矿山压力与岩层控制知识点

合集下载

矿山压力与岩层控制考试考点全集

矿山压力与岩层控制考试考点全集

1矿山压力——由于在地下煤岩中进行采掘活动而在井巷、硐室及回采工作面周围煤、岩体中和其中的支护物上所引起的力,就叫做矿山压力。

2岩石的孔隙度——岩石中各种孔洞、裂隙体积的总和与岩石总体积之比。

3泊松比——岩石受单向压缩载荷时,试件在轴向缩短的同时产生横向膨胀,其横向应变与轴向应变的比值称为泊松比。

4流变——有些材料在开始出现塑性变形以后,常在应力不变或应力增加很小的情况下继续产生变形,这种变形叫做流变。

5蠕变——固体材料在不变载荷的长期作用下,其变形随时间的增长而缓慢增加的现象称为蠕变。

6原岩应力——天然存在于原岩而与任何认为原因无关的应力。

7支承压力——在岩体内开掘巷道后,巷道两侧增加的切向应力。

8回采工作面——在煤层或矿床的开采过程中,直接进行采煤或采有用矿物的工作空间。

9初次来压——由于老顶第一次失稳而产生的工作面顶板来压。

10砌体梁——工作面上下两区破断的岩块咬合形成的外表似梁,实质是拱的平衡结构。

11岩石的孔隙性——岩石中孔洞和裂隙的发育程度。

12构造应力——由于地质构造运动而引起的应力。

13构造裂隙——岩层形成后,经剧烈的地质运动而形成的弱面。

14岩石的孔隙比——岩石中各种孔洞和裂隙体积的总和与岩石内固体部分实体积之比。

15自重应力——由于岩体自重而引起的应力。

16老顶——位于直接顶上方的厚而坚硬的岩层。

17压裂裂隙——指在煤层开采时引起的破坏面。

18初次来压步距——由开切眼到初次来压时工作面推进的距离。

1、根据回采工作面前后的应力分布情况,可将工作面前后划分为减压区、增压区域和稳压区。

2、根据破断的程度,回采工作面上覆岩层可分为冒落带和裂隙带。

3、直接顶的完整程度取决于岩层本身的力学性质,直接顶岩层内山各种原因造成的层理和裂隙的发育程度。

4、节理裂隙分为原生裂隙,构造裂隙,压裂裂隙。

5、采空区处理方法有煤柱支撑法,缓慢下沉法,采空区充填法和全部垮落法。

6、蠕变变形曲线可分为稳定蠕变曲线和不稳定蠕变曲线两类。

矿山压力与岩层控制考试复习重点

矿山压力与岩层控制考试复习重点

1.矿山压力:于矿山开采活动的影响,在巷道周围岩体中形成的和作用在巷道支护物上的力。

2.矿山压力显现:由于矿山压力作用使巷道周围岩体和支护物产生的种种力学现象。

3.矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法。

4. 岩石的碎胀性是指岩石破碎后的体积比破碎前的体积增大的性质。

5. 岩石的压实性是指岩石破碎后,在其自身和外加载荷作用下逐渐压实使体积减小的性质。

6. 岩石的透水性、软化性、膨胀性、崩解性。

7. 岩石的弹性变形可分为三种不同的弹性特征:①线弹性。

②完全弹性;③滞弹性。

8. 岩石的变形指标:泊松比、弹性模量、体积变形模量。

9. 岩石的抗剪强度:指岩石抵抗剪切破坏的极限强度。

(抗切强度、抗剪强度、摩擦强度)10. 岩石在单轴压力作用下的应力应变全程曲线。

①O-A段,原始空隙压密阶段;②A-B段,线弹性阶段;③B-C段,弹塑性过渡阶段;④C-D段,塑性阶段;⑤D点以后为破坏阶段。

11. 单轴压缩下岩石破坏的形态:张裂或压裂破坏、压剪破坏、塑流破坏。

12. 莫尔强度理论和格里菲斯强度理论提出的基本思想是什么?它们本质上有什么区别?答:莫尔强度理论认为,材料破坏主要使由于破坏面上的剪应力达到一定限度,但此剪应力还与破坏面上由于正应力造成的摩擦阻力有关。

也就是说,材料某一点发生破坏,不仅取决于该点的剪应力,同时取决于正应力,即沿某一面剪断时剪应力与正应力存在着一定的函数关系。

格离菲斯强度理论认为,任何材料内部都存在各种细微的裂缝,当材料处于一定的应力状态时,在这些裂缝的端部便会产生应力集中。

如果主应力为拉应力,则在裂缝端部产生几倍于主应力的拉应力;如果主应力为压应力,在裂缝端部也产生拉应力。

当裂缝周围拉应力超过岩石的抗拉强度时,就会由于裂缝的扩展而造成岩石的破坏。

莫尔强度理论的实质是剪切破坏理论,而格里菲斯强度理论的实质是脆性拉断破坏理论,这就是它们实质上的区别。

13.岩体强度<岩块强度14. 岩体:一定工程范围内的自然地质体,是由岩块和各种各样的结构面共同组成的综合体。

矿山压力与岩层控制

矿山压力与岩层控制

矿山压力与岩层控制一.名词解释矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力定义为矿山压力。

原岩应力:存在于地层中未受工程扰动的天然应力称为原岩应力,也称为岩体初始应力、绝对应力或地应力。

充填开采:就是用充填材料来充填已采空间,借以支撑围岩,防止或减少围岩垮落和变形的顶板管理技术,采用此方法管理顶板的采煤方法称为充填开采。

关键层:对采场上覆岩层局部或直至地表的全部岩层活动起控制作用的岩层。

锚固力:锚杆对围岩所产生的约束力称为锚固力。

根据约束方式分为:托锚力,黏锚力,切向锚固力;根据锚固阶段分为:初锚力,工作锚固力,残余锚固力。

沿空留巷:在上区段工作面采过后,通过加强支护或采用其他有效方法,将上区段工作面运输平巷保留下来,作为下区段工作面的回采时的回风平巷称为沿空留巷。

沿空掘巷:在上一区段工作面运输平巷废弃后,待采空区上覆岩层移动基本稳定后,沿被废弃的巷道边缘,掘进下一工作面的区段回风平巷称为沿空掘巷。

冲击矿压:是压力超过煤岩体强度极限,聚积在采掘工程周围煤岩体之中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和破坏,支架与设备损坏,人员伤亡,部分巷道垮落破坏等。

