2020年拉深工艺与拉深模具设计参照模板

合集下载

拉深工艺与拉深模设计课件.pptx

拉深工艺与拉深模设计课件.pptx
3.在保证装配要求的前提下,应允许拉深件侧壁有一定的斜 度。
第四章 拉深工艺与拉深模设计
第六节 拉深件的工艺性
二、拉深件的结构工艺性(续)
4.拉深件的底或凸缘上的孔边到侧壁的距离应满足: a≥R+0.5t(或 rd + 0.5t)
5.拉深件的底与壁、 凸缘与壁、矩形件四 角的圆角半径应满足:
rd ≥t,R≥2t,r≥3t。 否则,应增加整形工序。
• 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行 8.5.20208.5.202011:0311:0311:03:1011:03:10
第七节 拉深模的典型结构
二、后续工序拉深模
1.无压边装置的后续工序拉深模 2.有压边装置的后续工序拉深模
无压边装置反拉深模 3.反拉深模 压边圈在上模的反拉深模
压边圈在下模的反拉深模
第四章 拉深工艺与拉深模设计
第七节 拉深模的典型结构
三、落料拉深复合模
正装落料拉深复合模
第四章 拉深工艺与拉深模设计
第四章 拉深工艺与拉深模设计
第六节 拉深件的工艺性
二、拉深件的结构工艺性(续)
6.拉深件不能同时标注内外形尺寸;带台阶的拉深件,其高 度方向的尺寸标注一般应以底部为基准,若以上部为基准,高 度尺寸不易保证。
带台阶拉深件的尺寸标注
第四章 拉深工艺与拉深模设计
第六节 拉深件的工艺性
三、拉深件的材料
用于拉深的材料一般要求具有较好的塑性、低的屈强比、 大的板厚方向性系数 b / t 和小的板平面方向性。

拉伸工艺与拉深模具设计

拉伸工艺与拉深模具设计
“起皱”和筒壁传力区的“拉裂”是拉深工艺能否顺利进行的主要障碍。为此,必须了解起 皱和拉裂的原因,在拉深工艺和拉深模设计等方面采取适当的措施,保证拉深工艺的顺利进行,提高拉深件的 质量。
1.凸缘变形区的起皱 拉深过程中,凸缘区变形区的材料在切向压应力 σ 的作用下,可能会产生失稳起皱,如图 4.2.6 所示。 凸缘区会不会起皱,主要决定于两个方面:一方面是切向压应力 σ 的大小,越大越容易失稳起皱;另一方面 是凸缘区板料本身的抵抗失 稳的能力,凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越小,抵抗失稳 能力越小。这类似于材料力学中的压杆稳定问题。压杆是否稳定不仅 取决于压力而且取决于压杆的粗细。在 拉深过程中 是随着拉深的进行而增加的,但凸缘变形区的相对厚度 也在增大。这说明拉深过程中失稳起皱的 因素在增加而抗失稳起皱的能力也在增加。
图 4.2.4
在厚度方向,由于压料圈的作用,产生压应力 ,通常 和 的绝对值比 大得多。厚度方向上材料的的变形 情况取决于径向拉应力 和切向压应力 之间比例关系,一般在材料产生切向压缩和径向伸长的同时,厚度有所 增厚,越接近于外缘,板料增厚越多。如果不压料( =0),或压料力较小( 小),这时板料增厚比较大。当 拉深变形程度较大,板料又比较薄时,则在坯料的凸缘部分,特别是外缘部分,在切向压应力 作用下可能失 稳而拱起,产生起皱现象。
此外,影响极限拉深系数的因素还有拉深方法、拉深次数、拉深速度、拉深件的形状等。 采用反拉深、软模拉深等可以降低极限拉深系数;首次拉深极限拉深系数比后次拉深极限拉深 系数小;拉深速度慢,有利于拉深工作的正常进行,盒形件角部拉深系数比相应的圆筒形件的
拉深系数小。 3.极限拉深系数的确定 由于影响极限拉深系数的因素很多,目前仍难采用理论计算方法准确确定极限拉深系数。

