天线的主要特性参量
微波天线与技术课程报告汇总
![微波天线与技术课程报告汇总](https://img.taocdn.com/s3/m/564c777ab90d6c85ec3ac6ac.png)
微波天线与技术课程报告汇总《微波技术与天线》课程考察报告姓名:专业班级:学号:指导老师:许焱平绪论1.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
2.微波的定义:把波长从1m 到0.1mm 范围内的电磁波称为微波。
微波波段对应的频率范围为: 300MHz ~3000GHz 。
在整个电磁波谱中,微波介于超短波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。
一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。
3.微波具有如下主要特点:(1)似光性;(2)穿透性;(3)宽频带特性;(4)热效应特性;(5)散射特性;(6)抗低频干扰特性;(7)视距传输特性;(8)分布参数的不确定性;(9)电磁兼容和电磁环境污染。
4.微波技术的主要应用:(1)在雷达上的应用;(2)在通讯方面的应用;(3)在科学研究方面的应用;(4)在生物医学方面的应用;(5)微波能的应用。
f λ31081051010(m)(Hz)3103231063109-13101210-43101510-73101810-10无线电波宇宙射线射频目录绪论 (1)目录 (2)一、均匀传输线理论 (3)二、规则金属波导 (4)三、微波集成传输线……………………5四、微波网络基础 (5)五、微波元器件 (6)六、天线辐射与接收的基本理论 (7)七、电波传播概论 (8)八、线天线 (9)九、面天线 (10)十、微波应用系统 (11)心得体会 (12)本课程我们共学习了十章,主要学习了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础、微波元器件、天线辐射与接收理论、电波传播概论、线天线、面天线、微波应用系统。
天线参数的度量单位
![天线参数的度量单位](https://img.taocdn.com/s3/m/ce38a3600622192e453610661ed9ad51f01d5427.png)
天线参数的度量单位天线参数是描述天线性能的指标,包括增益、方向性、频率响应等。
这些参数通常以特定的单位进行度量,以便对天线进行准确的评估和比较。
下面将介绍几个常用的天线参数及其度量单位。
一、增益(Gain)增益是衡量天线辐射电磁波能力的重要参数,它表示天线相对于理想点源天线的辐射能力。
增益是以分贝(dB)为单位进行度量,通常用dBi表示。
例如,一个天线的增益为3dBi,意味着它相对于一个理想点源天线具有3dB的辐射能力。
二、方向性(Directivity)方向性是指天线在特定方向上辐射或接收信号的能力,它描述了天线辐射或接收模式的空间分布。
方向性通常用无量纲的方向图来表示,其中最大增益处对应的方向被定义为主瓣方向。
方向性也可以用分贝(dB)来度量,称为定向性因子。
例如,一个天线的定向性因子为10dB,表示它在主瓣方向上的增益是无方向性天线的10倍。
三、频率响应(Frequency Response)频率响应是指天线在不同频率下的辐射或接收能力。
它通常用功率或电压的响应值来表示,单位可以是瓦特(W)或伏特(V)。
例如,一个天线的频率响应为100W,表示它在特定频率下的辐射功率为100瓦特。
四、驻波比(VSWR)驻波比是评估天线匹配性能的重要指标,它表示天线输入端的驻波功率与匹配负载时的最小功率之比。
驻波比是无量纲的,通常用比值表示。
例如,一个天线的驻波比为1.5:1,表示驻波功率是匹配负载时最小功率的1.5倍。
五、极化(Polarization)极化是指电磁波的电场矢量相对于地面的方向。
常见的极化方式有水平极化、垂直极化等。
极化通常用线性极化度量,单位可以是分贝(dB)或无量纲的极化度。
例如,一个天线的极化度为20dB,表示它的极化效果比无极化天线好20dB。
天线参数的度量单位包括分贝(dB)、瓦特(W)、伏特(V)等。
这些参数和单位的准确描述和度量,有助于科学家、工程师和无线通信领域的专业人士对天线性能进行准确的评估和优化。
雷达天线
![雷达天线](https://img.taocdn.com/s3/m/294383e0941ea76e58fa04d7.png)
雷达天线雷达用来辐射和接收电磁波并决定其探测方向的设备。
雷达在发射时须把能量集中辐射到需要照射的方向;而在接收时又尽可能只接收探测方向的回波,同时分辨出目标的方位和仰角,或二者之一。
雷达测量目标位置的三个坐标(方位、仰角和距离)中,有两个坐标(方位和仰角)的测量与天线的性能直接有关。
因此,天线性能对于雷达设备比对于其他电子设备(如通信设备等)更为重要。
主要参量雷达天线的主要参量有方向图、增益和有效面积。
方向图雷达天线具有一定形状的波束。
由于波束是立体的,常用水平截面的波束形状(即水平方向图)和垂直截面的波束形状(即垂直方向图)描述。
方向图呈花瓣状,故又称波瓣图(图1)。
常规方向图只有一个主瓣和多个副瓣。
副瓣电平通常低于主瓣20分贝以上,这样才可能用主瓣来分辨目标的方位和仰角。
主瓣半功率点(0.707场强点)间的宽度称为波束宽度。
增益雷达天线在最大辐射方向所辐射的功率与一假想的各向均匀辐射的天线在同一方向辐射的功率之比(其条件为两天线输入的功率相同)。
增益G 表示雷达天线在发射时聚束的能力。
有效面积雷达天线接收到的信号功率与来自最大辐射方向的信号的功率密度之比,即天线接收到的信号功率Pr=S×Ae。
式中S为信号功率密度;Ae为天线有效面积,表示雷达天线在接收时捕获空中信号的能力。
由互易定理可证明G=4πAe/λ2,式中λ为信号波长。
对一定形式的天线,天线有效面积Ae与实际几何面积A 成正比,即Ae=ηA。
