大物第一章习题及答案培训讲学

合集下载

大学物理课后习题答案第一章

大学物理课后习题答案第一章

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t 内,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k =+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v r 3v r 1v r12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。

大学物理学-第1章习题解答

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解第1章 质点运动学1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2t t x -=,m )0.6(32t t y +-=。

求:(1)在s 0.3=t 时质点的位置矢量;(2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度;(5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。

解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-=(2)03r r r -=∆,代入数据即可。

(3)注意:0303--=r r v =)m/s 99(j i +-(4)dtd r=v =)m/s 921(j i +-。

(5)注意:0303--=v v a =2)m /s 38(j i +-(6)dtd va ==2)m /s 68(j -i -,代入数据而得。

1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。

在这段时间内它的平均加速度是多少?解:0303--=v v a =2)m /s 3.3333.8(j i +-1-3 质点的运动方程为) 4(2k j i r t t ++=m 。

(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。

解:(1)dtd r=v =)m/s 8(k j +t (2)dtd v a ==2m/s 8j ; (3)1=x ;24z y =。

1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。

求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ∆及位矢的径向增量。

解:(1)由t x 2=,得2xt =,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=;(2)位移 02r r r -=∆=)m (4j i - 位矢的径向增量 02r r r -=∆=2.47m 。

大学物理习题答案解析第一章

大学物理习题答案解析第一章

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);tsd d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗? 1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 42=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin=', t T R y π2cos -='坐标变换后,在O x y 坐标系中有t TR x x π2sin='=, R t TR y y y +-=+'=π2cos0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t vi j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BAt B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==ttt t 0)d 46(d d j i a vvj i t t 46+=v又由td d r=v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 0)d 46(d d 0j i r vj i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值. 解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程 222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到. 解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n 2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hlαarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin ,则船到达正对岸所需时间为。

大学物理上册 第一章习题答案详解

大学物理上册 第一章习题答案详解

� ⎛1 ⎞� r = (3t + 5)i + ⎜ t 2 + 3t − 4 ⎟ j (m) ⎝2 ⎠
(2) 第一秒内位移
� � � ∆r1 = ( x1 − x 0 )i + ( y1 − y 0 ) j �⎡ 1 ⎤� = 3(1 − 0)i ⎢ (1 − 0) 2 + 3(1 − 10)⎥ j ⎣2 ⎦ � � = 3i + 3.5 j (m)
负号表示 a 的方向指向岸边,因而船向岸边加速运动.
1-8 在 生 物 物 理 实 验 中 用 来 分 离 不 同 种 类 分 子 的 超 级 离 心 机 的 转 速 是 6 × 10 4 r ⋅ min −1 ,在这种离心机的转子内,离轴 l0cm 远的一个大分子的向心加速 度是重力加速度的几倍?
解: 物体 A 下降的加速度(如图所示)为
2h 2 × 0.4 = = 0.2m/s 2 2 2 t 2 此加速度也等于轮缘上一点在 t ′ = 3s 时的切向加速度,即
a=
′ at = 0.2(m/s 2 )
在 t ′ = 3s 时的法向加速度为
an =
′ v ′ 2 (a t t ) 2 (0.2 × 3) 2 = = = 0.36(m/s 2 ) R R 1.0
ds l dl s 2 + h2 = =− v0 dt s l 2 − h 2 dt
习题 1-7 图
负号表示船在水面上向岸靠近. 船的加速度为
a=
⎡d ⎛ dv l = −⎢ ⎜ ⎜ 2 2 dt ⎢ ⎣ dl ⎝ l − h
2 ⎞ ⎤ dl h 2v ⎟v 0 ⎥ = − 30 ⎟ s ⎠ ⎥ ⎦ dt
将 t=3s 代入证
1 x3 = 41 (m) 4

