2010年高考数学文科试题解析版(全国卷I)

合集下载

2010年高考文科数学试题、答案-全国1

2010年高考文科数学试题、答案-全国1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷)文科数学(必修+选修)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()UN M ⋂=A.{}1,3B. {}1,5C. {}3,5D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5UM =,{}1,3,5N =,则()U N M ⋂={}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a a a ===10,所以132850a a =, 所以133364564655()(50)a a a a a a a =====(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =AB C DA 1B 1C 1D 1 O(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B )3 (C )23(D )39.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)22ACD S AC AD ∆==⨯=,21122ACD S AD CD a ∆==. 所以13133ACD ACD S DD a DO a S ∆∆===,记DD 1与平面AC 1D 所成角为θ,则1sin 3DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos3O OO ODOD∠===(10)设123log2,ln2,5a b c-===则(A)a b c<<(B)b c a<< (C) c a b<< (D) c b a<<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】a=3log2=21log3, b=In2=21log e,而22log3log1e>>,所以a<b,c=125-222log4log3>=>,所以c<a,综上c<a<b.【解析2】a=3log2=321log,b=ln2=21log e, 3221log log2e<<<,32211112log log e<<<;c=12152-=<=,∴c<a<b(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA PB•的最小值为(A) 4-+3-(C) 4-+3-+11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x(0)x>,∠APO=α,则∠APB=2α,,sinα=,||||cos2PA PB PA PBα•=⋅=22(12sin)xα-=222(1)1x xx-+=4221x xx-+,令PA PB y•=,则4221x xyx-=+,即42(1)0x y x y-+-=,由2x是实数,所以2[(1)]41()0y y∆=-+-⨯⨯-≥,2610y y++≥,解得3y≤--或3y≥-+.故min()3PA PB•=-+.此时x=【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x xx--•==+-≥【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)3(B)3(C)312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2010年高考新课标全国卷_文科数学(含答案)

2010年高考新课标全国卷_文科数学(含答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分1⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

2010年高考试题文科数学(全国卷I)及答案解析

2010年高考试题文科数学(全国卷I)及答案解析

A
1 1 + x2
=

O
P
��� � ��� � ��� � ��� � PA • PB =| PA| ⋅ | PB| cos 2α
2 2 4 2
x 2 (1 − 2 sin2 α )
= B
��� � ��� � x ( x − 1) x − x x4 − x2 = ,令 PA • PB = y ,则 y = , x2 + 1 x2 + 1 x2 + 1
| PF1 |i| PF2 | =
(A)2 (B)4 (C) 6 (D) 8 8.B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想, 通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析 1】.由余弦定理得 cos ∠ F1 P F2 =
| PF1 |2 + | PF2 |2 − | F1 F2 |2 2 | PF1 || PF2 |
D1 A1 D A O B1
C1
C B
面 AC D1 所 成 角 相 等 , 设 DO ⊥ 平 面 AC D1 , 由 等 体 积 法 得 VD − ACD1 = VD1− ACD , 即
1 1 S ∆ACD1 ⋅ DO = S∆ACD ⋅ DD1 .设 DD1=a, 3 3
则 S∆ ACD1 =
7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本 小题时极易忽视 a 的取值范围,而利用均值不等式求得 a+b= a + 题者的用苦良心之处. 【解析 1】因为 f(a)=f(b), 所以|lga|=|lgb|, 所以 a=b(舍去) ,或 b =
1 ≥ 2 , 从而错选 D,这也是命 a