式中η为利用系数,一般小于1。
雷达天线设计的主要问题是:①提高天线增益和有效面积,以加大雷达探测距离;②压低天线副瓣电平,以减小测向模糊和提高抗干扰能力;③提高波束扫描速率,以便能同时观察多个目标;④展宽天线系统工作频带,以提高反有源干扰的能力;⑤采用多种技术提高测角精度。
搜索雷达天线搜索雷达又称警戒雷达,用于及时发现远距离目标。
搜索雷达天线相当大,面积一般为数十至数百平方米。
探测距离达几千公里的预警雷达的天线面积可达几千或几万平方米。
微波技术与天线复习知识要点
![微波技术与天线复习知识要点](https://img.taocdn.com/s3/m/9b8d2201a66e58fafab069dc5022aaea998f41c5.png)
微波技术与天线复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段;●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~●微波的特点要结合实际应用:似光性,频率高频带宽,穿透性卫星通信,量子特性微波波谱的分析第一章均匀传输线理论●均匀无耗传输线的输入阻抗2个特性定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关;两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in z= Z in z+λ/22、λ/4变换性: Z in z- Z in z+λ/4=Z02证明题:作业题●均匀无耗传输线的三种传输状态要会判断1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态知道概念▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波;▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源;此时,信号源端无反射;▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值;共轭匹配的目的就是使负载得到最大功率;●传输线的阻抗匹配λ/4阻抗变换P15和P17●阻抗圆图的应用与实验结合史密斯圆图是用来分析传输线匹配问题的有效方法;1.反射系数圆图:Γz=|Γ1|e jΦ1-2βz= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角;反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小;2.阻抗原图点、线、面、旋转方向:➢在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性;➢实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min又代表行波系数K,右半轴上的点为电压波腹点,其上的刻度既代表r max又代表驻波比ρ;➢|Γ|=1的圆图上的点代表纯电抗点;➢实轴左端点为短路点,右端点为开路点,中心点处是匹配点;➢在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转,;反之,由电源向负载方向移动时,应逆时针旋转;3.史密斯圆图:将上述的反射系数圆图、归一化电阻圆图和归一化电抗圆图画在一起,就构成了完整的阻抗圆图;4.基本思想:➢特征参数归一阻抗归一和电长度归一;➢以系统不变量|Γ|作为史密斯圆图的基底;➢把阻抗或导纳、驻波比关系套覆在|Γ|圆上;●回波损耗、功率分配等问题的分析✓回波损耗问题:1.定义为入射波功率与反射波功率之比通常以分贝来表示,即Lrz=10lgP in/Pr dB对于无耗传输线,ɑ=0,Lr与z无关,即Lrz=-20lg|Γ1| dB2.插入损耗:定义为入射波功率与传输功率之比3.|Γ1|越大,则| Lr |越小;|Γ1|越小,则| L in|越大;P21:有关回波损耗的例题例1-4✓功率分配问题:1.入射波功率、反射波功率和传输功率计算公式反映出了它们之间的分配关系;P192.传输线的传输效率:η=负载吸收功率/始端传输功率3.传输效率取决于传输线的损耗和终端匹配情况第二章规则金属波导●导波系统中的电磁波按纵向场分量的有无,可分为TE波、TM波和TEM波三种类型;知道概念➢TEM波:导行波既无纵向磁场有无纵向电场,只有横向电场和磁场,故称为横电磁波;E z=0而H z=0➢TM波E波:只有纵向电场,又称磁场纯横向波;E z≠0而H z=0➢TE波H波:只有纵向磁场,又称电场纯横向波;E z=0而H z≠0●导行条件:k c<k时,f>f c为导行波;●矩形波导、圆波导主要模式的特点及应用✧矩形波导:将由金属材料制成的、矩形截面的、内充空气的规则金属波导称为矩形波导;1)纵向场分量E z和H z不能同时为零,不存在TEM波;2)TE波:横向的电波,纵向场只有磁场;➢TE波的截止波数k c,➢矩形波导中可以存在无穷多种TE导模,用TE mn表示;➢最低次波形为TE10,截止频率最低;3)TM波➢TM11模是矩形波导TM波的最低次模,其他均为高次模;4)主模TE10的场分布及其工作特性➢主模的定义:在导行波中截止波长最长截止频率最低的导行模➢特点:场结构简单、稳定、频带宽和损耗小等;✧圆波导:若将同轴线的内导体抽走,则在一定条件下,由外导体所包围的圆形空间也能传输电磁能量,这就是圆形波导;➢应用:远距离通信、双极化馈线以及微波圆形谐振器等;➢圆形波导也只能传输TE和TM波形;➢主模TE11,截止波长最长,是圆波导中的最低次模;圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;➢圆对称TM01模:圆波导的第一个高次模,由于它具有圆对称性故不存在极化简并模;因此常作为雷达天线与馈线的旋转关节中的工作模式;➢低损耗的TE01模:是圆波导的高次模式,它与TM11模是简并模;它是圆对称模,故无极化简并;当传输功率一定时,随着频率升高,管壁的热损耗将单调下降;故其损耗相对于其他模式来说是低的,故可将工作在此模式下的圆波导用于毫米波的远距离传输或制作高Q值的谐振腔;●熟悉模式简并概念及其区别1.