初三数学综合试题
初三数学圆的综合的专项培优练习题(含答案)及答案解析
初三数学圆的综合的专项培优练习题(含答案)及答案解析一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.3.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.4.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=123,3,在Rt△DEP中,∵37∴22(7)(3)=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=17,∴57∵BE∥DF,∴△ABE∽△AFD,∴BE AE DF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴阴影部分的面积=△BDF的面积﹣弓形BD的面积=△BDF的面积﹣(扇形BOD的面积﹣△BOD的面积)=22160(23)3123(23)23604π⨯⨯⨯--⨯ =93﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.5.如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;(3)当CP旋转多少秒时,△BCE是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.6..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A 重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r ,由勾股定理得:(3r )2+9=36,解得:r=3; (3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==-②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2,即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC 于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=322)tan ∠BCD=14;(3)①135°;②2. 【解析】 【分析】(1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(2c )(2c )=8,消去字母a ,b 求出c 值,即求出△CPF 2c . 【详解】 (1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得: AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1, ∴x 2+x 2=82, 解得:x=42.∵⊙O 内接四边形,∠ACD=90°, ∴∠ADE=90°, ∴∠EDB=90°, ∵∠B=45°,∴△BDE 是等腰直角三形. ∴DE=DB , 又∵DB=1, ∴DE=1, 又∵CE=BC-BE , ∴CE=42232-=. (2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y , ∵S △ACB =S ACD +S DCB ,∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去). ∴EM=1,CM=CE+ME=1+3=4, 又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°, ∴∠CPD=∠CAD=45°, 又∵点D 是CPF ∆的内心, ∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD ∴∠CPF=90° ∴∠PCF+∠PFC=90°∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°, 即∠CDF 的度数为135°. ②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心, ∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°, ∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线, ∴∠PCF=2∠DCF ,∠PFC=2∠DFC , ∴∠PCF+∠PFC=90°, ∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°, ∴四边形PKDN 是矩形, 又∵KD=ND ,∴四边形PKDN 是正方形. 又∵∠MBD=∠BDM=45°, ∠BDM=∠KDP , ∴∠KDP=45°. ∵PC=a ,PF=b ,PD=c ,∴,∴NF=b -,CK=a -, 又∵CK=CM ,FM=FN ,CF=CM+FM , ∴CF=a b +, 又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a b (a b 2222=+++-),化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ),将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴m=c 222==, 即△CPF 的内切圆半径长为2. 【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.8.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxx-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC =HP CP =10R R -=45,解得:R =409; (2)在△ABC 中,AC =BC =10,cosC =35, 设AP =PD =x ,∠A =∠ABC =β,过点B 作BH ⊥AC ,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51+,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.10.如图,四边形ABCD是⊙O的内接四边形,AC为直径,»»BD AD=,DE⊥BC,垂足为E.(1)判断直线ED与⊙O的位置关系,并说明理由;(2)若CE=1,AC=4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影. 【解析】 【分析】(1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可. 【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•2223=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.11.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求AB 的长度.【答案】AB =3. 【解析】 【分析】作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD =u u u r u u u r,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =23,AE =2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可. 【详解】作DE ⊥AC ,BF ⊥AC ,∵BC =CD , ∴BC CD =u u u r u u u r, ∴∠CAB =∠DAC , ∵∠DAB =120°, ∴∠DAC =∠CAB =60°, ∵DE ⊥AC ,∴∠DEA =∠DEC =90°, ∴sin60°=4DE ,cos60°=4AE, ∴DE =3AE =2, ∵AC =7,∴CE =5,∴DC= ∴BC ,∵BF ⊥AC ,∴∠BFA =∠BFC =90°,∴tan60°=BF AF,BF 2+CF 2=BC 2, ∴BF,∴()2227AF +-=, ∴AF =2或AF =32, ∵cos60°=AF AB, ∴AB =2AF ,当AF =2时,AB =2AF =4,∴AB =AD ,∵DC =BC ,AC =AC ,∴△ADC ≌△ABC (SSS ),∴∠ADC =∠ABC ,∵ABCD 是圆内接四边形,∴∠ADC+∠ABC =180°,∴∠ADC =∠ABC =90°,但AC 2=49,2222453AD DC +=+=,AC 2≠AD 2+DC 2,∴AB =4(不合题意,舍去), 当AF =32时,AB =2AF =3, ∴AB =3.【点睛】 此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.12.如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE =∠C .(1)求证:AE 与⊙O 相切于点A ;(2)若AE ∥BC ,BC =AC =2,求AD 的长.【答案】(1)证明见解析;(2)23【解析】【分析】(1)根据题目中已出现切点可确定用“连半径,证垂直”的方法证明切线,连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,根据同弧所对的圆周角相等,则可得到∠BAE=∠F,既而得到AE与⊙O相切于点A.(2))连接OC,先由平行和已知可得∠ACB=∠ABC,所以AC=AB,则∠AOC=∠AOB,从而利用垂径定理可得AH=1,在Rt△OBH中,设OB=r,利用勾股定理解得r=2,在Rt△ABD中,即可求得AD的长为3【详解】解:(1)连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,∵»»,AB AB∴∠ACB=∠F,∵∠BAE=∠ACB,∴∠BAE=∠F,∵∠FAB+∠F=90°,∴∠FAB+∠BAE=90°,∴OA⊥AE,∴AE与⊙O相切于点A.(2)连接OC,∵AE∥BC,∴∠BAE=∠ABC,∵∠BAE=∠ACB,∴∠ACB=∠ABC,∴AC=AB=2,∴∠AOC=∠AOB,∵OC=OB,∴OA⊥BC,∴CH=BH=1BC32在Rt△ABH中,AH=22AB BH-=1,在Rt△OBH中,设OB=r,∵OH2+BH2=OB2,∴(r﹣1)2+(3)2=r2,解得:r=2,∴DB=2r=4,在Rt△ABD中,AD=22BD AB-=2242-=23,∴AD的长为23.【点睛】本题考查了圆的综合问题,恰当的添加辅助线是解题关键.13.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH的值为632-或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线. (2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD 33,∴OD =OC ﹣CD =43,∴AD =OA+OD =8+43 =123 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2. (3)如图2中,由(2)可知:BF =12BC =4,FM =3BF =43 ,CM =2DM =2,CD =3 , ∴FM =FC ﹣CM =43﹣2,①当△CDH ∽△BFM 时,DH CD FM BF = , ∴ 3432=- ,∴DH =63- ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =- ,∴DH =1223+ , ∵DN =()22443833--=- ,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为63- 或1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.14.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围;②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF=3,在Rt △AFD 中求得DF =1,所以AB =AD = ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD =,即可求出BE 的长度; 试题解析:(1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°.∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴AB AD ==且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA , ∴BE AB DA CD=,∴10=,10∴5BE=.2。
2022年北京市丰台区初三数学综合练习2 (二模)试题及答案解析
