流体力学第1章绪论讲义

合集下载

01第一章 绪论 《流体力学(第4版)》罗惕乾(电子课件)

01第一章 绪论 《流体力学(第4版)》罗惕乾(电子课件)
体积弹性模量定义为产生单位相对体积变化所需的压强增高:
E dp dv v
其中E为体积弹性模量,v为流体体积,负号是因为当受压时dp>0体 积减小dv<0,考虑到一定质量的流体 m=ρv = 常数, 其密度与体积成 反比:
dv vd 0, 即 dv d v
体积弹性模量可写为: E ddp(N /mddp2)
dt
d
dt
其中比例系数μ是反映粘性大小的物性参数,称为流体的粘性系数或粘度。
考虑如上图的流体元变形,因为Δ=(u+du)dt-udt=dudt,
又Δ= dytgdθ=dydθ,所以单位时间内的角变形 d等于速度梯度
dt
dd。uy
从而得到著名的牛顿粘性公式:
du
dy
其中τ的单位是帕:N/m2,流体粘性系数μ的单位是:N.s/m2
(3)表面张力σ(N/m) 液体表面由于分子引力大于斥力而在表层沿表面方向
产生的拉力, 单位长度上的这种拉力称为表面拉力。
2、毛细现象
(1)内聚力,附着力
液体分子间相互制约,形成一体的吸引力。
(2)毛细压强
由表面张力引起的附加压强称为毛细压强
3.毛细管中液体的上升或下降高度
d cos( ) 1 d 2hg
慢的趋势,而快层对慢层有向前的牵扯使其有变快的趋势
Δ
u+du τ
dy
d
u
t
t+dt
流体相邻层间存在着抵抗层间相互错动的趋势,这一特性称为流
体的粘性,层间的这一抵抗力即摩擦力或剪切力,单位面积上的剪
切力称为剪切应力τ
牛顿提出,流体内部的剪切力τ与流体的角变形率 成d正比(注
意对于固体而言,τ 与θ 成正比)

流体力学第一章讲优秀课件

流体力学第一章讲优秀课件

图1.8 各种流线图
图1.9 直壁界或平面组合边界的流动
图1.10 绕固体各种流线图
流线具有的特性:
1.流线一般不能相交;
2.流线一般不能转拆;它只能是光滑的曲 线或直线;
3.恒定流时流线就是迹线,并且形状保 持不弯。
4.非恒定流时流线随时间变化而变化。 流线形状随时都在改变,且与固体边界 的形状有关,它的疏密程度与管道横断 面的面积大小有关。
补充内容 一、一元流 二元流 三元流 1.一元流的定义:
如果流动体的运动要素仅是一个变量的直线或曲线坐 标的函数。 2.二元流的定义:
如果流体的运动要素仅是二个坐标变量的函数。
3.三元流的定义:
如果流体的运动要素仅是三个坐标变量的函数。
(二)流管 元流 总流
1.流管的定义: 在运动流体中取一封闭曲线,通过这条封闭曲线上每一
rx0, y0,
t
z0,t
3.流点的加速度
a
x
x
0
,
y0, z0,t
2 xx0 , y0 , z0 , t
t 2
a
y
x0
,
y0 ,
z0,t
2 yx0 , y0 ,
t 2
z0 , t
a
z
x
0
,
y0, z0,t
2 zx0 , y0 , z0 , t t 2来自a ax, ay , az
z z x0 , y0 , z0, , t
(1—6)
2.流点的运动速度
ux0 ,
vx0 ,
y0, z0,t y0, z0,t
xx0 , y0 ,
t
yx0 , y0 ,
t
z0 ,t z0 ,t

(完整版)流体力学

(完整版)流体力学

第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。

分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V)压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变Ev=dp/(dρ/ρ)(低速流动气体不可压缩)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。

质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动.第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程 =0 流体平衡微分方程重力场下的简化:dρ=—ρdW=—ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;不可压缩流体静压强基本公式z+p/ρg=C不可压缩流体静压强分布规律 p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强—当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。