矩形波导中的E-H简并:对相同的m和n,TE mn和TM mn模具有相同的截止波长或相同的截止频率;虽然它们的场分布不同,但是具有相同的传输特性;2.圆波导中有两种简并模:➢E-H简并:TE0n模和TM1n模的简并➢极化简并模:考虑到圆波导的轴对称性,因此场的极化方向具有不确定性,使导行波的场分布在φ方向存在cosmφ和sinmφ两种可能的分布,它们独立存在,相互正交,截止波长相同,构成同一导行模的极化简并模;●熟悉矩形波导壁电流分布及应用●波导激励的几种类型1.电激励2.磁激励3.电流激励●方圆波导转换器的作用圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;第三章微波集成传输线●带状线、微带线的结构及特点1.带状线:➢是由同轴线演化而来的,即将同轴线的外导体对半分开后,再将两半外导体向左右展平,并将内导体制成扁平带线;➢主要传输的是TEM波;可存在高次模;➢用途:替代同轴线制作高性能的无源元件;➢特点:宽频带、高Q值、高隔离度➢缺点:不宜做有源微波电路;2.微带线:➢是由双导体传输线演化而来的,即将无限薄的导体板垂直插入双导体中间,再将导体圆柱变换成导体带,并在导体带之间加入介质材料,从而构成了微带线;微带线是半开放结构;➢工作模式:准TEM波●带状线、微带线特征参数的计算会查图➢带状线和微带线的传输特性参量主要有:特性阻抗Z0、衰减常数ɑ、相速v p和波导波长λg ●介质波导主模及其特点➢主模HE11模的优点:a)不具有截止波长;b)损耗较小;c)可直接由矩形波导的主模TE10激励;第四章微波网络基础●熟练掌握阻抗参量、导纳参量、转移参量、散射参量结合元件特性和传输参量的定义P84-P93➢阻抗矩阵Z➢导纳矩阵Y➢转移矩阵A➢散射矩阵S➢传输矩阵T●掌握微波网络思想在微波测量中的应用三点法的条件➢前提条件:令终端短路、开路和接匹配负载时,测得的输入端的反射系数分别为Γs,Γo和Γm,从而可以求出S11, S12, S22;第五章微波元器件●匹配负载螺钉调配器原理、失配负载;衰减器、移相器作用➢匹配负载作用:消除反射,提高传输效率,改善系统稳定性;➢螺钉调配器:螺钉是低功率微波装置中普遍采用的调谐和匹配原件,它是在波导宽边中央插入可调螺钉作为调配原件;螺钉深度不同等效为不同的电抗原件,使用时为了避免波导短路击穿,螺钉·都设计成为了容性,即螺钉旋入波导中的深度应小于3b/4b为波导窄边尺寸;➢失配负载:既吸收一部分微波功率又反射一部分微波功率,而且一般制成一定大小驻波的标准失配负载,主要用于微波测量;➢衰减器,移相器作用:改变导行系统中电磁波的幅度和相位;●了解定向耦合器的工作原理P106➢定向耦合器是一种具有定向传输特性的四端口元件,它是由耦合装置联系在一起的两对传输系统构成的;➢利用波程差;●熟练掌握线圆极化转换器的工作原理及作用●了解场移式隔离器的作用P122➢根据铁氧体对两个方向传输的波型产生的场移作用不同而制成的;●了解铁氧体环行器的分析及作用P123➢环行器是一种具有非互易特性的分支传输系统;第六章天线辐射与接收的基本理论第七章电波传播概论●天波通信、地波通信、视距波通信的概念1.天波通信:指自发射天线发出的电波在高空被电离层反射后到达接收点的传播方式,也成为电离层电波传播;主要用于中波和短波波段2.地波通信:无线电波沿地球表面传播的传播方式;主要用于长、中波波段和短波的低频段;3.视距波通信:指发射天线和接收天线处于相互能看见的视距距离内的传播方式;地面通信、卫星通信以及雷达等都可以采用这种传播方式;主要用于超短波和微波波段的电波传播●天线的作用●无线电波传输是产生失真的原因无线电波通过煤质除产生传输损耗外,还会使信号产生失真——振幅失真和相位失真两个原因:1.煤质的色散效应:色散效应是由于不同频率的无线电波在煤质中的传播速度有差别而引起的信号失真;2.随机多径传输效应:会引起信号畸变;因为无线电波在传输时通过两个以上不同长度的路径到达接收点;接收天线收到的信号是几个不同路径传来的电场强度之和;。
移动通信技术——第8章 天馈系统
![移动通信技术——第8章 天馈系统](https://img.taocdn.com/s3/m/c8f1bd0c14791711cc7917f8.png)
吸顶天线:是移动通信系统天线的一种,主 要用于室内信号覆盖。 壁挂天线:室内壁挂天线应用场景类似于吸 顶天线,因此同样必须具有结构轻巧、外形 美观、安装方便等特点。
八木天线:具有增益较高、结构轻巧、 架设方便、价格便宜等优点。
栅状抛物面天线:由于抛物面具有良好 的聚焦作用,因此抛物面天线集射能力 强,直径为1.5m的栅状抛物面天线,在 900MHz频段,其增益即可达G=20dBi。
8.2 馈线
馈线是在发射设备和天线之间传输信号的导 线。 信号在馈线里传输,除有导体的电阻性损耗 外,还有绝缘材料的介质损耗。 这两种损耗随馈线长度的增加和工作频率的 提高而增加。 因此,应合理布局、尽量缩短馈线长度。
移动通信常用馈线类型有1/2″、7/8″、 5/4″3种。 其中7/8″馈线主要用于长度大于20M的 馈线,但当900MHz系统的馈线长度大于80 米时,采用5/4″馈线;当1 800MHz系统的馈 线长度大于50米时,应采用5/4″馈线;1/2″ 馈线主要用于天线与7/8″馈线、7/8″馈线与 设备的发射单元的链接。
驻波比为1,表示完全匹配;驻波比 为无穷大表示全反射,完全失配。 一般要求天线的驻波比小于1.5,驻 波比是越小越好,但工程上没有必要追 求过小的驻波比。
4.天线带宽