2022年北京市丰台区初三数学综合练习2(二模)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,下列水平放置的几何体中,侧面展开图是扇形的是A. B.C. D.2. 2021年我国原油产量约1.99亿吨,连续3年回升.将199000000用科学记数法表示应为( )A. 199×106B. 1.99×108C. 1.99×109D. 0.199×1093. 如图,AB//CD,∠ACD=80°,∠ACB=30°,∠B的度数为( )A. 50°B. 45°C. 30°D. 25°4. 下列多边形中,内角和最大的是 ( )A. B. C. D.5. 实数a,b在数轴上的对应点的位置如图所示,若实数c满足b<c<a,则c的值可以是( )A. −3B. −2C. 2D. 36. 同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是( )A. 23B. 12C. 13D. 147. 若n为整数,且n<√77<n+1,则n的值是( )A. 7B. 8C. 9D. 108. 如图,某容器的底面水平放置,匀速地向此容器内注水,在注满水的过程中,水面的高度ℎ与时间t的函数关系的图象大致是A. B. C. D.二、填空题(本大题共8小题,共24.0分)9. 若√x−3在实数范围内有意义,则实数x的取值范围是.10. 方程 1 x =3x+2的解为________ .11. 已知关于x的方程x2−2x+m=0有两个不相等的实数根,则m的取值范围是________12. 如图,PA,PB是⊙O的切线,A,B为切点,点C在⊙O上,若∠APB=60∘,则∠ACB= _____°.13. 如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,连接EF.只需添加一个条件即可证明四边形EFCB是菱形,这个条件可以是(写出一个即可).14. 在平面直角坐标系xOy中,若直线y=x与双曲线y=mx的交点为A,B,且点A,B的横坐标分别为x 1,x 2,则x 1+x 2的值是_______ .15. 甲、乙两台包装机同时包装糖果,分别从中随机抽取5袋,测得它们的实际质量(单位:g)如表所示:甲1001029910198乙1009710497102那么包装机包装的5袋糖果的质量比较稳定(填“甲”或“乙”).16. 某超市现有n个人在收银台排队等候结账.设结账人数按固定的速度增加,收银员结账的速度也是固定的.若同时开放2个收银台,需要20分钟可使排队等候人数为0;若同时开放3个收银台,需要12分钟可使排队等候人数为0.为减少顾客等待结账的时间,需要6分钟内使排队等候人数为0,则需要至少同时开放个收银台.三、计算题(本大题共2小题,共12.0分)17. 计算:|−3|−2sin45∘+√8+(π+√3)0.18. 解不等式组:{ 2x−3>x−2 , 3x−22<x+1 .四、解答题(本大题共10小题,共80.0分。
初三数学试题全册及答案
初三数学试题全册及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(3无限循环)B. √4C. πD. 1/3答案:C2. 一个二次函数y=ax^2+bx+c的顶点坐标为(1,-2),则下列哪个选项是正确的?A. a<0,b=2a,c=a-3B. a>0,b=-2a,c=a-3C. a<0,b=-2a,c=a-3D. a>0,b=2a,c=a-3答案:C3. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 14D. 16答案:B4. 已知一个圆的半径为5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个等差数列的首项为2,公差为3,那么这个数列的第5项是多少?A. 17B. 14C. 11D. 8答案:A6. 一个正六边形的边长为2,那么这个正六边形的面积是多少?A. 6√3B. 4√3C. 2√3D. √3答案:B7. 已知一个函数f(x)=2x+3,那么f(-1)的值是多少?B. 1C. 5D. -5答案:A8. 一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是多少?A. 5B. √7C. √13D. 7答案:A9. 一个等比数列的首项为2,公比为2,那么这个数列的第4项是多少?A. 16C. 64D. 128答案:A10. 一个扇形的圆心角为60°,半径为4,那么这个扇形的面积是多少?A. 4πB. 8πC. 12πD. 16π答案:A二、填空题(每题3分,共30分)11. 一个二次函数y=ax^2+bx+c的顶点坐标为(-1,2),对称轴为直线x=-1,那么a的值为______。
答案:112. 一个等差数列的首项为1,公差为2,那么这个数列的第10项是______。
答案:1913. 一个正五边形的边长为a,那么这个正五边形的面积是______。
2023北京朝阳区初三一模数学试题及参考答案
北京市朝阳区九年级综合练习(一)一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.下图是某几何体的三视图,该几何体是(A )长方体(B )三棱柱(C )圆锥(D )圆柱第1题 第3题 第4题 第7题2.我国已建成世界上规模最大的社会保障体系、医疗卫生体系,基本养老保险覆盖1 040 000 000人左右,将1 040 000 000用科学记数法表示应为(A )1.04×1010 (B )1.04×109 (C )10.4×109 (D ) 0.104×10113.如上图,若数轴上的点A 表示下列四个无理数中的一个,则这个无理数是(A ) (B(C (D )π4. 如上图,直线AB ,CD 相交于点O ,若∠AOC =60°,∠BOE =40°,则∠DOE 的度数为(A )60° (B )40°(C )20° (D )10°5. 经过某路口的汽车,只能直行或右转. 若这两种可能性大小相同,则经过该路口的两辆汽车都直行的概率为(A )(B )(C )(D )141312346.正六边形的外角和为(A )180°(B )360°(C )540°(D )720°7.某中学为了解学生对四类劳动课程的喜欢情况,从本校学生中随机抽取了200名进行问卷调查,根据数据绘制了如上面图所示的统计图. 若该校有2000名学生,估计喜欢木工的人数为(A )64(B )380(C )640 (D )7208. 下面的三个问题中都有两个变量:①矩形的面积一定,一边长y 与它的邻边x ;②某村的耕地面积一定,该村人均耕地面积S 与全村总人口n ;③汽车的行驶速度一定,行驶路程s 与行驶时间t .其中,两个变量之间的函数关系可以用形如的式子表示的是(A )①②(B )①③(C )②③(D )①②③二、填空题(共16分,每题2分)9在实数范围内有意义,则实数x 的取值范围是 .10.分解因式:.11. 若关于x 的一元二次方程260x x m ++=有两个相等的实数根,则实数m 的值为 .12.方程的解为 .13.在平面直角坐标系xOy 中,若反比例函数的图象经过点和点,则.14.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6. 若△ABD 的周长为13,则△ABC 的周长为.15.如图,在矩形ABCD 中,点E 在AD 边上,连接BE 并延长,交CD 的延长0ky k k x=≠(为常数,)2363a a -+=322x x=+6y x=()2A m ,()2B n -,m n +=第14题图第15题图线于点F . 若AB =2,BC =4,,则BF 的长为 .16. 一个33人的旅游团到一家酒店住宿,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚130元.(说明:男士只能与男士同住,女士只能与女士同住. 三人间客房可以不住满,但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元,则他们租住了间一人间;(2)若该旅游团租住了3间一人间,且共有19名男士,则租住一晚的住宿房费最少为元.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.计算:.18.解不等式组:19.已知,求代数式的值.20. 下面是证明“等腰三角形的两个底角相等”的两种添加辅助线的方法,选择其2AEDE=(02sin 45π-+-o 17242.3x x xx +⎧⎪+⎨⎪⎩>-,≤230x x --=(2)(2)(2)x x x x +---中一种,完成证明.已知:如图,在△ABC 中,AB =AC .求证:∠B =∠C .方法一证明:如图,作△ABC 的中线AD .方法二证明:如图,作△ABC 的角平分线AD .21. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在BD 上,AE ∥CF ,连接AF ,CE .(1)求证:四边形AECF 为平行四边形;(2)若∠EAO +∠CFD =180°,求证:四边形AECF 是矩形.22. 在平面直角坐标系xOy 中,一次函数的图象经过点(0,1),(-2,2),与x轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x ≥时,对于x 的每一个值,函数的值大于一次函数0y kx b k =+≠()2y x m =+的值,直接写出m 的取值范围.23. 如图,AB 是⊙O 的弦,过点O 作OC ⊥AB ,垂足为C ,过点A 作⊙O 的切线,交OC 的延长线于点D ,连接OB .(1)求证:∠B =∠D ;(2)延长BO 交⊙O 于点E ,连接AE ,CE ,若AD=,sinBCE 的长.24.某校为了解读书月期间学生平均每天阅读时间,在该校七、八、九年级学生中各随机抽取了15名学生,获得了他们平均每天阅读时间(单位:min ),并对数据进行了整理、描述,给出部分信息.a . 七、八年级学生平均每天阅读时间统计图:0y kx b k =+≠()七年级学生平均每天阅读时间八年级学生平均每天阅读时间b . 九年级学生平均每天阅读时间:21 22 25 33 36 36 37 37 39 39 41 42 46 48 50c . 七、八、九年级学生平均每天阅读时间的平均数:年级七八九平均数26.435.236.8根据以上信息,回答下列问题:(1)抽取的15名九年级学生平均每天阅读时间的中位数是 ;(2)求三个年级抽取的45名学生平均每天阅读时间的平均数;(3)若七、八、九年级抽取的学生平均每天阅读时间的方差分别为,,,则,,之间的大小关系为.25.一位滑雪者从某山坡滑下并滑完全程,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足“一次函数”、“二次函数”或“反比例函数”关系中的一种. 测得一些数据如下:滑行时间t /s 01234滑行距离s /m261220(1)s 是t 的函数(填“一次”、“二次”或“反比例”);21s 22s 23s 21s 22s 23s(2)求s 关于t 的函数表达式;(3)已知第二位滑雪者也从坡顶滑下并滑完全程,且滑行距离与第一位滑雪者相同,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足函数关系2522s t t =+. 记第一位滑雪者滑完全程所用时间为t 1,第二位滑雪者滑完全程所用时间为t 2,则t 1t 2(填“<”,“=”或“>”).26.在平面直角坐标系xOy 中,抛物线y =ax 2+(2m -6)x +1经过点()124m -,.(1)求a 的值;(2)求抛物线的对称轴(用含m 的式子表示);(3)点()1m y -,,()2m y ,,()32m y +,在抛物线上,若231y y y <≤,求m 的取值范围.27. 如图,∠MON =α,点A 在ON 上,过点A 作OM 的平行线,与∠MON 的平分线交于点B ,点C 在OB 上(不与点O ,B 重合),连接AC ,将线段AC 绕点A 顺时针旋转180°-α,得到线段AD ,连接BD .(1)直接写出线段AO 与AB 之间的数量关系,并证明∠MOB =∠DBA ;(2)连接DC 并延长,分别交AB ,OM 于点E ,F . 若α=60°,用等式表示线段EF 与AC 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,对于点P ,C ,Q (点P 与点C 不重合),给出如下定义:若∠PCQ =90°,且1CQ CP k,则称点Q 为点P 关于点C 的“k -关联点”.已知点A (3,0),点B (0,),⊙O 的半径为r .(1)①在点D (0,3),E (0,-1.5),F (3,3)中,是点A 关于点O 的“1-关联点”的为;②点B 关于点O 的关联点”的坐标为;(2)点P 为线段AB 上的任意一点,点C 为线段OB 上任意一点(不与点B重合).①若⊙O 上存在点P 关于点O 的关联点”,直接写出r 的最大值及最小值;②当r =⊙O 上不存在点P 关于点C 的“k -关联点”,直接写出k 的取值范围:.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2023.4一、选择题(共16分,每题2分)题号12345678答案A B D C A B C A 二、填空题(共16分,每题2分)三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分)17. 解:原式12=-++1=+.18. 解:原不等式组为17242.3x xxx+⎧⎪+⎨⎪⎩>-,≤解不等式①,得 2.x>解不等式②,得 4.x≤∴原不等式组的解集为2 4.x<≤19. 解:(2)(2)(2)x x x x+---2242x x x=--+222 4.x x=--∵230x x--=,∴2 3.x x-=题号9101112答案5x≥23(1)a-9x=4题号13141516答案01951;1600①②∴原式22()4 2.x x =--=20. 方法一证明:∵AD 是△ABC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C .