度交换,A 静止,B 以0v 向左作匀减速运动,与墙碰后向右作匀减速运动,若B 运动到A 处速度刚好减为零,则0v 就是使A 始终不向右滑动的最大速度.用整体法考虑,研究对象取A 、B 组成的系统,研究过程取从A 开始运动到B 刚好停止的全过程.由动能定理得201202mgL mg L mv μμ--⋅=-解得0v = 说明:①本题整体综合分析了研究对象和运动的全过程.②动能定理(以及动量定理)一般适用于一个物体,但也适用于一个物体系.利用动能定理整体法解题时,要注意系统内力做功之和必须为零,否则系统外力做功之和不等于系统的动能增量.类型四、整体法和隔离法在动量定理、动量守恒定律中的应用当所求的物理量只涉及运动的全过程而不必分析某一阶段的运动情况时,可通过整体研究运动的全过程解决问题。

相关文档
最新文档