拉深工艺及拉深模设计

拉深工艺及拉深模设计

拉深工艺及拉深模设计本章内容简介:本章在分析拉深变形过程及拉深件质量影响因素的基础上,介绍拉深工艺计算、工艺方案制定和拉深模设计。

涉及拉深变形过程分析、拉深件质量分析、圆筒形件的工艺计算、其它形状零件的拉深变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结构、拉深模工作零件设计、拉深辅助工序等。

学习目的与要求:1.了解拉深变形规律、掌握拉深变形程度的表示;2.掌握影响拉深件质量的因素;3.掌握拉深工艺性分析。

重点:1. 拉深变形特点及拉深变形程度的表示;2.影响拉深件质量的因素;3.拉深工艺性分析。

难点:1.拉深变形规律及拉深变形特点;2.拉深件质量分析;3.拉深件工艺分析。

拉深:利用拉深模将一定形状的平面坯料或空心件制成开口空心件的冲压工序。

拉深工艺可以在普通的单动压力机上进行,也可在专用的双动、三动拉深压力机或液压机上进行。

拉深件的种类很多,按变形力学特点可以分为四种基本类型,如图5-1所示。

图5-1 拉深件示意图5.1 拉深变形过程分析5.1.1 拉深变形过程及特点图5-2所示为圆筒形件的拉深过程。

直径为D、厚度为t的圆形毛坯经过拉深模拉深,得到具有外径为d、高度为h的开口圆筒形工件。

图5-2 圆筒形件的拉深1.在拉深过程中,坯料的中心部分成为筒形件的底部,基本不变形,是不变形区,坯料的凸缘部分(即D-d的环形部分)是主要变形区。

拉深过程实质上就是将坯料的凸缘部分材料逐渐转移到筒壁的过程。

2.在转移过程中,凸缘部分材料由于拉深力的作用,径向产生拉应力,切向产生压应力。

在和的共同作用下,凸缘部分金属材料产生塑性变形,其“多余的三角形”材料沿径向伸长,切向压缩,且不断被拉入凹模中变为筒壁,成为圆筒形开口空心件。

3.圆筒形件拉深的变形程度,通常以筒形件直径d与坯料直径D的比值来表示,即m=d/D(5-1)其中m称为拉深系数,m越小,拉深变形程度越大;相反,m越大,拉深变形程度就越小。

5.1.2 拉深过程中坯料内的应力与应变状态拉深过程是一个复杂的塑性变形过程,其变形区比较大,金属流动大,拉深过程中容易发生凸缘变形区的起皱和传力区的拉裂而使工件报废。

双孔焊片多道拉深工艺及模具设计

双孔焊片多道拉深工艺及模具设计

双孔焊片多道拉深工艺及模具设计拉深工艺及模具设计在目前的生产中得到了广泛的应用,在实际生产中,应该精确计算精确生产,才能生产出高质量、符合要求的产品。

标签:拉深工艺;模具设计;要求;计算拉深工艺及模具无论在汽车生产还是水电机械的生产商都扮演着十分重要的角色,现结合相关的理论知识,对于拉深工艺程序及模具的设计进行了分析。