大物第一章课后习题答案

大物第一章课后习题答案

⼤物第⼀章课后习题答案简答题1.1 关于⾏星运动的地⼼说和⽇⼼说的根本区别是什么?答:地⼼说和⽇⼼说的根本区别在于描述所观测运动时所选取的参考系不同。

1.2 ⽜顿是怎样统⼀了⾏星运动的引⼒和地⾯的重⼒?答:⽤⼿向空中抛出任⼀物体,按照惯性定律,物体应沿抛出⽅向⾛直线,但是它最终却还会落到地⾯上。

这说明地球对地⾯物体都有⼀种吸引⼒。

平抛物体的抛速越⼤,落地时就离起点越远,惯性和地球吸引⼒使它在空中划出⼀条曲线。

地球吸引⼒也应作⽤于⽉球,但⽉球的不落地,⽜顿认为这不过是⽉球下落运动曲线的弯曲度正好与地球表⾯的弯曲程度相同。

这样⽜顿就把地球对地⾯物体的吸引⼒和地球对⽉球的吸引⼒统⼀起来了。

⽜顿认为这种引⼒也作⽤在太阳和⾏星、⾏星与⾏星之间,称为万有引⼒。

并认为物体所受的重⼒就等于地球引⼒场的引⼒。

这样⽜顿就统⼀了⾏星运动的引⼒和地⾯的重⼒。

1.3 什么是惯性? 什么是惯性系?答:任何物体都有保持静⽌或匀速直线运动状态的特性,这种特性叫惯性。

我们把⽜顿第⼀定律成⽴的参考系叫惯性系。

⽽相对于已知惯性系静⽌或做匀速直线运动的参考系也是惯性系。

1.4 ⼈推动车的⼒和车推⼈的⼒是作⽤⼒与反作⽤⼒,为什么⼈可以推车前进呢?答:⼈推动车的⼒和车推⼈的⼒是作⽤⼒与反作⽤⼒,这是符合⽜顿第三定律的。

但这两两个⼒是分别作⽤在两个物体上的。

对于车这个研究对象来说,它就只受到⼈推动车的⼒(在不考虑摩擦⼒的情况下),所以⼈可以推车前进。

1.5 摩擦⼒是否⼀定阻碍物体的运动?答:不⼀定。

例如汽车前进时,在车轮与路⾯之间实际上存在着两种摩擦⼒:静摩擦和滚动摩擦。

前者是驱使汽车前进的驱动⼒,后者是阻碍汽车前进的阻⼒。

再如,拖板上放上⼀物体,拉动拖板,物体可以和拖板⼀起运动,其原因就是拖板给予了物体向前的摩擦⼒。

1.6 ⽤天平测出的物体的质量,是引⼒质量还是惯性质量?两汽车相撞时,其撞击⼒的产⽣是源于引⼒质量还是惯性质量?答:⽤天平测出的物体的质量和引⼒有关,是地球对物体和砝码的引⼒对天平⼑⼝⽀撑点⼒矩平衡测出的质量,所以是引⼒质量。

大学物理知识总结习题答案(第一章)

大学物理知识总结习题答案(第一章)

第一章 连续体力学本章提要1.固体的弹性· 在常温常压下,固体分为晶体和非晶体。

晶体在宏观上具有规则对称的外形,在微观上具有远程有序的特点,在物理性质上呈现各向异性,并且加热熔化时具有确定的熔点。

· 固体的形变包括拉伸压缩、剪切、扭转和弯曲四种。

拉伸压缩和剪切形变为基本形变。

· 物体在外力作用下发生的相对形变称应变,拉伸应变为l l ∆=ε 剪切应变通过剪切角来表示,剪切角为dx =γ 若在压力作用下,体积发生变化而形态不变,体应变为 0V V ∆=θ ·作用在物体内部单位面积上的作用力称应力,某截面S ∆上的应力为Sf ∆∆=σ 在拉伸应变中l l E ∆σ=拉 在体应变中V V K∆=体σ 在剪切应变中 dx G=剪σ 其中,E 称杨氏模量,K 称体积模量,G 称切变模量。

2.静止液体的性质·液体基本特征是易于流动而难以压缩,在物理性质上呈现各向同性。

·液体可以分为极性液体、非极性液体、金属液体和量子液体。

·对于液体中的任一点而言,来自任何方向的压强均相同。

·液面下任一点的压强为A 0p p gh ρ=+·液体表面上还存在着一种额外的切向力—表面张力,表面张力的基本规律为f l γ∆=∆其中,γ为表面张力系数,它是表征液体表面张力大小的特征量。

