高中数学椭圆练习题(文科)
高二文科数学椭圆练习题

高二文科数学椭圆练习题一、选择题1. 设椭圆E的中心为O,焦点为F1,F2,焦距为2c,离心率为e。
已知2a = 6,e = 1/3,则椭圆的焦距c等于:A. 1/3B. 2/3C. 1D. 4/32. 椭圆E的长轴的长度为2a,短轴的长度为2b,离心率为e,则焦距c满足下列哪个条件?A. c = a + bB. c = a - bC. c^2 = a^2 - b^2D. c^2 = b^2 - a^23. 椭圆E的中心为O,焦点为F1,F2,离心率为e。
已知OF1 = a,OF2 = b,则a和b的关系是:A. a = bB. a > bC. a < bD. 无法确定二、填空题4. 已知椭圆E的长轴的长度为10,短轴的长度为6,则离心率e的值为________。
5. 椭圆E的中心为O,长轴的长度为2a,短轴的长度为2b,则焦距c的值为________。
6. 椭圆E的离心率为1/4,长轴的长度为12,则短轴的长度b为________。
三、解答题7. 已知点P(a, b)在椭圆E上,且OP过椭圆的焦点F,若椭圆E的长轴的长度为20,焦距为8,求椭圆E的方程。
解答:设椭圆E的中心为O(0, 0)。
由于点P(a, b)在椭圆E上,根据椭圆的定义可得:OP + PF1 = PF2(F1和F2为焦点)根据题目给出的信息,可以得到以下两个方程:√(a^2 + b^2) + √((a - 8)^2 + b^2) = √((a + 8)^2 + b^2)将上述方程两边平方,整理后可得:(a^2 + b^2) + ((a - 8)^2 + b^2) + 2√(a^2 + b^2)√((a - 8)^2 + b^2) = (a + 8)^2 + b^2化简上述方程,得:a^2 + b^2 + a^2 - 16a + 64 + 2√(a^2 + b^2)√((a - 8)^2 + b^2) = a^2 + 16a + 64将方程两边整理,得:2√(a^2 + b^2)√((a - 8)^2 + b^2) = 32a将上述方程两边平方,得:4(a^2 + b^2)((a - 8)^2 + b^2) = 1024a^2继续化简,得:4(a^2 + b^2)(a^2 - 16a + 64 + b^2) = 1024a^2将方程展开,整理,最终得到:5a^4 - 80a^3 + 64a^2 + 320a^2 - 4096a + 2560 = 0以上即为椭圆E的方程。
高二文科数学选修1-1椭圆单元练习卷

椭圆单元练习卷一、选择题:1162522=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5 D .72.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( )A. 22143x y +=B. 22134x y +=C. 2214x y +=D. 2214y x += 3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是( )A1858014520125201202522222222=+=+=+=+y x D y x C y x B y x 4.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( )A. 1-B. 1C.5 D.5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( )A.12B.C. D. 2 6.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为( )A.221169x y += B . 221259x y += C . 2212516x y += D . 221254x y += 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( )。
A 16x 2+9y 2=1B 16x 2+12y 2=1C 4x 2+3y 2=1D 3x 2+4y 2=18.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( )(A)450 (B)600 (C)900 (D)1209.椭圆221259x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为…… ( ) A. 4 B . 2 C. 8 D . 2310.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( )(A )2 3 (B )6 (C )4 3 (D )12 二、填空题:11.方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是____________ 12.过点(2,3)-且与椭圆229436x y +=有共同的焦点的椭圆的标准方程为_____________ 13.设(5,0)M -,(5,0)N ,△MNP 的周长是36,则MNP ∆的顶点P 的轨迹方程为_______14.如图:从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM ,则该椭圆的离心率等于_____________三、解答题:) 15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程。
椭圆的试题及答案高中

椭圆的试题及答案高中一、选择题1. 椭圆的焦点在x轴上,且离心率为\(\frac{1}{2}\),若椭圆的长轴长为6,则椭圆的短轴长为()。
A. 3B. 4C. 5D. 6答案:B解析:已知椭圆的离心率e=\(\frac{c}{a}\)=\(\frac{1}{2}\),长轴长2a=6,所以a=3。
根据离心率公式,可以得出c=\(\frac{3}{2}\)。
再根据椭圆的性质,b²=a²-c²,代入a和c的值,可得b²=\(\frac{9}{4}\),所以b=2,短轴长为2b=4。
2. 已知椭圆C的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a>b>0,若椭圆C上存在一点P,使得\(\overrightarrow{OP}\cdot \overrightarrow{F_1F_2} = 0\),则a的取值范围是()。
A. \(a>1\)B. \(a>2\)C. \(a>3\)D. \(a>4\)答案:B解析:已知\(\overrightarrow{OP} \cdot \overrightarrow{F_1F_2} = 0\),说明OP垂直于F1F2,即点P在椭圆的短轴端点上。
根据椭圆的性质,短轴端点到焦点的距离为b,而焦点到原点的距离为c。
由于\(\overrightarrow{F_1F_2} = 2c\),所以\(\overrightarrow{OP} = b\)。
根据勾股定理,有\(a^2 = b^2 + c^2\)。
由于\(\overrightarrow{OP} \cdot \overrightarrow{F_1F_2} = 0\),所以\(b = 2c\)。