2010年全国统一高考数学试卷(文科)(新课标)解析版

2010年全国统一高考数学试卷(文科)(新课标)解析版

2010年全国统一高考数学试卷(文科)(新课标)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|||2A x x =…,}x R ∈,{|4B x =,}x Z ∈,则(A B = )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}【考点】1E :交集及其运算 【专题】11:计算题【分析】由题意可得{|22}A x x =-剟,{0B =,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求 【解答】解:{|||2}{|22}A x x x x ==-剟?{|4B x =,}{0x Z ∈=,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则{0A B =,1,2}故选:D .【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A ,B ,属于基础试题2.(5分)平面向量,a b ,已知(4,3)a =,2(3,18)a b +=,则,a b 夹角的余弦值等于( ) A .865B .865-C .1665D .1665-【考点】9S :数量积表示两个向量的夹角【分析】先设出b 的坐标,根据(4,3)a =,2(3,18)a b +=,求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦 【解答】解:设(,)b x y =, (4,3)a =,2(3,18)a b +=,∴(5,12)b =-2036cos 513θ-+∴=⨯1665=,【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z =,则||(z = )A .14B .12C .1D .2【考点】5A :复数的运算 【专题】11:计算题【分析】由复数的代数形式的乘除运算化简可得4iZ =+,由复数的模长公式可得答案.【解答】解:化简得13213iZ i+===-+1(3)(13)12323224(13)(13)i i i ii i +--=-=-=-++-,故1||2z =, 故选:B .【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线321y x x =-+在点(1,0)处的切线方程为( ) A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+【考点】6H :利用导数研究曲线上某点切线方程 【专题】1:常规题型;11:计算题【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解答】解:验证知,点(1,0)在曲线上321y x x =-+,232y x '=-,所以1|1x k y -='=,得切线的斜率为1,所以1k =; 所以曲线()y f x =在点(1,0)处的切线方程为: 01(1)y x -=⨯-,即1y x =-.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A BC D 【考点】KC :双曲线的性质 【专题】11:计算题【分析】先求渐近线斜率,再用222c a b =+求离心率. 【解答】解:渐近线的方程是by x a =±,24ba∴=,12b a =,2a b =,c =,c e a ==. 故选:D .【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )A .B .C .D .【考点】3A :函数的图象与图象的变换【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当0t =时,点P 到x 轴距离d ,于是可以排除答案A ,D , 再根据当4t π=时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B ,故选:C .【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题. 7.(5分)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .23a πB .26a πC .212a πD .224a π【考点】LG :球的体积和表面积 【专题】11:计算题【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R 满足22(2)6R a =,代入球的表面积公式,24S R π=球,即可得到答案. 【解答】解:根据题意球的半径R 满足22(2)6R a =,所以2246S R a ππ==球. 故选:B .【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入5N =,则输出的数等于( )A .54B .45C .65D .56【考点】EF :程序框图 【专题】28:操作型【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 11111151122334455666S =++++=-=⨯⨯⨯⨯⨯ 故选:D .【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数()f x 满足()24(0)x f x x =-…,则{|(2)0}(x f x ->= ) A .{|2x x <-或4}x > B .{|0x x <或4}x > C .{|0x x <或6}x >D .{|2x x <-或2}x >【考点】3K :函数奇偶性的性质与判断 【专题】11:计算题【分析】由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-, 则|2|(2)(|2|)24x f x f x --=-=-,要使(|2|)0f x ->,只需|2|240x -->,|2|2x -> 解得4x >,或0x <. 应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算. 10.(5分)若cos 45α=-,α是第三象限的角,则sin()(4πα+= )A .BC .D 【考点】GG :同角三角函数间的基本关系;GP :两角和与差的三角函数 【专题】11:计算题【分析】根据α的所在的象限以及同角三角函数的基本关系求得sin α的值,进而利用两角和与差的正弦函数求得答案. 【解答】解:α是第三象限的角3sin 5α∴==-,所以324s i()445ππααα+=+=故选:A .【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是( ) A .(14,16)-B .(14,20)-C .(12,18)-D .(12,20)-【考点】7C :简单线性规划 【专题】11:计算题;16:压轴题【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D 的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围. 【解答】解:由已知条件得(0,4)AB DC D =⇒-, 由25z x y =-得255z y x =-,平移直线当直线经过点(3,4)B 时,5z-最大, 即z 取最小为14-;当直线经过点(0,4)D -时,5z-最小,即z 取最大为20,又由于点(,)x y 在四边形的内部,故(14,20)z ∈-. 如图:故选B .【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数||,010()16,102lgx x f x x x <⎧⎪=⎨-+>⎪⎩…,若a ,b ,c 互不相等,且f (a )f =(b )f =(c ),则abc 的取值范围是( ) A .(1,10)B .(5,6)C .(10,12)D .(20,24)【考点】3A :函数的图象与图象的变换;3B :分段函数的解析式求法及其图象的作法;4H :对数的运算性质;4N :对数函数的图象与性质 【专题】13:作图题;16:压轴题;31:数形结合【分析】画出函数的图象,根据f (a )f =(b )f =(c ),不妨a b c <<,求出abc 的范围即可.【解答】解:作出函数()f x 的图象如图, 不妨设a b c <<,则16(0,1)2lga lgb c -==-+∈1ab =,10612c <-+<则(10,12)abc c =∈. 故选:C .【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力. 二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线20x y +-=相切的圆的方程为 222x y += . 【考点】1J :圆的标准方程;9J :直线与圆的位置关系【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r =,所求圆的方程为222x y +=.故答案为:222x y +=【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数()y f x =为区间(0,1]上的图象是连续不断的一条曲线,且恒有0()1f x 剟,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积S ,先产生两组(每组N 个),区间(0,1]上的均匀随机数1x ,2x ,⋯,n x 和1y ,2y ,⋯,n y ,由此得到N 个点(x ,)(1y i -,2⋯,)N .再数出其中满足1()(1y f x i =…,2⋯,)N 的点数1N ,那么由随机模拟方法可得S 的近似值为1N N. 【考点】CE :模拟方法估计概率;CF :几何概型【分析】由题意知本题是求10()f x dx ⎰,而它的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,积分得到结果. 【解答】解:1()f x dx ⎰的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,∴根据几何概型易知110()N f x dx N≈⎰.故答案为:1N N. 【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】7L :简单空间图形的三视图 【专题】15:综合题;16:压轴题【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项. 【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形; 故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在ABC ∆中,D 为BC 边上一点,3BC BD =,AD =,135ADB ∠=︒.若AC ,则BD = 2【考点】HR :余弦定理【专题】11:计算题;16:压轴题【分析】先利用余弦定理可分别表示出AB ,AC ,把已知条件代入整理,根据3BC BD =推断出2C D B D =,进而整理2222AC CD CD =+- 得22424AC BD BD =+-把AC ,代入整理,最后联立方程消去AB 求得BD 的方程求得BD .【解答】用余弦定理求得2222cos135AB BD AD AD BD =+-︒ 2222cos45AC CD AD AD CD =+-︒即2222AB BD BD =++①2222AC CD CD =+-② 又3BC BD = 所以2CD BD =所以 由(2)得22424AC BD BD =+-(3)因为 A C A B所以 由(3)得222424AB BD BD =+- (4) (4)2-(1) 2410BD BD --=求得2BD =故答案为:2【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(10分)设等差数列{}n a 满足35a =,109a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值. 【考点】84:等差数列的通项公式;85:等差数列的前n 项和【分析】(1)设出首项和公差,根据35a =,109a =-,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{}n a 的前n 项和,整理成关于n 的一元二次函数,二次项为负数求出最值.【解答】解:(1)由1(1)n a a n d =+-及35a =,109a =-得 199a d +=-,125a d +=解得2d =-,19a =,数列{}n a 的通项公式为112n a n =- (2)由(1)知21(1)102n n n S na d n n -=+=-. 因为2(5)25n S n =--+. 所以5n =时,n S 取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高. (Ⅰ)证明:平面PAC ⊥平面PBD ;(Ⅱ)若AB 60APB ADB ∠=∠=︒,求四棱锥P ABCD -的体积.【考点】LF :棱柱、棱锥、棱台的体积;LY :平面与平面垂直 【专题】11:计算题;14:证明题;35:转化思想【分析】(Ⅰ)要证平面PAC ⊥平面PBD ,只需证明平面PAC 内的直线AC ,垂直平面PBD 内的两条相交直线PH ,BD 即可.(Ⅱ)AB 60APB ADB ∠=∠=︒,计算等腰梯形ABCD 的面积,PH 是棱锥的高,然后求四棱锥P ABCD -的体积. 【解答】解:(1)因为PH 是四棱锥P ABCD -的高.所以AC PH ⊥,又AC BD ⊥,PH ,BD 都在平PHD 内,且PH BD H =.所以AC ⊥平面PBD .故平面PAC ⊥平面PBD (6分)(2)因为ABCD 为等腰梯形,//AB CD ,AC BD ⊥,AB =所以HA HB = 因为60APB ADB ∠=∠=︒所以PA PB ==1HD HC ==.可得PH =.等腰梯形ABCD 的面积为122S ACxBD ==+9分)所以四棱锥的体积为1(23V=⨯+.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:2()()()()()n ad bcKa b c d a c b d-=++++.【考点】BL:独立性检验【专题】11:计算题;5I:概率与统计【分析】(1)由样本的频率率估计总体的概率,(2)求2K的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为7014%500=(2)2K的观测值2500(4027030160)9.96720030070430k⨯-⨯=≈⨯⨯⨯因为9.967 6.635>,且2( 6.635)0.01P K=…,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设1F ,2F 分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过1F 的直线l 与E相交于A 、B 两点,且2||AF ,||AB ,2||BF 成等差数列. (Ⅰ)求||AB ;(Ⅱ)若直线l 的斜率为1,求b 的值. 【考点】4K :椭圆的性质 【专题】15:综合题【分析】(1)由椭圆定义知22||||||4AF AB BF ++=,再由2||AF ,||AB ,2||BF 成等差数列,能够求出||AB 的值.(2)L 的方程式为y x c =+,其中c ,设1(A x ,1)y ,1(B x ,1)y ,则A ,B 两点坐标满足方程组2221y x cy x b =+⎧⎪⎨+=⎪⎩,化简得222(1)2120b x cx b +++-=.然后结合题设条件和根与系数的关系能够求出b 的大小.【解答】解:(1)由椭圆定义知22||||||4AF AB BF ++= 又222||||||AB AF BF =+,得4||3AB =(2)L 的方程式为y x c =+,其中c =设1(A x ,1)y ,2(B x ,2)y ,则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩.,化简得222(1)2120b x cx b +++-=.则2121222212,11c b x x x x b b --+==++. 因为直线AB 的斜率为1,所以21|||AB x x =-即214|3x x =-. 则224212122222284(1)4(12)8()49(1)1(1)b b b x x x x b b b --=+-=-=+++.解得b . 【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数2()(1)x f x x e ax =-- (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x …时()0f x …,求a 的取值范围. 【考点】6B :利用导数研究函数的单调性 【专题】15:综合题;53:导数的综合应用【分析】()I 求导函数,由导数的正负可得函数的单调区间;()()(1)x II f x x e ax =--,令()1x g x e ax =--,分类讨论,确定()g x 的正负,即可求得a 的取值范围. 【解答】解:1()2I a =时,21()(1)2x f x x e x =--,()1(1)(1)x x x f x e xe x e x '=-+-=-+ 令()0f x '>,可得1x <-或0x >;令()0f x '<,可得10x -<<;∴函数的单调增区间是(,1)-∞-,(0,)+∞;单调减区间为(1,0)-;()()(1)x II f x x e ax =--.令()1x g x e ax =--,则()x g x e a '=-.若1a …,则当(0,)x ∈+∞时,()0g x '>,()g x 为增函数, 而(0)0g =,从而当0x …时()0g x …,即()0f x …. 若1a >,则当(0,)x lna ∈时,()0g x '<,()g x 为减函数, 而(0)0g =,从而当(0,)x lna ∈时,()0g x <,即()0f x <. 综合得a 的取值范围为(-∞,1]. 另解:当0x =时,()0f x =成立;当0x >,可得10xe ax --…,即有1x e a x-…的最小值,由1x y e x =--的导数为1x y e '=-,当0x >时,函数y 递增;0x <时,函数递减, 可得函数y 取得最小值0,即10x e x --…,0x >时,可得11x e x-…, 则1a ….【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明:(Ⅰ)ACE BCD ∠=∠. (Ⅱ)2BC BE CD =.【考点】9N :圆的切线的判定定理的证明;NB :弦切角 【专题】14:证明题【分析】()I 先根据题中条件:“AC BD =”,得BCD ABC ∠=∠.再根据EC 是圆的切线,得到ACE ABC ∠=∠,从而即可得出结论. ()II 欲证2BC BE = x CD .即证BC CDBE BC=.故只须证明~BDC ECB ∆∆即可. 【解答】解:(Ⅰ)因为AC BD =, 所以BCD ABC ∠=∠. 又因为EC 与圆相切于点C , 故ACE ABC ∠=∠所以ACE BCD ∠=∠.(5分)(Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠, 所以~BDC ECB ∆∆, 故BC CDBE BC=. 即2BC BE CD =⨯.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线11cos (sin x t C t y t αα=+⎧⎨=⎩为参数),2cos (sin x C y θθθ=⎧⎨=⎩为参数),(Ⅰ)当3πα=时,求1C 与2C 的交点坐标;(Ⅱ)过坐标原点O 做1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】3J :轨迹方程;JE :直线和圆的方程的应用;4Q :简单曲线的极坐标方程;QJ :直线的参数方程;QK :圆的参数方程 【专题】15:综合题;16:压轴题【分析】()I 先消去参数将曲线1C 与2C 的参数方程化成普通方程,再联立方程组求出交点坐标即可,()II 设(,)P x y ,利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线. 【解答】解:(Ⅰ)当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩, 解得1C 与2C 的交点为(1,10)(,2.(Ⅱ)1C 的普通方程为sin cos sin 0x y ααα--=①. 则OA 的方程为cos sin 0x y αα+=②, 联立①②可得2sin x α=,cos sin y αα=-;A 点坐标为2(sin α,cos sin )αα-,故当α变化时,P 点轨迹的参数方程为:()21212x sin y sin cos αααα⎧=⎪⎪⎨⎪=-⎪⎩为参数,P 点轨迹的普通方程2211()416x y -+=.故P 点轨迹是圆心为1(,0)4,半径为14的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数()|24|1f x x =-+. (Ⅰ)画出函数()y f x =的图象:(Ⅱ)若不等式()f x ax …的解集非空,求a 的取值范围.【考点】3A :函数的图象与图象的变换;7E :其他不等式的解法;5R :绝对值不等式的解法【专题】11:计算题;13:作图题;16:压轴题【分析】()I 先讨论x 的范围,将函数()f x 写成分段函数,然后根据分段函数分段画出函数的图象即可;()II 根据函数()y f x =与函数y ax =的图象可知先寻找满足()f x ax …的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于25,2()23,2x x f x x x -+<⎧=⎨-⎩…,函数()y f x =的图象如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图象可知,极小值在点(2,1) 当且仅当2a <-或12a …时,函数()y f x =与函数y ax =的图象有交点.故不等式()f x ax …的解集非空时,a 的取值范围为1(,2)[2-∞-,)+∞.【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年普通高等学校招生全国统一考试(全国Ⅰ)文科数学全解全析