表面张力系数与液体的种类、温度和掺杂的某些物质(表面活性物质和表面非活性物质)有关。

·对于弯曲液面,其液面内外的压强不相等,压强差满足拉普拉斯公式。

凸形液面的拉普拉斯公式为Rp p γ=2外内- 凹形液面的拉普拉斯公式为Rp p γ-=2外内-3.液体的流动性质·连续性原理为S ν = 常量它体现了不可压缩的液体在流动过程中质量守恒。

Sv 为单位时间内通过截面S 的流体体积,称为流量。

·伯努利方程给出了同一流线上各点的压强、高度和流速三者之间的关系,即221112221122p v gh p v gh ρρρρ++=++ ·连续性方程和伯努利方程适用于理想流体的稳定流动。

大学物理学(课后答案)第1章

大学物理学(课后答案)第1章

第 1 章质点运动学习题一选择题1-1 对证点的运动,有以下几种表述,正确的选项是[](A)在直线运动中,质点的加快度和速度的方向同样(B)在某一过程中均匀加快度不为零,则均匀速度也不行能为零(C)若某质点加快度的大小和方向不变,其速度的大小和方向可不停变化(D)在直线运动中,加快度不停减小,则速度也不停减小分析:速度是描绘质点运动的方向和快慢的物理量,加快度是描绘质点运动速度变化的物理量,二者没有确立的对应关系,故答案选C。

1-2 某质点的运动方程为x 2t 3t 312(m) ,则该质点作[](A)匀加快直线运动,加快度沿 ox 轴正向(B)匀加快直线运动,加快度沿ox 轴负向(C)变加快直线运动,加快度沿ox 轴正向(D)变加快直线运动,加快度沿ox 轴负向dx 2 dv分析:vdt 2 9t ,adt18t,故答案选 D。

1-3 一质点在平面上作一般曲线运动,其刹时速度为v ,刹时速率为 v ,某一段时间内的均匀速率为 v ,均匀速度为 v ,他们之间的关系必然有 [](A) v v , v v (B) v v , v v(C) v v , v v (D) v v , v v分析:刹时速度的大小即刹时速率,故v v ;均匀速率 vs ,而均匀速r,故 v v 。

答案选 D。

t度 v =t1-4 质点作圆周运动时,以下表述中正确的选项是[](A) 速度方向必定指向切向,所以法向加快度也必定为零(B)法向分速度为零,所以法向加快度也必定为零(C)必有加快度,但法向加快度能够为零(D)法向加快度必定不为零分析:质点作圆周运动时,v 2dva a n e n a t e te ndte t,所以法向加快度一定不为零,答案选 D 。

1-5 某物体的运动规律为dvkv 2t ,式中, k 为大于零的常量。

当 t 0 时,dt初速为 v 0 ,则速率 v 与时间 t 的函数关系为 [](A) v 1 kt 2 v 0(B)1 kt2 12v 2 v 0(C) v1 kt2 v 0 (D)1 kt2 12v2v 0分析:因为dvvt( kv 2t) dt ,获得1kt 21,故答案kv 2t ,所以 dvdtv 0v 2 v 0选 B 。

《大学物理学》第1-6章课后习题解答

《大学物理学》第1-6章课后习题解答

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dvdt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+,然后根据drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即22dx dy v dt dt ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 及 222222d x d y a dt dt ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

大学物理课后习题答案第一章

大学物理课后习题答案第一章

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。

《大学物理讲义》 习题答案

《大学物理讲义》 习题答案

I
《大学物理讲义》习题解答
第一章 质点运动学
1-1 一质点沿 x 轴运动的规律是 x t 2 4t 5m ,求前 3s 内它的位移和路程。 解: 由
v
dx 2t 4 0 dt dv a 2m / s 2 0 dt
得质点做匀加速运动,在 t p 2s 时运动方向改变。
1
《大学物理讲义》习题解答
x 4.5t 2 2t 3 m
求 (1)第 2 秒内的平均速度; (2)第 2 秒末的瞬时速度; (3)第 2 秒内的路程。 解: (1)第 2 秒内的平均速度为
v
x2 x1 18 16 (4.5 2) 0.5m / s 2 1 1 dx dt 9t 6t 2 t 2 s 18 24 6m / s dx 9t 6t 2 dt