1 拉深件工艺拉深件工艺性的好坏,直接影响到该零件能否用拉深方法生产出来,影响到零件的质量、成本和生产周期等等。

一个工艺性好的拉深件,不仅能满足产品的使用要求,同时也能够用最简单、最经济和最快的方法生产出来。

1.1 对拉深件外形尺寸的要求设计拉深件时应尽量减少其高度,使其可能用一次或两次拉深工序来完成。

对于各种形状的拉深件,用一次工序可制成的条件为:(1)对于圆筒件一次拉成的高度见表1。

(2)对于盒形件一次制成的条件为:当盒形件角部的圆角半径r=(0.05~0.20)B(式中B为盒形件的短边宽度)时,拉深件高度h<(0.3~0.8)B。

(3)对于凸缘件一次制成的条件为:零件的圆筒形部分直径与毛坯的比值d/D≥0.4。

表1一次拉深的极限高度1.2 对拉深件形状的要求1.2.1 设计拉深件时,应明确注明必须保证的是外形还是内形,不能同时标注内外形尺寸。

1.2.2 尽量避免采用非常复杂的和非对称的拉深件。

对半敞开的或非对称的空心件,应能组合成对进行拉深,然后将其切成两个或多个零件。

1.2.3 拉深复杂外形的空心件时,要考虑工序间毛坯定位的工艺基准。

1.2.4 在凸缘面上有下凹的拉深件,如下凹的轴线与拉深方向一致,可以拉出。

若下凹的轴线与拉深方向垂直,则只能在最后校正时压出。

1.3 对拉深件的圆角半径和拉深件精度的要求1.3.1 为了使拉深顺利进行,拉深件的底与壁、凸缘与壁、盒形件的四壁间的圆角半径应满足rb?叟t,rd?叟2t,r?叟3t否则,应增加整形工序。

1.3.2 一般情况下不要对拉深件的尺寸公差要求过严。

端盖拉深工艺与模具设计

端盖拉深工艺与模具设计
边 圈 拉 深 时 的 拉 深 系数 )得 ,m .5 .8 =05 ~05 <
07 6,所 以 工件 可 以一 次 拉深 完 成 。 .4
边 。修边余量查表 ( 凸缘 圆筒形拉深件的修边余 无
量 ) ( 冲压 设 计 资 料 ) ,取 =2 mm。
2 毛坯尺寸计 算 .
装置的零件端 盖属于锥形拉深件 ( 见图1 ),材料
为0 A1 8 ,在 锅 炉 产 品生 产 时 ,由于 各 种 原 因零 件 拉 制 后起 皱 严 重 ,形 状 、尺 寸 均 不 符 合 图样 要 求 ,影 响 总体 安 装 及 锅 炉 运 行 。我 们 又 重 新进 行 了工 装 设
计算得D=4 91 1. mm。经过试压修正 ,圆环毛
参磊

5 9
间隙。
7 模具设计 .
D ( 一 D一07 A) + . 5 在 凸 凹模模 壁强 度 允 许 的 条件 下 ,采 用 复合 工 艺 。 对 双 壁 空 心 零 件 采 用 反 拉 深 法 , 由于 增 加 了 径 向拉应 力 盯. 作 用 ,根 据 塑性 方程 式 。 盯 = 的 +
形 方案 。
3 压边 圈的采 用及其类型 .
为 了防止 在拉 深过 程 中工件 的边缘 起皱 ,应
使 毛 坯 在 被 拉 入 凹模 圆 角 以前 保 持 稳 定 状 态 ,其
稳 定 程 度 主 要 取 决 于 毛 坯 的相 对 厚 度 t x 1 0= / 0 D
(/1 ) ×10 .8 24 0 0 =0 ,拉深 系数/ 一07 6 4 T .4 ,根据 /
4 拉 深系数和拉 深次数 .
在 制订 拉深 件 的工 艺 过 程 和 设计 拉 深 模 具 时 , 必 须 预 先 确定 该 零 件 是 否 可 以一 道 工 序 拉成 ,正 确