代入勾股定理,得到\(a^2 = 5c^2\)。
又因为椭圆的离心率e=\(\frac{c}{a}\),所以\(a = \frac{5}{4}c\)。
文科数学总复习练习:椭圆

第5讲椭圆基础巩固题组(建议用时:40分钟)一、选择题1.椭圆x2m+错误!=1的焦距为2,则m的值等于( )A.5 B.3 C.5或3 D.8解析当m>4时,m-4=1,∴m=5;当0〈m〈4时,4-m=1,∴m=3.答案C2.“2<m〈6”是“方程x2m-2+错误!=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若错误!+错误!=1表示椭圆.则有错误!∴2〈m<6且m≠4。
故“2〈m<6”是“错误!+错误!=1表示椭圆”的必要不充分条件.答案B3.设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为() A。
错误! B.错误!C。
12D.错误!解析在Rt△PF2F1中,令|PF2|=1,因为∠PF1F2=30°,所以|PF1|=2,|F1F2|= 3.故e=错误!=错误!=错误!.故选D。
答案D4.(2015·全国Ⅰ卷)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E 的两个交点,则|AB|=() A.3 B.6C.9 D.12解析抛物线C:y2=8x的焦点坐标为(2,0),准线方程为x=-2。
从而椭圆E的半焦距c=2。
可设椭圆E的方程为错误!+错误!=1(a>b>0),因为离心率e=错误!=错误!,所以a=4,所以b2=a2-c2=12。
由题意知|AB|=错误!=2×错误!=6.故选B。
答案B5.(2016·江西师大附中模拟)椭圆ax2+by2=1(a>0,b>0)与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为错误!,则错误!的值为( ) A。
错误!B。
错误!C.错误!D。
错误!解析设A(x1,y1),B(x2,y2),则ax2,1+by错误!=1,ax错误!+by错误!=1,即ax错误!-ax错误!=-(by错误!-by错误!),错误!=-1,错误!=-1,∴错误!×(-1)×错误!=-1,∴ba=错误!,故选B。
椭圆的试题及答案高中

椭圆的试题及答案高中1. 已知椭圆的方程为 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中 \(a > b > 0\),求椭圆的焦点坐标。
答案:椭圆的焦点坐标为 \((\pm c, 0)\),其中 \(c =\sqrt{a^2 - b^2}\)。
2. 若椭圆 \(\frac{x^2}{4} + \frac{y^2}{3} = 1\) 与直线 \(y =2x + 3\) 相交于两点,求这两点的坐标。
答案:将直线方程代入椭圆方程,得到 \(\frac{x^2}{4} +\frac{(2x + 3)^2}{3} = 1\),解得 \(x_1 = -\frac{3}{2}, y_1 =0\) 和 \(x_2 = 1, y_2 = 5\)。
3. 椭圆 \(\frac{x^2}{9} + \frac{y^2}{5} = 1\) 的长轴和短轴的长度分别是多少?答案:长轴长度为 \(2a = 6\),短轴长度为 \(2b = 4\)。
4. 已知椭圆 \(\frac{x^2}{16} + \frac{y^2}{9} = 1\) 与 \(x\)轴的交点坐标。
答案:交点坐标为 \((\pm 4, 0)\)。
5. 椭圆 \(\frac{x^2}{25} + \frac{y^2}{16} = 1\) 的离心率是多少?答案:离心率 \(e = \frac{c}{a} = \frac{\sqrt{25 - 16}}{5}= \frac{3}{5}\)。
6. 椭圆 \(\frac{x^2}{4} + \frac{y^2}{3} = 1\) 的离心率和焦距分别是多少?答案:离心率 \(e = \frac{\sqrt{4 - 3}}{2} = \frac{1}{2}\),焦距 \(2c = 2\sqrt{4 - 3} = 2\)。
7. 椭圆 \(\frac{x^2}{9} + \frac{y^2}{4} = 1\) 与直线 \(y = -\frac{1}{2}x + 2\) 相交,求交点坐标。
高中椭圆测试题及答案

高中椭圆测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率e满足()A. 0 < e < 1B. 0 ≤ e < 1C. 0 ≤ e ≤ 1D. 0 < e ≤ 12. 若椭圆的长轴为2a,短轴为2b,焦距为2c,则下列关系式正确的是()A. a^2 = b^2 + c^2B. a^2 = b^2 - c^2C. b^2 = a^2 - c^2D. c^2 = a^2 - b^23. 已知椭圆的方程为 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,其中a > b > 0,下列说法正确的是()A. 椭圆的焦点在x轴上B. 椭圆的焦点在y轴上C. 椭圆的焦点在直线y = \frac{b}{a}x上D. 椭圆的焦点在直线y = -\frac{b}{a}x上4. 椭圆 \frac{x^2}{4} + \frac{y^2}{3} = 1 的离心率为()A. \frac{1}{2}B. \frac{\sqrt{3}}{2}C. \frac{\sqrt{5}}{4}D. \frac{1}{\sqrt{3}}5. 若椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的离心率为\frac{\sqrt{2}}{2},则a和b的关系为()A. a = \sqrt{2}bB. a = 2bC. b = \sqrt{2}aD. b = 2a二、填空题(每题4分,共20分)6. 椭圆 \frac{x^2}{9} + \frac{y^2}{4} = 1 的离心率为 ________。
7. 椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的焦点坐标为(±c,0),其中c = ________。
8. 椭圆 \frac{x^2}{16} + \frac{y^2}{9} = 1 的长轴长度为________。
高考数学历年(2018-2022)真题按知识点分类平面解析几何(圆锥曲线之椭圆)练习(附答案)