2 3.375 1.375m
则第 2 秒内的路程为
S x1 x2 0.875 1.375 2.25m 3 1-3 一质点的运动方程为 r ti 2t j m 。求 t 1s 时的速度、 1 ~ 3s 内的平均速度和平均
加速度。 解: 质点的速度矢量为
dr v i 6t 2 j m / s dt
v i 6t 2 j i 6 jm/ s 。
t 1s 时的速度为
t 1s t 1s
1 ~ 3s 内的平均速度为
2
《大学物理讲义》习题解答
r v
t 3 s
r
t 1s
3 1
(2)第 2 秒末的瞬时速度为
v t 2 s
(3)质点的速度为
t 2 s
v
令v

大学物理第1章习题解答(全)

大学物理第1章习题解答(全)

a

at

an

dv dt
et

v2 R
en
1-6 已知质点沿x轴作直线运动,其运动方程为
x 2 6t 2 2t3
求(1)质点在运动开始后4.0s内的位移大小;
(2)质点在该时间内所通过的路程;
(3)t=4 s 时质点的速度和加速度。
解:(1)质点在4.0s内的位移大小
arctan[ (v0
bt)2 ]
at
Rb
(2)要使 a a b ,即
1 R
R2b2 (v0 bt)4 b
可得 t v0 b
v v0 bt
此时速率为零(即运动方向反向)
t 0 开始到 t v0 b
质点经过的路程 L
L

st

s0

st
0

小的一半时, 值为多少?
(3)t为多少时,法向加速度和切向加速度 相等?
解 (1)由 2 4t3 得: d 12t2
dt
d 12t 2
dt
法向:an 2r (12t 2 )2 r an t2s 2.30102 m s2
切向:
at
r d
x x4 x0 32 m
(2)由
dx 0 dt
(2)由
dx 12t 6t 2 0 dt
得知质点换向的时刻为t 2 s(t=0不合题意)
-30
02
x(m)
10
t=4
t=0
t=2
则 x1 x2 x0 8m x2 x4 x2 40m
t 4s的路程:s1 x1 x2 48m

大学物理上册课后练习答案解析

大学物理上册课后练习答案解析

初速度大小为dt1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度 a = A-B V ,式中A 、1-1 已知质点的运动方程为:x 10t30t 2 ,y 15t 20t 2。

式中x 、y 的单位为m , t 的单位为s 。

试求: (1)初速度的大小和方向;(2)加速度的大小和方向。

分析由运动方程的分量式可分别求出速度、 加速度 分析本题亦属于运动学第二类问题,与上题不同之 处在于加速度是速度 V 的函数,因此 需将式d V = a (V )d t 分离变量为-d ^ dt 后再两边积分.a(v)的分量 再由运动合成算出速度和加速度的大小和方向. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.vdv dv v 0A Bv(3)船在行驶距离 x 时的速率为v=v 0e kx 。

一 dv[证明](1)分离变数得 — kdt ,v第一章质点的运动B 为正恒量,求石子下落的速度和运动方程。

解(1)速度的分量式为Vv y当 t = 0 时,V o x = -10 m sdx10 60tdt dy15 40t dt-1, V o y = 15 m-1(1)由题dvadt 用分离变量法把式 A Bv(1)改写为dvA Bv将式(2)两边积分并考虑初始条件,有(1)dt ⑵V 0 V 0x V 0y 18.0m得石子速度 V -(1 e Bt)B 设V o 与x 轴的夹角为a 则tanV 0y V ox由此可知当,t is 时,v A为一常量,通常称为极限速度Ba= 123 °1(2)加速度的分量式为a x dV x dt 60a ydV y dt40或收尾速度.(2)再由v—y —(1 e 氏)并考虑初始条件有dt BytABtdy -(1 e )dt 0 0 BA A得石子运动方程y t 2 (e Bt 1)B B 2则加速度的大小为 a .. a x 2a y 272.1 ms 2a y2 设a 与x 轴的夹角为B,则tan B -a x3B= -33 °1 '(或326 °9 )1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于 阻力得到一个与速度反向、 大小与船速平方成正比例的加 速度,即a = - kv 2, k 为常数。