将天线的谐振频率点附近的一段频段, 定义为天线带宽。 天线的频带宽度有两种不同的定义:一 种是指在驻波比SWR≤1.5条件下,天线的工 作频带宽度;另一种是指天线增益下降3分贝 范围内的频带宽度。
天线振子是构成天线的最基本单位。 当导线上有交变电流流动时,就可以 发生电磁波的辐射,辐射的能力与导线的 长度和形状有关。
两臂长度相等的振子叫作对称振子。 每臂长度为1/4波长、全长为二分之一 波长的振子,称半波对称振子,如图8-2所 示。
天线相关参数解释
![天线相关参数解释](https://img.taocdn.com/s3/m/817e737326d3240c844769eae009581b6bd9bd73.png)
天线相关参数解释天线相关参数解释1、天线的输⼊阻抗天线的输⼊阻抗是天线馈电端输⼊电压与输⼊电流的⽐值。
天线与馈线的连接,最佳情形是天线输⼊阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输⼊阻抗随频率的变化⽐较平缓。
天线的匹配⼯作就是消除天线输⼊阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。
匹配的优劣⼀般⽤四个参数来衡量即反射系数,⾏波系数,驻波⽐和回波损耗,四个参数之间有固定的数值关系,使⽤那⼀个纯出于习惯。
在我们⽇常维护中,⽤的较多的是驻波⽐和回波损耗。
⼀般移动通信天线的输⼊阻抗为50Ω。
2、驻波⽐它是⾏波系数的倒数,其值在1到⽆穷⼤之间。
驻波⽐为1,表⽰完全匹配;驻波⽐为⽆穷⼤表⽰全反射,完全失配。
在移动通信系统中,⼀般要求驻波⽐⼩于1.5,但实际应⽤中VSWR应⼩于1.2。
过⼤的驻波⽐会减⼩基站的覆盖并造成系统内⼲扰加⼤,影响基站的服务性能。
3、回波损耗它是反射系数绝对值的倒数,以分贝值表⽰。
回波损耗的值在0dB的到⽆穷⼤之间,回波损耗越⼤表⽰匹配越差,回波损耗越⼩表⽰匹配越好。
0表⽰全反射,⽆穷⼤表⽰完全匹配。
在移动通信系统中,⼀般要求回波损耗⼤于14dB。
4、天线的极化⽅式所谓天线的极化,就是指天线辐射时形成的电场强度⽅向。
当电场强度⽅向垂直于地⾯时,此电波就称为垂直极化波;当电场强度⽅向平⾏于地⾯时,此电波就称为⽔平极化波。
由于电波的特性,决定了⽔平极化传播的信号在贴近地⾯时会在⼤地表⾯产⽣极化电流,极化电流因受⼤地阻抗影响产⽣热能⽽使电场信号迅速衰减,⽽垂直极化⽅式则不易产⽣极化电流,从⽽避免了能量的⼤幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,⼀般均采⽤垂直极化的传播⽅式。
另外,随着新技术的发展,最近⼜出现了⼀种双极化天线。
就其设计思路⽽⾔,⼀般分为垂直与⽔平极化和±45°极化两种⽅式,性能上⼀般后者优于前者,因此⽬前⼤部分采⽤的是±45°极化⽅式。
天线测量报告
![天线测量报告](https://img.taocdn.com/s3/m/45fa246ee518964bcf847c3e.png)
天线测量报告1、 简介天线参量是描述天线特征的量,可用实验的方法测定。
天线参量的测量(简称为天线测量)是设计天线和调整天线的重要手段。
因为天线的特征是多方面的,所以一个天线有很多个参量。
在这些参量中,大多数情况下要着重测量的是方向图、输入阻抗和增益。
超宽带 (UWB) 是一项快速发展的技术,它用于传输大带宽 (>500 MHz) 范围内的信息,以便进行短距离、宽带宽通信。
通过使用近期由管理机构批准的极低的发射电平,UWB技术作为个人局域网 (PAN) 连通性 (例如无线 USB) 所使用的核心技术正在引起人们的关注。
近来,用于PAN应用的商用器件正逐渐应用到小于10.6 GHz的频率范围。
对于商用天线 (例如 WLAN) 或那些在蜂窝系统中使用的天线来说,矢量网络分析仪 (VNA)的射频型号 (例如E5071C ENA (4.5 GHz/8.5 GHz) 和E5061/62A ENA-L (1.5 GHz/3 GHz) 网络分析仪)已广泛应用于设计流程和生产线上,以测量回波损耗或VSWR。
然而,由于UWB系统使用更宽的频率范围,UWB天线测量需要在生产线上使用更高频率的VNA。
本文讨论了使用20 GHz ENA网络分析仪进行UWB天线测量的优势,并给出了使用ENA选通功能的测量实例。
2、 二、测量注意事项1、20 GHz ENA可最大程度地降低测试成本在2008年8月,安捷伦推出了一款频率高达20GHz的ENA。
秉承该系列产品的优良传统,20 GHz ENA在同类产品中具有出色的性能和测量速度, 可最大程度地降低测试成本。
例如, ENA在所有频率范围内的迹线噪声仅为传统VNA (例如8719或8720 (10 MHz至20 GHz,51 pts,IFBW 1 kHz) 的十分之一,而测量速度却是传统VNA的十倍。
2、快速利用您当前的ENA程序20 GHz ENA提供与当前ENA (4.5 GHz/8.5 GHz选件)一样的用户界面和编程命令,有效地保护您的软件投资。
天线定义
![天线定义](https://img.taocdn.com/s3/m/e1668aff1711cc7931b716f3.png)
天线一、定义:用金属导线、金属面或其他介质材料构成一定形状,架设在一定空间,将从发射机馈给的射频电能转换为向空间辐射的电磁波能,或者把空间传播的电磁波能转化为射频电能并输送到接收机的装置。
天线(antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。
在无线电设备中用来发射或接收电磁波的部件。
二、天线的分类:①按工作性质可分为发射天线和接收天线。
②按用途可分为通信天线、广播天线、电视天线、雷达天线等。
③按工作波长可分为超长波天线、长波天线、中波天线、短波天线、超短波天线、微波天线等。
④按结构形式和工作原理可分为线天线和面天线等。