方法二证明:∵AD 是△ABC 的角平分线, ∴∠BAD =∠CAD . 在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C.21. 证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC . ∵AE ∥CF ,∴∠EAO =∠FCO .∵∠AOE =∠COF ,∴△AEO ≌△CFO . ∴OE =OF .∴四边形AECF 为平行四边形.(2)∵∠EAO +∠CFD =180°,∠CFO +∠CFD =180°,∴∠EAO=∠CFO . ∵∠EAO =∠FCO ,∴∠FCO=∠CFO . ∴OC=OF . ∴AC=EF .∴四边形AECF 是矩形.22. 解:(1)∵一次函数的图象经过点(0,1),(-2,2),∴12 2.b k b =⎧⎨-+=⎩,解得 121.k b ⎧=-⎪⎨⎪=⎩ ∴该一次函数的表达式为11.2y x =-+令0y =,得 2.x =∴()20.A ,(2) 4.m >-23. (1)证明:如图,连接OA .∵AD 为⊙O 的切线,∴∠OAD =90°.∴∠CAD +∠OAB =90°.∵OC ⊥AB ,∴∠ACD =90°.∴∠CAD +∠D =90°.∴∠OAB =∠D .∵OA =OB ,∴∠OAB =∠B .∴∠B =∠D .(2)解:在Rt △ACD 中,AD=,sin D =sin B,可得sin 2AC AD D =⋅=.∴AB =2AC =4.根据勾股定理,得CD =4.∴tan B =tan D =12.∵BE 为⊙O 的直径,0y kx b k =+≠()∴∠EAB =90°.在Rt △ABE 中,tan 2AE AB B =⋅=.在Rt △ACE 中,根据勾股定理,得CE=24.解:(1)37.(2)根据题意可知,三个年级抽取的45名学生平均每天阅读时间的平均数为 1526.41535.21536.832.8.45⨯+⨯+⨯=(3)<<.25.解:(1)二次.(2)设s 关于t 的函数表达式为s =at 2+bt ,根据题意,得242 6.a b a b +=⎧⎨+=⎩,解得11.a b =⎧⎨=⎩,∴s 关于t 的函数表达式为s =t 2+t.(3)>.26.解:(1)∵抛物线y =ax 2+(2m -6)x +1经过点()124m -,,∴2m -4=a +(2m -6)+1.∴a =1(2)由(1)得抛物线的表达式为y =x 2+(2m -6)x +1.∴抛物线的对称轴为3.x m =-(3)①当m >0时,可知点()1m y -,,()2m y ,,()32m y +,从左至右分布.根据23y y <可得232m m m ++-<.∴ 1.m >根据31y y ≤可得232m m m -++-≥.∴ 2.m ≤22s 21s 23s∴1 2.m <≤②当m ≤0时,∵3m m m +≤-<-,∴21y y ≥,不符合题意.综上,m 的取值范围为1 2.m <≤27.解:(1)AO =AB .证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB ,∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB .根据题意,得AC =AD ,∠OAB =∠CAD .∴∠CAO =∠DAB.∴△OAC ≌△BAD. ∴∠COA =∠DBA. ∴∠MOB =∠DBA.(2)EF =.证明:如图,在OM 上截取OH =BE ,连接CH .∵△OAC ≌△BAD ,∴OC=BD.又OH =BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED ,∵OM//AB ,∴∠MFC=∠BED.∴∠MFC=∠OHC.∴CF=CH.∴CF=DE.∴CD=EF.∵α=60°,∴∠CAD=180°-α=120°,作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK =30°,1.2CK CD =∴.CK AC =∴CD =.∴EF =.28. 解:(1)①D .②(-3,0)或(3,0).(2)① 3,32.②k .。
初三数学常考试题及答案
初三数学常考试题及答案一、选择题1. 已知一个二次函数的图像经过点A(-1,0)和点B(3,0),且函数的开口向上,则该二次函数的对称轴是()。
A. x = 0B. x = 1C. x = 2D. x = -1答案:B解析:二次函数的对称轴是其顶点的x坐标,由于函数图像经过点A(-1,0)和点B(3,0),且开口向上,根据二次函数的性质,对称轴是这两点x坐标的平均值,即x = (-1 + 3) / 2 = 1。
2. 下列哪个选项是不等式2x - 3 > 0的解集?A. x > 3/2B. x < 3/2C. x > 3D. x < 3答案:A解析:将不等式2x - 3 > 0移项得到2x > 3,再除以2得到x > 3/2,因此选项A是正确的。
二、填空题3. 计算绝对值:|-7| = _______。
答案:7解析:绝对值表示一个数距离0的距离,因此|-7|表示-7距离0的距离,即7。
4. 计算平方根:√9 = _______。
答案:±3解析:平方根是一个数的平方等于给定数的那个数,9的平方根是3,因为3的平方是9。
同时,-3的平方也是9,所以9的平方根是±3。
三、解答题5. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
答案:5解析:根据勾股定理,直角三角形的斜边长度等于两直角边长度的平方和的平方根。
即斜边长度= √(3² + 4²) = √(9 + 16) = √25 = 5。
6. 某工厂生产一种零件,每件成本为10元,售价为15元,若该工厂希望获得的利润不低于1000元,问至少需要生产多少件零件?答案:100件解析:设需要生产的零件数量为x件,则总利润为(15 - 10)x = 5x元。
根据题意,5x ≥ 1000,解得x ≥ 200。
因此,至少需要生产200件零件。
四、证明题7. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
初三数学试题及答案人教版
初三数学试题及答案人教版初三数学试题及答案(人教版)一、选择题(每题2分,共10分)1. 若a,b,c为实数,且满足a+b+c=3,abc=1,则下列选项中正确的是:A. a^2+b^2+c^2=5B. a^2+b^2+c^2=7C. a^2+b^2+c^2=9D. a^2+b^2+c^2=112. 下列哪个不等式是正确的?A. |x-2| > |x+3|B. |x-2| < |x+3|C. |x-2| ≥ |x+3|D. |x-2| ≤ |x+3|3. 一个圆的半径为5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π4. 函数y=2x^2+3x+1的顶点坐标是:A. (-1,0)B. (-1,1)C. (1,0)D. (1,1)5. 如果一个三角形的三边长分别为a,b,c,且满足a^2+b^2=c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题(每题2分,共10分)6. 若一个数的平方根等于它本身,那么这个数是________。
7. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。
8. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长为________。
9. 函数y=x^3-6x^2+11x-6的零点是________。
10. 一个圆的面积为25π,那么它的半径是________。
三、解答题(每题10分,共30分)11. 解一元二次方程:x^2-5x+6=0。
12. 证明:若a,b,c是三角形的三边,且满足a^2+b^2=c^2,那么这个三角形是直角三角形。
13. 求函数y=x^2-2x+1在x=2时的值。
四、证明题(每题15分,共30分)14. 证明:勾股定理。
15. 证明:若a,b,c是三角形的三边,且满足a+b>c,那么这个三角形是存在的。
五、综合题(每题20分,共20分)16. 一个长方形的长为10cm,宽为5cm,求其对角线的长度。
初三数学常考试题及答案
初三数学常考试题及答案一、选择题(本题共10分,每题2分)1. 下列哪个选项不是实数?A. πB. √2C. -1D. i2. 若a,b,c为实数,且a + b + c = 1,下列哪个等式一定成立?A. a^2 + b^2 + c^2 = 1B. a^3 + b^3 + c^3 = 1C. (a + b + c)^2 = a^2 + b^2 + c^2D. (a - b)^2 + (b - c)^2 + (c - a)^2 ≥ 03. 一个圆的半径为5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 一个数的平方根是2,这个数是:A. 4B. -4C. 8D. -85. 下列哪个是一元二次方程的解?A. x + 2 = 0B. x^2 - 4x + 4 = 0C. x^2 + 4x + 4 = 0D. x^2 - 9 = 0二、填空题(本题共10分,每题2分)6. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长为______。
7. 如果一个数的立方等于-27,那么这个数是______。
8. 一个正数的倒数是1/4,那么这个数是______。
9. 一个多项式f(x) = ax^3 + bx^2 + cx + d,如果f(2) = 5,f(-2) = -3,那么a + b + c + d = ______。
10. 如果一个数的平方加上8倍这个数再加上16等于0,那么这个数是______。
三、解答题(本题共30分,每题6分)11. 解方程:2x^2 - 5x - 3 = 0。
12. 证明:对于任意实数x,(x - 1)^2 + 3 ≥ 2。
13. 计算:(3x^2 - 2x + 1) / (x - 1)。
14. 已知一个长方体的长、宽、高分别是a、b、c,求证:长方体的体积V = abc。
15. 已知点A(-1, 2),B(3, 4),求直线AB的斜率。
四、综合题(本题共50分,每题10分)16. 一个圆的半径为7,求圆的周长和面积。
初三数学综合试题一10732
1
24、问渠那得清如许,为有源头活水来——朱熹
24、问渠那得清如许,为有源头活水来——朱熹 初三数学综合试题一 第一部分(100分) 一、 填空题(24分,每空2分) 1、当k___时,关于x的方程(k+1)x2+2x+3=0是一元二次方程 2、方程x(x+2)=3(x+2) 的根是______ 3、函数y=中自变量x的取值范围是_____ 4、点P的坐标为(3,-4),则点P关于原点的对称点P1的坐标是_____ 5、抛物线y=-x2-5的顶点坐标是________ 6、在Rt△ABC中,∠C=900,, tanA=,则cosA=_______ C B 7、圆内接四边形ABCD中,∠A:∠B:∠C=2:3:4,则∠D=____度 8、AB为⊙O的直径,弦CD⊥AB于M,AM=4,BM=9,则弦CD=_______ 9、若两圆共有三条公切线,则两圆的位置关系是______ A P 10、如图,PA切⊙O于A,∠PAB=500,∠ABC=700,则∠BAC=_______度 (图10) 11、已知外切两圆半径分别为6和2,则两圆的外公切线长等于________ 12、已知⊙O的半径为6cm,⊙O的一条弦AB的长为6cm,则弦AB所对的圆周角的度 数是____ 二、 选择题(24分) 13、一元二次方程x2+x-3=0的根的情况是 ( ) B、有两个相等的实数根 A、有两个不相等的实数根 C、没有实数根 D、不能确定 14、如果点P(a,b)在第四象限,则点P1(-b,-a)所在的象限是 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 15、Rt△ABC中,∠C=900,a,b分别为∠A,∠B的对边,若sinA:sinB=2:3,则a:b= ( ) A、2:3 B、3:2 C、4:9 D 、9:4 16、直线y=-4x+3不经过的象限是 ( ) A、第一象限 B第二象限 C、第三象限 D、第四象限 17、如图,PA,PB切⊙O于A、B,C是优弧AB上的点,∠C=640,则∠P等于 ( ) A A、 260 B、620 P C
2024年北京初三九年级上学期数学期末考《圆的综合》