2010年普通高等学校招生全国统一考试(全国Ⅰ)文科数学全解全析
16.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且 ,则C的离心率为.
三、解答题
17.(本小题满分10分)(注意:在试题卷上作答无效)
记等差数列 的前 的和为 ,设 ,且 成等比数列,求 .
18.(本小题满分12分)(注意:在试题卷上作答无效)
已知 的内角A,B及其对边 , 满足 ,求内角 .
19.(本小题满分12分)(注意:在试题卷上作答无效)
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.
2010年普通高等学校招生全国统一考试(全国Ⅰ)文科数学全解全析
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.
(A) (B) (C) (D)
2.设全集 ,集合 , ,则
(A) (B) (C) (D)
3.若变量 满足约束条件 则 的最大值为
17. 或
【解析】本题主要考查等差数列的通项公式与前n项和公式,以及等比数列的性质,考查考生用方程组的思想解决数列问题的能力.
(Ⅰ)证明:点 在直线 上;
(Ⅱ)设 ,求 的内切圆 的方程.
参考答案
1.C
【解析】本试题主要考查三角函数的诱导公式及特殊角求值.
,故选C.
2.C
【解析】本试题主要考查集合的概念及集合的交集、补集运算.
.故选C.

2010年全国1全国一全国Ⅰ高考文科数学试题及答案解析

2010年全国1全国一全国Ⅰ高考文科数学试题及答案解析

2010年普通高等学校招生全国统一考试文科数学参考公式:样本数据12,n x x x 的标准差 锥体体积公式s = =13V s h 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ== 其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2,,|4,|A x x x R B x x Z =≤∈=≤∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|(2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665-(3)已知复数z =,则i = (A)14 (B )12(C )1 (D )2 (4)曲线2y 21x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+(C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A (B(C(D (6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(7) 设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,则该球的表面积为(A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54(B )45(C )65(D )56 (9)设偶函数f(x)满足f(x)=2x -4 (x ≥0),则(){}20x f x ->=(A ){}24x x x <->或(B ){}04 x x x <>或(C ){}06 x x x <>或(D ){}22 x x x <->或(10)若sin a = -45,a 是第一象限的角,则sin()4a π+= (A )(B(C) (D(11)已知 ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD 的内部,则z=2x-5y 的取值范围是(A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数f(x)=lg 1,01016,02x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是(A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。

2010年全国统一高考数学试卷(文科)(新课标)及答案(分析解答)

2010年全国统一高考数学试卷(文科)(新课标)及答案(分析解答)