充分开采:当采空区尺寸相当大时,地表最大下沉值不再随采空区尺寸增大而增大的开采状态称为充分采动。

二.简答题1.原岩应力概念组成部分以及场规律特点:(☆)答:天然存在于原岩内与人为因素无关的应力场称为原岩应力场。

其主要组成部分是自重应力场和构造应力场。

其规律特点:(1)实测铅直应力基本上等于上覆岩层重量。

(2)水平应力普遍大于铅直应力。

(3)平均水平应力与铅直应力的比随深度增加而减小。

(4)最大水平主应力和最小水平主应力一般相差较大。

2.构造应力场的特点:答:由于地质构造运动而引起的应力场称为构造应力场。

其特点:(1)构造应力以水平应力为主,具有明显的区域性和方向性。

矿山压力与岩层控制复习资料

矿山压力与岩层控制复习资料

第一部分:名词解释1.矿山压力:采动后作用于岩层边界上或存在于岩层之中的这种促使围岩向已采空间的运动的力(即采动后促使围岩运动的力),称为矿山压力。

既是指分布于岩层内部各点的应力,又包括了作用于围岩任何一部分边界上的力。

2.矿山压力显现:采动后,在矿山压力作用下通过围岩运动与支架受力等形式所表现出来的矿山压力现象,统称为“矿山压力显现”。

3.直接顶:所谓直接顶是指在老塘(采空区)内已垮落,在采场内由支架暂时支撑的悬臂梁岩层,其结构特点是在采场推进方向上不能始终保持水平力的传递。

因此,控制直接顶的基本要求是:当其运动时,支架应能承担其全部作用力。

4.基本顶:基本顶是指运动时对采场矿压显现有明显影响的传递岩梁的总合,在初次来压后,是一组在推进方向上能始终传递水平力的不等高裂隙梁。

对于基本顶各岩梁控制的基本要求是:防止由于基本顶运动对采场产生动压冲击和大面积切顶事故发生,把基本顶岩梁运动结束时在采场形成的顶板下沉量控制在要求的范围。

5.传递岩梁:把每一组同时运动或近乎同时运动的岩层看做一个运动的整体,称为“传递力的岩梁”,简称“传递岩梁”6.支承压力:煤(矿)层采出后,在围岩应力重新分布的范围内,作用在煤(岩)层和矸石上的垂直压力。

包括高于和低于原始应力的整个区间,来源于上覆岩层的重量。

7.支承压力显现:在支承压力作用下,发生的煤岩层破坏压缩,相应部位的顶底板相对移动以及支架受力等现象。

8.冲击地压:又称岩爆,是指井巷或工作面周围岩体,由于弹性变形能的瞬时释放而产生突然剧烈破坏的动力现象,常伴有煤岩体抛出、巨响及气浪等现象。

9.垮落步距,来压步距:当直接顶垮落高度达到1m 以上,垮落长度达工作面长度一半以上时,就叫做直接顶初次垮落(初次放顶)。

直接顶初次垮落时自开切眼到支架后排放顶线的距离叫做初次垮落步距。

回采工作面开采后的初次断裂,使工作面支架承受较大的静载荷或冲击载荷,这种矿山压力显现叫做基本顶初次来压。

矿山压力与岩层控制复习资料

矿山压力与岩层控制复习资料

1.矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力定义为矿山压力,在相关学科中也称为二次应力、或工程扰动力。

2.矿山压力显现:在矿山压力作用下,会引起各种力学现象,如岩体的变形、破坏、塌落,支护物的变形、破坏、折损,以及在岩体中产生的动力现象。

这些由于矿山压力作用,使巷硐周围岩体和支护物产生的种种力学现象,统称为矿山压力显现。

3.矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法,均叫做矿山压力控制.4.岩石按不同的标准可分为不同类型,常见的分类有:(1)按岩石成因可分为岩浆岩、沉积岩和变质岩三大类。

(2)按岩石固体矿物颗粒间的结合特征,可分为固结性、粘结性、散粒状和流动性岩石四大类。

(3)按岩石的构成特征,可以区分岩石的结构和岩石的构造。

岩石的结构是决定岩石组织的各种特征(如矿物颗粒的组成成分、结晶程度、形状和大小以及它们之间的连接状况等)的总合;而岩石的构造则指岩石中组成成分的空间分布以及他们相互间的排列关系,如整体构造,多孔状构造和层状构造。

(4)按岩石的力学强度和坚实性,可分为坚硬岩石和松软岩石。

工程中常把饱水状态下单压强度大于10MPa 的岩石称为坚硬岩石;而把低于该值的岩石称为松软岩石。

5.岩石的体积指标(一)岩石的孔隙性岩石的孔隙度指岩石中各种孔洞、裂隙体积的总和与岩石总体积之比,也称孔隙率%1000⨯=V V n 岩石的孔隙比指岩石中各种孔洞和裂隙体积的总和与岩石内固体部分实体积之比,可表示为c V V e 0=孔隙比与孔隙度之间的关系为 n n e -=1 一般孔隙率愈大,岩石中孔隙和裂隙就愈多,岩石的密度和强度愈低,同时使塑性变形和渗透性增大。

(二)岩石的碎胀性和压实性岩石的碎胀性指岩石破碎以后的体积比之前体积增大的性质。

常用岩石的碎胀系数来表示,即岩石破碎后处于松散状态下的体积与岩石破碎前处于整体状态下的体积之比,其表达式为V V K p '= K P ——岩石的碎胀系数;V ' ——岩石破碎膨胀后的体积,m 3; V ——岩石处于整体状态下的体积,m 36.岩石变形性质的类别岩石的变分为弹性变形、塑性变形和粘性变形三种。

矿山压力与岩层控制重点

矿山压力与岩层控制重点

1)矿山压力:未受到工程开挖或扰动的地下岩体称为原岩,原岩处于应力平衡状态。

开挖巷道或进行回采,破坏了原岩的应力平衡状态,引起岩体内部的应力重新分布,直至形成新的平衡状态。

这种由于矿山开采活动的影响,在巷硐或采场周围岩体中形成的和作用在支护物上的力定义为矿山压力,也称为二次应力或工程扰动力。

2)矿山压力显现:在矿山压力的作用下,会引起巷硐周围岩体和支护物产生种种力学现象,如岩体的变形、破坏、塌落,支护物的变形、破坏、折损,以及在岩体中产生的动力现象。

这种由于矿山压力作用使巷硐和采场周围岩体和支护物产生的种种力学现象,统称为矿山压力显现。

3)所有减轻、调节、改变和利用矿山压力作用的各种方法,统称为矿山压力控制●岩石的碎胀性是指岩石破碎后的体积比破碎前的体积增大的性质岩石的压实性是指岩石破碎后,在其自重和外加载荷作用下逐渐压实使体积减少的性质二原岩应力:存在于地层中未受工程扰动的天然应力称为原岩应力,也称岩体初始应力、绝对应力或地应力自重应力场:由地心引力引起的应力场称为自重应力场,自重应力等于位面积的上覆岩层的重力。

5)构造应力场:由于地质构造运动而引起的应力场称为构造应力场,构造力与岩体的特性(裂隙发育密度与方向,岩体的弹性、塑性、黏性等)有关构造应力的基本特点为:(1)一般情况下地壳运动以水平运动为主,构造应力主要是水平应力(浅部尤为明显);而且地壳总的运动趋势是相互挤压,所以水平应力以压应力占绝对优势。

(2)构造应力分布不均匀,在地质构造变化比较剧烈的地区,各处最大主应力的大小和方向往往有很大变化。

(3)岩体中的构造应力具有明显的方向性,最大水平主应力和最小水平主应力之值一般相差较大。

(4)构造应力在坚硬岩层中出现一般比较普遍,在软岩中贮存构造应力很少。

原岩应力分布的基本规律;1)实测垂直应力基本上等于上覆岩层重量2)水平应力普遍大于铅直应力3)平均水平应力与垂直应力的比值随深度增加而减小4)最大水平主应力和最小水平主应力一般相差较大,显示出很强的方向性●地下岩体处在三向复杂和强烈的自重应力和构造应力场中,其体积和形状发生变化产生变形,变形是外力做功的结果。