2024年1月九上期末——圆的综合1.【东城】24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,BC =CD 的长.2.【西城】24.如图,AB 是O 的直径,AB BC =,AC 交O 于点D ,点F 在OD 的延长线上且12FAD ABC ∠=∠.(1)求证:AF 是O 的切线;(2)若8AF =,4DF =,求AC 的长.3.【海淀】25.如图,AB 为半圆O 的直径,点C ,D 在半圆O 上,直线CM 与半圆O 相切于点C ,//CM AD .(1)若MCD ∠α=,求COA ∠的大小(用含α的式子表示);(2)过点O 作OE CD ⊥交CM 于点E ,交CD 于点F ,若//CD AB ,6AB =,求CE 的长.4.【朝阳】24.如图,AC ,BD 是圆内接四边形ABCD 的对角线,AC ⊥BD 于点E ,BD 平分∠ADC .(1)求∠BAD 的度数;(2)点P 在DB 的延长线上,P A 是该圆的切线.①求证:PC 是该圆的切线;②若PA =AC =3,直接写出PD 的长.5.【石景山】24.如图,在ABC △中,AB AC =,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC ∠=∠.(1)求证:BF 是O 的切线;(2)若5AB =,1tan 2CBF ∠=,求CE 的长.6.【丰台】24.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于点D ,作DE ⊥AC 交AC 于点E ,延长ED 与AB 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若△ABC 为等边三角形,AE=3,求⊙O 半径的长.7.【昌平】24.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 为 AC 的中点,过点D 作⊙O 的切线,交BC 延长线于点P ,连接OD 交AC 于点E .(1)求证:四边形DECP 是矩形;(2)作射线AD 交BC 的延长线于点F ,若tan ∠CAB =43,BC =6,求DF 的长.8.【通州】25.如图,点C 在以AB 为直径的O 上,CD 平分ACB ∠交O 于点D ,交AB 于点E ,过点D 作DF AB ∥交CO 的延长线于点F .(1)求证:直线DF 是O 的切线;(2)若30A ∠=︒,43AC =,求DF 的长.24题图9.【房山】24.如图,AB是⊙O的直径,AC,BC是弦,点D在AB的延长线上,且DCB DAC∠=∠,⊙O的切线AE与DC的延长线交于点E.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,30∠=︒,求AE的长.D10.【大兴】24.如图,AB是⊙O的直径,点C在⊙O上,连接AC,BC,过点O作OD⊥BC于点D,过点C作直线CE交OD的延长线于点E,使得∠E=∠B.(1)求证:CE是⊙O的切线.(2)若DE=6,CE=35,求OD的长.11.【门头沟】25.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若AB=6,AD=5,求DF的长.12.【燕山】24.如图,在△ABC中,∠ACB=90°,点D在AB上,以AD为直径作⊙O与BC相切于点E,连接DE并延长交AC的延长线于点F.(1)求证:AF=AD;(2)若CE=4,CF=2,求⊙O的半径.13.【顺义】25.如图,AB为⊙O的弦,点C为AB的中点,CO的延长线交⊙O于点D,连接AD,BD,过点D作⊙O的切线交AO的延长线于点E.(1)求证:DE∥AB;(2)若⊙O的半径为3,tan∠ADC=,求DE的长.14.【密云】24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.15.【平谷】24.如图,AB 为⊙O 的直径,弦CD ⊥AB 于H ,连接AC 、AD ,过点A 作⊙O 的切线与∠ADC 的平分线相交于点E ,DE 交AB 于点G ,交AC 于点F ,交⊙O 于点M ,连接AM .(1)求证:AC=AD ;(2)若22tan =∠AMD ,CD=4,求AF 长.。
2024年北京市门头沟区九年级中考一模数学试题(原卷版)
门头沟区2024年初三年级综合练习(一)数学考生须知:1.本试卷共10页,共三道大题,28个小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校和姓名,并将条形码粘贴在答题卡相应位置处.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.5.考试结束,将试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下列几何体中,俯视图是三角形的是( )A. B. C. D.2. 近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为( )A. B. C. D. 3. 下图是手机的一些手势密码图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4. 一个正n 边形的每一个外角都是60°,则这个正n 边形是( )A 正四边形 B. 正五边形 C. 正六边形 D. 正七边形5. 数轴上的两点所表示的数分别为a ,b ,且满足,下列结论正确的是( )A. B. C. D. 6. 如图,,平分交于点,,则().72.110⨯82.110⨯92.110⨯102.110⨯·0,0a b a b >+<0,0a b >>0,0a b <<0,0a b ><0,0a b <>AB CD AD BAC ∠CD D 130∠=︒CAB ∠=A. B. C. D. 7. 同时掷两枚质地均匀的骰子,朝上的一面点数之和为整数的平方的概率为( )A. B. C. D. 8. 如图,在等边三角形中,有一点P ,连接、、,将绕点B 逆时针旋转得到,连接、,有如下结论:①;②是等边三角形;③如果,那么.以上结论正确的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本题共16分,每小题2分)9.的取值范围是__________.10 因式分解:______.11. 如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是_______.12. 在中,,,,点P 在线段上(不与B 、C 两点重合),如果的长度是个无理数,则的长度可以是______.(写出一个即可).30︒45︒60︒90︒16736142936ABC PA PB PC BP 60︒BD PD AD BPC BDA ≌ BDP △150BPC ∠=︒²²²PA PB PC =+x 22mx mx m -+=ABC 90C ∠=︒3AB =2AC =BC AP AP13. 已知一元二次方程,有两个根,两根之和为正数,两根之积是负数,写出一组符合条件的a、b的值_________.14. “洞门初开,佳景自来”,园林建筑中的门洞设计有很多数学中的图形元素,如图中的门洞造型,由四个相同的半圆构成,且半圆的直径围成了正方形,如果半圆的直径为米,则该门洞的通过面积为_______平方米.15. 下面是某小区随机抽取的50户家庭的某月用电量情况统计表:月用电量x(千瓦时/户/月)户数(户)61511144已如月用电量第三档的标准为大于240小于等于400,如果该小区有500户家庭,估计用电量在第三档的家庭有______户.16. 5月20日是中国学生营养日,青少年合理膳食是社会公共卫生关注的问题之一.某食堂为了均衡学生的营养,特设置如下菜单,每种菜品所含的热量,脂肪和蛋白质如下:编号菜名类别热量/千焦脂肪/g蛋白质/g1宫保鸡丁荤菜1033187 2炸鸡排荤菜12541920 3糖醋鱼块荤菜211218144土豆炖牛肉荤菜109523165香菇油菜素菜911117 20x ax b++=1240x≤240300x<≤300350x<≤350400x<≤400x>6家常豆腐素菜102016137清炒冬瓜素菜564718韭菜炒豆芽素菜491239米饭主食3601810紫菜鸡蛋汤汤10058学校规定每份午餐由1份荤菜,2份素菜,1份汤和1碗米饭搭配.小明想要搭配一份营养午餐,那么他摄入的脂肪最低量是____________g .(12岁岁的青少年男生午餐营养标准:摄入热量为2450千焦,摄入蛋白质为65g ,蛋白质越接近标准越营养)三、解答题(本题共68分,第17~21题每小题5分,第22~24题每小题6分,第25题5分,第26题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤.17. .18. .19. 已知,求代数式的值.20. 如图所示,在长为11、宽为10矩形内部,沿平行于矩形各边的方向割出三个完全相同的小矩形,求每个小矩形的面积.21. 如图,在四边形中,,,,点E 为中点,射线交的延长线于点F ,连接.的14-011(2021)22sin 45()3π---+︒-()2131242x x x x ⎧+>-⎪⎨-<+⎪⎩23210x x +-=22(1)(2)(2)3x x x x +-+-+ABCD AD BC ∥90A ∠=︒BD BC =CD BE AD CF(1)求证:四边形是菱形;(2)若,,求的长.22. 在平面直角坐标系中,一次函数的图象由的图象向上平移2个单位得到,反比例函数 的图象过点.(1)求一次函数表达式及m 的值;(2)过点平行于x 轴的直线,分别与反比例函数一次函数的图象相交于点M 、N ,当时,画出示意图并直接写出n 的值.23. 某市统计局为研究我国省会及以上城市发展水平与人均之间关系,收集了年个城市的人均数据(单位:万元)以及城市排名,进行了相关的数据分析,下面给出了部分信息..城市的人均的频数分布直方图(数据分成组:,,,,):频数(城市个数)的BCFD 1AD =2CF =BF xOy ()0y kx b k =+≠1y x =()20m y m x=≠()14A ,()0P n ,2m y x =y kx b =+PM MN =GDP 202331GDP GDP a GDP 558x <≤811x <≤1114x <≤1417x <≤1720x <≤.城市的人均(万元)的数值在这一组的是:;.以下是个城市年的人均(万元)和城市排名情况散点图:根据以上信息,回答下列问题(1)某城市的人均为万元,该城市排名全国第_____;(2)在个城市年的人均和城市排名情况散点图中,请用“”画出城市排名的中位数所表示的点;(3)观察散点图,请你写出一条正确结论.24. 如图,在中,,的平分线交于点,过点作交于点.(1)求证:直线是以点为圆心,为半径的的切线;(2)如果:,,求的半径.25. 如图是某跳台滑雪场的横截面示意图,一名运动员经过助滑、起跳从地面上点O 的正上方4米处的A 点滑出,滑出后的路径形状可以看作是抛物线的一部分,通过测量运动员第一次滑下时,在距所在直线水平距离为d 米的地点,运动员距离地面高度为h 米.获得如下数据:水平距离d /米02468垂直高度h /米488的b GDP 1114x <≤12.313.213.613.8,,,c 312023GD GDP GDP 13.8GDP 312023GDP GDP GDP ABC 90C ∠=︒CAB ∠CB D D OD CB ⊥AB O CD O OA O 3sin 5CAB ∠=3BC =O OA 132172请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出运动员滑行过程中距离地面的最大高度为_____米;(3)求h 关 于d 的函数表达式;(4)运动员第二次滑下时路径形状可表示为:,当第一次和第二次距离所在直线的水平距离分别为、,且时能成功完成空中动作,则该运动员_________(填写“能”或“不能”)完成空中动作.26. 在平面直角坐标系中,点,在抛物线上,设抛物线的对称轴为直线.(1)如果抛物线经过点,求的值;2C 215463h d d =-++OA 1d 2d 1223d d ≤≤-xoy ()1,A x m ()2,B x n ()240y ax bx a =++>x h =()2,4h(2)如果对于,,都有,求取值范围;(3)如果对于,或,存在,直接写出的取值范围.27. 如图,,,点在射线上,且,点在上且,连接,取的中点,连接并延长至,使,连接.(1)如图1,当点在线段上时.①用等式表示与的数量关系;②连接,,直接写出,的数量关系和位置关系;(2)如图2,当点在线段的延长线上时,依题意补全图形2,猜想②中的结论是否还成立,并证明.28. 在平面直角坐标系中,的半径为2,点P 、Q 是平面内的点,如果点P 关于点Q 的中心对称点在上,我们称圆上的点为点P 关于点Q 的“等距点”.(1)已知如图1点.①如图1,在点 中,上存在点P 关于点Q 的“等距点”的是________;②如图2,点 ,上存在点P 关于点Q 的“等距点”,则m 的取值范围是________;(2)如图3,已知点,点P 在的图象上,若上存在点P 关于点Q 的“等距点”,14x h =-23x h =m n >h 142h x h -≤≤+21x ≤212x ≥m n >h AB BC =90ABC ∠=︒P AB 90CEP ∠=︒F EP EF EC =AF AF G EG H GH GE =AH P AB AH CE BH BE BH BE P AB xOy O O 40(,)P ()()()12330,2,1,1,1Q Q Q -,O (),Q m n O ()1,1Q y x b =-+O求b的取值范围.。
初三数学总复习资料_分专题试题及答案(90页)
(2) 已知| x | a(a 0) ,求 x 时,要注意 x a
考点 3 平方根与算术平方根
1、 若 x 2 a(a 0) ,则 x 叫 a 做的_________,记作______;正数 a 的__________叫做算术平 方根,0 的算术平方根是____。当 a 0 时, a 的算术平方根记作__________。
2
y
5、 实数 a, b, c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有( )
c
ba
-2 -1 0 1 2 3
图2
① b c 0 ② a b a c ③ bc ac ④ ab ac
A.1 个
B.2 个 C.3 个 D.4 个
6、 ①数轴上表示-2 和-5 的两点之间的距离是______数轴上表示 1 和-3 的两点之间的距离是
用根号形式表示的数并不都是无理数(如 4 ),也不是所有的无理数都可以写成根号的形
式(如 )。
练习: 1、 把下列各数填入相应的集合内:
7.5,
15, 4,
8 ,
2 ,
3 8,
,
0.25,
0.1 5
13 3
有理数集{ 正实数集{
},无理数集{
}
}
2、 在实数 4, 3 , 0, 2
2 1,
64, 3 27 , 1 中,共有___ 27