2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2) B.[0,2]C.{0,2}D.{0,1,2}2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)已知复数Z=,则|z|=()A.B.C.1 D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+25.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x <﹣2或x>2}10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6) C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S 的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2) B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选D2.(5分)(2010•新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选C.3.(5分)(2010•新课标)已知复数Z=,则|z|=()A.B.C.1 D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选B4.(5分)(2010•新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选A.5.(5分)(2010•新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故答案选D.6.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.7.(5分)(2010•新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,=4πR2=6πa2.所以S球故选B8.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.9.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x ﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x <﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.10.(5分)(2010•新课标)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选A11.(5分)(2010•新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.12.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6) C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=214.(5分)(2010•新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i ﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.15.(5分)(2010•新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤16.(5分)(2010•新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.18.(10分)(2010•新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)19.(10分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助, ∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(10分)(2010•新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.21.(2010•新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。

2010年全国统一高考数学试卷(文科)(全国卷一)及答案

2010年全国统一高考数学试卷(文科)(全国卷一)及答案

2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos300°=()A.B.﹣ C.D.2.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.14.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.36.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.89.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a11.(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.12.(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)不等式的解集是.14.(5分)已知α为第二象限的角,,则tan2α=.15.(5分)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.19.(12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C 相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•大纲版Ⅰ)cos300°=()A.B.﹣ C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选C.2.(5分)(2010•大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求C U M,再根据交集的意义求N∩(C U M).【解答】解:(C U M)={2,3,5},N={1,3,5},则N∩(C U M)={1,3,5}∩{2,3,5}={3,5}.故选C3.(5分)(2010•大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.4.(5分)(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.5.(5分)(2010•大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选A6.(5分)(2010•大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选C.7.(5分)(2010•大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f (b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4ab=4∴a+b>2故选:C.(方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:,整理得线性规划表达式为:,因此问题转化为求z=x+y的取值范围问题,则z=x+y⇒y=﹣x+z,即求函数的截距最值.根据导数定义,函数图象过点(1,1)时z有最小为2(因为是开区域,所以取不到2),∴a+b的取值范围是(2,+∞).故选:C.8.(5分)(2010•大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.8【分析】解法1,利用余弦定理及双曲线的定义,解方程求|PF1|•|PF2|的值.解法2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出|PF1|•|PF2|的值.【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4.法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选B.9.(5分)(2010•大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选D.10.(5分)(2010•大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【分析】根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选C.11.(5分)(2010•大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.【分析】要求的最小值,我们可以根据已知中,圆O的半径为1,PA、PB 为该圆的两条切线,A、B为两切点,结合切线长定理,设出PA,PB的长度和夹角,并将表示成一个关于x的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选D.12.(5分)(2010•大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.【分析】四面体ABCD的体积的最大值,AB与CD是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD作平面PCD,使AB⊥平面PCD,交AB于P,设点P到CD的距离为h,则有,当直径通过AB与CD的中点时,,故.故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•大纲版Ⅰ)不等式的解集是{x|﹣2<x<﹣1,或x>2} .【分析】本题是解分式不等式,先将分母分解因式,再利用穿根法求解.【解答】解::,数轴标根得:{x|﹣2<x<﹣1,或x>2}故答案为:{x|﹣2<x<﹣1,或x>2}14.(5分)(2010•大纲版Ⅰ)已知α为第二象限的角,,则tan2α=.【分析】先求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:因为α为第二象限的角,又,所以,,∴故答案为:﹣15.(5分)(2010•大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种.(用数字作答)【分析】由题意分类:(1)A类选修课选1门,B类选修课选2门,确定选法;(2)A类选修课选2门,B类选修课选1门,确定选法;然后求和即可.【解答】解:分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.所以不同的选法共有C31C42+C32C41=18+12=30种.故答案为:3016.(5分)(2010•大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c的方程,解方程求出的值.【解答】解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.三、解答题(共6小题,满分70分)17.(10分)(2010•大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.【分析】由2a1,a2,a3+1成等比数列,可得a22=2a1(a3+1),结合s3=12,可列出关于a1,d的方程组,求出a1,d,进而求出前n项和s n.【解答】解:设等差数列{a n}的公差为d,由题意得,解得或,∴s n=n(3n﹣1)或s n=2n(5﹣n).18.(12分)(2010•大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A ﹣)=sin(B+),进而根据A,B的范围,求得A﹣和B+的关系,进而求得A+B=,则C的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=19.(12分)(2010•大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.【分析】(1)投到该杂志的1篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4篇稿件中,至少有2篇被录用的对立事件是0篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4篇稿件有1篇或0篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4篇稿件中,至少有2篇被录用的概率是0.5248.20.(12分)(2010•大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB ∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.【分析】(Ⅰ)连接BD,取DC的中点G,连接BG,作BK⊥EC,K为垂足,根据线面垂直的判定定理可知DE⊥平面SBC,然后分别求出SE与EB的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE为等腰三角形,取ED中点F,连接AF,连接FG,根据二面角平面角的定义可知∠AFG是二面角A﹣DE﹣C的平面角,然后在三角形AGF中求出二面角A﹣DE﹣C的大小.【解答】解:(Ⅰ)连接BD,取DC的中点G,连接BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.又SD⊥平面ABCD,故BC⊥SD,所以,BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE,DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB=,DE=EB=所以SE=2EB(Ⅱ)由SA=,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1.故△ADE为等腰三角形.取ED中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG是二面角A﹣DE﹣C的平面角.连接AG,AG=,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C的大小为120°.21.(12分)(2010•大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.【分析】先求函数的极值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,则x=﹣1或x=1,经验证x=﹣1和x=1为极值点,即f(1)=﹣2为极小值,f(﹣1)=2为极大值.又因为f(﹣3)=﹣18,f(3)=18,所以函数f(x)的最大值为18,最小值为﹣18.22.(12分)(2010•大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K的直线L方程代入抛物线方程消去x,设L与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2和y1y2的表达式,进而根据点A求得点D的坐标,进而表示出直线BD 和BF的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2原式得证.(Ⅱ)首先表示出结果为求得m,进而求得y2﹣y1的值,推知BD的斜率,则BD方程可知,设M为(a,0),M到x=y﹣1和到BD的距离相等,进而求得a和圆的半径,则圆的方程可得.【解答】解:(Ⅰ)抛物线C:y2=4x①的焦点为F(1,0),设过点K(﹣1,0)的直线L:x=my﹣1,代入①,整理得y2﹣4my+4=0,设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,点A关于X轴的对称点D为(x1,﹣y1).BD的斜率k1===,BF的斜率k2=.要使点F在直线BD上需k1=k2需4(x2﹣1)=y2(y2﹣y1),需4x2=y22,上式成立,∴k1=k2,∴点F在直线BD上.(Ⅱ)=(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2)(my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2=,∴m2=,m=±.y2﹣y1==4=,∴k1=,BD:y=(x﹣1).易知圆心M在x轴上,设为(a,0),M到x=y﹣1和到BD的距离相等,即|a+1|×=|((a﹣1)|×,∴4|a+1|=5|a﹣1|,﹣1<a<1,解得a=.∴半径r=,∴△BDK的内切圆M的方程为(x﹣)2+y2=.。

2010年普通高等学校招生全国统一考试(全国卷Ⅰ)(数学[文])

2010年普通高等学校招生全国统一考试(全国卷Ⅰ)(数学[文])