矿山压力与岩层控制重点总结

矿山压力与岩层控制重点总结

矿山压力与岩层控制重点总结一、1、矿山压力与岩层控制的研究方法有:理论研究,实验室实验,现场测试等不同形式的研究。

2、矿山压力与岩层控制的解析方法主要通过力学模型,利用平衡条件、本构方程、变形条件,破坏判据和边界条件求解其应力,变形和破坏条件。

3、矿山压力检测中采场主要检测顶底板移近量、支架阻力、活柱下缩量和顶板破碎度。

4、矿山压力检测中,巷道主要检测顶底板移近量、支架变形、围岩应力分布和岩层内部移动规律。

5、岩石密度分为:天然密度、饱和密度、干密度。

6、岩石变形指标一般有:泊松比、弹性模量、体积变形量。

7、原岩应力场主要由:重力应力场和构造应力场组成。

8、两个大小不同的圆孔叠加时,大孔对小孔的应力影响较大,而小孔对大孔的影响较小。

9、支撑压力指采场周围或巷道两侧的全部切向应力(或者竖直应力)10、早期采场上覆盖岩层活动规律的假说有:压力拱假说,悬臂梁假说,铰接岩块假说,预成裂隙假说。

11、砌体梁结构模型中:A 块为煤壁支撑区,B 块为离层区,C 块为重新压实区;Ⅰ为垮落带,Ⅱ为裂缝带,Ⅲ为弯曲下沉带。

12、按直接顶稳定性分类:直接顶可分为:破碎顶板,中等稳定顶板,完整顶板。

13、目前所使用的支柱的工作特性有以下几种:急增阻式,微増阻式,恒阻式。

14、液压支柱单独与顶梁配合支护顶板称为单体液压支架,与顶梁,底座,移架千斤顶组合液压自移支架。

15、岩层与地表移动会导致其产生竖直方向和水平方向的位移,前者称为下沉,后者称为水平位移。

16、根据采空区上覆岩层的破坏程度,可分为三带:垮落带,裂缝带,弯曲下沉带。

垮落带和裂缝带合两带,又称为导水裂缝带。

17、两带(冒落带与裂隙带)与煤层采高有关,对于软弱岩层,两带高度为采高的9至12倍,中硬岩层为采高的12至18倍,坚硬岩层为采高的18至28倍。

18、圆形巷道按切向应力分,可分为A 破裂区,B 塑性区,C 弹性区,D 原始应力区19、煤层开采后,在采空区四周形成支撑压力带,在工作面前方煤体内形成超前支撑力,它随着工作面掘进而向前移动,又称为移动性支撑压力或者临时支撑压力,工作面倾斜和仰斜方向及开切眼一侧煤体上形成的支撑压力称为固定支撑压力或者残余支撑压力,采空区后方的支撑压力称为采空区支撑压力。

矿山压力与岩层控制

矿山压力与岩层控制

一、名词解释1.矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法。

2.极限平衡状态:范围内岩块所处的应力圆与其强度包络线相切3.老顶的周期来压:由于裂隙带岩层周期性失稳而引起的顶板来压现象。

4.关键层:将对采场上覆岩层局部或直至地表的全部岩层活动起控制多用的岩层称为关键层5.底板比压:将支架底座对单位面积底板上所造成的压力称为底板载荷集度,即底板比压6.煤矿动压现象:煤矿在开采过程中,在高应力状态下积聚有大量弹性能的煤或岩体,在一定的条件下突然发生破坏、冒落或抛出,使能量突然释放,呈现声响、震动以及气浪等明显的动力效应。

这些现象统称为煤矿动压现象。

7.支承压力:回采空间周围煤岩体内应力增高区的切向应力。

8.测压系数:9.应力集中:受力体内,孔周围局部区域应力高于其它区域应力的现象10.原岩应力:未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力11.冲击地压:煤岩体突然动力破坏,释放大量能量的灾害动力现象,可摧毁巷道、引发其他矿井灾害,造成人员伤亡二、简答题1.绘图表示采场水平和垂直的分区分带2.回采工作面支柱工作特性有几种,绘图加以说明3.采空区的处理方法4.冲击地压的预测预报方法答:冲击地压的预测主要包括时间、地点和规模大小。

目前主要采用的采矿方法,包括根据采矿地质条件确定冲击矿压危险的综合指数法、数值模拟分析法、钻屑法等;采用地球物理方法,包括微震法、声发射法、电磁辐射法、振动法、重力法等,可以达到准确预报冲击矿压可能发生的地点和位置,较准确地确定冲击矿压发生强度和震动释放能量的大小。

5.影响采场矿山压力的主要影响答:1.采高与控顶距2.工作面推进速度的影响3.开采深度的影响4.煤层倾角的影响5.分层开采时的矿山压力显现6.巷道围岩压力及影响因素答:围岩变形受阻而作用在支护结构物上的挤压力或塌落岩石的重力。

统称为围岩压力。

(1.松动围岩压力2.变形围岩压力3.膨胀围岩压力4.冲击和撞击围岩压力)。

矿山压力与岩层控制

矿山压力与岩层控制

矿山压力与岩层控制一、名解:1.矿山压力:是指分布于岩层内部各点应力,又包括作用于围岩上的任何部分边界上的外力。

2.支承压力:是指煤层采出后,在围岩应力重新分布的范围内,作用于煤层、岩层、和矸石上的垂直压力。

3.围岩应力:是指洞室开挖后,周围岩体失去原来的平衡,引起洞室一定范围内岩体应力发生改变,重新调整形成新的应力。

4.原岩应力:是指把未受采掘扰动影响的岩石应力称为原岩压力。

5.基本顶:是指运动时对回采工作面矿山显现有明显影响的传递岩梁的总合,在初次来压后,是一组在推进方向上能够始终传递水平应力的不等高裂隙。

6.直接顶:是指在采空区内已夸落,在回采工作面内由支架暂时支撑的悬臂梁,其结构特点是在回采工作面推进方向上不能始终保持水平力传递。

7.泊松比:是指岩石在受单向压缩载荷时,试件在轴向压缩的同时产生横向膨胀,其横向与纵向的比值称为泊松比。

8.初次夸落距:是指当工作面自开切眼推进一段距离后直接顶悬露达到一定的高度,采空区进入初次放顶,直接顶开始夸落,此时直接开始夸落的距离称为初次夸落距。

9.周期来压:由于裂隙带岩层周期性失稳而引起的顶板来压现象。

10.步距:由开切眼到初次来压时工作面推进的距离。

11.砌体梁:在一定的条件下能够形成表似梁实则为半拱结构。

这种平衡结构形如砌体,故称为砌体梁。

12.关键层:在回采工作面上覆岩层中存在多个岩层时,对岩体活动全部或局部起控制作用的岩层称为关键层。

13.碎胀性:是指岩石破碎后处于松散状态下得体积与破碎时的体积之比。

二、填空:1.三横三纵:三纵带是指弯曲下沉带、裂隙带、冒落带;三横是指煤壁支撑影响区、离层区、重新压实区。

2.直接顶完整性的取决因素:岩石本身的性质、裂隙的发育情况直接顶内的各种原因造成的层理。

3.节理裂隙的分类:原生裂隙、构造裂隙、压裂裂隙。

4.影响顶板下沉的因素:采高、采深、倾角及推进的速度。

5.采区巷道的支护形式:基本支护、加强支护、巷旁支护、巷道围岩加固。

矿山压力与岩层控制重点总结

矿山压力与岩层控制重点总结

矿山压力与岩层控制重点总结关键信息项:1、矿山压力的定义与形成机制2、岩层控制的方法与技术3、矿山压力监测与数据分析4、岩层控制的安全标准与规范5、矿山压力与岩层控制的理论研究进展6、实际案例分析与经验总结11 矿山压力的定义与形成机制矿山压力是指在地下开采过程中,由于采掘活动引起的围岩应力重新分布,导致围岩变形、破坏和移动,并作用在采掘空间周围的支护结构和设备上的力。