大学物理第1章习题解答(全)ppt课件

大学物理第1章习题解答(全)ppt课件
2 t

23 23 t t 0 3 3
1-24 一质点在半径为0.10m 的圆周上运动, 3 2 4 t 其角位置为 ,式中 的单位为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12 t 2 4 t 解 (1)由 dt
(2)加速度的大小和方向。 解:(1)速度的分量式为 dx dy v 10 60 t v 15 40 t x y dt dt
v ( t ) v v 10 60 t 15 40 t
2 2 x y 2 2
v ( t ) v v 10 60 t 15 40 t
解 (1)由参数方程
x 2 . 0 t , y 19 . 0 2 . 0 t
2
消去t得质点的轨迹方程:
y 19 . 0 0 . 50 x
(2)
2
t1 1 .0 s
t2 2 .0 s
r r r 2 1 v 2 . 0 i 6 . 0 j t t t 2 1
dv d 2 2 2 a (v v ) 3 . 58 m s tt 1 x y dt dt
a a a 1 . 79 m s n
2 2 t
2
(4)
t 1 . 0 s时质点的速度大小为
2 2 1 v v v 4 . 47 m s x y
2
a a a 72 . 1 m s
设 a与 x 轴正向的夹角为

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理:第1章习题参考答案

大学物理:第1章习题参考答案

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m/s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为习题1-7图02222d d d d v s h s t l hll t s v +-=-==负号表示船在水面上向岸靠近.船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m/s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m /s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h += 电梯下降的距离为习题1-9图 习题1-10图2021at t v h +=' 又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t 而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0cos παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''== 欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a 即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222min 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm )(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S。

(完整版)大学物理上第1章习题解答

(完整版)大学物理上第1章习题解答

第一章质点运动学1-1在一艘内河轮船中,两个旅客有这样的对话:甲:我静静地坐在这里好半天了,我一点也没有运动。

乙:不对,你看看窗外,河岸上的物体都飞快地向后掠去,船在飞快前进,你也在很快地运动。

试把他们讲话的含意阐述得确切一些,究竟旅客甲是运动,还是静止?你如何理解运动和静止这两个概念的。

答:①如果以轮船为参考系,则甲、乙旅客都是静止的,而河岸上的物体都在向后运动;如果以河岸为参考系,则轮船及甲、乙旅客都是运动的。

②运动是绝对的,而静止是相对的。

描述物体的运动情况时,首先要选定参考系,选取的参考系不同,对物体运动的描述也就不同。

1-2有人说:“分子很小,可将其当作质点;地球很大,不能当作质点”,对吗?答:这种说法不对。

“质点”是经过科学抽象而形成的物理模型。

物体能否当作质点是有条件的,相对的。

当研究某物体的运动,可以忽略某大小和形状,或者只考虑其平动,那么就可把物体当作质点.。

例如,分子虽小,但如研究分子内部结构时,不能当作质点;地球虽大,但如研究地球自转现象时,也不能当作质点,而当研究地球绕太阳的公转时,就可当作质点。

1-3已知质点的运动方程为r =x (t )i +y (t )j ,有人说其速度和加速度分别为d r d 2r v =,a =2d t d t 其中r =x 2+y 2,你说对吗?v v v r d rr v v d v d 2r v=答:题中说法不对。

根据定义v =.a =,所以,由r =x (t )i +y (t )j d t d t d t 2d y d x ϖx +y 22ρdx ρdy ρdx dy d r d r d x +y d t 可得如下结论:v =v =i +j =()2+()2,===d tdt dt dt dt d t d t d t x 2+y 222v 222d r v d 2y v ⎛⎫⎛⎫d v d x d x d y 显然,v ≠,a ==i +2j = 2⎪+ 2⎪2d t d t d t d t ⎝d t ⎭⎝d t ⎭d r=2d t d t 22ϖd r2d y ⎛d xx +yd ⎛d r ⎫d d t d t = ⎪=d t ⎝d t ⎭d t x 2+y 2⎝⎫⎪d 2r ⎪,显然,a ≠2。