2、 幂的运算法则:(以下的 m, n 是正整数)
(1)a m a n _____ ; (2)(a m )n ____ ; (3)(ab)n _____ ; (4)a m a n ______(a 0) ;
(5)(b )n ______ a
3、 乘法公式:
2024年北京初三九年级上学期数学期末考《代数综合》
2024年1月九上期末——代数综合1.【东城】26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.2.【西城】26.在平面直角坐标系xOy 中,()1,A t y ,()1,B t y+,()23,C t y +三点都在抛物线224y ax ax =-+(0a >)上.(1)这个抛物线的对称轴为直线________.(2)若132y y y >≥,求t 的取值范围;(3)若无论t 取任何实数,点A ,B ,C 中都至少有两个点在x 轴的上方,直接写出a 的取值范围.3.【海淀】26.在平面直角坐标系xOy 中,点()1,A m -,点()3,B n 在抛物线2(0)y ax bx c a =++>上.设抛物线的对称轴为直线x t =.(1)当2t =时,①直接写出b 与a 满足的等量关系;②比较m ,n 的大小,并说明理由;(2)已知点()0,C x p 在该抛物线上,若对于034x <<,都有m p n >>,求t 的取值范围.4.【朝阳】26.在平面直角坐标系xOy 中,点(x 1,m ),(x 2,n )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t .(1)若对于x 1=1,x 2=3,有m =n ,求t 的值;(2)若对于t -1<x 1<t ,2<x 2<3,存在m >n ,求t 的取值范围.5.【石景山】26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++>经过点(33)A a c +,.(1)求该抛物线的对称轴;(2)点1(12)M a y -,,2(2)N a y +,在抛物线上.若12c y y <<,求a 的取值范围.6.【丰台】26.在平面直角坐标系xOy 中,点(m +2,1y ),(6,2y )为抛物线22y x mx n =-+上两个不同的点.(1)求抛物线的对称轴(用含m 的式子表示);(2)若12y n y <<,求m 的取值范围.7.【昌平】26.在平面直角坐标系xOy 中,点(0,3),(6,1y )在抛物线()02≠++=a c bx ax y 上.(1)当31=y 时,求抛物线的对称轴;(2)若抛物线()02≠++=a c bx ax y 经过点(-1,-1),当自变量x 的值满足-1≤x ≤2时,y 随x 的增大而增大,求a 的取值范围;(3)当0>a 时,点(m -4,2y ),(m ,2y )在抛物线c bx ax y ++=2上.若2y <1y <c ,请直接写出m 的取值范围.8.【通州】26.在平面直角坐标系xOy 中,()11,P x y ,()22,Q x y 是抛物线2221y x mx m =-+-上任意两点.(1)求抛物线的顶点坐标(用含m 的式子表示);(2)若12x m =-,25x m =+,则1y ______2y ;(用“<”,“=”,或“>”填空)(3)若对于114x -≤<,24x =,都有12y y ≤,求m 的取值范围.9.【房山】26.在平面直角坐标系xOy 中,点(1)m ,,(3)n ,在抛物线24(0)y ax bx a =++>上,设抛物线的对称轴为x t =.(1)当m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点00()(3)x n x ≠,在抛物线上,若4m n <<,求t 的取值范围及0x 的取值范围.10.【大兴】26.在平面直角坐标系xOy 中,点(2,m )在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为x=t .(1)当m =c 时,求t 的值;(2)点(-1,y 1),(3,y 2)在抛物线上,若c <m ,比较y 1,y 2的大小,并说明理由.11.【门头沟】26.在平面直角坐标系xOy 中,点M (1x ,1y ),N (2x ,2y )为抛物线2y ax bx c=++(a >0)上任意两点,其中12x x <.(1)若抛物线的对称轴为x =2,当12x x 、为何值时,12y y c ==;(2)设抛物线的对称轴为x =t ,若对于124x x +>,都有12y y <,求t 的取值范围.12.【燕山】26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.13.【顺义】26.在平面直角坐标系xOy 中,抛物线y =x 2﹣2ax +a 2﹣4与x 轴交于A ,B 两点(点A 在点B 左侧).(1)若a =1,求抛物线的对称轴及A ,B 两点的坐标;(2)已知点(3﹣a ,y 1),(a +1,y 2),(﹣a ,y 3)在该抛物线上,若y 1,y 2,y 3中有且仅有一个大于0,求a 的取值范围.14.【密云】26.在平面直角坐标系xOy 中,点(2,m )和(5,n )在抛物线y =x 2+2bx 上,设抛物线的对称轴为x=t .(1)若m=0,求b 的值;(2)若mn <0,求该抛物线的对称轴t 的取值范围.15.【平谷】26.在平面直角坐标系xOy 中,二次函数mx x y 22-=的图象上两个点A ),(11y x ,B ),(22y x ,点A 、B 之间的部分(包含点A 、点B )记作图象G ,图象G 上y 的最大值与最小值的差记作y G .(1)求这个二次函数的对称轴(用含m 的代数式表示);(2)当m=1,x 1=0,x 2=3时,求y G 的值;(3)当121-=m x ,122+=m x 时,恒有y G >21y y -,求m 的取值范围.。
【初三数学】代数几何综合题(含答案)(共15页)
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
2024北京门头沟初三二模数学试题及答案
门头沟区2024年初三年级综合练习(二)数学2024.5考生须知1.本试卷共8页,共三道大题,28个小题。
满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校和姓名,并将条形码粘贴在答题卡相应位置处。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其它试题用黑色字迹签字笔作答。
5.考试结束,将试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个.1.某几何体的展开图是由大小形状相等的两个正方形、四个长宽不等的矩形组成,则该几何体是A.正方体B.长方体C.四棱锥D.三棱柱2.目前所知病毒中最小的是一级口蹄疫病毒,它属于微核糖核酸病毒科鼻病毒属,其最大颗粒直径为23纳米,即0.000000023米,将0.000000023化成科学计数法为A.2.3×10-7B.2.3×10-8C.2.3×10-9D.0.23×10-10 3.下图是手机的一些手势密码图形,其中既是轴对称图形又是中心对称图形的是A B C D4.某个正多边形的一个内角是它的外角的2倍,则该正多边形是A.正方形B.正五边形C.正六边形D.正七边形5.数轴上的三点A、B、C所表示的数分别为a、b、c且满足0a b+<,0b c⋅<,则原点在A.点A左侧B.点A点B之间(不含点A点B)C.点B点C之间(不含点B点C)D.点C右侧6.如图,AB∥CD,CE平分∠ACD.∠1=70°,∠2的度数为A.30︒B.35︒C.45︒D.70︒7.小明去商场购物,购买完后商家有一个抽奖答谢活动,有m 张奖券,其中含奖项的奖券有n 张,每名已购物的顾客只能抽取一次,小明抽之前有10名顾客已经抽过奖券,中奖的有3人,则小明中奖的概率为A .n mB .10n m -C .310n m --D .3n m-8.如图所示,两个体积不等的圆柱形水杯,大小水杯口均朝上,现往大水杯中均匀注水,注水过程中小水杯始终在原来位置,设水面上升高度为h ,注水时间为t ,下列图象能正确反应注水高度随时间变化关系的是二、填空题(本题共16分,每小题2分)9.如果分式11m m +-值为零,那么实数m 的取值是.10.如图所示的网格是正方形网格,点A ,B ,C 是网格线交点,则sin A =.11.在实数范围内进行因式分解:22mx m -=.12.如图,AB 是⊙O 的直径,弦CD AB ⊥于点E ,AC CD =,如果AC =则⊙O 的半径长为_____.13.某函数图象满足过点()02,,且当0x >时,y 随x 的增大而增大,写出一个满足条件的表达式_____.14.如图,在平面直角坐标系内,某图象上的点A 、B 为整数点,以点O 为位似中心将该图像扩大为原的2倍,则点A 的坐标为_____.15.某校抽测了某班级的10名学生竞赛成绩(均为整数),从低到高排序如下:x 1x 2x 3x 4x 5x 6x 7x 8x 9x 10如果x 4=83,x 7=86,该组数据的中位数是85,则x 5=_____.A BC D16.“谁知盘中餐,粒粒皆辛苦”知农爱农,珍惜粮食,传承美德,从校园做起。
数学九年级上册《一元二次方程》单元综合测试题(附答案)
人教版数学九年级上学期 《一元二次方程》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)已知关于x 的方程:(1)20ax bx c ++=;(2)240x x -=;(3)1+(x-1)(x+1)=0;(4)23(2)(3)x x x -=-+;(5)210x x-=其中是一元二次方程有( )个. A.1个B.2个C.3个D.4个2.(2019·南山第二外国语学校集团海德学校初三期中)关于x 的一元二次方程的两根分别为13x =-,22x =,则这个方程可以为( ) A.(2)(3)0x x --= B.(2)(3)0x x ++= C.(2)(3)0x x +-=D.(2)(3)0x x -+=3.(2019·厦门市第五中学初三期中)方程226x =的根是( )和 B.0和3C.3和3-4.(2019·湖北初三期中)向阳村2016年的人均收入为12000元,2018年的人均收入为14520元,则人均收入的年平均增长为( ) A.10%或-210%B.12.1%C.11%D.10%5.(2019·湖北初三期中)一元二次方程x 2-1=1的常数项是( ) A.-1B.1C.0D.-26.方程2(2)3(2)x x -=-的解为( ) A.2x =B.5x =C.12x =,25x =D.12x =,23x =7.(2019·山东初三期中)已知关于x 的一元二次方程x 2-2x =m 有两个不相等的实数根,则m 的取值范围是( ) A.m <1B.m <-2C.m =0D.m >-18.(2019·广东初三期中)已知一元二次方程260x x c -+=有一根为2,另一根为( ) A.5B.4C.3D.29.(2019·青浦区华新中学初二月考)已知三角形的两条边分别是2和4,第三边是方程29180x x -+=的根,则这个三角形的周长为( ) A.9或12B.9C.12D.不能确定10.(2019·江苏东绛实验学校初三期中)某校初三篮球联赛中采用了单循环赛制(即参赛的每两个队之间都要比赛一场),根据场地和时间等条件,赛程计划为7天,每天安排4场比赛.设有x 个队参加比赛,根据题意可列出方程( ) A.x (x +1)=2B.x (x -1)=28C.12x (x +1)=28 D.12x (x -1)=28 二、填空题(每小题4分,共24分) 11.关于x 的方程()221150aa a x --++=是一元二次方程,则a =_________.12.(2019·湖北初三期中)关于x 的方程(x+n)2=p 有两个相等的实数根,则p 的取值是__________. 13.(2019·湖北初三期中)实数x ,y 满足(x+y)2+x+y -2=0, 则2x+2y 值为_________.14.(2019·江苏初三期中)某型号的冰箱连续两次降价,每台售价由原来的2370元降到了1160元,若设平均每次降价的百分率为x ,则可列出的方程是__________________________________.15.(2019·江西省宜春实验中学初三期中)一元二次方程2410x x --=的两个根为12,,x x ,且2212x x +=____。
2024年北京初三九年级上学期数学期末考《几何综合》