矿山压力的形成机制主要包括原岩应力、开采扰动和围岩的力学性质等因素。

原岩应力是指在未受开采影响时,地层中存在的天然应力。

开采扰动会打破原有的应力平衡状态,使围岩应力重新分布。

围岩的力学性质则决定了其在应力作用下的变形和破坏特征。

111 原岩应力的测量与分析了解原岩应力的大小和方向对于预测矿山压力的分布具有重要意义。

常用的原岩应力测量方法包括水压致裂法、应力解除法等。

通过对测量结果的分析,可以为矿山设计和开采提供基础数据。

112 开采扰动对矿山压力的影响开采活动如采煤、掘进等会导致围岩的应力集中和释放,从而产生矿山压力。

开采深度、开采速度、开采方法等因素都会对矿山压力的大小和分布产生影响。

12 岩层控制的方法与技术岩层控制的目的是保持采掘空间的稳定性,保障安全生产。

常见的岩层控制方法包括支护技术、充填技术和卸压技术等。

121 支护技术支护是岩层控制的重要手段,包括锚杆支护、锚索支护、支架支护等。

锚杆和锚索通过将围岩锚固在深部稳定岩层上,提高围岩的自身承载能力。

支架则直接承受围岩的压力,提供支撑作用。

122 充填技术充填可以有效地减少顶板下沉和地表沉陷,同时提高资源回收率。

充填材料包括矸石、粉煤灰、膏体等,其性能和充填工艺对岩层控制效果有重要影响。

123 卸压技术通过钻孔、爆破等方式对围岩进行卸压,可以降低应力集中程度,减少冲击地压等动力灾害的发生。

13 矿山压力监测与数据分析矿山压力监测是掌握矿山压力变化规律、评估岩层控制效果的重要手段。

矿山压力与岩层控制总结复习

矿山压力与岩层控制总结复习

1.矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成和作用在巷硐支护物上的力。

2.矿山压力显现:由于矿山压力作用使巷硐周围岩体和周围支护物产生的各种力学现象。

3.矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法。

1.顶板直接顶:一般把直接位于煤层上方的一层或几层性质相近的岩层称为直接定伪顶:接位于煤层上方的一层或几层性质相近的岩层老顶位于直接顶或煤层之上厚而坚硬的岩层三顶赋存状态对顶板管理有直接影响。

伪顶影响煤质,直接顶影响顶板管理,老顶影2.底板——位于煤层之下的岩层。

直接底——直接位于煤层之下的岩层(泥岩、泥质页岩、砂页岩)(古土壤);老底——直接底以下的岩层。

直接底的强度对顶板管理有较大影响。

来压。

顶板划分主要依据岩性(强度、垮落性)、厚度等。

3.横三带竖三区:弯曲下沉带、裂缝带和跨落带支撑区、离层区和压实区4.直接顶的初次垮落:初次垮落——直接顶第一次垮落(初次放顶)(标志:垮落高度>1~1.5m,长度>1/2 面长)初次垮落距——第一次垮落时,直接顶的跨距。

直接顶垮落距受直接顶强度、厚度、节理裂隙影响,是描述直接顶稳定性的综合指标。

直接顶垮落前,顶板完整性一般较好,支架载荷小,稳定性差,初次垮落易发生大面积顶板事故直接顶岩层破坏原因:节理裂隙切割;岩层松软,变形大离层;落煤后顶板支护不及时,支撑力小,促使离层;老顶岩层平衡结构失稳,岩块回转;支撑力不均衡或支架反复支撑;放顶撤柱,动力冲击。

5.老顶破坏形式:梁式破坏(主要形式)和板式破坏6.矿压显现指标1、顶板下沉S(mm)——煤壁到采空区边缘范围内顶、底板间相对位移。

顶板绝对下沉不易得到,一般以距煤壁4米处下沉量为工作面顶板下沉量。

可以每米采高每米推进度下沉量S/L.M为比较标准。

2、顶板下沉速度V(mm/h)——单位时间顶板下沉量。

3、支柱变形与折损——观察喷液、下缩、压裂、折断等。

4、顶板破碎度——单位面积中顶板冒落面积所占百分比。

矿山压力与岩层控制

矿山压力与岩层控制

一:名词。

1.矿山压力:由于在地下煤岩中进行采掘活动而在井巷、硐室及回采工作面周围.煤、岩体中和其中的支护物上所引起的力,就叫做矿山压力。

2.原岩应力:天然存在于原岩而与任何认为原因无关的应力。

3.支承压力:在岩体内开掘巷道后,巷道两侧增加的切向应力。

4.初次来压:由于老顶第一次失稳而产生的工作而顶板来压。

5.砌体梁:工作面上下两区破断的岩块咬合形成的外表似梁,实质是拱的平衡结构。

6.周期来压:由于裂隙带岩层周期性失稳而引起的顶板来压现象。

7.残余碎胀系数:8.关键层:将对采场上覆岩层局部或直至地表的全部岩层活动起控制作用的岩层。

9.冲击矿压:其是聚集在矿井巷道和采场周围煤岩体中的能量突然释放,在井巷发生爆炸性事故的现象。

10.超前支撑压力:11.极限跨距:老顶达到初次断裂的跨距称为极限跨距。

12.初次来压步距:由开切眼到初次来压时工作面推进的距离。

13.端面破碎度:支架前梁端部到煤壁间顶板破碎程度。

14.顶板冒落敏感度:端面距为1m时的端面破碎度。

二:解答:1.初次来压、周期来压的表现形式?答:初次来压:顶板下沉量和下沉速度急剧增加,顶板的下沉量变大;支柱载荷增加;顶板破碎,出现平行于煤壁的裂缝,甚至出现台阶下沉;工作面前方煤壁内压力过度集中,致使煤壁破坏范围扩大,煤壁严重片帮、支柱折损或插入底板。