拉深工艺与拉深模设计

拉深工艺与拉深模设计

(1)由直线和圆弧相连接的形状
(2)曲线连接的形状
测验题
填空 1、不变薄拉深简单旋转体毛坯尺寸的计算常采用 。
课后思考
1、拉深件坯料尺寸的计算遵循什么原则? 2、简单旋转体拉深件的毛坯
学习目标: 了解拉深系数的概念,能够计算圆筒形件的
拉深次数及各次拉深的工序件尺寸;计算圆筒形 件的拉深力。
1)孔位应与主要结构面(凸缘面)在同一平面, 或孔壁垂直该平面,便于冲孔与修边在同一 道工序中完成。
2)拉深件侧壁上的冲孔与底边或凸缘边的距离
h2dt
3)拉深件凸缘上的孔距:
D 1(d13t2r2d)
4)拉深件底部孔距:
dd12r1t
4.2.3 拉深件的精度等级 主要指其横断面的尺寸精度;一般在IT13级
2)工序件底部圆角半径 合理选配各次拉深工序件的底部圆角半径
3)高度
无凸缘圆筒形件拉深工序计算流程
4.4.3 有凸缘圆筒形的拉深计算 1.判断能否一次拉深成形 (1)利用极限相对高度进行判断(查表)
如果工件的相对高度h/d小于或等于表中 对应的极限相对高度[h1/d1]值时,则可以一次 拉深成形;否则需多次拉深。
2)尽量避免半敞开及非对称的空心件,应考虑设 计成对称(组合)的拉深,然后剖开;
3)在设计拉深件时,应注明必须保证外形或内形 尺寸,不能同时标注内外形尺寸;带台阶的拉 深件,其高度方向的尺寸标注一般应以底部为 基准。
4)拉深件口部尺寸公差应适当。
5)一般拉深件允许壁厚变化范围0.6t1.2t,若 不允许存在壁厚不均现象,应注明;
上表只适合08及10号钢的拉深件
2.拉深件工序件尺寸
1)直径 确定拉深次数后,应调整拉深系数,使首

第四章 拉深工艺及模具设计

第四章 拉深工艺及模具设计
24.10.2023
拉深过程中影响起皱的主要因素
板料的相对厚度 t/D
t dt d
t/D 越小,拉深变形区抗失稳的能力越差,越易起皱。
拉深系数 m(切向压应力的大小)
m 越小,拉深变形程度越大,切向压应力的数值越大;另外, 变形区的宽度越大,抗失稳的能力变小,越易起皱。
模具工作部分几何形状
用锥形凹模拉深时,由于毛坯的 过渡形状使拉深变形区有较大的抗失 稳能力,与平端面凹模相比可允许用 相对厚度较小的毛坯而不致起皱。
划分为五个区: I 凸缘部分 II 凹模圆角部分 III 筒壁部分 IV 凸模圆角部分 V 筒底部分
下标1、2、3分别代表 坯料径向、厚向、切 向的应力和应变
坯料各区的应力与应变是很不均匀的。
24.10.2023
IV
24.10.2023
I II
III V
三、拉深变形过程中凸缘变形区的应力分布
拉深至某一瞬时 R t
使
max 1 max
出现在
R t0.7~0.9R 0
即拉深早期。
24.10.2023
四、筒壁传力区的受力分析
(1)压边力Q 引起的摩擦应力
M
2 Q dt
(2)材料流过凹模圆角半径产生弯 曲变形的阻力
W 14b
rd
t t
2
(3)材料流过凹模圆角后又被拉直 成筒壁的反向弯曲力
'WW14b
t rdt
2
24.10.2023
§4-3 直壁旋转体零件的拉深
一、拉深毛坯尺寸的确定
拉深毛坯尺寸的确定原则: 体积不变原则: 若拉深前后料厚不变,拉深前坯料表面积与拉深后
冲件表面积近似相等,得到坯料尺寸。

模具设计第五章 拉深工艺及拉深模

模具设计第五章 拉深工艺及拉深模
26627D
七、拉深模制造特点
4)由于拉深过程中材料厚度变化及回弹变形等原因,复杂拉深件 坯料形状和尺寸设计值与实际值往往存在误差,坯料形状和尺寸 最终是在试模后确定。 2.拉深模凸、凹模的加工方法
26627D
七、拉深模制造特点
表5-4 拉深凸模常用加工方法
26627D
七、拉深模制造特点
表5-5 拉深凹模常用加工方法
一、拉深变形分析
26627D
图5-3 拉深件的网格变化
二、拉深件的主要质量问题
1.起皱
26627D
图5-4 起皱破坏
二、拉深件的主要质量问题
(1)影响起皱的主要因素 1)坯料的相对厚度t/D。 2)拉深系数m。 (2)起皱的判断 在分析拉深件的成形工艺时,必须判断该冲件 在拉深过程中是否会发生起皱,如果不起皱,则可以采用无压边 圈的模具;否则,应该采用带压边装置的模具,如图5-5所示。
26627D
图5-10 圆筒形件
三、圆筒形件的拉深
解 由于t=2mm>1mm,所以按中线尺寸计算。 1)确定修边余量。 2)计算坯料展开直径。 3)确定是否用压边圈。 4)确定拉深次数。 5)确定各次拉深直径。 6)求各工序件高度。 7)画出工序图,如图5-11所示。
26627D
四、拉深模的典型结构
26627D
图5-9 多次拉深时筒形件直径的变化
三、圆筒形件的拉深
2.拉深系数
表5-3 圆筒形件带压边圈时的极限拉深系数
3.拉深次数 4.圆筒形件拉深各次工序尺寸的计算
(1)工序件直径 从前面介绍中已知,各次工序件直径可根据各 次的拉深系数算出。
Hale Waihona Puke 26627D三、圆筒形件的拉深