高考数学历年(2018-2022)真题按知识点分类平面解析几何(圆锥曲线之椭圆)练习一、单选题1.(2022ꞏ全国ꞏ统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2022ꞏ全国ꞏ统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=3.(2021ꞏ全国ꞏ统考高考真题)设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦4.(2021ꞏ全国ꞏ统考高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.(2020ꞏ山东ꞏ统考高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( )A .3B .6C .8D .126.(2019ꞏ全国ꞏ高考真题)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=7.(2018ꞏ全国ꞏ高考真题)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .148.(2018ꞏ全国ꞏ高考真题)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 1-9.(2018ꞏ全国ꞏ高考真题)已知椭圆C :2221(0)4x y a a+=>的一个焦点为(20),,则C 的离心率为A .13B .12C .2D .310.(2018ꞏ全国ꞏ专题练习)(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B .3C 3D .1311.(2019ꞏ北京ꞏ高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b二、多选题12.(2020ꞏ海南ꞏ高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线三、填空题13.(2022ꞏ全国ꞏ统考高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.14.(2019ꞏ全国ꞏ统考高考真题)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.四、解答题15.(2022ꞏ全国ꞏ统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.16.(2022ꞏ北京ꞏ统考高考真题)已知椭圆:2222:1(0)x y E a b a b +=>>的一个顶点为(0,1)A ,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.17.(2022ꞏ天津ꞏ统考高考真题)椭圆()222210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足BF AB(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN18.(2021ꞏ北京ꞏ统考高考真题)已知椭圆2222:1(0)x y E a b a b +=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为 (1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点,M N ,当|PM |+|PN |≤15时,求k 的取值范围. 19.(2021ꞏ全国ꞏ统考高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F . (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =20.(2021ꞏ天津ꞏ统考高考真题)已知椭圆()222210x y a b a b +=>>的右焦点为F ,上顶点为B ,且BF = (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.21.(2020ꞏ全国ꞏ统考高考真题)已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.22.(2020ꞏ山东ꞏ统考高考真题)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.23.(2020ꞏ全国ꞏ统考高考真题)已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.24.(2020ꞏ海南ꞏ高考真题)已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.25.(2020ꞏ全国ꞏ统考高考真题)已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 26.(2019ꞏ全国ꞏ高考真题)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.27.(2019ꞏ全国ꞏ高考真题)已知12,F F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2 POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.28.(2019ꞏ北京ꞏ高考真题)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |ꞏ|ON |=2,求证:直线l 经过定点.29.(2019ꞏ天津ꞏ高考真题)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.30.(2018ꞏ天津ꞏ高考真题)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M均在第四象限.若BPM △的面积是BPQ V 面积的2倍,求k 的值.31.(2018ꞏ天津ꞏ高考真题)设椭圆22221x y a b +=(a >b >0)的左焦点为F ,上顶点为B . 已知A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若sin 4AQ AOQ PQ=∠(O 为原点) ,求k 的值.32.(2018ꞏ北京ꞏ高考真题)已知椭圆2222:1(0)x y M a b a b +=>>,焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(Ⅰ)求椭圆M 的方程; (Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C 、D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .五、双空题33.(2021ꞏ浙江ꞏ统考高考真题)已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+= ⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________.