2024年1月九上期末——几何综合1.【东城】27.在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,连接DA,将线段DA绕点D顺时针旋转60°得到线段DE.(1)如图1,当点D与点B重合时,连接AE,交BC于点H,求证:AE⊥BC;(2)当BD≠CD时(图2中BD<CD,图3中BD>CD),F为线段AC的中点,连接EF.在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE的大小,并证明.2.【西城】27.在ABC △中,90ACB ∠=︒,AC BC =,CM AB ⊥于点M .点P 在射线CM 上,连接AP ,作CD AP ⊥于点D .连接MD ,作CE MD ⊥于点E ,作//DF AB 交直线CE 于点F ,连接MF .图1图2备用图(1)当点P 在线段CM 上时,在图1中补全图形,并直接写出ADM ∠的度数;(2)当点P 在线段CM 的延长线上时,利用图2探究线段DF 与AM 之间的数量关系,并证明;(3)取线段MF 的中点K ,连接BK ,若8AC =,直接写出线段BK 的长的最小值.3.【海淀】27.如图,在ABC △中,AB AC =,点D ,E 分别在边AC ,BC 上,连接DE ,EDC B ∠∠=.(1)求证:ED EC =;(2)连接BD ,点F 为BD 的中点,连接AF ,EF .①依题意补全图形;②若AF EF ⊥,求BAC ∠的大小.4.【朝阳】27.已知线段AB 和点C ,将线段AC 绕点A 逆时针旋转α(0°<α<90°),得到线段AD ,将线段BC 绕点B 顺时针旋转180°-α,得到线段BE ,连接DE ,F 为DE 的中点,连接AF ,BF .(1)如图1,点C 在线段AB 上,依题意补全图1,直接写出∠AFB 的度数;(2)如图2,点C 在线段AB 的上方,写出一个α的度数,使得3AF =成立,并证明.图1图25.【石景山】27.如图,在Rt ACB △中,90ACB ∠=°,60BAC ∠=°.D 是边BA 上一点(不与点B 重合且12BD BA <),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE .(1)求CAE ∠的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ∠=∠,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.6.【丰台】27.已知在△ABC中,AB=AC,0°<∠BAC<90°,将线段AC绕点A逆时针旋转α得到线段AD,连接BD,CD.(1)如图1,当∠BAC=α时,∠ABD=(用含有α的式子表示);(2)如图2,当α=90°时,连接BD,作∠BAD的角平分线交BC的延长线于点F,交BD于点E,连接DF.①依题意在图2中补全图形,并求∠DBC的度数;②用等式表示线段AF,CF,DF之间的数量关系,并证明.7.【昌平】27.在△ABC中,AB=AC,∠BAC=90°,点M为BC的中点,连接AM,点D为线段CM上一动点,过点D作DE⊥BC,且DE=DM,(点E在BC的上方),连接AE,过点E作AE的垂线交BC边于点F.(1)如图1,当点D为CM的中点时,①依题意补全图形;②直接写出BF和DE的数量关系为______________;(2)当点D在图2的位置时,用等式表示线段BF与DE之间的数量关系,并证明.图1图227题图127题图28.【通州】27.如图,ABC △中,90ACB ∠=︒,AC BC =,点D 在AB 的延长线上,取AD 的中点F ,连结CD 、CF ,将线段CD 绕点C 顺时针旋转90︒得到线段CE ,连结AE 、BE .(1)依题意,请补全图形;(2)判断BE 、CF 的数量关系及它们所在直线的位置关系,并证明.9.【房山】27.如图,在等边三角形ABC 中,E ,F 分别是BC ,AC 上的点,且BE CF =,AE ,BF 交于点G .(1)AGF ∠=°;(2)过点A 作AD ∥BC (点D 在AE 的右侧),且AD BC =,连接DG .①依题意补全图形;②用等式表示线段AG ,BG 与DG 的数量关系,并证明.10.【大兴】27.在△ABC中,∠BAC=90°,AB=AC,点P为BA的延长线上一点,连接PC,以点P为中心,将线段PC顺时针旋转90°得到线段PD,连接BD.(1)依题意补全图形;(2)求证:∠ACP=∠DPB;(3)用等式表示线段BC,BP,BD之间的数量关系,并证明.11.【门头沟】27.如图,Rt△ABC中,∠ACB=90°,CA=CB,过点C在△ABC外作射线CP,且∠ACP=α,点A关于CP的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CP于点M,N.(1)依题意补全图形;(2)当α=30°时,直接写出∠CNB的度数;(3)当0°<α<45°时,用等式表示线段BN,CM之间的数量关系,并证明.12.【燕山】27.如图,△ABC为等边三角形,点M为AB边上一点(不与点A,B重合),连接CM,过点A作AD⊥CM于点D,将线段AD绕点A顺时针旋转60°得到线段AE,连接BE.(1)依题意补全图形,直接写出∠AEB的大小,并证明;(2)连接ED并延长交BC于点F,用等式表示BF与FC的数量关系,并证明.13.【顺义】27.在菱形ABCD中,∠B=60°,点P是对角线AC上一点(不与点A重合),点E,F分别是边AB,AD上的点,且∠EPF=60°,射线PE,PF分别与DA,BA的延长线交于点M,N.(1)如图1,若点P与C重合,且PA平分∠EPF,求证:AM=AN;(2)连接BP,若∠ABP=45°,BP=3,且PA不平分∠EPF.①依题意补全图2;②用等式表示线段AM,AN的数量关系,并证明.14.【密云】27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠A C E+∠B C D的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段A E与CF之间的数量关系,并证明.15.【平谷】27.如图,△ABC中,AC=BC,∠ACB=90°,D为AB边中点,E为△ABC外部射线CD上一点,连接AE,过C作CF⊥AE于F.(1)依题意补全图形,(2)找出图中与∠EAD相等的角,并证明;(3)连接DF,猜想∠CFD的度数,并证明.。
全国通用版九年级下学期数学 圆的综合题(含阴影面积)试题(无答案)
初三数学专题训练——圆的综合题(含求阴影面积)一.填空题(共14小题)1.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是.第1题图第2题图第3题图第4题图第5题图2.如图,已知直角三角形的两条直角边分别为a、b,以a为直径画一个半圆.若甲、乙两阴影部分的面积相等,则用a的代数式表示b=.3.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为.4.在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是.5.如图,在矩形ABCD中,CD=2,以点C为圆心,CD长为半径画弧,交AB边于点E,且E为AB中点,则图中阴影部分的面积为.̂交于点D,以O为圆心,OC的长6.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与AB̂交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结为半径作CE果保留π)第6题图第7题图第8题图第9题图第10题图7.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2√2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积为(结果保留π).8.如图,在Rt△ABC中,∠ACB=90°,AC=2√3,以点C为圆心,CB的长为半径画弧,与AB ̂绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.边交于点D,将BD̂的中点,D、E分别是OA、OB 9.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为AB的中点,则图中阴影部分的面积为cm2.10.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.11.将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为cm2.第11题图第12题图第13题图第14题图12.如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(√2,√2),弦AB经过点P,则图中阴影部分面积的最小值=.13.如图,以直角三角形的两条直角边AC、AB为直径,向三角形内作半圆,两半圆交于点D,CD =1,BD=3,则图中阴影部分的面积为(平方单位).14.如图,两个半径为1的14圆扇形A′OB′与AO′B叠放在一起,POQO'是正方形,则整个阴影图形的面积是.二.解答题(共14小题)15.如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.16.如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙O与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.17.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.18.已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,BC=6,AC=8,OE⊥AE,垂足为E,交⊙O于点P,连结BP交AC于D.(1)求PE的长;(2)求△BOP的面积.19.如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=°;(2)求证:DE与⊙O相切;̂上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.(3)点F在BC雅博学校初三数学专题训练——圆的综合题1.如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.2.如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D 作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.3.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;̂的长.(2)若∠C=60°,AC=12,求BD(3)若tan C=2,AE=8,求BF的长.4.已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.5.已知:如图,在△ABC中,AC=BC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)求证:DE是⊙O的切线;(3)若⊙O的直径为18,cos B=13,求DE的长.6.已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.6.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD2=CA•CB;(2)求证:CD是⊙O的切线;(3)过点B作⊙O的切线BE交CD的延长线于点E,若BC=12,CA=4,求BE的长.7.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.。
2023年北京市初三一模数学试题汇编:代数综合(第26题)
2023北京初三一模数学汇编代数综合(第26题)一、解答题1.(2023·北京西城·统考一模)已知抛物线24y ax bx =++的对称轴为直线x =t.(1)若点(2,4)在抛物线上,求t 的值;(2)若点12(,3),(,6)x x 在抛物线上,①当t =1时,求a 的取值范围;②若12t x x ≤<,且211x x −≥,直接写出a 的取值范围.2.(2023·北京朝阳·统考一模)在平面直角坐标系xOy 中,抛物线y=ax 2+(2m -6)x+1经过点()124m −,.(1)求a 的值;(2)求抛物线的对称轴(用含m 的式子表示);(3)点()1m y −,,()2m y ,,()32m y +,在抛物线上,若231y y y <≤,求m 的取值范围.3.(2023·北京海淀·统考一模)在平面直角坐标系xOy 中,点0()A x m ,,0(4)B x n +,在抛物线 221y x bx =−+上. (1)当5b =,03x =时,比较m 与n 的大小,并说明理由;(2)若对于034x ≤≤,都有m <n <1,求b 的取值范围. 4.(2023·北京房山·统考一模)已知抛物线22=−+y x ax b 经过点(1,1).(1)用含a 的式子表示b 及抛物线的顶点坐标;(2)若对于任意1−a ≤x ≤2+a ,都有y ≤1,求a 的取值范围.5. (2023·北京丰台·统考一模)在平面直角坐标系xOy 中,点A (-3,y 1),B (a +1,y 2)在抛物线221y x ax =−+ 上.(1)当2=a 时,求抛物线的顶点坐标,并直接写出y 1和y 2的大小关系;(2)抛物线经过点C (m ,y 3).①当4=m 时,若y 1= y 3,则a 的值为________; ②若对于任意的4≤m ≤6都满足y 1>y 3>y 2,求a 的取值范围.6.(2023·北京门头沟·统考一模)在平面直角坐标系xOy 中,抛物线()2240y ax ax a a =−+−≠. (1)求该抛物线的顶点坐标;(2)当抛物线()2240y ax ax a a =−+−≠经过点()3,0时, ①求此时抛物线的表达式;②点()12,M n y −,()223,N n y +在抛物线上,且位于对称轴的两侧,当12y y >时,求n 的取值范围.7.(2023·北京顺义·统考一模)已知:抛物线y=ax 2-4ax -3(a >0).(1)求此抛物线与y 轴的交点坐标及抛物线的对称轴;(2)已知点A (n ,y 1),B (n +1,y 2)在该抛物线上,且位于对称轴的同侧.若21−y y ≤4,求a 的取值范围.8.(2023·北京通州·统考一模)在平面直角坐标系xOy 中,已知点()()1,,2,n p −在二次函数22y x bx =−++的图象上.(1)当n p =时,求b 的值;(2)当()()20n n p −−>,求b 的取值范围.9.(2023·北京延庆·统考一模)在平面直角坐标系xOy 中,点A (4,m )在抛物线y=x 2−2bx +1上.