三、描述天特性参量有:(1)方向图(2)方向系数(3)增益(4)输入阻抗(5)辐射效率(6)极化和频宽(7)驻波比(1)方向性:天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。
衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。
(2)增益:1、增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电磁波能力大小的表现。
2、在输入功率相等的条件下,实际天线与理想天线的辐射单元在空间同一个点所产生的信号的功率密度之比,增益显然与天线的方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
注:半波对称振子的增益为G=2.15dBi。
如果以半波对称振子作比较对象,其增益的单位是dBd。
半波对称振子的增益为G=0dBd(因为是自己跟自己比,比值为1,取对数得零值。
)垂直四元阵,其增益约为G=8.15–2.15=6dBd。
(3)驻波比:天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。
天线原理天线基本参数
![天线原理天线基本参数](https://img.taocdn.com/s3/m/53e75576240c844768eaee2d.png)
➢1. 半功率波瓣宽度(Half-power Beamwidth) 半功率波瓣宽度又称主瓣宽度或3dB波瓣宽度,是指
主瓣最大值两边场强等于最大值的0.707倍(最大功率密 度下降一半)的两辐射方向之间的夹角,通常用20.5表示。
➢主况为22瓣下20.θ表零主宽,0示.功瓣度天5E。和率最又线2波大称的θ瓣值E为0面.宽两半5H和度边功。H(两面率F个方波ir零向束st 辐图宽Nu射的度ll 方主或Be向瓣3adm之宽B波w间度i束d的不t宽h夹等)度角,。,可一通分般常别情用记
面,此面上0,方向函数为 FEsin。而H面为XOY 平面,此面上 2,方向函数为FH1。
西安电子科技大学
第三章 天线基本参数
§ 3.3 方向图参数
实际天线或者阵 列天线的方向图比较 复杂,通常有多个波 瓣,包括主瓣(主波 束)、多个副瓣(旁 瓣)和后瓣(尾瓣), 如图所示。
西安电子科技大学
第三章 天线基本参数
A 0 与方向无关的常数
f(,) E(,)
A0
f (,) 就是场强方向图函数,并且只是 , 的函数
西安电子科技大学
第三章 天线基本参数
以基本电振子为例,其辐射电场强度可以表示成: 分量表达式
E r ,, 6 r I0 s l i n 6 r If0 ,
方向性函数定义为:
f,E 6 r,I0 ,r lsin
天线与微波技术 科技重点实验室
第三章 天线基本参数
西安电子科技大学
第三章 天线基本参数
1、方向性函数 2、方向图(Radiation Pattern) 3、方向图参数 4、方向系数(Directivity) 5、天线效率 6、增益(Gain)
7、极化(Polarization) 8、有效长度 9、输入阻抗(Input Impedance) 10、辐射阻抗(Radiation Resistance) 11、频带宽度(Bandwidth)
天线噪声温度
![天线噪声温度](https://img.taocdn.com/s3/m/eec6dc4d58fafab069dc02fe.png)
2. 喇叭馈源 3. 正交极化馈源
图3-15 一种正交极化馈源系统的组成框图
图3-15 一种正交极化馈源系统的组成框图
3.3.4 跟踪系统
在地球站天线处观察,当卫星漂移占地
球站天线半功率点波束宽度很大部分时, 为了避免使天线指向损耗过大,必须要
采用跟踪系统,即:
δ θ
S
> Ψ hp / N
1. 轴对称结构
图3-10 喇叭抛物面天线结构图
图3-11 卡塞格伦天线结构图
图3-12 极轴天线结构图
2. 非轴对称结构 (偏馈天线)
图3-13 非轴对称 (偏馈) 天线结构图
3. 天线安装
图3-14 天线安装结构图: (a) 方位Байду номын сангаас–仰角装置; (b) X–Y轴装置
3.3.3 馈源系统
G / T C / N 0 EIRP S ( L p Lm ) k
3.1.2 国际规定和技术限制
1. 国际规定
2. 技术限制
3.1.3 地球站技术近期发展趋向
迹象表明,最大的增长率多半还是移动
卫星业务。用户的数目在本世纪前10年 会达到1千万以上。大部分手持终端,都 具有与地面移动系统同时运行的能力。
n个系统噪声温度:
Te Te1 Te 2 / G1 Te 3 / G1G2 Te n / G1G2 Gn 1
n个系统级联时的噪声系数
F F1 ( F2 1) / G1 ( F3 1) / G1G2 ( F n 1) / G1G2 Gn 1
1. HPA备份方式 2. 多载波合成 3. 功率合成 4. 高功放的非线性
天线的主要特性
![天线的主要特性](https://img.taocdn.com/s3/m/975924f0f61fb7360b4c65a6.png)
天线的主要特性(一)天线是微波收发信设备的“出入口”,它既要将发信机的微波沿着指定的方向放射出去,同时还要接受对方传来的电磁波并送到微波收信机。
因此,天线性能的好坏将直接影响到整个微波通信系统的正常运行。
这里我们将对天线的性能指标及要求作一介绍。
天线的方向性通常一副天线向各个方向辐射电磁波的能力是不同的,它沿各个方向辐射电磁能量的强弱可用天线的方向系数来表示。
所谓天线的方向系数是指在某点产生相等电场强度的条件下,无方向性天线总辐射功率PF0与定向天线总辐射功率PF的比值,常用“D”来表示,即天线方向性图(3-4)不难想象,定向天线沿各个方向辐射的电场强度是不相同的,因而定向天线的方向系数也将随着观测点的位置不同而有所不同。