2010年普通高等学校招生全国统一考试(全国卷Ⅰ)数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos300°=( ) A .-32 B .-12C.12D.32解析:cos300°=cos(360°-60°)=cos60°=12.答案:C2.设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N ∩(∁U M )=( ) A .{1,3} B .{1,5} C .{3,5} D .{4,5} 解析:∵∁U M ={2,3,5},∴N ∩(∁U M )={3,5}. 答案:C3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为( )A .4B .3C .2D .1解析:如图,画出约束条件表示的可行域,当目标函数z =x -2y 经过x +y =0与x -y -2=0的交点A (1,-1)时,取到最大值3.答案:B4.已知各项均为正数的等比数例{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6( )A .5 2B .7C .6D .4 2解析:(a 1a 2a 3)×(a 7a 8a 9)=a 56=50,a 4a 5a 6=a 53=5 2. 答案:A5.(1-x )4(1-x )3的展开式中x 2的系数是( )A .-6B .-3C .0D .3解析:(1-x )4的二项展开式的通项为T r +1=C 4 r (-x )r =(-1)r C 4 r x r ,(1-x )3的二项展开式的通项为T r ′+1=C 3 r ′(-x )r ′=(-1)r ′C 3 r x r ′2,因此,(1-x )4(1-x )3的展开式的各项为(-1)r ·(-1)r ′·C 4 r ·C 3 r ′·xr +r ′2,当r +r ′2=2时有r =2,且r ′=0或r =1且r ′=2两种情况,因此展开式中x 2的系数为6+(-12)=-6.答案:A6.直三棱柱ABC -A 1B 1C 1中 ,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解析:延长CA 至点M ,使AM =CA ,则A 1M ∥C 1A ,∠MA 1B 或其补角为异面直线BA 1与AC 1所成的角,连接BM ,易知△BMA 1为等边三角形,因此,异面直线BA 1与AC 1所成的角为60°.答案:C7.已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是( ) A .(1,+∞)B .[1,+∞)C .(2,+∞)D .[2,+∞)解析:不妨设0<a <1<b ,由f (a )=f (b )得-lg a =lg b ,lg a +lg b =0,ab =1,因此,a +b =a +1a>2.答案:C8.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .2B .4C .6D .8解析:||PF 1|-|PF 2||=2,|F 1F 2|=2 2 ∴|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos60°=|F 1F 2|2 ∴(|PF 1|-|PF 2|)2+2|PF 1||PF 2|-2|PF 1||PF 2|×12=8∴|PF 1||PF 2|=8-22=4 答案:B9.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( ) A.23B.33C.23D.63解析:BB 1与平面ACD 1所成角等于DD 1与平面ACD 1所成角,在三棱锥D -ACD 1中,由三条侧棱两两垂直得点D 在底面ACD 1内的射影为等边△ACD 1的重心即中心H ,则∠DD 1H 为DD 1与平面ACD 1所成角,设正方体的棱长为a ,则cos ∠DD 1H =63a a =63.答案:D10.设a =log 32,b =ln2,c =5-12,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析:a =log 32=ln 2ln 3<ln 2=b ,又c =5-12=15<12,a =log 32>log 33=12,因此c <a <b .答案:C11.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB的最小值为( )A .-4+ 2B .-3+2C .-4+2 2D .-3+2 2解析:设|PA |=|PB |=x ,∠APB =θ,则tan θ2=1x ,cos θ=x 2-1x 2+1,则PA ·PB =x 2×x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时,取“=”,故PA ·PB 的最小值为22-3.答案:D12.已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为( )A.233B.433C .2 3D.833解析:设球心为O ,如图,过O 、C 、D 三点作球的截面,交AB 于点M ,由条件知,△OAB 、△OCD 均为边长为2的等边三角形,设M 到CD 的距离为h ,A 到面MCD 的距离为h 1,B 到面MCD 的距离为h 2,则V A -BCD =V A -MCD +V B -MCD =13S △MCD (h 1+h 2)=13·12·CD ·h ·(h 1+h 2),因此,当AB ⊥面MCD 时,V A -BCD =13×12×2×23×(1+1)=433最大.答案:B第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上. 13.不等式x -2x 2+3x +2>0的解集是________.解析:由x -2x 2+3x +2>0⇒x -2(x +1)(x +2)>0⇒(x +1)(x +2)(x -2)>0,故原不等式的解集为{x |-2<x <-1,或x >2}.答案:{x |-2<x <-1,或x >2}14.已知α为第二象限的角,sin α=35,则tan2α=________.解析:由sin α=35,且α为第二象限的角得cos α=-45,得tan α=-34,tan2α=-247.答案:-24715.某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有________种.(用数字作答)解析:选法可分两类,A 类选修课1门,B 类选修课2门,或者A 类选修课2门,B类选修课1门,因此,共有C 13·C 24+C 23·C 14=30种选法. 答案:3016.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD,则C 的离心率为________.解析:不妨设椭圆C 的焦点在x 轴上,中心在原点,B 点为椭圆的上顶点,F (c,0)(c >0)为右焦点,则由BF =2FD,得D 点到右准线的距离是B 点到右准线距离的一半,则D点横坐标x D =a 22c,由BF =2 BF 知,F 分BD 所成的比为2,由定比分点坐标公式得c=0+2×a 22c 1+2=a 23c ,得3c 2=a 2,得e =33.答案:33三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)记等差数列{a n }的前n 项和为S n .设S 3=12,且2a 1,a 2,a 3+1成等比数列,求S n .解:设数列{a n }的公差为d .依题意有⎩⎪⎨⎪⎧ 2a 1(a 3+1)=a 22,a 1+a 2+a 3=12,即⎩⎪⎨⎪⎧a 21+2a 1d -d 2+2a 1=0,a 1+d =4. 解得a 1=1,d =3,或a 1=8,d =-4. 因此S n =12n (3n -1),或S n =2n (5-n ).18.(本小题满分12分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .解:由a +b =a cot A +b cot B 及正弦定理得sin A +sin B =cos A +cos B ,sin A -cos A =cos B -sin B , 从而sin A cos π4-cos A sin π4=cos B sin π4-sin B cos π4,sin(A -π4)=sin(π4-B ).又0<A +B <π,故A -π4=π4-B ,A +B =π2,所以C =π2.19.(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专用的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(1)求投到该杂志的1篇稿件被录用的概率;(2)求投到该杂志的4篇稿件中,至少有2篇被录用的概率. 解:(1)记A 表示事件:稿件恰能通过两位初审专家的评审; B 表示事件:稿件能通过一位初审专家的评审; C 表示事件:稿件能通过复审专家的评审; D 表示事件:稿件被录用. 则D =A +B ·C ,P (A )=0.5×0.5=0.25,P (B )=2×0.5×0.5=0.5,P (C )=0.3,P (D )=P (A +B ·C )=P (A )+P (B ·C )=P (A )+P (B )P (C )=0.25+0.5×0.3=0.40. (2)记A 0表示事件:4篇稿件中没有1篇被录用; A 1表示事件:4篇稿件中恰有1篇被录用; A 2表示事件:4篇稿件中至少有2篇被录用. A 2=A 0+A 1.P (A 0)=(1-0.4)4=0.129 6,P (A 1)=C 14×0.4×(1-0.4)3=0.345 6,P (A 2)=P (A 0+A 1)=P (A 0)+P (A 1)=0.129 6+0.345 6=0.475 2, P (A 2)=1-P (A 2)=1-0.475 2=0.524 8.20.(本小题满分12分)如图,四棱锥S -ABCD 中,SD ⊥底面ABCD ,AB ∥DC ,AD ⊥DC ,AB =AD =1,DC =SD =2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(1)证明:SE =2EB ;(2)求二面角A -DE -C 的大小.解:法一:(1)证明:连结BD ,取DC 的中点G ,连结BG ,由此知DG =GC =BG =1,即△DBC 为直角三角形,故BC ⊥BD . 又SD ⊥平面ABCD ,故BC ⊥SD . 所以,BC ⊥平面BDS ,BC ⊥DE .作BK ⊥EC ,K 为垂足.因平面EDC ⊥平面SBC ,故BK ⊥平面EDC ,BK ⊥DE .DE 与平面SBC 内的两条相交直线BK 、BC 都垂直.DE ⊥平面SBC ,DE ⊥EC ,DE ⊥SB . SB =SD 2+DB 2=6,DE =SD ·DB SB =23,EB =DB 2-DE 2=63,SE =SB -EB =263, 所以,SE =2EB .(2)由SA =SD 2+AD 2=5,AB =1,SE =2EB ,AB ⊥SA ,知AE =(13SA )2+(23AB )2=1,又AD =1.故△ADE 为等腰三角形.取ED 中点F ,连结AF ,则AF ⊥DE ,AF =AD 2-DF 2=63. 连结FG ,则FG ∥EC ,FG ⊥DE .所以,∠AFG 是二面角A -DE -C 的平面角. 连结AG ,AG =2,FG =DG 2-DF 2=63, cos ∠AFG =AF 2+FG 2-AG 22·AF ·FG =-12,所以,二面角A -DE -C 的大小为120°.法二:以D 为坐标原点,射线DA 为x 轴正半轴,建立如图所示的直角坐标系D -xyz .设A (1,0,0),则B (1,1,0),C (0,2,0),S (0,0,2).(1) SC =(0,2,-2),BC=(-1,1,0).设平面SBC 的法向量为n =(a ,b ,c ),由n ⊥SC ,n ⊥BC 得n ·SC =0,n ·BC=0.故2b -2c =0,-a +b =0.令a =1,则b =1,c =1,n =(1,1,1).又设SE =λSB (λ>0),则E (λ1+λ,λ1+λ,21+λ).DE =(λ1+λ,λ1+λ,21+λ),DC =(0,2,0).设平面CDE 的一个法向量m =(x ,y ,z ),由m ⊥DE,m ⊥DC ,得m ·DE=0,m ·DC =0.故λx 1+λ+λy 1+λ+2z1+λ=0,2y =0. 令x =2,则m =(2,0,-λ).由平面DEC ⊥平面SBC 得m ⊥n ,m·n =0,2-λ=0,λ=2. 故SE =2EB .(2)由(1)知E (23,23,23),取DE 中点F ,则F (13,13,13),FA =(23,-13,-13),故FA ·DE =0,由此得FA ⊥DE . 又EC =(-23,43,-23),故EC ·DE =0,由此得EC ⊥DE ,向量FA 与EC 的夹角等于二面角A -DE -C 的平面角.于是cos 〈FA ,EC 〉=FA ·EC|FA | |EC |=-12, 所以,二面角A -DE -C 的大小为120°.21.(本小题满分12分)已知函数f (x )=3ax 4-2(3a +1)x 2+4x . (1)当a =16时,求f (x )的极值;(2)若f (x )在(-1,1)上是增函数,求a 的取值范围. 解:(1)f ′(x )=4(x -1)(3ax 2+3ax -1).当a =16时,f ′(x )=2(x +2)(x -1)2,f (x )在(-∞,-2)内单调减,在(-2,+∞)内单调增,在x =-2时,f (x )有极小值.所以f (-2)=-12是f (x )的极小值.(2)在(-1,1)上,f (x )单调增加,当且仅当f ′(x )=4(x -1)(3ax 2+3ax -1)≥0,即3ax 2+3ax -1≤0,①(ⅰ)当a =0时①恒成立;(ⅱ)当a >0时①成立,当且仅当3a ·12+3a ·1-1≤0. 解得0<a ≤16.(ⅲ)当a <0时①成立,即3a (x +12)2-3a 4-1≤0成立,当且仅当-3a 4-1≤0.解得-43≤a <0.综上,a 的取值范围是[-43,16].22.(本小题满分12分)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设FA ·FB =89,求△BDK 的内切圆M 的方程.解:设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0). (1)证明:将x =my -1代入y 2=4x 并整理得 y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4. ① 直线BD 的方程为y -y 2=y 2+y 1x 2-x 1·(x -x 2), 即y -y 2=4y 2-y 1·(x -y 224).令y =0,得x =y 1y 24=1. 所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2, x 1x 2=(my 1-1)(my 2-1)=1.因为FA =(x 1-1,y 1),FB=(x 2-1,y 2), FA ·FB =(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4 m 2=89,解得m =±43.所以l 的方程为3x +4y +3=0,或3x -4y +3=0. 又由(1)知y 2-y 1=±(4m )2-4×4=±437,故直线BD 的斜率为4y 2-y 1=±37,因而直线BD 的方程为3x +7y -3=0,或3x -7y -3=0.因为KF 为∠BKD 的平分线,故可设圆心M (t,0)(-1<t <1),M (t,0)到l 及BD 的距离分别为3|t +1|5,3|t -1|4.由3|t +1|5=3|t -1|4得t =19,或t =9(舍去), 故圆M 的半径r =3|t +1|5=23. 所以圆M 的方程为(x -19)2+y 2=49.。