参考答案1.A【要点分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【答案详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a === A.2.B【要点分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【答案详解】解:因为离心率13c e a ==,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -, B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B. 3.C【要点分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【答案详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即 02e <≤; 当32b b c->-,即22b c <时, 42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .【名师点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值. 4.C【要点分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点睛】 5.B【要点分析】根据椭圆中,,a b c 的关系即可求解. 【答案详解】椭圆的长轴长为10,焦距为8, 所以210a =,28c =,可得5a =,4c =, 所以22225169b a c =-=-=,可得3b =, 所以该椭圆的短轴长26b =, 故选:B. 6.B【要点分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得2n =,从而可求解.【答案详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养. 7.D【答案详解】要点分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 答案详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 名师点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 8.D【答案详解】要点分析:设2||PF m =,则根据平面几何知识可求121,F F PF ,再结合椭圆定义可求离心率.答案详解:在12F PF ∆中,122190,60F PF PF F ∠=∠=︒设2||PF m =,则1212||2,||c F F m PF ==,又由椭圆定义可知122||||1)a PF PF m =+=+则离心率212c ce a a ====-, 故选D.名师点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 9.C【答案详解】要点分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得a =最后利用椭圆离心率的公式求得结果.答案详解:根据题意,可知2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率为e =C. 名师点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中,,a b c 的关系求得结果.10.A【答案详解】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===故选A.【名师名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11.B【要点分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式.【答案详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.12.ACD【要点分析】结合选项进行逐项要点分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【答案详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线Cn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【名师点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.13.13【要点分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE V 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =. 【答案详解】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3,斜率倒数直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴12226461313cDE y y =-=⨯=⨯⨯⨯=, ∴138c =, 得1324a c ==, ∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==. 故答案为:13.14.(【要点分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【答案详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=, 又M 为C 上一点且在第一象限,12MF F △为等腰三角形,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.15.(1)22143y x +=(2)(0,2)-【要点分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. 【答案详解】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,(1,)3N ,代入AB 方程223y x =-,可得(3,)3T+-,由MT TH=得到(5,3H--.求得HN方程:(22y x=-,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234ky ykk ky yk⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【名师点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.16.