其中方向系数最大的地方,即辐射增强的方向,称主射方向。
通常人们用天线的方向图来表示天线对各个方向的方向系数大小,如图所示。
由图可以看出,天线的方向性图像象花朵的叶瓣,各叶瓣称为方向叶。
处于主射方向的方向叶称为主叶,处于主叶反方向位置的方向叶称为后叶,其他方向的方向叶统称为副叶。
显然主叶的宽度越窄,说明天线的方向性也好。
天线方向性的好坏,工程上常采用半功率角和零功率角两个参量来表示。
所谓半功率角是指主叶瓣上场强为主射方向场强的1/√2= 0.707时(即功率下降1/2时),两个方向间的夹角,即为“2θ0.5”;所谓零功率角是指偏离主射方向最近的两个零射方向(辐射场强为零的方向)之间的夹角,记为“2θ0”。
半功率角和零功率角越小,表示主叶瓣的宽度越窄,说明天线的方向性越好。
一副方向性良好的天线,除了必须具备上述具有较小的半功率角和零功率角外,还应该包括后叶瓣和副叶瓣尽可能小,以减小可能出现的窜扰。
天线的主要特性(二)天线增益所谓天线增益是指天线将发射功率往某一指定方向发射的能力。
天线增益定义为:取定向天线主射方向上的某一点,在该点场强保持不变的情况下,此时用无方向性天线发射时天线所需的输入功率Pi0,与采用定向天线时所需的输入功率Pi之比称为天线增益,常用“G”表示。
卫星通信第三章
![卫星通信第三章](https://img.taocdn.com/s3/m/5febb3f8bd64783e08122b1f.png)
地球站射频基本性能
EIRP:
例:高功率放大器的输出为2KW,一个直径为20m 的卡塞格林天线在14.25GHz时的发射天线增益为 66.82dB,高功放到天线馈源的波导损耗为1dB。求 地球站输出的EIRP。
地球站射频基本性能
G/T:
表示地球站天线和低噪声放大器的性能,它与接收 机的灵敏度密切相关
通信业务站、有关通信参数测量站、 遥控跟踪站
引言
地球站设计考虑:
服务类型:FSS、BSS或MSS 通信业务类型:电话、数据和电视等 终端站对基带信号质量的要求 业务要求:信道数、业务类型(连续或突发) 价格和可靠性
地球站组成:
引言
电源
HPA
天线
双工器
跟踪系统
LNA
上变频器
调制器
频率合成器
下变频器
到高精度跟踪
起伏和衰落敏
感
第四节 射频分系统:
高功率放大器 低噪声放大器
地球站
射频分系统
高功率放大器的分类:
行波管放大器:输出功率100~200W,带宽大于 500MHz 速调管放大器:输出功率大,可达几千瓦,但带宽 小,只有行波管的2% GaAs FET放大器:固态功放,功率小(20~30W,最 大110W),但是供电简单,寿命长,效率高
FSi/Ni Si/K0T B No = GK 0B+ TNn1Te So/No GiS/N0 GK 0BT GK 0BT T0
可以推 Te导 (F1 出 )T0 则对有损二系 端 L 数 网 F 络噪声
地球站射频基本性能
G/T:
天线噪声温度:通过天线进入到接收机的噪声的温度 噪声源:
自然噪声 宇宙噪声 太阳噪声
下变频器设计
天线原理及设计复习
![天线原理及设计复习](https://img.taocdn.com/s3/m/107cb11067ec102de2bd8943.png)
λ
分析对称振子天线的已知条件是什么? 对称振子天线上的正弦电流分布是基于什么原理得到的? 正弦电流分布 I ( z ) = I m sin[ β (l − | z |)] , − l ≤ z ≤ l 三角形电流分布 I ( z ) = I m (1− | z | / l ) , − l ≤ z ≤ l 单行波天线上的电流分布 I ( z ) = I 0e − j β ′z ,
6
cos( sin θ ) 2 yz 面: f (θ ) = , 0 cosθ
π
⎛ βd ⎞ ⎛π ⎞ f12 (θ ) = 2 cos ⎜ sin θ ⎟ = 2 cos ⎜ sin θ ⎟ ⎝ 2 ⎠ ⎝2 ⎠
0 ≤θ ≤π
⎛π ⎞ f12,1' 2 ' (θ ) = 2 sin ( β H cos θ ) = 2 sin ⎜ cosθ ⎟ , ⎝2 ⎠
Байду номын сангаас
2l
ρ
) − 1] ,输入阻抗随长度的
5 、二元耦合振子天线的阻抗方程总辐射阻抗
⎧U1 = I1m Z11 + I 2 m Z12 阻抗方程 ⎨ ⎩U 2 = I1m Z 21 + I 2 m Z 22
7
I 2m ⎧ Z = Z + Z12 1 11 r ⎪ I1m ⎪ 单元的辐射阻抗 ⎨ ⎪ Z = I1m Z + Z r2 21 22 ⎪ I 2m ⎩ 总辐射阻抗 Z ∑ = Z r1 + Z r 2
f12 = 2 sin(
βd
2
cos θ ) ;
cos θ ) ;
βd
2
■形成心脏形方向图的二元阵阵因子:
(α = ±
π
复习课--天线与电波传播(精华)
![复习课--天线与电波传播(精华)](https://img.taocdn.com/s3/m/88dadf28376baf1ffc4fad23.png)
比照电流元辐射场表达式,利用对偶性原理,可求得磁 流元辐射场表达式。
1.10以时变电场和时变磁场为源的基本辐射元
由麦克斯韦方程组可知,作为辐射源除了有时变电 流,还有时变电场和时变磁场。
惠更斯元 基本缝隙辐射元
惠更斯元 dx,dy
面积单元中具有规则均匀的内场分布
n
z
Esx ax Esx
1 ˆ1 S Re E H r E H 2 2
时变电流元的电磁场讨论
远区场 r 辐射场 辐射场电场与磁场空间方向正交且垂直于传 ˆ 、同相;辐射波阻抗: 播方向 r
E 0 120 H 0
等相面为球面 球面波,且相位随 r 增大 不断滞后;在 r 极大的空间近似TEM波 dl H 场量幅值 E , , 有效辐射发生条件: dl 与 相比拟,频率越高天线尺寸越小。
天线的有效长度
天线的有效长度是线状天线的特性参量之一,