2010年高考文科数学真题答案全国卷1

2010年高考文科数学真题答案全国卷1

绝密★启用前2010年高考文科数学真题及答案本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上.....作答无效....。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )()()(B P A P AB P = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题(1)cos300︒=C(A)2-(B)-12 (C)12(D) 2 (1) 【命题意图】特殊角的三角函数,诱导公式,基础题。

【解析】C 2160cos )60360cos(300cos 0==-= (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则=⋂M C N u C A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 (2).【命题意图】【解析】C {}{}{}5,35,3,25,3,1=⋂=⋂M C N u(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(3).B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456aaa = (A) (B) 7 (C) 6 (D) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a a a ===10,所以132850a a =, 所以133364564655()(50)a a a a a a a ===== (5)43(1)(1x --的展开式2x 的系数为A(A)-6 (B)-3 (C)0 (D)3(5).【命题意图】考查二项式的系数【解析】A 原二项式可化为)331)(4641(2321432x x x x x x x -+-+-+-,则2x 的系数是6-12=-6.(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于Cx +20y -=AB C DA 1B 1C 1D 1 O(A)30° (B)45°(C)60° (D)90°(6).【命题意图】考查棱柱的概念,异面直线所成的角的求法。

2010年全国统一高考数学试卷(文科)(大纲版一)(答案解析版)

2010年全国统一高考数学试卷(文科)(大纲版一)(答案解析版)