第08章--拉深模具设计PPT课件

第08章--拉深模具设计PPT课件

以由弹簧或橡皮产生,也可以由气垫产生。
5
带凸缘零 件的拉深模结 构,毛坯用定 位板定位,在 下模座上安装 了定距垫块, 用来控制拉深 深度,以保证 制件的拉深高 度和凸缘直径。
图8.6 凸缘件拉深模(定距垫块) 6
图8.7 凸缘件拉深模(打料块定距)
毛坯用固定挡料销定位,打料块同时起定距垫块的作用, 作用同样是控制拉深高度和凸缘直径。
第8章 拉深模具设计
8.1 单动压力机首次拉深模
8.1.1 无压边圈的拉深模
适用于底部平整、 拉深变形程度不大、 相对厚度(t/D)较大和 拉深高度较小的零件。
1
图8.1 无压边圈有顶出装置的拉深模
8.1.2 带压边圈的拉深模
板料毛坯 被拉入凹模。 在拉簧力的作 用下,刮件环 又紧贴凸模, 在凸模上行时 可以将制件脱 出,由下模座 孔中落下。
下止点
30°
60°
曲轴转角α
90° 23
8.6.4 模具工作部分尺寸的计算
1. 凸、凹模间隙 2. 凸、凹模圆角半径 3. 凸、凹模工作尺寸及公差 4. 凸模通气孔
24
8.6.5 模具的总体设计
模具的总装图如 图8.26所示。
采用正装式结构, 落料拉深凸凹模安装 在上模;
刚性卸料板卸去 废料,也起导尺作用,
线,
若落料拉深力曲线处于许用负荷曲线之下,则所选设备符合
工作要求;
若落料拉深力曲线超出许可范围(见图8.25),则需选择标称
压力更大型号的压力机,继续以上校核过程。
26
图8.25 许用负荷与实际负荷
27
用导尺和固定挡 料销定位;
打料块将卡在凸 凹模内的工件推出。
图8.26 落料首次拉深复合模 25

第四章 拉深工艺与模具设计

第四章 拉深工艺与模具设计

t D

Ky (1
m1 )
以后各次拉深中制件不起皱的条件是: 实践证明:
t di1

K
y
(
1 m1
1)
直壁圆筒形件的首次拉深中起皱最易发生的时刻:拉深的初期
(二)拉裂 当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在底部圆角与 筒壁相切处——“危险断面”产生破裂。
为防止拉裂,可以从以下几方面考虑: (1)根据板材成形性能,采用适当的拉深比和压边力; (2)增加凸模表面粗糙度;改善凸缘部分的润滑条件; (3)合理设计模具工作部分形状;选用拉深性能好的材料等。
第四章 拉深工艺与模具设计
拉深变形过程分析
直壁旋转体零件拉深 工艺计算
非直壁旋转体零件拉深 成形方法
盒形件的拉深
拉深工艺设计 拉深模具的类型与结构
其他拉深方法 拉深模工作部分的设计
返回
拉伸:
拉深是利用拉深模具将冲裁好的平板毛坯压制成各种开口的空心工 件,或将已制成的开口空心件加工成其它形状空心件的一种冲压加 工方法。拉深也叫拉延。
(二)筒壁传力区的受力分析
1.压边力Q引起的摩擦力:
m