周期来压:顶板下沉速度急剧增加,顶板的下沉量变大;支柱载荷普遍增加;有时还可能引起煤壁片帮、顶板台阶下沉、支柱折损,甚至工作面冒顶事故。

2.简述有关回采工作面上覆岩层结构的假说。

答:1.压力拱假说,认为在这两个前后拱脚之间,无论在顶板或底板中都形成了一个减压区,回采工作面的支架只承受压力拱内的岩石重量。

2.悬臂梁假说,认为顶板岩层是一种连续介质,在靠近煤帮处顶板下沉量最小,表现的顶板压力也小。

3、预成裂隙假说,认为由于开采的影响,回采工作面上覆岩层的连续性被破坏,从而成为非连续体。

在回采工作面周围存在着应力降低区、应力增高区和采动影响区。

矿山压力与岩层控制

矿山压力与岩层控制
绪论
• 矿山压力有关概念(要点内容) • 矿山压力教学内容 • 学习矿压的意义(要点内容) • 采矿工程矿压特点
1
绪论
一、 矿山பைடு நூலகம்力有关概念
• 矿山压力:由于矿山开采活动的影响,在周围岩体中形成的,及作用于支护
物上的力,简称“矿压”。在相关学科把其称为地层压力(简称“地压”)、 岩石压力(简称“岩压”)、二次应力、工程扰动力等。包括原岩对围岩作 用力,围岩体内之间作用力(如支承压力)和围岩对支护物作用力(狭义矿 压,如巷道围岩压力、采场顶板压力) 。
1、巷道地压:包括第二章矿山岩体的原岩应力及其重新分布、第 七章巷道矿压显现规律和第八章巷道维护原理和支护技术。
2、采场矿压:包括第三章采场顶板活动规律、第四章采场矿山压 力显现规律、第五章采场顶板支护方法、第六章采场岩层移动及其控制、 第九章厚煤层综放开采岩层控制、第十章浅埋煤层开采岩层控制和第十 二章非煤矿山岩层控制与边坡稳定等。
• 矿山压力与岩层控制是研究矿山岩体力学现象的机理、控制理论,以及控制 所采用的人工构筑物的学科,属于岩石力学的分支,是矿山采掘工程的基础 学科。
2
二、 矿山压力教学内容
矿山压力及其岩层控制,主要讨论矿山压力的形成及其分布特征, 矿山压力的显现规律,及其对矿山压力的控制措施。按研究的地点和显 现特征,包括采场矿压、巷道地压、冲击地压和矿压研究方法等内容。
3、冲击地压:第七章煤矿动压现象及其控制。 4、矿压研究方法:第十三章矿山岩层控制研究方法(包括矿山现 场研究、实验室研究和数学力学分析)。
3
井 按机理分类 巷 地 按地点分类 压
变形地压、松动地压、膨胀地压 竖井地压、平巷地压
露天采场矿压(边坡稳定)

矿山压力与围岩控制知识点

矿山压力与围岩控制知识点

一、名词解释1、矿山压力——由于矿山开采活动的影响,在巷硐周围岩体中形成和作用在巷硐支护物上的力矿山压力显现——由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象矿山压力控制——所有减轻、调节、改变、和利用矿山压力作用的各种方法2、原岩应力——未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力。

(原始应力)(存在于地层中未受工程扰动的天然应力)3、直接顶——位于煤层上方的一层或几层性质相似的岩层伪顶——在煤层与直接顶之间极易垮落的软弱岩层老顶——位于直接顶之上对采场矿山压力直接造成影响的厚而坚硬的岩层4、初次来压——工作面顶板急剧下沉,工作面支架呈现受力普遍加大的现象周期来压——由于裂隙带岩层周期性失稳而引起的顶板来压的现象直接顶初次垮落距——直接顶的第一次大面积垮落称为直接顶初次垮落,直接顶的跨距称为初次垮落距老顶的初次来压步距——由开切眼到初次来压时工作面推进的距离老顶的初次断裂步距——老顶达到初次断裂时的跨距5、关键层——对采场上覆岩层局部或直至地表的全部岩层活动起主要控制作用的岩层6、底板比压——将支架底座对单位面积底板上所造成的压力称为底板载荷集度,即底板比压7、顶板的冒放性——顶煤冒落与放出的难易程度8、跨巷回采——在巷道上方煤层工作面进行跨采,使巷道经历一段时间高应力作用后,长期处于应力降低区的回采。

9、充填开采——用充填材料来充填已采空间,相当于减小了煤层开采厚度,从而减少了采空区上覆岩层的变形与破坏10、冲击矿压——聚积在矿井巷道和采场周围煤岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈的声响,造成煤岩体振动和破坏、支架与设备损坏、人员伤亡、部分巷道垮落破坏等二、简答问答1、原岩应力的组成答:原岩应力的组成:自重应力、构造应力、地温应力、膨胀(收缩)应力和流体压应力等。

其中自重应力和构造应力是原岩应力的主要组成部分2、支承压力可分为哪几个分区?答:根据切向应力的大小,可分为减压区和增压区(比原岩应力小的压力区是减压区,反之是增压区)再向内部发展即处于稳压区。

矿山压力与岩层控制复习重点

矿山压力与岩层控制复习重点

复习重点1-1线弹性、完全弾性、滞弹性1-2顶板下沉、支柱的变形与折损、顶板破碎情况、局部冒顶1-3采高与控顶距、工作面推进速度、开采深度、煤层倾角1-4支撑式、掩护式、支撑掩护式1-5悬吊理论、组合梁理论、组合拱理论1-6跨巷回采、巷道围岩开槽、利用卸压巷;2-1至2-5√√√√×3-1是指直接位于煤层上方的一层或几层性质相近的岩层3-2是指由于裂隙带岩层周期性失稳而引起的顶板来压现象。

3-3是指矿山开采活动在巷硐周围岩体中形成的和作用在巷硐支护物上的力。

3-4是指人们根据巷道围岩应力、围岩强度以及它们之间的相互关系,选择合适的巷道布置和保护及支护方式,降低围岩应力,增加围岩强度,改善围岩受力条件和赋存环境,有效地控制围岩的变形破坏。

3-5是指在上区段工作面采过后,通过加强支护或采用其他有效方法,将上区段工作面运输平巷保留下来,以供下区段工作面回采时作为回风平巷。

4-1 O ―A 段,原始孔隙压密阶段,岩石应力应变曲线呈上弯形。

此段变形模量较小且不是一个常数。

A —B 段,线弹性阶段,岩石应力应变曲线呈直线形,相应的B点应力值称为弹性极限。

B —C 段,弹塑性过渡阶段,该段应力—应变曲线呈下凹形,随着岩石内部裂纹的不断产生和扩展,岩石产生不可逆的塑性变形,同时体积由压缩转向膨胀。

相应于C点的应力值称之为岩石的屈服极限。

C —D 段,塑性阶段,该阶段岩石的应力应变曲线继续向右上方延伸,同时岩石体积膨胀加速,变形也随应力的增长而迅速增长,直到D 点破坏。

相应于D点的应力值称之为岩石的强度极限或峰值强度。

D 点以后为破坏阶段,又称后破坏阶段。

E点所对应的应力值称为残余强度。

处于这一阶段的岩石承载能力极小,只要稍微受到扰动就很容易崩溃而完全丧失承载力。

D点后的峰值区表现出应变软化特性。

4-2 1、老顶岩块的滑落失稳是工作面顶板出现台阶以及有时地表下沉出现台阶的原因2、煤壁上方老顶剪切力最大是工作面顶板沿煤壁切落的原因;3、上覆岩层结构的存在是支架受力小于覆盖层重量的原因,并由此可以分析工作面支架工作阻力必须平衡的顶板压力大小。