2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos300°=( )A.B.﹣C.D.【考点】GO:运用诱导公式化简求值.【专题】11:计算题.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.2.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=( )A.{1,3}B.{1,5}C.{3,5}D.{4,5}【考点】1H:交、并、补集的混合运算.【分析】根据补集意义先求C U M,再根据交集的意义求N∩(C U M).【解答】解:(C U M)={2,3,5},N={1,3,5},则N∩(C U M)={1,3,5}∩{2,3,5}={3,5}.故选:C.【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题. 3.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为( )A.4B.3C.2D.1【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=( )A.B.7C.6D.【考点】87:等比数列的性质.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5分)(1﹣x)4(1﹣)3的展开式x2的系数是( )A.﹣6B.﹣3C.0D.3【考点】DA:二项式定理.【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选:A.【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.6.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于( )A.30°B.45°C.60°D.90°【考点】LM:异面直线及其所成的角.【专题】1:常规题型.【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.【点评】本小题主要考查直三棱柱ABC﹣A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.7.(5分)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是( )A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【考点】34:函数的值域;3A:函数的图象与图象的变换;4O:对数函数的单调性与特殊点.【专题】11:计算题.【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4ab=4∴a+b>2故选:C.(方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:,整理得线性规划表达式为:,因此问题转化为求z=x+y的取值范围问题,则z=x+y⇒y=﹣x+z,即求函数的截距最值.根据导数定义,函数图象过点(1,1)时z有最小为2(因为是开区域,所以取不到2),∴a+b的取值范围是(2,+∞).故选:C.【点评】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,根据条件a>0,b>0,且a≠b可以利用重要不等式(a2+b2≥2ab,当且仅当a=b时取等号)列出关系式(a+b)2>4ab=4,进而解决问题.8.(5分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=( )A.2B.4C.6D.8【考点】HR:余弦定理;KA:双曲线的定义;KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】解法1,利用余弦定理及双曲线的定义,解方程求|PF1|•|PF2|的值.解法2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出|PF1|•|PF2|的值.【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4.法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选:B.【点评】本题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,查考生的综合运用能力及运算能力.9.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为( )A.B.C.D.【考点】MI:直线与平面所成的角;MK:点、线、面间的距离计算.【专题】5G:空间角.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选:D.【点评】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面ACD1的距离是解决本题的关键所在,这也是转化思想的具体体现,属于中档题. 10.(5分)设a=log32,b=ln2,c=,则( )A.a<b<c B.b<c<a C.c<a<b D.c<b<a【考点】4M:对数值大小的比较.【专题】11:计算题;35:转化思想.【分析】根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选:C.【点评】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.11.(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为( )A.B.C.D.【考点】9O:平面向量数量积的性质及其运算;JF:圆方程的综合应用.【专题】5C:向量与圆锥曲线.【分析】要求的最小值,我们可以根据已知中,圆O的半径为1,PA、PB 为该圆的两条切线,A、B为两切点,结合切线长定理,设出PA,PB的长度和夹角,并将表示成一个关于x的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选:D.【点评】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法﹣﹣判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.12.(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积;ND:球的性质.【专题】11:计算题;15:综合题;16:压轴题.【分析】四面体ABCD的体积的最大值,AB与CD是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD作平面PCD,使AB⊥平面PCD,交AB于P,设点P到CD的距离为h,则有,当直径通过AB与CD的中点时,,故.故选:B.【点评】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.二、填空题(共4小题,每小题5分,满分20分)13.(5分)不等式的解集是 {x|﹣2<x<﹣1,或x>2} .【考点】7E:其他不等式的解法.【分析】本题是解分式不等式,先将分母分解因式,再利用穿根法求解.【解答】解::,数轴标根得:{x|﹣2<x<﹣1,或x>2}故答案为:{x|﹣2<x<﹣1,或x>2}【点评】本小题主要考查分式不等式及其解法,属基本题.14.(5分)已知α为第二象限角,sinα=,则tan2α= .【考点】GL:三角函数中的恒等变换应用.【专题】11:计算题;33:函数思想;49:综合法;56:三角函数的求值.【分析】由已知求出cosα,进一步得到tanα,代入二倍角公式得答案.【解答】解:∵α为第二象限角,且sinα=,∴cosα=,则tanα=.∴tan2α===.故答案为:.【点评】本题考查三角函数中的恒等变换应用,考查了同角三角函数基本关系式及二倍角公式的应用,是基础题.15.(5分)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 30 种.(用数字作答)【考点】D5:组合及组合数公式.【专题】11:计算题;16:压轴题;32:分类讨论.【分析】由题意分类:(1)A类选修课选1门,B类选修课选2门,确定选法;(2)A类选修课选2门,B类选修课选1门,确定选法;然后求和即可.【解答】解:分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.所以不同的选法共有C31C42+C32C41=18+12=30种.故答案为:30【点评】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想. 16.(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为 .【考点】K4:椭圆的性质.【专题】16:压轴题;31:数形结合.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c的方程,解方程求出的值.【解答】解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.【点评】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.三、解答题(共6小题,满分70分)17.(10分)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】34:方程思想.【分析】由2a1,a2,a3+1成等比数列,可得a22=2a1(a3+1),结合s3=12,可列出关于a1,d的方程组,求出a1,d,进而求出前n项和s n.【解答】解:设等差数列{a n}的公差为d,由题意得,解得或,∴s n=n(3n﹣1)或s n=2n(5﹣n).【点评】本题考查了等差数列的通项公式和前n项和公式,熟记公式是解题的关键,同时注意方程思想的应用.18.(12分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.【考点】GF:三角函数的恒等变换及化简求值;HP:正弦定理.【专题】11:计算题.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A﹣)=sin(B+),进而根据A,B的范围,求得A﹣和B+的关系,进而求得A+B=,则C的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB ,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=【点评】本题主要考查了正弦定理的应用.解题过程中关键是利用了正弦定理把边的问题转化为角的问题.19.(12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式;CA:n次独立重复试验中恰好发生k次的概率.【分析】(1)投到该杂志的1篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4篇稿件中,至少有2篇被录用的对立事件是0篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4篇稿件有1篇或0篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4篇稿件中,至少有2篇被录用的概率是0.5248.【点评】本题关键是要理解题意,实际上能否理解题意是一种能力,培养学生的数学思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度.20.(12分)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)连接BD,取DC的中点G,连接BG,作BK⊥EC,K为垂足,根据线面垂直的判定定理可知DE⊥平面SBC,然后分别求出SE与EB的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE为等腰三角形,取ED中点F,连接AF,连接FG ,根据二面角平面角的定义可知∠AFG是二面角A﹣DE﹣C的平面角,然后在三角形AGF中求出二面角A﹣DE﹣C的大小.【解答】解:(Ⅰ)连接BD,取DC的中点G,连接BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.又SD⊥平面ABCD,故BC⊥SD,所以,BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE,DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB=,DE=EB=所以SE=2EB(Ⅱ)由SA=,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1.故△ADE为等腰三角形.取ED中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG是二面角A﹣DE﹣C的平面角.连接AG,AG=,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C的大小为120°.【点评】本题主要考查了与二面角有关的立体几何综合题,考查学生空间想象能力,逻辑思维能力,是中档题.21.(12分)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】11:计算题;16:压轴题.【分析】先求函数的极值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,则x=﹣1或x=1,经验证x=﹣1和x=1为极值点,即f(1)=﹣2为极小值,f(﹣1)=2为极大值.又因为f(﹣3)=﹣18,f(3)=18,所以函数f(x)的最大值为18,最小值为﹣18.【点评】本题主要考查了利用导数研究函数的极值,以及研究函数的最值,当然如果连续函数在区间(a,b)内只有一个极值,那么极大值就是最大值,极小值就是最小值,属于基础题.22.(12分)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C 相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.【考点】9S:数量积表示两个向量的夹角;IP:恒过定点的直线;J1:圆的标准方程;K8:抛物线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K的直线L方程代入抛物线方程消去x,设L与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2和y1y2的表达式,进而根据点A求得点D的坐标,进而表示出直线BD和BF的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2原式得证.(Ⅱ)首先表示出结果为求得m,进而求得y2﹣y1的值,推知BD的斜率,则BD方程可知,设M为(a,0),M到x=y﹣1和到BD的距离相等,进而求得a和圆的半径,则圆的方程可得.【解答】解:(Ⅰ)抛物线C:y2=4x①的焦点为F(1,0),设过点K(﹣1,0)的直线L:x=my﹣1,代入①,整理得y2﹣4my+4=0,设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,点A关于X轴的对称点D为(x1,﹣y1).BD的斜率k1===,BF的斜率k2=.要使点F在直线BD上需k1=k2需4(x2﹣1)=y2(y2﹣y1),需4x2=y22,上式成立,∴k1=k2,∴点F在直线BD上.(Ⅱ)=(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2)(my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2=,∴m2=,m=±.y 2﹣y1==4=,∴k1=,BD:y=(x﹣1).易知圆心M在x轴上,设为(a,0),M到x=y﹣1和到BD的距离相等,即|a+1|×=|((a﹣1)|×,∴4|a+1|=5|a﹣1|,﹣1<a<1,解得a=.∴半径r=,∴△BDK的内切圆M的方程为(x﹣)2+y2=.【点评】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.。