流体力学教学资料 1-PPT精选文档25页

流体力学教学资料 1-PPT精选文档25页

第五节 表面张力

a
n
气体

表面张力:是液体自由面上分子引力
液体
a 大于斥力而产生的沿表面每单位长度

切向拉力 [N/m]
二维液体表面张力
p p 0 R 2s in 2 2 2
a
气体
pp0/R 曲率半径
液体
n

a
毛细现象 是接触角,与液体,固体性质有关
900
900
gd2hdcos
4
h 4 cos gd
毛细管液体爬高

水银
毛细现象不仅与液体性质、固壁材料、液面上方气体性 质等因素有关,也与管径的大小有关。管径越小,毛细 现象越明显。
谢谢!
xiexie!
流体微团(流体质点)是大量流体分子的集合, 在宏观上是无限小体积。
1 mm 3 体积有 3.31019 个水分子,2.71016 气体分子 以工程的尺度观察,1 mm 3 流体微团 非常微小 以水分子的尺度观察,1 mm 3 流体微团 非常巨大
流体由分子组成,分子不断地运动并且相互碰撞,分 子的运动是不规律的。
如果对微小流体团里所有分子的物理参数进行统计平 均,并把统计平均值作为流体微团的相应物理参数, 只要这样的微团相对于物理参数宏观变化的特征尺寸 足够小,微团上和微团间的参数变化就能够充分反映 出流体的宏观运动特征。
流体力学测量仪器能够反映出来的也正是这样一些宏 观物理参数,而这些宏观物理参数表征的是许许多多 个分子上相应物理参数的统计平均值。
流体力学的任务:在一定的空间体积里,研究流体微团宏 观运动、受力和能量变化的规律。
失效情况:稀薄气体 激波 微尺度流动 (厚度与气体分子平均自由程同量级)

流体力学第1章绪论幻灯片PPT

流体力学第1章绪论幻灯片PPT
流体力学第1章绪论幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
1.1 流体力学的研究对象及意义
1.1.1 研究对象 流体(Fluid),包括液体(Liquid)和气体(Gas)。
江苏科技大学
1.1.3 工程应用
流体力学已广泛用于国民经济的各个领域。
在水利建设中:如防洪、灌溉、航运、水力发电、河道整治等;
在航空航天中:如航天飞机、人造卫星等;
在国民经济的其他技术部门中:如机械工程中的润滑、液压传动; 船舶的行波阻力;市政工程中的通风、通水,高层建筑的受风作用; 铁路、公路隧道中的压力波传播、汽车的外形与阻力的关系;血液在 人体内的流动;污染物在大气中的扩散等。
得到很大发展,已形成专门的学科 ——计算流体力学。
1.1 流体力学的研究对象及意义
江 苏 科 技大 学
5)流体力学的发展史
流体力学的萌芽,是自距今约2200年希腊学者阿基米德的《论浮 体》一文开始的。他对静止流体的性质作了第一次科学总结。
流体力学的主要发展,是从牛顿时代开始的,1687年牛顿的名著 《原理》讨论了流体的阻力、波浪运动等问题,使流体力学开始变为力 学中的一个独立分支。此后,流体力学的发展主要经历了四个阶段:
4、二十世纪六十年代以后,由于计算机的发明与普及,出现了在理论 分析和实验观察的基础上拟定计算方案,利用计算机编程求解数值解的 流体力学研究方法,即“计算流体力学“。现代测量技术如激光测速仪 等的应用和计算机在实验数据的监测、采集等中的应用,都促进了工程 流体力学的发展。