(1)2214xy+=(2)4k=-【要点分析】(1)依题意可得22212bcc a b=⎧⎪=⎨⎪=-⎩,即可求出a,从而求出椭圆方程;(2)首先表示出直线方程,设()11,B x y、()22,C x y,联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出M x 、N x ,根据N M MN x x =-得到方程,解得即可; 【答案详解】(1)解:依题意可得1b =,2c =222c a b =-,所以2a =,所以椭圆方程为2214x y +=;(2)解:依题意过点()2,1P -的直线为()12y k x -=+,设()11,B x y 、()22,C x y ,不妨令1222x x -≤<≤,由()221214y k x x y ⎧-=+⎪⎨+=⎪⎩,消去y 整理得()()22221416816160k x k k x k k +++++=, 所以()()()222216841416160k k k k k ∆=+-++>,解得0k <, 所以212216814k k x x k++=-+,2122161614k kx x k +⋅=+, 直线AB 的方程为1111y y x x --=,令0y =,解得111M xx y =-, 直线AC 的方程为2211y y x x --=,令0y =,解得221N xx y =-,所以212111N M x xMN x x y y =-=--- ()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++()()12212222x x k x x -==++,所以()()122122x x k x x -=++, ()212124k x x x x =+++⎡⎤⎣⎦22221616168241414k k k k k k k ⎡⎤⎛⎫++=+-+⎢⎥ ⎪++⎝⎭⎣⎦()()22221616216841414kk k k k k k ⎡⎤=+-+++⎣⎦+整理得4k =,解得4k =-17.(1)e =(2)22162x y +=【要点分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由Δ0=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程. 【答案详解】(1)解:()222224332BF a b a a b AB===⇒=+⇒=,离心率为3c e a ==. (2)解:由(1)可知椭圆的方程为2223x y a +=, 易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=, 由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+, 由=OM ON 可得()()222229131m k m k+=+,②由OMN S =可得31213km m k ⋅=+③ 联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=.18.(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【要点分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k的范围,注意判别式的要求.【答案详解】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为1222a b ⨯⨯=,即a =,故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令=3y -,则112M x x y =-+,同理222N x x y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x >又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤, 综上,31k -≤<-或13k <≤.19.(1)2213x y +=;(2)证明见解析.【要点分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN = 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【答案详解】(1)由题意,椭圆半焦距c =ce a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F 三点共线,可设直线(:MN yk x =-即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k=±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x-+=,所以1212324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==213k =+ 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=-或y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN = 【名师点睛】关键点名师点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.20.(1)2215x y +=;(2)0x y -=.【要点分析】(1)求出a 的值,结合c 的值可得出b 的值,进而可得出椭圆的方程; (2)设点()00,M x y ,要点分析出直线l 的方程为0015x xy y +=,求出点P 的坐标,根据//MP BF 可得出MP BF k k =,求出0x 、0y 的值,即可得出直线l 的方程.【答案详解】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为c e a==2c =,1b =, 因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215xy +=上一点,先证明直线MN 的方程为0015x xy y +=, 联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭, 直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭, 因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=, 所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-, 所以,直线l的方程为166x y -+=,即0x y -=. 【名师点睛】结论名师点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b+=在其上一点()00,x y 的切线方程为00221x x y y a b +=,再应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.21.(1)221612525x y +=;(2)52. 【要点分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)方法一:过点P 作x 轴垂线,垂足为M ,设6x =与x 轴交点为N ,可得 PMB BNQ ≅△△,可求得P 点坐标,从而求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.