矿山压力及岩层控制

矿山压力及岩层控制
矿山压力及岩层限制
第一讲:绪论
矿山压力的基本概念
矿山压力: 采动 采场、巷、硐支护物 力
矿压显现: 力学现象
矿山压力限制: 减轻、调整、利用、变更的方法
矿山压力对煤矿开采的意义
• 生态环境爱护 • 保证平安和正常生产 • 削减资源损失 • 改善开采技术 • 提高经济效益
矿压的探讨方法
• 现场实测 • 理论分析 • 物理模拟 • 数值模拟 • 工程类比
总结
原岩应力分布规律
• 三个规律 顶板活动规律
矿压显现规律 回采工作面支架与围岩的作用原理
• 两个原理
巷道支护与围岩的作用原理
• 一个方法 岩层限制方法
矿山压力及岩层限制
其次讲:原岩应力分布规律
本章介绍
• 原岩应力 • “孔”四周的应力分布 • 围岩极限平衡 • 支撑压力及其分布
原岩应力
原岩体:地壳中没有受到人类工程活动影响的岩体。 原岩应力:存在于地层中未受工程扰动的自然应力。
几层围岩性质相近的岩层。 老 顶----位于煤层或干脆顶之上厚
而坚硬的岩层(基本顶)。 2.顶板
干脆底----位于煤层之下的岩层(古土 壤)。
回采工作空间类型(依据采空区处理方法不同划分)
(a)完整空间---刀柱法或留煤柱开采; (b)自由弯曲空间---顶板缓慢下沉法(顶板塑性大); (c)充填空间---充填法; (d)垮落空间---完全垮落法;
2.板式结构——将顶板视为一个板或经断层裂隙切割后多块板相互咬合组 成的板,按板式结构承载变形及强度理论分析顶板破坏现象。
3.顶板结构端部支撑条件: 固定支座——顶板被岩层夹持,为断裂,无自由端。 简支梁支座——顶板端部断裂或埋深较浅。(可转动)

矿山压力与岩层控制期末考试复习资料全

矿山压力与岩层控制期末考试复习资料全

矿山压力与岩层控制矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力。

矿山压力显现:由于矿山压力作用,使巷硐周围岩体和支护物产生的种种力学现象。

矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法。

矿山压力与岩层控制的研究方法:理论研究,实验室研究,现场监测。

表征岩石的变形指标一般有泊松比、弹性模量和体积变形量。

材料发生破坏除了取决于该点的剪应力,还与该点的正应力有关。

岩石变形分为弹性变形、塑性变形和粘性变形。

原岩应力:存在于地层中未受工程扰动的天然应力。

原岩应力场:天然存在于原岩内而与人为因素无关的应力场。

原岩应力组成——自重应力和构造应力。

由地心引力引起的应力场称为自重应力场;由于地质构造运动而引起的应力场称为构造应力场。

构造应力——由地壳构造运动在岩体中引起的应力,分为现代构造应力和地质构造残余应力。

构造应力以水平应力为主,具有明显的区域性和方向性。

构造应力特点:1)分布不均,在构造区域附近最大;2)水平应力为主,浅部尤为明显;3)具有明显的方向性,最大应力与最小应力相差较大;4)坚硬岩层中明显,软岩中不明显;原岩应力分布基本规律:(1)实测铅直应力基本等于上覆岩层重量;(2)水平应力普遍大于铅直应力;(3)平均水平应力与铅直应力比值随深度增加而减小;(4)最大主应力与最小主应力一般相差较大。

岩体受外力作用而产生弹性变形时,在岩体内部所储存的能量,称为弹性应变能。

在岩体内开掘巷道后,巷道围岩必然出现应力重新分布,一般将巷道两侧改变后的切向增高部分称为支承压力。

在煤层或矿床开采的过程中,一般把直接进行采煤或采有用矿物的工作空间称为回采工作面或采场。

赋存在煤层之上的岩层称为上覆岩层,在煤层之下的岩层称为底板。

伪顶——位于煤层之上,薄而软弱的岩层;位于煤层之上随采随冒落的极不稳定岩层,其厚度一般在0.5m以下,岩性多为炭质页岩。

直接顶——位于煤层或伪顶之上一层或几层性质相近岩层;老顶——位于直接顶或煤层之上厚而坚硬的岩层(基本顶);采空区的处理方法:刀柱法,顶板缓慢下沉法,全部或局部充填法,全部垮落法。

采矿业中的矿山压力与岩层控制技术

采矿业中的矿山压力与岩层控制技术

采矿业中的矿山压力与岩层控制技术在采矿业中,矿山压力和岩层控制技术是关键的考虑因素之一。

矿山施工期间,岩层的稳定性对于矿山的安全和效率具有重大影响。

本文将探讨采矿业中的矿山压力以及相关的岩层控制技术。

1. 矿山压力的形成矿山压力是指在矿山开采过程中,由于岩石受到巨大压力而发生的应力和应变。

压力的形成主要与以下几个因素相关:1.1 岩层的自重岩石由于自身重力会产生一定的压力,这种压力称为自重压力。

自重压力是矿山岩层产生压力的主要原因之一。

1.2 残余压力在地质演化过程中,岩层经历了多次构造运动和岩浆活动,产生了多种残余应力,这些应力会在矿山开采过程中释放,使得矿山产生较大的应力。

1.3 地应力地应力是地壳的应力状态,是由于地球重力、地震活动和构造运动等原因引起的。

地应力是矿山岩层产生压力的另一个重要原因。

2. 矿山压力对岩层的影响矿山压力对岩层的影响主要表现在以下几个方面:2.1 岩层变形和破裂矿山开采过程中产生的压力会导致岩层的变形和破裂,进而影响矿山的稳定性。

岩层的变形和破裂会导致岩石的松动和崩塌,给矿山带来严重的地质灾害风险。

2.2 矿山的坍塌和塌陷矿山压力的增大会导致岩层的坍塌和塌陷,进而引发矿山的严重事故。

矿山的坍塌和塌陷不仅会造成人员伤亡和财产损失,还会影响矿山的正常开采和生产。

2.3 岩层的流变性变化矿山压力会引起岩石的流变性变化,使岩石的粘弹性增大,从而影响岩石的变形行为。

岩层的流变性变化对于矿山巷道和支护结构的设计以及矿山的开采方案具有重要影响。

3. 岩层控制技术为了保证矿山的安全和效益,采取适当的岩层控制技术是必不可少的。

以下是几种常用的岩层控制技术:3.1 预应力锚杆支护技术预应力锚杆支护技术是一种有效的岩层控制技术,在矿山开采过程中广泛应用。

通过预应力锚杆的应用,可以有效控制矿山岩层的变形,提高矿山的稳定性。

3.2 钢筋混凝土支护技术钢筋混凝土支护技术是一种常用的岩层控制技术,通过在矿山巷道和井筒中使用钢筋混凝土支护结构,可以增强岩石的抗压和抗剪强度,提高矿山的稳定性。

矿山压力与岩层控制

矿山压力与岩层控制

矿山压力与岩层控制矿山压力与岩层控制1.名词解释1.矿山压力: 由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力;2.矿山压力显现: 由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象;4.原岩应力:未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力;4.支撑压力:回采空间周围煤岩体内应力增高区的切向应力;5.周期来压: 老顶平衡结构周期性失稳而施加给工作面以大型压力的过程6.初次来压: 老顶平衡结构第一次失稳而施加给工作面以大型压力的过程7.砌体梁: 工作面上下两区破断的岩块咬合形成的外表似梁,实质是拱的平衡结构8.关键层:对采场上覆岩层局部或直至地表的全部岩层活动起主要控制作用的岩层9.冲击地压: 聚集在矿井巷道和采场周围岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和煤岩体破坏,支架与设备损坏,人员伤亡,部分巷道垮落破坏的力学现象。