它是用来衡量天线辐射或接收电磁波能量效果的参量。 有效长度是对发射天线提出来的, 当天线上电流分布不均匀时,在保持天线主向辐射场 强值不变的条件下,把电流分布折算成均匀后的天线 长度。
天线特性参量中,两个重要的特性参量
P291(本章小结5)
以辅助函数A、φ, 替代求解
时变电磁场的势函数
达朗贝尔方程的解
1 (t t0 ) dV V 4 r J (t t0 ) A dV 4 V r
2 2 2 t 2 A 2 A 2 J t
磁流元方向 E 沿传播法线 E and E 沿隙缝方向 E or E
卫星通信系统和技术精品文档
![卫星通信系统和技术精品文档](https://img.taocdn.com/s3/m/f9e5b764eff9aef8951e0631.png)
(2). 自适应分配TDMA(AA/TDMA)
外向传输 (Outbound) 内向 (Inbound) 数据 RA/TDMA信道
图3-56 AA/TDMA的幀格式和分组格式
图3-57 (a) 随机连接模式传输
(b) 预约模式数据传输
图3-58 混合模式传输时平均时延与流量的关系曲线
3.6 固定和广播卫星业务地球站
这一节主要介绍三种类型的地球站:大型 的INTELSAT的 A标准地球站,中等数据速 率的中小型地球站,和VSAT小型地球站。
3.6.1 大、中型固定业务地球站
1. 大型地球站原理框图 2. 数字话音插空技术 (DSI) 和中速数据业
务 (IDR)
数字话音插空技术 中速数据业务(IDR)的发展
3.7.3 VSAT系统工作原理
1. VSAT系统的数据通信网
如图3-55所示的VSAT系统,小站和主站是通 过卫星转发器连成星型网络结构。其中主站发 射的EIRP高,接收G/T值大,故而所有小站都 可直接与它互通。
图3-55 VSAT小型地球站网络
(1). 卫星多址联接方案
数据通信时,在VSAT系统中使用的主要 是随机联接和预约方案。
T T S T e T L A 1L 1 L 11 T 0 T e2 T G e 2 3
3.3 天线、馈源和跟踪系统
1. 天线是一种互易器件,因此当频率给定时,接 收和发送特性是相同的。
2. 地球站天线可以用来作为定义各个参量的样本。 3. 大部分地球站天线要求能沿着两根轴方向运动,
图3-34 上、下变频合用一种微波频率合成器
3.5.3 中频放大、滤波、和均衡
放大、滤波、和群时延均衡功能是在中 频实施的。
微波技术与天线-S、T参数及功率增益与工作特性参数及复习
![微波技术与天线-S、T参数及功率增益与工作特性参数及复习](https://img.taocdn.com/s3/m/040d380fb80d6c85ec3a87c24028915f804d840a.png)
提纲 第二章微波网络
一、阻抗矩阵参数
用T1和T2两个参考面上的电流表示两个参考面上的 电压的网络方程为
U1 Z11I1 Z12 I2 U2 Z21I1 Z22I2
I1
Z01
U1
N
I2
U2
Z02
U Z I
T1
T2
引入归一化电压和归一化电流概念,U U
则归一化阻抗矩阵参数为
Z0
I I Z0
双端口网络T参数
a1
b1
T1 S 参数
b1 b2
s11
s21
s12 a1
s22
a2
N
T 参数
ba11
T11b2 T21b2
T12a2 T22a2
a2
b2 T2
a1 b1
T11 T21
T12 T22
b2
a2
T11
T12
T
T21 T22
双端口网络T参数
T参数与S参数的关系
功率增益G(损耗程度)
负载吸收的功率与双端口网络输入功率之比
G
PL Pin
S21 2 (1 L 2 ) 1 S22L 2 (1 in
2 ) (与源内阻Zg无关)
双端口网络的功率增益
资用功率增益GA 资用:匹配时,最大的功率
负载从网络得到资用功率与信号源输出资用功率之比
GA
Pan Pa
S21
2
(1
g
]
1
Y 2
Y 2
Y
2
1
Y 2
传输线
I1
a1
U1 b1
Zc
l
I2
a2
U b2
1.3传输线的特性参量
![1.3传输线的特性参量](https://img.taocdn.com/s3/m/4d342eedc8d376eeaeaa3114.png)
传输线的特性参量主要包括:传播常 数、特性阻抗、相速和相波长、输入阻 抗、反射系数、驻波比 ( 行波系数 ) 和传 输功率等。
1.3 传输线特性参量
一、特性阻抗
V ( z ) A1e z + A2e z 1 I ( z ) ( A1e z A2e z ) Z0
min max
1.3 传输线特性参量
I I
min max
1 1+
1
传输线上反射波的大小,可用反射系数的 模、驻波比和行波系数三个参量来描述。
反射系数模的变化范围为 驻波比的变化范围为 行波系数的变化范围为
对于微波传输线,由于, L1C1
vp 1 L1C1
所以有:
(2.3-7)
双导线和同轴线上行波的相速度均为:
vp 1
1
0 0 r
v0
r
1.3 传输线特性参量
定 义 相波长,为波在一个周期 T 内等相位
面沿传输线移动的距离,即:
0 p v pT f r
(1)传输线上任一点的阻抗与该点的位置和负载阻 抗有关,分布于沿线各点,是一种分布参数阻抗 。 (2)传输线段具有阻抗变换作用,Z L 通过线段 d变换成 Z in (d ) ,或相反。
( 3 ) 无 耗 线 的 阻 抗 呈 周 期 性 变 化 , 具 有 / 4 变换性和 / 2 阻抗重复性。
(3) 由于在微波频率下,电压和电流缺乏明 确的物理意义,不能直接测量,故传输线阻抗 也不能直接测量,但可以间接测量。
没有反射波,则:Zin(d)=Zo。
1.3 传输线特性参量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E面、H面方向图
方向图
主瓣宽度与副瓣电平
方向图中有许多波瓣,其中包含最大辐射方向 的波瓣称为主瓣,其它依次称为第一副瓣、第 二副瓣等等。