(1)当m =1时,求b 的值;(2)点(x 0,n )在抛物线上,若存在0<x 0<b ,使得m = n ,直接写出b 的取值范围.10.(2023·北京燕山·统考一模)在平面直角坐标系xOy 中,抛物线245(0)y ax ax a =−+≠与y 轴交于点C .(1) 求点C 的坐标及抛物线的对称轴;(2) 已知点(-1,1y ),(2,2y ),(6,3y )在该抛物线上,且1y ,2y ,3y 中有且只有一个小于0,求a 的取值范围.参考答案1.解:(1)∵ 点(2,4)在抛物线24y ax bx =++上,∴ 4a +2b +4=4.∴ b =-2a .∴ 12b t a=−=. ······································································· 2分 (2)①当t =1时,b =-2a ,所以224y ax ax =−+.∵ 点(1x ,3),(2x ,6)在抛物线上,∴ 当a >0时,有a -2a +4≤3.得4-a ≤3,得a ≥1.当a <0时,有a -2a +4≥6.得4-a ≤6,得a ≤-2.综上,a 的取值范围是a ≤-2或a ≥1. ············································· 4分 ②a 的取值范围是0<a ≤3.2.解:(1)∵抛物线y=ax 2+(2m -6)x+1经过点()124m −,, ∴2m -4=a +(2m -6)+1.∴a=1(2)由(1)得抛物线的表达式为y=x 2+(2m -6)x+1.∴抛物线的对称轴为3.x m =−(3)①当m >0时,可知点()1m y −,,()2m y ,,()32m y +,从左至右分布.根据23y y <可得232m m m ++−<. ∴ 1.m >根据31y y ≤可得232m m m −++−≥. ∴ 2.m ≤∴1 2.m <≤②当m ≤0时,∵3m m m +≤-<-,∴21y y ≥,不符合题意.综上,m 的取值范围为1 2.m <≤3.(本题满分6分)(1)m =n . …………………………………………………………………………………1分 理由如下:∵ b =5,∴ 抛物线解析式为y =x 2−10x +1,∴ 对称轴为x =5.∵ x 0=3,∴ A (3,m ),B (7,n )关于直线x =5对称.∴ m =n . ………………………………………………………………………………2分 (2)当03x =时,∵ ()0A x m ,,()04B x n +,在抛物线221y x bx =−+上,∴ 106m b =−,5014n b =−.∵ 1m n <<,∴ 10650141b b −<−<.∴752b <<. 当04x =时, ∵ ()0A x m ,,()04B x n +,在抛物线221y x bx =−+上,∴ 178m b =−,6516n b =−.∵ 1m n <<,∴ 17865161b b −<−<.∴ 46b <<.∵ 对于034x ≤≤,都有1m n <<,∴ 45b <<.当45b <<时,设点()04x n +,关于抛物线的对称轴x b =的对称点为()1x n ,,∵ 点()04x n +,在抛物线上,∴ 点()1x n ,在抛物线上.由014x b b x +−=−,得1024x b x =−−.∵ 034x ≤≤,45b <<,∴ 103x <<.∵ 抛物线221y x bx =−+,∴ 抛物线与y 轴交于(0,1).当x b <时,y 随x 的增大而减小.∵ 点(0,1),()1x n ,,()0x m ,在抛物线上,且100x x b <<<,∴ 1m n <<.综上所述,45b <<. ………………………………………………………………6分4.(1)把(1,1)代入表达式得,112a b =−+,∴a b 2= ……………………1分 抛物线为22222()2y x ax a x a a a =−+=−−+抛物线顶点坐标为2(,2)a a a −+ ……………………2分(2)∵抛物线关于x =a 对称,开口向上,∴当1−a ≤x ≤2+a 时,由对称性得,x =2+a 时函数y 有最大值: y 最大=(a+2-a )2-a 2+2a=-a 2+2a+4. ……………………3分 ∵对于任意1−a ≤x ≤2+a ,都有y ≤1,∴-a 2+2a+4≤1 ……………………4分 即a 2-2a -3≥0∴ a ≤-1或a ≥3 ……………………6分5.解:(1)当a =2时,223y x ,顶点坐标为(2,-3); ……1分12y y . ……2分 (2)①12; ……3分 ②∵对于任意的4≤m ≤6都满足y 1>y 3>y 2,∴点A 、B 、C 存在如下情况:情况1,如示意图,当31a m 时, 可知32m a , ∴312m a m , 解得332a. 情况2,如示意图,当31m a 时 可知12m a a , ∴11a m a m , ∴1a m ,解得7a .综上所述,332a 或7a . ……6分(其它解法酌情给分)∴EF =2510533−=.…………………………………………………………………6分m ,y 3),y 2)A (-3,y 1A (-3,y 1,y 2)C (m ,6.(本小题满分6分)解:(1)212a x a−=−=,244y a a a =−+−=−,顶点为(1,4−).……………………2分 (2)①∵抛物线224y ax ax a =−+−(0a ≠)经过点(3,0),∴0964a a a =−+−. 解得:1a =.∴此时抛物线的表达式为:223y x x =−−.……………………………………4分 ②∵点M (2n −,y 1),N (23n +,y 2)在抛物线上,且位于对称轴的两侧,∴当点M 位于对称轴的左侧,点N 位于对称轴的右侧时,21,23 1.n n −<⎧⎨+>⎩, 解得:13n −<<.当点M 位于对称轴的右侧,点N 位于对称轴的左侧时,21,23 1.n n −>⎧⎨+<⎩, 此不等式组无解,舍去.∴点M 位于对称轴的左侧,点N 位于对称轴的右侧.∵当0a >时,抛物线开口向上,在对称轴右侧,y 的值随x 值的增大而增大, 又∵点M 关于对称轴1x =的对称点为M '(4n −,y 1),∴当12y y >时,423n n −>+. 解得:n ∴综上所述:113n −<<.………………………………………………………6分7.解:(1)与y 轴交点坐标:(0,-3),对称轴:直线x =2. ………………… 2分(2)法1:假设A (2,y 1),B (3,y 1+4),将A 、B 两点坐标代入函数表达式得:1148349123y a a y a a =−−⎧⎨+=−−⎩ 解得a =4. ………………………………………………………………… 4分 根据图象可知0<a ≤4. ………………………………………………… 6分 法2:把A (n ,y 1),B (n+1,y 2),代入函数表达式得: 212243(1)4(1)3y an an y a n a n ⎧=−−⎨=+−+−⎩ ① 当A 、B 两点在对称轴右侧,即n ≥2时, ∵214y y −≤,∴22(1)4(1)3434a n a n an an +−+−−−−≤(), ∴432a n a+≤.∵n ≥2, ∴4322a a+≥, ∴a ≤4.∵a >0,∴0<a ≤4.② 当A 、B 两点在对称轴左侧,即n+1≤2,n ≤1时, ∵214y y −≤,∴2243(1)4(1)34an an a n a n ⎡⎤−−−+−+−≤⎣⎦(), ∴342a n a−≥. ∵n ≤1, ∴3412a a−≤, ∴a ≤4.∵a >0,∴0<a ≤4.综上所述,0<a ≤4. ……………………………………………………… 6分8.暂缺9.(本小题满分6分)解:(1)当m =1时,点A 的坐标为(4,1) .∵点A 在抛物线y=x 2−2bx +1上,∴1=42−2b ×4+1上.∴b =2.(2)b >2且b ≠4.10.(本题满分6分)解:(1) 由题意,抛物线与y 轴交于点C (0,5). 对称轴为直线422a x a−=−=.……………………………………………3分 (2) ∵抛物线的对称轴为直线2x =,∴点(-1,1y )关于对称轴的对称点为(5,1y ),点(2,2y )在对称轴上,点(5,1y ),(6,3y )在对称轴右侧.当x =-1时,1y =45a a ++=55a +,当x =2时,2y =485a a −+=45a −+,当x =6时,3y =36245a a −+=125a +.当0a >时,抛物线在对称轴右侧(即2x ≥时)y 随x 的增大而增大, ∴2y <1y <3y .∵1y ,2y ,3y 中有且只有一个小于0, ............ 3分 (6)分∴2y <0,且1y ≥0,即450550,,a a −+<⎧⎨+≥⎩解得 54a >. 当0a <时,抛物线在对称轴右侧(即2x ≥时)y 随x 的增大而减小, ∴3y <1y <2y . ∵1y ,2y ,3y 中有且只有一个小于0,∴3y <0,且1y ≥0,即1250550,,a a +<⎧⎨+≥⎩解得 5112a −≤<−. 综上所述,54a >或5112a −≤<−.…………………………………6分。
全国初三初中数学专题试卷带答案解析
全国初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在平面直角坐标系中,抛物线y=x2-x-与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB 的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值.2.如图,抛物线y=-x2+bx+c(a≠0)与x轴、y轴分别交于点A(3,0),B(0,3)两点.(1)试求抛物线的解析式和直线AB的解析式;(2)动点E从O点沿OA方向以1个单位/秒的速度向终点A匀速运动,同时动点F沿AB方向以个单位/秒的速度向终点B匀速运动,E,F任意一点到达终点时另一个点停止运动,连接EF,设运动时间为t,当t为何值时,△AEF为直角三角形?3.如图,抛物线y=ax2+bx-2与x轴交于A,B两点,与y轴交于C点,已知A(3,0),且M(1,)是抛物线上另一点.(1)求a,b的值;(2)连接AC,设点P是y轴上任一点,若以P,A,C三点为顶点的三角形是等腰三角形,求P点的坐标.4.如图,抛物线y=-[(x-2)2+n]与x轴交于点A(m-2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连接BC.(1)求m,n的值;(2)点N为抛物线上的一动点,且位于直线BC上方,连接CN,BN.求△NBC面积的最大值.5.如图,抛物线经过A(-1,0),B(5,0),C(0,-) 三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.全国初三初中数学专题试卷答案及解析一、解答题1.如图,在平面直角坐标系中,抛物线y =x 2-x -与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上. (1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值.【答案】(1)y =x +;(2)3.【解析】(1)当y=0时,可求得点A 、B 坐标,将点E (4,n )代入解析式求得点E 坐标,根据A 、E 两点坐标求直线AE 解析式;(2)先求出直线CE 的解析式,设过点P 作PF ∥y 轴,交CE 于点F .设点P 的坐标为,则点F,根据S △EPC =×PF×4求得S △EPC 最大时x 的值,作点K 关于CD 和CP 的对称点G ,H ,连接GH 分别交CD 和CP 于点N ,M .先证点G 与点O 重合,再求得点H 的坐标,由KM +MN +NK =MH +MN +ON .当点O ,N ,M ,H 在一条直线上时,KM +MN +NK 有最小值,最小值为OH ,求得OH 即可. 解:(1)当y =x 2-x -=0时,解得x 1=-1,x 2=3,∴A (-1,0),B (3,0).当x =4时,y =,∴E (4,).设直线AE 的解析式为y =kx +b ,将点A 和点E 的坐标代入得 ,解得k =,b =.∴直线AE 的解析式为y =x +. (2)当x=0时,二次函数y=-,则C (0,-),设直线CE 的解析式为y =mx -,将点E 的坐标(4,)代入得4m -=,解得m =.∴直线CE 的解析式为y =x -.如图,过点P 作PF ∥y 轴,交CE 于点F .设点P 的坐标为,则点F ,则FP =-=-x 2+x .∴S △EPC =×(-x 2+)×4=-x 2+x =-(x -2)2+.∴当x =2时,△EPC 的面积最大,∴P (2,-).此时PC ∥x 轴.作点K 关于CD 和CP 的对称点G ,H ,连接GH 分别交CD 和CP 于点N ,M .∵K 是CB 的中点,∴K ,∴tan ∠KCP =.∵OD =1,OC =,∴tan ∠OCD =,∴∠OCD =∠KCP =30°,∴∠KCD =30°.∵K 是BC的中点,∠OCB =60°,∴OC =CK ,∴点O 与点K 关于CD 对称,∴点G 与点O 重合,∴点G (0,0).∵点H 与点K 关于CP 对称,∴点H 的坐标为.∴KM +MN +NK =MH +MN +ON .当点O ,N ,M ,H 在一条直线上时,KM +MN +NK 有最小值,最小值为OH .∵OH ==3,∴KM +MN +NK 的最小值为3.2.如图,抛物线y =-x 2+bx +c (a ≠0)与x 轴、y 轴分别交于点A (3,0),B (0,3)两点. (1)试求抛物线的解析式和直线AB 的解析式;(2)动点E 从O 点沿OA 方向以1个单位/秒的速度向终点A 匀速运动,同时动点F 沿AB 方向以个单位/秒的速度向终点B 匀速运动,E ,F 任意一点到达终点时另一个点停止运动,连接EF ,设运动时间为t ,当t 为何值时,△AEF 为直角三角形?