2010年普通高等学校招生全国统一考试文科数学(新课标)全解全析版

2010年普通高等学校招生全国统一考试文科数学(新课标)全解全析版

2010年普通高等学校招生全国统一考试(宁夏卷)数学(文史类)第I 卷一、选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中,有一项是符合题目要求的。

1、已知集合A={|||2,}x x x R ≤∈,B={4,}x x x Z ≤∈,则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}【解析】选择D 。

因为A={|22}x x -≤≤,{0,1,2,3,,16}B =,所以A ∩B ={0,1,2}。

2、a 、b 为平面向量,已知a =(4,3),2a +b =(3,18),则a 、b 夹角的余弦值等于( )A .865B .865-C .1665D .1665- 【解析】选择C 。

因为(3,18)(8,6)(5,12)b =-=-,所以1616cos 51365θ==⨯。

3、已知复数23(13)iz i +=-||z =( ) A .14 B .12C .1D .2【解析】选择B 。

解法1:因为313222313i iz ii ++==---+13)13132)28i i i +-=-=-(()314i =+, 所以22311||()()442z =-+=。

解法2:223|3|21||42(13)|13|i i z i i ++====--。

4、曲线321y x x =-+在点(1,0)处的切线方程为( )A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+【解析】选择A 。

因为2'32y x =-,所以1'|1x k y ===,因此切线方程为1y x =-。

5、中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( ) A 6 B 5C 6D 5【解析】选择D 。

双曲线的一条渐近线为b y x a =-,由已知过点(4,-2),代入得12b a =, 因此它的离心率251()2c b e a a ==+=。

2010年全国统一高考数学试卷(文科)(新课标)(答案解析版)

2010年全国统一高考数学试卷(文科)(新课标)(答案解析版)

2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=( )A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于( )A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一. 3.(5分)已知复数Z=,则|z|=( )A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为( )A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于( )A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=( )A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=( )A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的. 11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是( )A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为 x2+y2=2 .【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为 .【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD= 2+ .【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD ,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年高考文科数学真题答案全国卷1

2010年高考文科数学真题答案全国卷1

绝密★启用前2010年高考文科数学真题及答案本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页.考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上.....作答无效..... 3.第I 卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )()()(B P A P AB P = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题(1)cos300︒=C(A)3 (B )-12 (C )12(D ) 3(1) 【命题意图】特殊角的三角函数,诱导公式,基础题。

【解析】C 2160cos )60360cos(300cos 0==-= (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则=⋂M C N u C A 。

{}1,3 B. {}1,5 C 。

{}3,5 D 。

{}4,5 (2).【命题意图】【解析】C {}{}{}5,35,3,25,3,1=⋂=⋂M C N u(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B )3 (C)2 (D)1 (3)。

普通高等学校招生全国统一考试数学文试题(课标全国卷Ⅰ,解析版)

普通高等学校招生全国统一考试数学文试题(课标全国卷Ⅰ,解析版)

2010年普通高等学校招生全国统一考试数学文试题(课标全国卷Ⅰ,解析版)【教师简评】2010年黑龙江、海南、宁夏、吉林高考数学试题从整体看,体现“总体稳定,深化能力”的特点,在保持2009年特点的同时,又力争创新与变化;试题不仅注意对基础知识的考查,更注重了对能力的考查。

从考生角度来说,试卷总体相对基础。

有较好的梯度,注重认知能力和数学运用能力的考查,稳中求新。

1. 忠实地遵循了《普通高中新课程标准教学要求》和2010年《考试说明》。

2. 题型稳定,突出对基本知识但考查,全卷没有一道偏题、怪题。

全卷结构、题型包括难度基本稳定。

填空题比较平和。

不需要太繁的计算,考生感觉顺手。

许多试题源于课本,略高于课本。

附加题部分,选做题对知识的考查单一,解决要求明确,学生容易入手。

3. 多题把关,有很好的区分度。

能有效区分不同能力层次的考生群体。

4. 深化能力立意。

知识与能力并重。

全卷在考查知识的同时,注重考查学生的数学基本能力。

许多试题实际上并不难,知识点熟悉,但需要考生自主综合知识,才能解决问题。

关注联系,有效考查数学思想方法,如函数与方程思想,分类讨论思想等。

5. 加大数学应用题考查力度,体现“学数学,用数学的基本思想。

”参考公式: 样本数据12,n x x x 的标准差 锥体体积公式222121()()()n s x x x x x x n ⎡⎤=-+-++-⎣⎦ =13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2,,|4,|A x x x R B x x x Z =≤∈=≤∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2| 【答案】D【命题意图】本试题主要考查集合的概念和基本运算中的交集问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n kn n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12 (D) 21.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos 602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a === 10,所以132850a a =,所以133364564655()(50)a a a a a a a =====(5)43(1)(1x -的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +y20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a a=+1由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则 12||||PF PF =(A)2 (B)4 (C) 6 (D) 8AB C DA 1B 1C 1D 1 O8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +- ()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF = 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆===== 12||||PF PF = 4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )(B(C )23 (D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯= ,21122ACD SAD CD a ∆== . 所以131A C D A C D S D D D O a S ∆∆= ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos O O O OD OD ∠=== (10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e, 3221log log 2e <<< ,32211112log log e <<<; c=12152-=<=,∴c<a<b(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 4-+3-(C) 4-+3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--3y ≥-+.故min ()3PA PB ∙=-+此时x =【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--∙==+-≥ 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

相关文档
最新文档