《流体力学》第一章绪论

《流体力学》第一章绪论

欧拉法
以空间固定点作为研究对 象,通过研究流体质点经 过固定点的速度和加速度 来描述流体的运动。
质点导数法
通过研究流体质点在单位 时间内速度矢量的变化率 来描述流体的运动。
流体运动的分类
层流运动
流体质点沿着直线或近似的直线路径运动,各层 流体质点互不混杂,具有规则的流动结构。
湍流运动
流体质点运动轨迹杂乱无章,各流体质点之间相 互混杂,流动结构复杂多变。
流体静力学基础
总结词
流体静力学基础
详细描述
流体静力学是研究流体在静止状态下的力学性质的科学。其基础概念包括流体静压力、流体平衡的原理等,这些 原理在工程实践中有着广泛的应用。
03
流体运动的基本概念
流体运动的描述方法
01
02
03
拉格朗日法
以流体质点作为研究对象, 通过追踪流体质点的运动 轨迹来描述流体的运动。
《流体力学》第一章 绪论
目录
• 流体力学简介 • 流体的基本性质 • 流体运动的基本概念 • 流体动力学方程 • 绪论总结
01
流体力学简介
流体力学的定义
流体力学是研究流体(液体和气体) 的力学性质和运动规律的学科。
它涉及到流体在静止和运动状态下的 各种现象,以及流体与其他物体之间 的相互作用。
波动运动
流体在压力、温度、浓度等外部扰动作用下产生 波动现象,如声波、水波等。
流体运动的守恒定律
动量守恒定律
流体系统中的动量总和在封闭系统中保持不变,即流入和流出封 闭系统的动量之差等于系统内部动量的变化量。
质量守恒定律
流体系统中质量的增加或减少等于流入和流出封闭系统的质量流量 之差。
能量守恒定律
古希腊哲学家阿基米德研 究了流体静力学的基本原 理,奠定了流体静力学的 基础。

(完整版)流体力学 第一章 流体力学绪论

(完整版)流体力学 第一章 流体力学绪论

第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。

研究对象:流体,包括液体和气体。

2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。

4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。

•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。

•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。

流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。

5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。

这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。

6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。

这样的微团,称为流体质点。

流体微团:宏观上足够大,微观上足够小。

流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。

7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。

例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。

流体力学基础(绪论) 流体的定义、流体力学的任务及其发展简史

流体力学基础(绪论) 流体的定义、流体力学的任务及其发展简史
❖ 建立连续介质模型的意义
可用连续函数描述流体的运动,用高等数学的方法和原理求解流体力 学的问题。
体的力学模型(连续介质模型)
❖ 注意
稀薄气体动力学问题,连续介质模型不再适用(分子间距大)。
12
第一章 绪论
§1.3 流体的主要物理性质
❖ 惯性
密度
lim m
V 0 V
9
第一章 绪论
§1.1 流体的定义、流体力学的任务及其发展简史
❖ 流体力学发展简史
第四阶段(19世纪末以来)流体力学飞跃发展 理论分析与试验研究相结合 量纲分析和相似性原理起重要作用
1883年 雷诺——雷诺实验(判断流态) 1903年 普朗特——边界层概念(绕流运动) 1933-1934年 尼古拉兹——尼古拉兹实验(确定阻力系数) ❖ 侧重于工程应用的流体力学称为工程流体力学 ❖ 侧重于理论分析的流体力学称为理论流体力学
8
第一章 绪论
§1.1 流体的定义、流体力学的任务及其发展简史
❖ 流体力学发展简史
第三阶段(18世纪中叶-19世纪末)沿着两个方向发展——理论、实验 经验公式: 1769年 谢才——谢才公式(计算流速、流量) 1895年 曼宁——曼宁公式(计算谢才系数) 1732年 比托——比托管(测流速) 1797年 文丘里——文丘里管(测流量) 理论:1823年纳维,1845年斯托克斯分别提出粘性流体运动方程组 (N-S方程)
7
第一章 绪论
§1.1 流体的定义、流体力学的任务及其发展简史
❖ 流体力学发展简史
第三阶段(18世纪中叶-19世纪末)沿着两个方向发展——理论、实 验
工程技术快速发展,一些土木工程师,根据实际工程的需要,凭借实 地观察和室内试验,建立实用的经验公式,以解决实际工程问题。这 些成果被总结成以实际液体为对象的重实用的水力学。代表人物有皮 托(H.Pitot)、谢才(A.de Chezy)、达西(H.Darcy)等。 提出很多经验公式:

西北工大875流体力学讲义1-第一章绪论(基本概念及参数)