大学高等物理课后答案 第一章 力学基本定律

大学高等物理课后答案 第一章 力学基本定律

第1章习题答案1-1 解:竖直上抛运动 gH 2max20v = ()s m gH /849102008.1223max 0=⨯⨯⨯==v1-2 解:匀变速直线运动 ()()g s m t a t 259.24680.103600/1000160020<⋅=-⨯=∆-=-v v (不超过) ()()m t s t 4008.1036001000160021210=⨯⎪⎭⎫ ⎝⎛+⨯⨯=∆⨯+=v v 1-3 解:以喷嘴作为坐标原点,竖直向上作为y 轴的正向 竖直上抛运动 ()m g v H 5.348.92262220max=⨯== ()gy v y v 220-=连续性方程 ()()gyv qy v q y S 220-==任一瞬间空间上升的水流体积 ()()l gy v g q dy gy v qdy y S V H H 38.1222maxmax020020=⎥⎦⎤⎢⎣⎡--=-==⎰⎰上升下降上升V V =()l V V V 7.24=+=下降上升总1-4 解:()()bt u bt u btbt b u u dt dx v --=----⎪⎭⎫ ⎝⎛-+==1ln 1ln 11 ()()btub bt b u dt dv a -=---==11 ()00=v()()()s m v /1091.6120105.71ln 100.3120333⨯=⨯⨯-⨯-=-1-5 解:()2122212R R N rNdr s R R -==⎰ππ ()()()()m in 6939416364132256650222122==-⨯⨯=-==∆s v R R N v s t ππ()s rad r v /26.00.53.1===ω ()222/338.00.53.1s rad r v ===α1-6 解: ()s m v /37430344=+=东()s m v /31430344=-=西()s m v /3433034422=-=北N F μθ≥cos1-7 解: 因θs i nF mg N += 故 θμμθsin cos F mg F +≥ (1) θμθμs i n c o s s s mgF -≥静(2) θμθμs i n c o s k k mgF -≥动(3) 0s i n c o s ≤-θμθs sμθ1tan ≥1-8 解:()()()()()()()N a g m M F am M g m M F 676006.08.915005000=+⨯+=++=+=+-桨桨()()()N a g m F mamg F 156006.08.91500=+⨯=+==-桨绳1-9 解: r m rMm G22ω= ()()()Kg G r T G rM 261138232321069.51067.61036.136002.142/2⨯=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯===-ππω1-10 解: ⎰⎰⎰-=-==ωπω20c o s td t kA kxdt Fdt I ωωωωπkAt kA -=⎥⎦⎤⎢⎣⎡-=20sin1-11 解: ()s m /500i v-=()()s m t /45sin 8045cos 800j i v +=()()s N m m t ⋅+=-=j i v v I92.778.140()215278.1492.7arctan 89.160'=-=⋅=πϕs N I ()6168.914.084584502.089.16=⨯===∆=mg F N t I F1-12 一辆停在直轨道上质量为m 1的平板车上站着两个人,当他们从车上沿同方向跳下后,车获得了一定的速度。

大学物理 - 1-6章练习附答案

大学物理 - 1-6章练习附答案

第一章 质点运动学1、已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置。

解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v2、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m 。

质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值。

解: ∵ xv v t x x v t v a d d d d d d d d ===分离变量: 2d (26)d v v adx x x ==+ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v第二章 质点动力学1、质量为M 的大木块具有半径为R 的四分之一弧形槽,如图所示。