2Q dt
2.材料流过凹模圆角半径产生弯曲变形的阻力
w

1 4

b
rd
t t
/
2
3.材料流过凹模圆角后又被拉直成筒壁的反向弯曲w 力 仍按上式进行计
算,拉深初期凸模圆角处的弯曲应力也按上式计算
w
w

1 4

b
rd
t t
2)筒底圆角半径rn
筒底圆角半径rn即是本道拉深凸模的圆角半径rp,确定方法如下:
r r 一般情况下,除末道拉深工序外,可取 pi = di。 对于末道拉深工序:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲面旋转
直壁非旋转
复杂形状零件
4.1 拉深变形分析
• 拉深变形过程 • 拉深过程中毛坯的应力应变状态 • 拉深过程中的力学分析 • 拉深过程中出现的问题及其防止措施
4.1 拉深变形过程的分析
4.1.1 拉深变形过程
1.金属的流动过程(如图所示) 工艺网格实验
2.拉深变形过程 在拉深力的作用下,毛坯内部的各个小单元体之间产
厚度变化:底部略有变薄,壁部上段增厚,下部变薄,
侧壁靠近底部圆角处最严重,甚至断裂,为危险断面
1 、凸缘变形区的应力分析
1
1.1 s
ln
Rw
3
1.1 s 1 ln
Rw
其中Rw—瞬时法兰外半径
r Rw
max
1.1 s
ln
Rw r
( r)
max 1.1 s ( Rw)
筒壁传力区的受力分析 凸模的压力通过筒壁传递至法兰的内边缘,将变形区的
拉深模设计程序
审图 拉深工艺性分析 拉深工艺方案制定
毛坯尺寸计算 拉深次数确定 冲压力及压力中心计算 冲压设备选择 凸、凹模结构设计 总体结构设计 冲压模装配图绘制 非标零件图绘制
4.2 审图与拉深工艺性分析
学习目标: 掌握拉深件的结构工艺性要求,了解拉深件在
公差、材料上的要求,掌握拉深件工序安排的一般 原则。
1 、起皱 起皱主要是由于凸缘处的切向压应力超过了板料的临
界压应力所引起的。起皱首先产生在法兰外缘处。
1)起皱的影响 起皱不利于拉深变形 a、由于起皱,毛坯不能被拉过凸凹模间隙面而拉断 b、轻微起皱的毛坯即使拉过凸凹模间隙,也会在筒
壁上留下起皱痕迹而影响质量。
2)起皱的影响因素:
a:凸缘部分材料的相对厚度t/D
可减小1/2。
pg
pg
py
3.矩形拉深件壁间圆角半径rpy 矩形拉深件壁间圆角半径rpy:
指矩形拉深件的四个壁的转角半径。
要求:rpy≥3t及rpy≥H/5
b:切向压应力的大小 拉深时,变形程度越大,就越容易起皱。
c:材料的力学性能 板料的屈强比小,则屈服极限小,变形区内的切向压
应力也相对减小,因此板料不容易起皱
3)防皱措施:主要采用压边圈防皱
a:用于双动冲床的刚性压边圈,主要靠调整压边圈与 凹模表面间隙保证防皱。
b:用于单动冲床的弹性压边圈,常用动源为橡胶、 弹簧、气垫。
拉深过程中某一瞬时毛坯变形和应力情况(如图4.1.4)
法兰部分-变形区:径向拉应力,切向压应力;材料主要 向径向流动,同时也向厚向流动而加厚 凹模圆角部位-过渡区:除与法兰部分相同特点外,还承 受凹模圆角的压力和弯曲作用而产生的压应力 侧壁部分-已变形区、传力区:继续拉深时,将凸模拉深 力传递到法兰区,受单向拉应力作用;发生少量的纵向伸 长和变薄 凸模圆角部位-过渡区:底部圆角稍上处,变薄最严重, 为零件的危险断面,直接影响极限变形程度 底部-不变形区、传力区:基本不变形,由于底部圆角部 分的拉深力,材料受两向拉应力作用,厚度略有变薄