西北工大875流体力学讲义1-第一章绪论(基本概念及参数)

西北工大875流体力学讲义第一章绪论(基本概念及参数)第一节流体的连续介质模型流体是由无数分子构成的,实质是不连续的,为了能够应用高等数学连续函数来描述流的运动规律,将本来不连续的流体看成是有没有间隙的流体微团(质点)构成的。

在连续性介质假设之下,流体的各种参数都可以看成空间和时间的单值连续函数:在宏观上,流体微团足够小,以至于其体积可以忽略不计。

在微观上要足够大,使得所包容的流体分子的平均物理属性有意义。

当流体流动所涉及到的物体的尺寸能够和分子的平均自由行程和脂分子间的距离相比拟时,流体的连续介质模型不再适用。

第二节作用在流体的力作用在流体上的力有两类:一类是某重力场作用的结果,称为质量力,也称体积力,其大小流体的质量(体积)成正比。

重力场中的重力是质量力,在用动静法来研究有关问题时虚加在流体质点上的惯性力也是质量力。

单位流体的质量力可表示为:其单位为加速度单位:m/s2。

另一类是表面力,是分离体以外的其他物体通过分离体的表面作用在分离体上的力。

一个是剪切应力,一个是法向应力。

在液体与异相物质接触的自由表面上还有表面张力,它是一种特殊类型的表面力,它不是接触面以外物质的作用结果,而恰恰是由液体内的分子对处于表面层的分子的吸引而产生的。

液体自由表面上单位长度的流体线所受到的拉力称为表面张力系数,记作σ,单位是N/m。

液体与固体壁面接触时,在液体表面与固壁面的交界处作液体表面的切面,此切面与固壁面在液体内部所夹的角度θ称为接触角。

当液体表面发生弯曲时,液体内部的压强p与外部的流体介质的压强p0之差与曲面的两个主曲率半径R1 和R2有关:此式称为拉普拉斯表面张力方程。

第三节流体的粘性流体粘性:流体流动时流体质点发生相对滑移产生摩擦力的性质,称为流体的黏性。

动力粘度:流体的粘性大小可用流体的动力粘度来表示,即牛顿内摩擦定律中的比例系数。

上式即为牛顿内摩擦定律,该式表明,各层流间的切向应力和速度梯度成正比,比例系数为流体的动力粘度。

武汉理工大学《流体力学》课件1 绪论(共68张PPT)

武汉理工大学《流体力学》课件1 绪论(共68张PPT)
(2) 由流体质点相对运动形成流体元的旋转和变形运动。
1.3.3 连续介质假设 • 连续介质假设:假设流体是由连续分布的流体质点组成的介质。
(1)可用连续性函数B(x,y,z,t)描述流体质点物理量的空间分布和 时间变化;
(2)由物理学根本定律建立流体运动微分或积分方程,并用连续函
数理论求解方程。
• 连续介质假设模型是对物质分子结构的宏观数学抽象,就象几何学 是自然图形的抽象一样。
• 除了稀薄气体与激波之外的绝大多数工程问题,均可用连续介质模型作理 论分析。
由于空气动力学的开展,人类研制出3倍声速的战斗机。
幻影2000
EXIT
使重量超过3百吨,面积达半个足球场的大型民航客
机,靠空气的支托象鸟一样飞行成为可能,创造了 人类技术史上的奇迹。
EXIT
利用超高速气体动力学,物理化学流体力学和稀 薄气体力学的研究成果,人类制造出航天飞机, 建立太空站,实现了人类登月的梦想。
社,1994.11 5 Fluid Mechanics with Engineering Application
(Tenth Edition). E. John Finnemore. 清华大学出版社,
2003
本课程的有关说明:
1、课程的重要性
2、对上课的要求
3、对作业的要求
4、对考试的要求
1、本专业的后续课程会用到。 2、考研。 3、考注册设备工程师。 1、不迟到。 2、不讲话。 3、有事请假。 1、保质保量,独立完成。 2、已知、求、解(Given、Find、Solution)。 3、图形必须用直尺绘制。 4、必须对结果作分析以及单位验算。
1.1 流体力学的研究对象与特点
物质 Substance