质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度。

解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m 、M 为系统,则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2MgR v m M =+2、 哈雷彗星绕太阳运动的轨道是一个椭圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章章节测试题一、选择题(每小题3分,共计15分)1.以下四种运动形式中,a保持不变的运动是 ( D ) (A) 单摆的运动 (B) 匀速率圆周运动 (C) 行星的椭圆轨道运动 (D) 抛体运动2.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为 t v,那么它运动的时间是 ( C ) (A) gt 0v v (B) gt 20v v(C)gt2/1202v v(D)gt 22/1202v v3.下列说法中,哪一个是正确的? ( C )(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程 (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大 (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零 (D) 物体加速度越大,则速度越大4.一质点沿x 轴运动,其运动方程为2353x t t ,其中t 以s 为单位。

当t=2s 时,该质点正在 ( A ) (A )加速 (B )减速 (C )匀速 (D ) 静止5.下列关于加速度的说法中错误的是 ( C ) (A )质点加速度方向恒定,但其速度的方向仍可能在不断的变化着 (B )质点速度方向恒定,但加速度方向仍可能在不断的变化着(C )某时刻质点加速度的值很大,则该时刻质点速度的值也必定很大(D )质点作曲线运动时,其法向加速度一般不为零,但也有可能在某时刻法向加速度为零 二、填空题(每空2分,共计20分)1.一辆作匀加速直线运动的汽车,在6 s 内通过相隔60 m 远的两点,已知汽车经过第二点时的速率为15 m/s ,则汽车通过第一点时的速率v 1 =__5.00m/s_。

2.质点沿半径为R 的圆周运动,运动学方程为 223t ,则t时刻质点的法向加速度大小为a n = 16Rt 2。

3.一质点沿x 方向运动,其加速度随时间变化关系为:a = 3+2 t ,如果初始时刻质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度 v = 23m/s 。

4.已知质点的运动学方程为:j t t i t t r )314()2125(32 ,当t = 2 s 时,速度的大小 v 8m/s ,加速度的大小a = 4.12 m/s 2。

5.在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度2Ct a (其中C 为常量),则其速度与时间的关系为 v 3/30Ct v ,位置与时间的关系为x= 400x +v /12t Ct 。

6.一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是=12t 2-6t ,则质点的角速度 =___4t 3-3t 2(rad/s) _。

7.已知质点的运动学方程为24t r i +(2t +3)j ,则该质点的轨道方程为__ x =(y 3)2;z=0_。

8.一质点沿x 轴作直线运动,它的运动学方程为x =3+5t +6t 2 t 3(SI),则加速度为零时,该质点的速度 v __17m/s __。

三、简答题(每题5分,共计25分)1、原子的体积很小,所以可以看作质点,你认为这种说法对吗?为什么?答:不对,因为一个物体能否看成质点,应根据具体问题而定,当我们研究原子结构问题时,就不能把原子当作质点。

2、质点运动过程中,其加速度为负值,则说明质点是减速运动的,你认为这种说法对吗?说明原因?答:不对,质点作加速还是减速运动,应看速度和加速度的方向夹角如何,锐角则为加速,钝角则为减速,与加速度正负无关。

加速度为负值,若速度也为负值,则质点作加速运动。

3、一个质点在做匀速率圆周运动时,其切向加速度、法向加速度是否变化? 答:切向加速度不变,法向加速度变化4、瞬时速率是瞬时速度的大小,平均速率是平均速度的大小,这种说法对吗?举例说明? 答:不对,瞬时速率是瞬时速度的大小,但平均速率不一定是平均速度的大小。

例:运动员沿操场绕行一周(800m ),用时4分钟,则平均速度的大小为0,平均速率为3.3m/s 。

5、某质点作直线运动的运动学方程为x =3t -5t 3+ 6,则该质点作何运动?加速度方向? 答:质点作变加速直线运动,加速度沿x 轴负方向。

四、计算题(每题10分,共计40分)1.一质点沿x 轴运动,其加速度为 a 4t ,已知t 0时,质点位于x 10 m 处,初速度v 0。

试求其位置和时间的关系式。

解: d v /d t 4 t ,d v 4 t d t ,vv 0d 4d tt t ,v 2 t 2 ,v d x /d t 2 t 2 ,t t x txx d 2d 020,x 2 t 3 /3+102.已知质点的运动方程为x=2t ,y=2-t 2,式中各量用国际单位制。