【答案详解】(1) 222:1(05)25x y C m m+=<<∴5a =,b m =,根据离心率c e a ====,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=.(2)[方法一]:通性通法不妨设P ,Q 在x 轴上方,过点P 作x 轴垂线,垂足为M ,设直线6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥, 90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒, 90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=, 可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -, (6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===根据两点间距离公式可得:AQ ==,∴APQ △面积为:15252⨯=; ②当P 点为(3,1)-时,故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -, (6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===,根据两点间距离公式可得:AQ ==∴APQ △面积为:1522=,综上所述,APQ △面积为:52. [方法二]【最优解】:由对称性,不妨设P ,Q 在x 轴上方,过P 作PE x ⊥轴,垂足为E .设(6,0)D ,由题知,PEB BDQ ≌.故131p BP PE PEPE x QB BD ==⇒=⇒=±, ①因为(3,1),(5,0),(6,2)P A Q -,如图,所以,52APQAQD PEDQ PEA S S S S =--=.②因为(3,1),(5,0),(6,8)P A Q --,如图,所以52APQAQD PEDQ PEA S S S S =--=.综上有52APQ S =△ [方法三]:由已知可得()5,0B ,直线,BP BQ 的斜率一定存在,设直线BP 的方程为()5y k x =-,由对称性可设0k <,联立方程22(5),161,2525y k x x y =-⎧⎪⎨+=⎪⎩消去y 得()22221161601625250k x k x k +-+⨯-=,由韦达定理得221625255116P k x k ⨯-=+,所以22805116P k x k -=+,将其代入直线BP 的方程得210116P ky k -=+,所以22280510,116116k k P k k ⎛⎫-- ⎪++⎝⎭,则||BP == 因为BP BQ ⊥,则直线BQ 的方程为1(5)y x k=--,则16,,||Q BQ k ⎛⎫-== ⎪⎝⎭因为||||BP BQ ==,422566810k k -+=, 即()()22641410k k --=,故2164k =或214k =,即18k =-或12k =-.当18k =-时,点P ,Q 的坐标分别为(3,1),(6,8),||P Q PQ -=直线PQ 的方程为71093y x =+,点A 到直线PQ故APQ △的面积为1522=.当12k =-时,点P ,Q 的坐标分别为(3,1),(6,2),||P Q PQ =直线PQ 的方程为13y x =,点(5,0)A -到直线PQ 的距离为2,故APQ △的面积为15222⨯=.综上所述,APQ △的面积为52.[方法四]:由(1)知椭圆的方程为221612525x y +=,(5,0),(5,0)A B -.不妨设()00,P x y 在x 轴上方,如图.设直线:(5)(0)AP y k x k =+>.因为||||,BP BQ BP BQ =⊥,所以00||1,||5Q y BN y BM x ====-.由点P 在椭圆上得201612525x +=,所以209x =.由点P 在直线AP 上得()015k x =+,所以015k x k -=.所以2159k k -⎛⎫= ⎪⎝⎭,化简得216101k k =-. 所以0110155516k x k k k -⎛⎫-=--== ⎪⎝⎭,即(6,16)Q k . 所以,点Q 到直线AP 的距离d ==.又)0||5AP x k==+=.故115222APQS AP d =⋅== .即APQ △的面积为52.[方法五]:由对称性,不妨设P ,Q 在x 轴上方,过P 作PC x ⊥轴,垂足为C ,设(6,0)D , 由题知PCB BDQ ≌,所以131p BP PC PCPC x QB BD==⇒=⇒=±.(1)(3,1),(5,0),(6,2)P A Q -.则1221115|82111|222APQ S x y x y ==-=⨯-⨯= . (其中()()1122,,,AP x y AQ x y ==). (2)(3,1),(5,0),(6,8)P A Q --.同理,1221115|28111|222APQ S x y x y ==-=⨯-⨯= . (其中()()1122,,,AP x y AQ x y == ) 综上,APQ △的面积为52. 【整体点评】(2)方法一:根据平面几何知识可求得点P 的坐标,从而得出点Q 的坐标以及直线AQ 的方程,再根据距离公式即可求出三角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求APQ △的面积,计算上有简化,是本题的最优解;方法三:通过设直线BP 的方程()5y k x =-与椭圆的方程联立,求出点P 的坐标,再根据题目等量关系求出k 的值,从而得出点Q 的坐标以及直线AQ 的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线AP 的方程:(5)(0)AP y k x k =+>,通过平面知识求出点P 的坐标,表示出点Q ,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出.22.(1)22163x y +=;(2)详见解析.【要点分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程. (2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.【答案详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()222124260k x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以ꞏ0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x k m ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=, 因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由ꞏ0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍). 