4.2.2 拉深件圆角半径的要求
1.凸缘圆角半径rdΦ 凸缘圆角半径rdΦ:指壁与凸缘的转角半径。
要求:
1)rdΦ>2t 一般取:rdΦ=(48)t
2)当rdΦ<0.5mm时,应增加整形工序。
pg
pg
py
2.底部圆角半径rpg 底部圆角半径rpg:指壁与底面的转角半径。
要求:
1)rpg≥t,一般取:rpg≥(35)t 2)rpg<t,增加整形工序,每整形一次,rpg
教学要求: 根据弯曲件的结构工艺性要求改善拉深件的结
构设计;能够根据拉深件的工艺条件,确定拉深件 圆角半径,确定带孔拉深件的孔的位置。
4.2.1 对拉深件形状尺寸的要求
1)拉深件形状应尽量简单、对称,尽可能一次拉 深成形。
2)尽量避免半敞开及非对称的空心件,应考虑设 计成对称(组合)的拉深,然后剖开;
2 、拉裂
拉深时筒壁总拉应力超过筒壁最薄弱处材料强度 时,拉深件产生破裂。
原因:
1)由于法兰起皱,坯料不能通过凸凹模间隙,使筒 壁拉应力增大
2)压边力过大,使径向拉应力增大 3)变形程度太大
防止拉裂的措施:
1)采用适当的拉深比和压边力 2)增加凸模的表面粗糙度,改善凸缘部分变形材 料的润滑条件 3)合理设计模具工作部分的形状 4)选用拉深性能好的材料.
3)在设计拉深件时,应注明必须保证外形或内形 尺寸,不能同时标注内外形尺寸;带台阶的拉 深件,其高度方向的尺寸标注一般应以底部为 基准。
4)拉深件口部尺寸公差应适当。
5)一般拉深件允许壁厚变化范围0.6t1.2t,若 不允许存在壁厚不均现象,应注明;
6)需多次拉深成形的工件,应允许其内、外壁 及凸缘表面上存在压痕;
返回目录
4.1 拉深变形分析
1 、拉深的基本概念 拉深-也称拉延,是利用模具使平板毛坯成为开口
空心零件的冲压加工方法。
2 、拉深件分类 (如图所示)
直壁旋转体-圆筒形零件 (无凸缘圆筒形件、有凸缘圆筒形件)、阶梯形
件 直壁非旋转体-盒形件 曲面旋转体-球面、锥面零件 曲面非旋转体-复杂形状零件
直壁旋转
拉深工艺与拉深模具设计
概述
4.1 拉深变形过程分析 4.2 审图与拉深工艺性分析 4.3 拉深件毛坯尺寸计算 4.4 圆筒形件拉深计算 4.5 拉深凸、凹模结构设计 4.6 拉深件成形模具总体结构设计 4.7 其它旋转体件的拉深 4.8 盒形件的拉深 4.9 其它拉深方法 4.10拉深次品分析及拉深中的辅助工序
生了内应力,在径向产生拉应力,在切向产生压应力,在 这两种压力的作用下,凸缘区的材料发生塑性变形并不断 的被拉入凹模内,成为圆筒形零件。
4.1.2 拉深过程中毛坯的应力与应变状态
根据应力应变状态不同,可将拉深过程的毛坯分成 五个部分:
1 、平面凸缘区—主要变形区 2 、凸缘圆角部分—过渡区 3 、筒壁部分—传力区 4 、底部圆角部分 —过渡区 5 、圆筒底部分—小变形区
材料拉入凹模,筒壁区所受的拉应力由以下各部分组成 ①使变形区产生塑性变形所必须的拉应力
②克服变形区上下两个表面的摩擦阻力所必须的力 ③克服毛坯沿凹模圆角运动必须克服的弯曲阻力 ④材料流过凹模圆角时的摩擦阻力
所以,筒壁的拉应力总和为
p max M e 2 W
4.1.3 拉深成形过程中出现的问题及防止措施
相关文档
最新文档