《流体力学》课件-(第1章 绪论)

《流体力学》课件-(第1章 绪论)

流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学

力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形

流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论

流体力学课件第一章

流体力学课件第一章
) m






kg

s
3
m
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
更精确计算
对空气,温度为288K时实测结果
1.4 流体的输运性质
1.4 流体的输运性质
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
1.3 流体的可压缩性与热膨胀性
1.3 流体的可压缩性与热膨胀性
1.3 流体的可压缩性与热膨胀性
1.3 流体的可压缩性与热膨胀性
在1atm下,温度从273K变化到373K,水的体积仅增加4.3%
P360 附录 表D.3,
T=273.15, 比容vf=1/1000(m3/kg), T=373.15, vf=1.044/1000(m3/kg)
态,也就是说分子在邻近分子力场中具有的势能远小于分子本身具有

的动能,势能可以被忽略

➢ 在偶尔的场合下,高能量分子也可能在运动过程中与其他分子十分靠
近,出现分子间短暂的强相互作用,通常,这种偶然出现的强相互作
用过程被称为碰撞
➢ 对于分子热运动平均能量高的物质,在分子碰撞以外的绝大部分时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 绪论
➢ 流动的几个问题及流体力学发展史简介 (为什么要建立流体力学学科,该学科的发展史) ➢ 流体力学研究内容、研究方法和应用 ➢ 流体的定义和特征 ➢ 作用在流体上的力 ➢ 流体的主要物理性质
有关流动的几个问题
人类祖先在海洋里生活了40亿年
人类在空气里也生活了700万年
人们对一些流动问题的直觉常常与事实不符
(1)高尔夫球:飞得远应表面光滑还是粗 糙?
(2)汽车:阻力来自前部还是后部? (3)机翼:升力来自上部还是下部?
高尔夫球起源于15世纪的苏格兰
起初,人们认为表面光滑的球飞行阻力小,因此用 皮革制球
后来发现用旧的球反而飞得远,这个谜到了20世 纪流体边界层理论得建立才得以解开
光滑球
粗糙球
现在高尔夫球表面制作成很多凹坑,阻力减小到光 滑球的1/5左右
1.2 流体力学研究内容、方法和应用
流体力学研究内容(任务)
➢ 流体力学就是研究流体宏观运动规律的学科。它的研 究对象是流体,主要研究在各种力的作用下,流体本 身的静止状态和运动状态特性,以及流体和相邻固体 界面间有相对运动时的相互作用规律,研究流动过程 中动量、能量和质量的传输规律。
➢ 具体地说,它的基本任务在于: ➢ (1)建立描述流体静止和运动的基本方程; ➢ (2)确定流体流经各种通道及绕流不同物体时,速
➢ 哈根(G. Hagen,德国)、泊肃叶(J. Poiseuille, 法国)和谢才(A. Chezy)建立了真实流体的实验 流体力学。
➢ 19世纪末两个流体力学分支开始结合,此期间重大 发展还有:
弗劳德(W. Froude) 1810
-1879 英国
建立了模型 实验法则
瑞利(L. Reyleigh) 1842-1919,
汽车阻力 汽车发明于19世纪末
当时,人们认为汽车阻力主要来自前部空气的撞击
因此早期的汽车后部是陡峭的,称为箱型车,
阻力系数CD很大,约0.8。
实际上,汽车阻力主要取决于后部形成的尾流。
20世纪30年代起,人们开始运用流体力学原 理,改进了汽车的尾部形状,出现了甲壳虫型, 阻力系数下降至0.6。
➢ 流动形态变化太快
肉眼无法辨认
➢ 用特殊的技术可以让流动图像显现出来:
与圆柱绕流相似:高尔夫球和汽车后部流动图像 与前部有显著差别,正是这种差别导致运动的阻 力
机翼运动时的流动图像则表明,尾部的旋涡与绕 机翼的环流同时产生,正是这种环流导致机翼的 升力。
丰富多彩的流动图案背后隐藏着复杂的力学规 律,有些动物具有巧妙运用这些规律的本领。
机翼的特殊形状,使它不用旋转就能产生环流, 上部流速加快形成吸力,下部流速减慢成压力。 两者合力形成升力
测量和计算表明上部吸力的贡献比下部要大。
数百吨重的飞机悬浮在空气中和万吨巨轮悬 浮在水面上的流体力学原理完全不同
人们不能凭直觉认识流体运动,是因为:
➢ 空气看不见摸不着 ➢ 水无色透明
肉眼难以观察真实 流动图像
机翼升力 当鸟类停止扑翼在空中滑翔时,人 们的直观印象是空气从下面冲击着鸟的翅膀, 把鸟托在空中,类似于船舶受念。
翼型周围的速度环流使其产生升力。
足球运动的香蕉球现象可以帮助理解环流理论:
旋转的球带动空气形成环流,一侧气流加速, 另一侧气流减速。形成压力差,使足球拐弯, 称为马格努斯效应。
➢ 公元前3世纪,阿基米德发 现浮力定律。
18世纪,随着牛顿运动定律和微积分方 法的建立,流体力学迈入理性发展阶段
欧拉
(1707-1783) 瑞士
伯努利
(1700-1782) 瑞士
拉普拉斯 拉格朗日 达朗贝尔
(1749-1827) 法国
(1736-1813) 意大利
(1717-1783) 法国
建立了无粘性理论流体力学,使流体力学基本理论 初步形成。
课程安排
学时数:40=36(理论课)+4(实验课) 课程性质:专业基础课 成绩评定:作业(10%)+实验(10%)+考勤(10%)
+期末考试(70%) 教材:
• 孔珑主编 《流体力学(I)》. 高等教育出版社,2000
参考书:
• 莫乃榕. 《工程流体力学》. 华中理工大学出版社,2000 • 林建忠等. 流体力学. 清华大学出版社,1999
英国
建议采用量 纲分析法
雷诺(O. Reynolds) 1842-1912,
爱尔兰
纳维(C. Navier) 1785-1836,
法国
斯托克斯(G. Stokes)
1819-1903,
英国
发现两种流 建立了粘性流体的运动方