此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny +=.将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||23DQ AP ==.[方法三]:建立曲线系A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k ?-.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=. 由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =. 若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=. 令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =. 又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny +=,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.23.(1)12;(2)221:13627x y C +=,22:12C y x =.【要点分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)[方法四]由(1)可得出1C 的方程为2222143x yc c+=,联立曲线1C 与2C 的方程,求出点M的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【答案详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,。
【高考复习】2020年高考数学(文数) 椭圆 小题练(含答案解析)

【高考复习】2020年高考数学(文数)椭圆 小题练一、选择题1.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22D .2232.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1 C .x 24+y 23=1 D .x 24+y 2=13.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( ) A.x 22+y 24=1 B .x 2+y 26=1 C.x 26+y 2=1 D.x 28+y 25=14.已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( )A.x 216+y 27=1 B .x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D .x 216+y 225=1或x 225+y 216=15.已知动点M(x ,y)满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( )A .椭圆B .直线C .圆D .线段6.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N(2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线7.已知点A(-1,0)和B(1,0),动点P(x ,y)在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A .55B .105C .255D .21058.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( )A .12B .2C .4D .149.已知椭圆x 2a 2+y2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y轴于点P.若AP ―→=2PB ―→,则椭圆的离心率是( )A.32B.22C.13D.1210.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则该椭圆的离心率是( )A.13 B .33 C.34 D .22311.设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A.514 B .513 C.49 D .5912.已知椭圆x 2a 2+y2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F.以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( ) A.35 B .12 C.23 D .34二、填空题13.已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值范围是________.14.设e 是椭圆x 24+y 2k =1的离心率,且e=23,则实数k 的值是________.15.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________.16.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.17.设F1,F2是椭圆x249+y224=1的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=4∶3,则△PF1F2的面积为________.18.设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为 .答案解析1.答案为:C ;解析:根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C .2.答案为:C ;解析:依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a⇒a =2,b 2=a 2-c 2=3,因此其方程是x 24+y23=1,故选C .3.答案为:B ;4.答案为:B.解析:因为a=4,e=34,所以c=3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y216=1.5.答案为:D ;解析:设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|, 故动点M 的轨迹是线段F 1F 2.故选D .6.答案为:B ;解析:点P 在线段AN 的垂直平分线上,故|PA|=|PN|,又AM 是圆的半径,所以|PM|+|PN|=|PM|+|PA|=|AM|=6>|MN|,由椭圆定义知,动点P 的轨迹是椭圆.故选B .7.答案为:A ;解析:A(-1,0)关于直线l :y =x +3的对称点为A′(-3,2),连接A′B 交直线l 于点P ,则此时椭圆C 的长轴长最短,为|A′B|=25,所以椭圆C 的离心率的最大值为15=55.