10.底板比压:底板单位面积所受支架的压力11.回采工作面:在煤层或矿床的开采过程中,直接进行采煤或采有用矿物的工作空间2.简答题1.原岩应力分布规律答:(1)实测铅直应力基本上等于上覆岩层重量;(2)水平应力普遍大于铅直应力;(3)平均水平应力与铅直应力的比值随深度增加而减小;(4)最大水平主应力和最小水平主应力一般相差较大。

2.绘图说明横三区/竖三带三区:A煤壁支撑影响区B离层区:C重新压实区:三带:I垮落带:II裂隙带III弯曲带(硬度越高,三带发育越好)(自下至上)3.绘图说明支柱特性工作支柱力学特性——受顶板压力作用,支柱变形(下缩)性质。

4.关键层具有的特征①几何特征,相对于其他同类岩层单层厚度较厚;②岩性特征,相对于其他岩层较为坚硬,即弹性模量较大,强度较高;③变形特征,关键层下沉变形时,其上覆全部或局部岩层的下沉量同步协调;④破断特征,关键层的破断将导致全部或局部岩层的破断,引起较大范围内的岩层移动⑤支承特征,关键层破坏前以“板”(或简化为“梁”)结构作为全部岩层或局部岩层的承载主体,断裂后则成为砌体梁结构,继续成为承载主体5.影响采场矿山压力显现的因素答:①采高与控顶距的影响;②工作面推进速度的影响;③开采深度的影响;④煤层倾角的影响;⑤分层开采对矿山压力显现的影响;6.采场围岩与支架之间相互作用原理答:支架围岩是相互作用的一对力,支架受力的大小及其在回采工作面分布的规律与支架性能有关,支架结构及尺寸对顶板压力有一定影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、矿山压力:由于矿山开采活动的影响,在巷道周围岩体中形成的和作用在巷道支护物上的力定义为矿山压力,(1)2、矿山压力显现:由于矿山压力作用使巷道周围岩体和支护物产生的种种力学现象,统称为矿山压力显现。

(1)3、矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法叫矿山压力控制。

4、矿山压力与岩层控制课程的重要意义:P1~P25、老顶:通常把位于直接顶之上(有时直接位于煤层之上)对采场矿山压力直接造成影响的厚而坚硬的岩层称为老顶。

(65)6.伪顶:P657、直接顶:一般把直接位于煤层上方的一层或几层性质相近的岩层称为直接顶。

(65)8.采空区处理方法:充填,垮落,顶板缓慢下沉,刀柱法。

P659.砌体梁假说:砌体梁:将采场视为一个有机的整体,在围岩运动中起骨架作用的称为砌体梁。

P69砌体梁结构的失稳:P85~P86横三区竖三带:根据回采工作面上覆岩层内部的破坏情况,将回采工作面上覆岩层分为三带,沿工作面推进方向划分为三个区。

三带:垮落带,裂缝带,弯曲下沉带。

三区:煤柱支撑区,离层区,重新压实区9.1简述开采后引起的上覆盖层的破坏方式及其分区分为三带,垮落带、裂隙带、弯曲带。

垮落带;破断后的岩块呈不规则垮落,排列极不整齐,松散系数比较大一般可达1.3-1.5,重新压实后可降到1.03左右,此区域与所开采煤层相邻,很多情况下是由于直接顶岩层冒落后形成的裂隙带:岩层破碎后岩块排列整齐,碎胀系数较小,垮落带与裂隙带合称“两带”又称为“倒水裂缝带”弯曲带:裂隙带顶至地表的所所岩层称为弯曲带,其特点是岩层在移动过程中具有连续和整体性,在垂直剖面上下各部分下沉差值很小,若有厚硬的关键层,则可能出能在弯曲带内出现离层区。

9.2分析采场上部岩层结构失稳条件当老顶达到极限跨距后,随着回采工作面继续推进,老顶即发生断裂,整个顶板的破断方式可分为三个明显的区域,上、下区为圆弧形破坏,岩块间呈立体咬合关系。

中部呈似梁的咬合关系,但由于破断的岩块相互挤压,产生了水平力,这使中部又呈现出能传递水平力的拱的关系。

这种表面似梁,实质是拱的裂隙梁的平衡关系结构,称为“砌体梁”。

1)结构的滑落失稳咬合处摩擦力的大小,即水平挤压力与该处摩擦系数的乘积,即f=T*tan φ,此力的作用方向与岩块滑落的方向相反,因而起防止岩块间相互滑落的作用。

由此说明节理面倾斜方向与工作面推进方向一致时,结构不易取得平衡,即工作面矿压显现比较严重,相反则对控制顶板有利。

2)结构的变形失稳在岩块的回转过程中,由于挤压处局部应力集中,致使该处进入塑性状态,甚至局部受拉而使咬合处破坏造成岩块回转进一步加剧,从而导致整个结构失稳。

10.直接顶初次垮落:煤层开采后,将首先引起直接顶的垮落,回采工作面从开切眼开始向前推进,直接顶悬露面积增大,当达到其极限垮距时开始垮落。

直接顶的第一次大面积垮落称为直接顶初次垮落。

(70)11、直接顶初次跨落的标志是:直接顶跨落高度超过1m_1.5m,范围超过工作面长度的一半。

12.碎胀系数系列公式:P7213.老顶的初次断裂步距公式:P77~P7914.简述衡量采场矿山压力显现程度的指标有哪些?1顶板下沉量2顶板下沉速度3支柱变形与折损4顶板破碎情况5局部冒顶6工作面顶板沿煤壁切落(或称大面积冒顶)15、老顶初次来压:当老顶悬露达到极限跨距时,老顶断裂形成三铰拱式的平衡,同时发生已破断的岩块回转失稳(变形失稳),有时可能伴随滑落失稳(顶板的台阶下沉),如图4—3所示,从而导致工作面顶板的急剧下沉。

此时,工作面支架呈现受力普遍加大现象,即称为老顶的初次来压。

(99)16.老顶初次来压步距:自开切眼到老顶初次垮落工作面推进的距离17.老顶初次来压的特征与影响因素:P10318.老顶初次来压期间造成事故的主要措施:P10319、周期来压:随着采煤工作面的推进,基本顶这种“稳定——失稳——再失稳”现象,将周而复式地出现,使采煤工作面矿山压力周期性明显增大,由于裂隙带岩层周期性失稳而引起的顶板来压现象称之为工作面顶板的周期来压。

(101)20、周期来压的主要表现形式(特征)?答:1顶板下沉速度增加2顶板下沉量增大3支柱载荷增大4煤壁片帮支柱折损5顶板发生台阶下沉21.预防老顶来压造成事故的措施:P10622.影响采场矿山压力显现的主要因素:P111~P11823.回采工作面支架的两个特性:P12124.简述我国缓倾斜煤层工作面顶板分类方案。

答:直接顶分类:不稳定顶板、中等稳定顶板、稳定顶板:、非常稳定顶板;老顶分类:不明显、明显、强烈、非常强烈(P125表5-1 P126表5-2)25.底板比压:P12626.回采工作面支架主要是由梁与柱组合而成的27.P127~P128 系列名词定义28、回采工作面支柱的工作特性共有几种P1281)急增阻式特性 2)微增阻式特性。