程,即N-S方程
➢ 1904年,德国普朗特(L.Prandtl)发表 的边界层理论
50~60年代又改进为船型,阻力系数为0.45。
80年代经风洞实验系统研究后,进一步改 进为鱼型,阻力系数为0.3。
后来又出现楔型,阻力系数为0.2。
90年代以后,科研人员研制开发了气动性 能更优良的汽车,阻力系数仅为0.137。
经过近80年的改进,汽车的阻力已经减少到 原来的1/5
目前在汽车外形设计中,流体力学性能研究已 占主导地位,合理的外形使汽车具有更好的动 力学性能和更低的耗油率。
度、压强分布规律; ➢ (3)探求能量转换和损失的计算方法; ➢ (4)解决流体与固体之间的相互作用力的问题。
具有高度智慧的人类为了揭开流动奥秘, 建立了流体力学学科。
1.1流体力学发展史简述
流体力学是人类同自然界作斗争和生产实践中发展起 来的。最早流体知识是从治水、灌溉等方面开始的。
➢ 中国古时候有大禹治水疏通 江河的传说;
➢ 秦朝李冰父子带领劳动人民 修建的都江堰,至今还发挥 着作用;大约与此同时,古 罗马人建成了大规模的供水 管道系统
卡门
钱学森
周培源
他们在空气动力学和湍流理论作出了基础性和开创性的
贡献。边界层理论与机翼理论和气体动力学一道成为了
现代流体动力学的基石。
20世纪中叶以来,工业生产和尖端技术的发展需要促使流体 力学与其他学科进行交叉融合,形成了包括多个学科的分支 体系。目前已包括:
(普通)流体力学、粘性流体力学、气体动力学、稀薄气体 动力学、水动力学、渗流力学、非牛顿流体力学、多相流体 力学、磁、化学、生物、地球、计算流体力学等
相关文档
最新文档