故选A .8.答案为:D ;解析:由x 2+y21m=1及题意知,21m =2×2×1,m =14,故选D .9.答案为:D ;∵AP ―→=2PB ―→,∴|AP ―→|=2|PB ―→|.又∵PO ∥BF ,∴|PA||AB|=|AO||AF|=23,即a a +c =23,∴e=c a =12.10.答案为:D.解析:不妨令椭圆方程为x 2a 2+y2b2=1(a >b >0).因为以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,所以2b=2a 3,即a=3b ,则c=a 2-b 2=22b ,则该椭圆的离心率e=c a =223.故选D.11.答案为:B.解析:由题意知a=3,b=5,c=2.设线段PF 1的中点为M ,则有OM∥PF 2,因为OM⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a=6,所以|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.12.答案为:A.解析:因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC=bc a , 因为四边形FAMN 是平行四边形,所以点M 的坐标为⎝⎛⎭⎫a +c 2,bc a , 代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0, 又0<e <1,所以e=35.故选A.13.答案为:⎝⎛⎭⎫0,12;解析:∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+ca<0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝⎛⎭⎫0,12.14.答案为:209或365; 解析:当k >4 时,有e=1-4k =23,解得k=365;当0<k <4时,有e=1-k 4=23,解得k=209.故实数k 的值为209或365.15.答案为:x 216+y24=1;解析:由题意可知e=c a =32,2b=4,得b=2,所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎪⎨⎪⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.16.答案为:63; 解析:由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F(c ,0), ∴BF →=c +32a ,-b 2,CF →=c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0,所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.17.答案为:24;解析:因为|PF 1|+|PF 2|=14,又|PF 1|∶|PF 2|=4∶3,所以|PF 1|=8,|PF 2|=6.因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.18.答案为:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆练习题(文科)
1.椭圆22
11625
x y +=的焦点坐标为_______________________ 2.已知a =4, b =1,焦点在x 轴上的椭圆方程是_______________________
3.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是_______________________
4.若椭圆22
110036
x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是_____ 5.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段
6.过点(3, -2)且与椭圆4x 2+9y 2
=36有相同焦点的椭圆的方程是 (A )2211510x y += (B )221510x y += (C )22
11015
x y += (D )2212510x y += 7.点P 为椭圆22
154
x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是(A )(±
, 1) (B ), ±1) (C )(D )(, ±1)
8=10为不含根式的形式是
(A )2212516x y += (B )221259x y += (C )2211625x y += (D )22
1925
x y += 9.椭圆22
125
x y m m +=-+的焦点坐标是 (A )(±7, 0) (B )(0, ±7) (C )(±7,0) (D )(0, ±7)
10.过椭圆4x 2+2y 2
=1的一个焦点F 1的弦AB 与另一个焦点F 2围成的三角形△ABF 2的周长是 . 11.已知椭圆方程为22
1499
x y +=中,F 1, F 2分别为它的两个焦点,则下列说法正确的有_____ ①焦点在x 轴上,其坐标为(±7, 0);② 若椭圆上有一点P 到F 1的距离为10,则P 到F 2的距离为4;③焦点在y 轴上,其坐标为(0, ±210);④ a =49, b =9, c =40,
12.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为
(A )53 (B )312 (C )43 (D )910
13.设椭圆的标准方程为22
135x y k k
+=--,若其焦点在x 轴上,则k 的取值范围是_____ 14.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为
(A )221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )22
11625
x y +=
15.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 .
16.对于椭圆C 1: 9x 2+y 2
=36与椭圆C 2: 22
11612x y +=,更接近于圆的一个是 . 17.曲线221259x y +=与22
1259x y k k
+=-- (k <9)有相同的 (A )短轴 (B )焦点 (C )准线 (D )离心率
18.若椭圆22189x y k +=+的离心率为e =2
1,则k 的值等于 . 19.若椭圆的一短轴端点与两焦点连线成120°角,则该椭圆的离心率为 .
20.离心率为3
2,长轴长为6的椭圆的标准方程是 21.点P 与定点(1, 0)的距离和它到直线x =5的距离的比是
33,求P 的轨迹方程 22.椭圆22
14924
x y +=上一点P 与椭圆两焦点F 1, F 2的连线的夹角为直角,求Rt △PF 1F 2的面积。