3)恒阻式特性29、液压支架可分为哪几类?各有什么优缺点?各适用于什么条件?(P132~P142)支撑式:指在结构上没有掩护梁,对顶板的作用是支撑的支架;掩护式:指在结构上有掩护梁,单排立柱连接掩护梁或直接支撑顶梁对顶板起支撑作用的支架;支撑掩护式:指具有双排或多排立柱及掩护梁结构的支架,支柱大部或全部通过顶梁对顶板起支撑作用,可能有部分支柱是通过掩护梁对顶板起作用。

30.、简述采场支架与围岩关系特点?1)支架与围岩是相互作用的一对力。

在小范围内,围岩形成的顶板压力可看做一个作用力,支架可以视为一个反力,两者应相互适应,使其大小相等,而且尽可能的作用在一个作用点上。

2)支架受力的大小及其在回采工作面分布规律与支架的性能有关。

3)支架结构及尺寸对顶板压力的影响,在实际生产中证明,在支架架型选择合适时,可以用最小的工作阻力维护好顶板。

31.采空区应力重新分布概貌:P198回采工作面周围支承压力分布规律?煤层开采过程破坏了原岩应力场的平衡状态,引起应力重新分布。

对于受到采动影响的巷道,它的维护状况除了受巷道所处位置的自然因素影响以外,主要取决于采动影响。

煤层开采以后,采空区亡部岩层重量将向来空区周围新的支承点转移,从而在采空区四周形成文承压力带。

工作面前方形成超前支承压力,它随着工作面推进而向前移动,称为移动性支承压力或临时支承压力。

工作面沿倾斜和仰斜方向及开切眼—侧煤体上形成的支承压力,在工作面采过一段时间后,不再发生明显变化,称为固定支承压力或残余支承压力。

回采工作面推过一定距离后,采空区上覆岩层活动将趋于稳定,采空区内某些地带冒落矸石被逐渐压实,使上部未冒落岩层在不同程度上重新得到支撑。

因此,在距工作面一定距离的采空区内,也可能出现较小的支承压力,称为采空区支承压力。

32巷道围岩变形规律(五阶段)采区巷道从开掘到报废,经历采动造成的围岩应力重新分布过程,围岩变形会持续增长和变化。

以受到相邻区段回采影响的工作面回风巷为例,围岩变形要经历五个阶段。

1)、巷道掘进影响阶段。

煤体内开掘巷道后,巷道围岩出现应力集中,在形成塑性区的过程中,围岩向巷道空间显著位移。

随着巷道掘出时间的行长,围岩变形速度逐渐衰减,趋向缓和。

巷道的围岩变形量主要取决于巷道埋藏和围岩性质。

2)掘进影响稳定阶段。

掘进引起的围岩应力重新分布趋于稳定,由于煤岩一般具有流变性,围岩变形还会随时间而缓慢增长,但其变形速度比掘巷初期要小得多,巷道的围岩变形速度仍取决埋藏深度和围岩性质。

3)采动影响阶段。

前影响区时,巷道受上区段工作面(A)的回采影响后,在回采引起的超前移动支承压力作用下,巷道围岩应力重新分布,塑性区显著扩大,围岩变形急剧增长。

在后影响区时,在工作面(A)后方附近,由巷道上方和采空区一侧顶板弯曲下沉和显著运动使得支承压力和巷道围岩变形速度都达到最大值。

远离工作面后方,巷道围岩变形速度逐渐衰减。

巷道围岩性质、护巷煤柱宽度或巷旁支护方式、工作面顶板岩层结构对此时期围岩变形量影响很大。

4)采动影响稳定阶段。

回采引起的应力重新分布走向稳定后,巷道围岩变形速度再一次显著降低,但仍然高于掘进影响稳定阶段时变形速度,围岩变形量按流变规律不断缓慢地增长。

5)二次采动影响阶段。

巷道受本区段回采工作面B 影响时,由于上共段残余支承压力,本区段工作面超前支承压力相互叠加,巷道围岩应力急剧增高,引起围岩应力又一次重新分布,塑性区进一步扩大,应力的反复扰动使围岩变形比受一次采动影响进更加强烈33.区段巷道矿压显现规律:P20634.采区巷道矿压控制的基本途径有哪些?试举例说明,指出其优缺点。

(P215)途径主要包括四个方面:抵抗高压、避开高压、移走高压和释放高压。

现分别举例说明:1)抵抗高压。

巷道开在高压区,或巷道经受高压时用加强支护的手段来对付高压,防止巷道过大的变形或破坏。

如:加密巷道的棚子(缩短棚子间距);在棚子中打加强支柱;用锚杆支护以加固围岩等。

抵抗高压的优点在于巷道布臵地点和掘进时间不受限制,但是需要大幅度提高巷道的支架承载能力,因此浪费物力、人力,成本高。

有些情况下,仅靠抵抗高压并不能完全解决巷道安全维护问题。

2)避开高压。

即在选择巷道位臵时,避开高压区,招巷道布臵在低压区,或在掘进时错过高压作用的时间,把巷道开在压力稳定的区域。

如采用无煤柱护巷,将巷通布臵在靠近来空区煤体边缘的卸载带内;在选择岩石平巷或上下山位臵时,将巷道布臵在支承压力影响范围以外的采空区下等,这些都属于在地点上避开高压。

在掘进下区段沿空巷道时,待上区段工作面压实后再开掘,则同在时间上错开高压。

3)移走高压。

巷道仍开在高压区,但采取人为的卸压措施,使高压转移至离巷道较远的地方。

如在巷道煤帮采用钻孔卸压或切槽卸压。

这种为法的特点是不影响和改变开采设计规定的巷道位臵,但增加了卸载工作所得要的工程费用。

‘4)释放高压。

巷道仍开在高压区,但允许巷道围岩有较大变形以释放部分能量。

如采用大可缩量的支架等。

从‚支架—围岩‛相互作用的观点是优越的;能利用围岩本身的承载能力,但可缩支架结构较复杂。

35.影响围岩压力的主要因素: 1地质因素2开采技术P21536.回采巷道围岩稳定性分类:P21737、沿空留巷:如果通过加强支护或采用其他有效方法,将相邻区段巷道保留下来,供本区段工作面回采时使用的巷道,称为沿空保留(煤体—无煤柱)巷道。

(203)38、沿空掘巷:巷道一侧为煤体,另一侧为采空区,如果采空区一侧采动影响已经稳定后,沿采空区边缘掘进的巷道称为沿空掘进(煤体—无煤柱)巷道(203)39、沿空巷道巷旁支护的类型:矸石带木垛密集支柱混凝土砌块、整体浇注巷旁充填技术。

40.沿空掘巷的三种方式:P22741.简述锚杆的支护原理?1.悬吊理论2.组合梁理论3.组合拱理论 4.最大水平应力理论 5.围岩强度强化理论42.锚杆分类:P24743、冲击矿压:在煤矿开采过程中,煤岩体所承受的压力超过其强度极限,聚居在巷道煤岩体中的能量突然释放,动力将煤岩抛向巷道,同时发出强烈的声响,对周围菜场、巷道、通风设施及人员造成巨大破坏及伤害的一种煤矿动力现象。

相关文档
最新文档