【答案】(1)y =-x 2+2x +3,y =-x +3;(2)当t 为或1时,△AEF 为直角三角形.【解析】(1)将点A 、B 坐标代入抛物线解析式,解得b 、c 即可得抛物线解析式.设直线AB 的解析式为y =kx +n ,将点A 、B 坐标代入即可解得直线AB 解析式;(2)先求出OA =3,AB =3,OE =t ,AF =t ,AE =3-t .由△AEF 为直角三角形,有∠AEF =90°和∠AFE =90°两种情况,分别利用相识求解. 解:(1)∵抛物线y =-x 2+bx +c (a ≠0)经过A (3,0),B (0,3),∴ ,解得,∴抛物线的解析式为y =-x 2+2x +3.设直线AB 的解析式为y =kx +n ,∴,解得,∴直线AB 的解析式为y=-x +3.(2)由题意可知OA =3,AB =3,OE =t ,AF =t ,∴AE =3-t . ∵△AEF 为直角三角形,有∠AEF =90°和∠AFE =90°两种情况: ①当∠AEF =90°时,易证△AOB ∽△AEF ,∴,即,解得t =; ②当∠AFE =90°时,易证△AOB ∽△AFE ,∴ ,即,解得t =1.综上所述,当t 为或1时,△AEF 为直角三角形.3.如图,抛物线y =ax 2+bx -2与x 轴交于A ,B 两点,与y 轴交于C 点,已知A (3,0),且M (1,)是抛物线上另一点. (1)求a ,b 的值;(2)连接AC ,设点P 是y 轴上任一点,若以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.【答案】(1);(2)P 点的坐标为(0,2)或(0,-2)或或(0,-2-).【解析】将A 、M 坐标代入抛物线解析式便可解得a 、b 的值;(2)分别求出A 、P 、C 的坐标,求得AP 、PC 、AC 的值,当△PAC 为等腰三角形时,分3种情况:①PA =CA ;②PC =CA ;③PC=PA 讨论. 解:(1)把A (3,0),M (1,)代入y =ax 2+bx -2,得,解得.(2)在y =ax 2+bx -2中,当x =0时.y =-2,∴C (0,-2),∴OC =2.如图,设P (0,m ),则PC =|m +2|.∵A (3,0),∴OA =3,∴AC == . 当△PAC 为等腰三角形时,有以下3种情况: ①当PA =CA 时,则OP 1=OC =2,∴P 1(0,2);②当PC =CA =时,即|m +2|=,∴m =-2或m =--2,∴P 2(0,-2)或P 4(0,-2-);③当PC=PA 时,由PA==,则=|m +2|,解得m =,∴P 3.综上所述,P 点的坐标为(0,2)或(0,-2)或或(0,-2-).4.如图,抛物线y =-[(x -2)2+n ]与x 轴交于点A (m -2,0)和B (2m +3,0)(点A 在点B 的左侧),与y 轴交于点C ,连接BC .(1)求m ,n 的值;(2)点N 为抛物线上的一动点,且位于直线BC 上方,连接CN ,BN .求△NBC 面积的最大值.【答案】(1)m =1,n =-9;(2).【解析】(1)由抛物线解析式可得出抛物线的对称轴为直线x =2,又由点A 和点B 是抛物线与x 轴的交点,则A 和B 关于对称轴对称,则=2,便可求得m ,得出点A 和点B 坐标,将A 坐标代入抛物线便求得n ;(2)过点N 作ND ∥y 轴交BC 于D .先求得BC 解析式,设点N 坐标(x ,-x 2+x +3),便可得点D 坐标,则得ND 的值,由S △NBC =S △NDC +S △NDB =×5×ND 得S △NBC 关于x 的二次函数,便可求得最大值.解:(1)∵抛物线的解析式为y =-[(x -2)2+n ]=-(x -2)2-n ,∴抛物线的对称轴为直线x =2.∵点A 和点B 关于直线x =2对称,∴=2,解得m =1,∴点A 的坐标为(-1,0),点B 的坐标为(5,0).把A (-1,0)代入y =-[(x -2)2+n ]得9+n =0,解得n =-9.(2)过点N 作ND ∥y 轴交BC 于D .由(1)可得抛物线的解析式为y =-[(x -2)2-9]=-x 2+x +3.当x =0时,y =3,则点C 的坐标为(0,3).设直线BC 的解析式为y =kx +b ,把B (5,0),C (0,3)代入y =kx +b 得 ,解得.∴直线BC 的解析式为y =-x +3.设点N 的坐标为(x ,-x 2+x +3),则点D 的坐标为(x ,-x +3),∴ND =-x 2+x +3-(-x +3)=-x 2+3x ,∴S △NBC =S △NDC +S △NDB =×5×ND =(-x 2+3x )=-x 2+x =- +,当x =时,△NBC 面积最大,最大值为.5.如图,抛物线经过A (-1,0),B (5,0),C (0,-) 三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2-2x -;(2);(3)存在,点N 的坐标为或或.【解析】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),再把A (﹣1,0),B (5,0),C (0,)三点代入求出a 、b 、c 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为(5,0),连接BC 交对称轴直线于点P ,求出P 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.试题解析:(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),∵A (﹣1,0),B (5,0),C (0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x 2﹣2x ﹣;(2)∵抛物线的解析式为:y=x 2﹣2x ﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC ,如图1所示,∵B (5,0),C (0,﹣),∴设直线BC 的解析式为y=kx+b (k≠0),∴,解得,∴直线BC的解析式为y=x ﹣,当x=2时,y=1﹣=﹣,∴P (2,﹣);(3)存在.如图2所示,①当点N 在x 轴下方时,∵抛物线的对称轴为直线x=2,C (0,﹣),∴N 1(4,﹣); ②当点N 在x 轴上方时,如图2,过点N 2作N 2D ⊥x 轴于点D ,在△AN 2D 与△M 2CO 中,∴△AN 2D ≌△M 2CO (ASA ),∴N 2D=OC=,即N 2点的纵坐标为.∴x 2﹣2x ﹣=, 解得x=2+或x=2﹣,∴N 2(2+,),N 3(2﹣,).综上所述,符合条件的点N 的坐标为N 1(4,﹣),N 2(2+,)或N 3(2﹣,).【考点】二次函数综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A O
B
C
x
y
初三数学考试卷综合题
一、选择题(每题6分,共24分)
1.如图,点A 的坐标是(22),,若点P 在x 轴上,
且APO △是等腰三角形,则点P 的坐标不可能...
是( ) A .(4),0 B .(1
,0) C .(220)-, D .(2),0 2.如图1,在直角梯形ABCD 中,动点P 从点B
出发,沿BC ,CD 运动至点D 停止.点P 运动的路程 为x ,ABP △的面积为y ,如果y 关于x 的函数图象 如图2所示,则BCD △的面积是( ) A .3 B .4 C .5 D .6 3.如图,反比例函数4y x =-
的图象与直线1
3
y x =- 的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平 行线相交于点C ,则ABC △的面积为( ) A .8 B .6 C .4 D .2
4.如图,数轴上与1,2对应的点分别为A ,B , 点B 关于点A 的对称点为C ,设点C 表示的数为x , 则2
2x x
-+
=( ) A .2 B .22 C .32 D .2
二、填空题(每空6分,共24分)
5.如图,矩形ABCD 中,由8个面积均为1的小正
方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _. 6.已知123112113114
,,,...,1232323438345415
a a a =
+==+==+=⨯⨯⨯⨯⨯⨯
依据上述规律,则99a = .
7.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对
(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中, 就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m = . 8.抛物线2
3(1)5y x =--+的顶点坐标为__________.
1 2
3 4 -1 1
2 x
y A
y
图1
2
O
5
x
A
B C P D 图2
O
C
A B
x 2
1
三、解答题
9.请同学们动手用圆规和直尺完成下面作图: (1)已知AOB ∠,求作AOB ∠的平分线OP ;(2)已知线段CD ,求作CD 的垂直 平分线EF .(不要求写作法,不要求证明,保留作图痕迹即可)(10分)
10.如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥, 垂足为F ,连接DE .
(1)求证:ABE △DFA ≌△;
(2)如果10AD AB =,=6,求sin EDF ∠的值.(10分)
13.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA , 将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在, 求出点C 的坐标;若不存在,请说明理由.
(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△P AB 是否有最 大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由. (12分)
O
B C D
A
D A B C
E F
初三数学精美考试卷综合题2
一、选择题(每题4分,共32分)
1.在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m,这个数据用科学记数法表示为()
A.0.78×10-4m B.7.8×10-7m C.7.8×10-8m D.78×10-8m 2.如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是()
A.B.C.D.
A
B C
F
D 3.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62º,那么∠DBF=()
A.62ºB.38ºC.28ºD.26º
4.已知矩形ABCD的边AB=6,AD=8.如果以
点A为圆心作⊙A,使B、C、D三点中在圆内和在圆外都至
少有一个点,那么⊙A的半径r的取值范围是()
A.6<r<10 B.8<r<10 C.6<r≤8 D.8<r≤10
5.小莹准备用纸板制作一顶圆锥形“圣诞帽”,使“圣诞帽”的底面周长为π
18cm,高为40cm.裁剪纸板时,小莹应剪出的扇形的圆心角约为()
A.72ºB.79ºC.82ºD.85º
6.如图,一次函数y=kx+b的图象与反比例函数y=
m
x的图象交
于A、B两点.当一次函数的值大于反比例函数的值时,自变量
x的取值范围是()
A.-2<x<1 B.0<x<1
C.x<-2和0<x<1 D.-2<x<1和x>1
7.如图,已知矩形ABCD中,AB=8,BC=π5.
分别以B、D为圆心,AB为半径画弧,两弧分别交对角线
BD于点E、F,则图中阴影部分的面积为()
A.π4B.π5C.π8D.π
10
8.在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点
A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都
是10,则“宝藏”点的坐标是()
A.(10,10)B.(-2,1)
C.(5,2)或(1,-2)D.(2,-1)或(-2,1)
三、解答题
13.解方程:
x-2
x+2
+
8
4-x2
=1.(8分)
14.(8分)今年2月份,电脑被列为国家惠农政策的“家电下乡”商品,小亮家在这个月买了一台电脑和一套沙发共消费4560元.购买这台电脑享受政府补贴13%(即电脑销售价格的13%由政府支付),沙发价格也比上月降价10%,这样小亮家购买这两种商品比上月购买少花640元.小亮家购买电脑和沙发各消费多少元?
N
15.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作MN ∥BC ,
交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F .
(1)求证:OC = 1
2
EF ;
(2)当点O 位于AC 边的什么位置时,四边形AECF 是矩形?并给出证明. (12分)
17.如图,已知二次函数2
21y x x =--的图象的顶点为A .二
次函数2
y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数
221y x x =--的图象的对称轴上.
(1)求点A 与点C 的坐标;
(2)当四边形AOBC 为菱形时,求函数2
y ax bx =+的关系式.
x。