天线辐射是否集中,可以用主瓣宽度这一特性 参量来表示。主瓣中辐射强度(即功率密度) 为最大值一半的两个向径之间的夹角称为主瓣 宽度。主瓣宽度越小,方向图越尖锐,表示天 线辐射越集中。
4
2 F 2 , sindd
00
方向系数(辐射强度表示式)
如果辐射强度定义为
U , r2S ,
方向系数的另一等价表示式为
D
,
0
2
0
4U , U , sindd
最大方向系数
D ,
在被抑制的辐射方向上小于1 在被增强的辐射方向上大于1
如果 0 ,0 是辐射强度最大的方向,则
在 0,0 上 D 有最大值而 D0 ,0 就
立体方向图
上述方向图是一个三 维的立体图形,因而 被称为立体方向图。
举例:喇叭天线
立体方向图
平面方向图
任何通过原点的平面,与立体方向图相交的轮 廓线称为天线在该平面的平面方向图。 工程上一般采用两个相互正交的主平面上的方 向图来表示天线的方向性,这两个主面称为E 面和H面。 E面是通过天线最大辐射方向并平行于电场矢 量的平面;H面是通过天线最大辐射方向并垂 直于E面的平面。
是最大方向系数。
增益
方向系数是用来比较给定方向上的辐射强度与
平均辐射强度的,所以它不考虑天线材料中的
功率损耗,而增益计入了这些损耗,因此增益
的定义是在相同输入功率条件下,在( , )
方向辐射的功率密度除以所有方向上的平均辐
射功率密度,即
G ,
S ,
Pacc 4r 2
Pacc 是天线从发射机得到的总功率
品质因数(G/T)
天线增益与噪声温度之比
通常规定的是天线-接收机系统的品质因数,这 种情况下的品质因数是天线增益除以折算到天 线输出端的系统噪声温度。 射频系统在任意参考平面的系统品质因数与在 天线端口的系统品质因数相等。因为增益和系 统噪声温度是折算到同一参考平面的。
极化
天线的极化是指该天线在给定方向上远 区辐射电场的空间取向。 辐射波的极化:在空间固定位置上,沿着 传播方向观察时观察到的电场矢量的末 端随时间变化所描述出的轨迹,用来描 述辐射电磁波的电场矢量的方向和相对 幅度的时变特性。
在改以半波天线作比较标准时,相应的 方向性系数应比点源的小1.64倍。
输入阻抗
天线的输入阻抗是天线在馈电点的电压 与电流的比值。 与天线的型式,使用的波长以及周围物 体的情况等因素有关。 求出天线的输入阻抗之后,就可据此设 计馈线,以达到相互匹配。
输入阻抗
天线的输入阻抗:
Zin
Uin Iin
Rin
极化
极化可分为线极化、圆极化和椭圆极化。 轨迹为一条直线时,称线极化;轨迹沿 顺时针旋转圆极化为右旋圆极化(RHCP) /或右旋椭圆极化,反之为左旋圆极化 (LHCP)/或左旋椭圆极化。 天线不能接收与其正交的极化分量。
轴比
对于椭圆极化,在给定位置上电场随时 间变化的轨迹曲线一般是椭圆,椭圆的 长轴与短轴之比称为轴比,常用分贝表 示。圆极化轴比为1(0dB)。 轴比有时带有符号,即右旋极化为正, 左旋极化为负。
效率
一般来说,载有高频电流的天线导体及 其绝缘介质都会产生损耗,因此输入天 线的实功率并不能全部地转换成电磁波 能量。
天线效率定义为天线辐射功率与输入功
率之比。
A
Pr Pin
效率
A
Pr Pin
Pr Pr Pl
Rr Rr Rl
其中:Rr为辐射电阻,RL为损耗电阻
可见,要提高天线效率,必须尽可能减 小损耗电阻和提高辐射电阻。
方向系数(功率密度表示式)
方向系数是在相同辐射功率条件下,在 ( , )方向辐射的功率密度除以所有 方向上的平均辐射功率密度,即
D ,
1
4r 2
S ,
2 S, r2 sindd 00
2
0 0
4S , S, sindd
方向系数(功率密度表示式)
4 E , 2
2 E, 2 sindd 00
不同型式的天线,它们的方向图也不相 同。如果把天线在各方向辐射的强度用 从原点出发的矢量长短来表示,则连接 全部矢量端点所形成的包面,就是天线 的方向图。
方向图
在极坐标上以向径长度表示该方向电场强度的 绝对值,这种方向图称为电场方向图。 在直角坐标系中,以横坐标表示角度,以纵坐 标表示电场绝对值。 若以向径长度表示该方向每单位面积辐射的功 率大小,由此得到的方向图称为功率方向图。 因为辐射功率是与电场强度的平方成正比,所 以功率方向图中的向径长度应为电场方向图中 同一方向上向径长度的平方。
副瓣的最大值相对于主瓣最大值的比称为副瓣 电平,一般用分贝表示。
主瓣宽度
功率方向图中,功率为主瓣最大值一半 的两点所张的夹角称为主瓣宽度,或主 瓣的半功率点宽度。 在电场方向图中,相应于半功率点的绝 对值是最大值的0.707倍。因此,在电场 方向图中,主瓣宽度是指场强下降到最 大值的0.707倍的两点之间所张的夹角。
jX in
其中:Rin,Xin分别为输入电阻和输入电 抗,它们分别对应有功功率和无功功率。
有功功率以损耗和辐射两种方式耗散掉, 而无功功率则驻存在近区内。
驻波比
电 压 驻 波 比 ( voltage standing wave ratio)用来衡量失配的程度,其定义为 沿线电压最大值与最小值之比(最好是 相邻的)。 工程上对天线系统提出的设计要求是规 定在馈线上允许的驻波比。匹配的越好, 驻波比越小。
考虑到天线输入端的电压反射系数,则
天线的总效率为 1 2 A
方向系数、增益与效率
因为天线从发射机得到的功率大于实际
的辐射功率,所以 G , D ,
方向系数、增益与效率的关系
G A D
增益
在实际应用中,有时以自由空间的半波
天线来代替点源天线作为增益的比较标
准。
Gd
D
1.64
Gi (dB) Gd (dB) 10 lg(1.64)
航空天线技术
航空天线技术
第二讲 天线的主要特性参量
天线的主要特性参量
方向图 主瓣宽度 副瓣电平 方向系数 增益 效率 输入阻抗 驻波比 品质因数 极化 轴比 相位中心 带宽 有效长度 有效接收面积 等效噪声温度 RCS
方向图 显示天线在不同方向 辐射的相对大小
天线辐射的功率有些方向大,有些方向 小。表示这种辐射功率大小在空间的分 布图,称为方向图。