(1)试导出质点的轨道方程,并图示质点的运动轨迹;(2)计算t=1s 和t=2s 时质点的矢径,并计算1s 和2s 之间质点的位移,(3)计算质点在2s 末时的速度;(4)计算质点的加速度,并说明质点做什么运动?解:(1)x=2t ,y=2-t 2,消去时间t ,得到质点的轨道方程224x y ,代入数据,可做一条抛物线,此抛物线为质点的运动轨迹。

(2)将t=1s 代入运动方程可得,x 1=2m ,y 1=1m ;将t=2s 代入运动方程可得,x 2=4m ,y 2=-2m ,则质点在t=1s 时的矢径r 1的大小和方向分别为22111 2.24r x y m r,111y arctg x=26°34′,同理。

质点在t=2s时矢径r 2的大小和方向分别为222224.47r x y m r ,222y arctg x=﹣26°34′,1s 到2s 之间质点位移r r 的大小和方向分别为222121()()r x x y y r=3.6m ,2121y y arctg x x=﹣56°19′(3)x dx v dt=2m/s ,2y dyv t dt,将t=2s 代入,得24y v m/s ,则质点在2s 末时的速度2v r的大小和方向分别为:22222 4.47x y v v v m r,22yx v arctg v=﹣63°26′(4)x x dv a dt=0,y y dv a dt =﹣2m/s 2,所以质点作匀变速曲线运动。

3.在xy 平面内,质点以原点O 为圆心作匀速圆周运动,已知在t = 0时,y= 0,x =r ,角速度如图所示;(1)试用半径r 、角速度和单位矢量i 、j 表示其t 时刻的位置矢量;(2)由(1)导出速度v 与加速度 a的矢量表示式;(3)试证加速度指向圆心。

解:(1)j t r i t r j y i x rsin cos (2)j t r i t r t rcos sin d d v ,j t r i t r ta sin cos d d 22 v(3) r j t r i t r a sin cos 22 ,这说明 a 与 r 方向相反,即a 指向圆心。

4.由楼窗口以初速0v 水平射出一发子弹,以枪口为原点,沿0v方向取为x 轴,竖直向下取为y 轴,并取发射时为初时刻,试求:(1) 子弹在任一时刻t 的坐标,及子弹所经轨迹的方程(重力加速度g 作为已知);(2) 试求子弹在t 时刻的速度,切向加速度及法向加速度。

解:坐标系的选取和各速度,各加速度的方向如图所示: (1)子弹在任一时刻t 的坐标为x=v 0t ,212y gt,消去t ,得到质点的轨道方程22200122x gx y g v v ;(2)速度0x v v ,y v =gt ,则速度v r的大小和方向分别为2220v v g t r ,0y x v gt arctg v v,切向加速度22220t dv a dt v g t,法向加速度2202220n t a g a v g t一选择 1答:(B)xyOr(x ,y )j i因为是在加速过程,∴V 是增加的那么通过 P=F*v 这个公式,V 增加F 就减小a=F/m ,F 减小,加速度就减小,故选B 2答:(B)应是B 为正确答案。

当两个物体都加速运动时,绳上拉力小于m1的重力,此时a =(m1-m2)g/(m1+m2),当用与m1重力相等的恒力拉m2时,绳上的拉力等于m1的重力,此时a′=(m1-m2)g/m2,所以此时有a′> a 3 (B) 4 (D )5.(D )碰撞问题,既然涉及到位移,说明考查动能定理。

既然速度为v 的子弹打穿木板后速度为零,说明木板是固定不动的。

设木板厚度为l ,阻力为f ,根据能量动能定理:—fl=0-1/2*mv2。

设射入木板厚度一半时速度为v',则:-f*1/2l=1/2*mv'2-1/2mv2。

另外如果涉及到时间,一般用动量定理;如果是自由碰撞,既没有外力约束,用动量守恒定律。

二 填空1、)/(4455s m j i2、J 123、4 0.003s 0.6Ns 2×10-3kg5 守恒 ;不守恒参考解答:以等值反向的力分别作用于两小球,0 i i F 外,合外力为零,系统的动量守恒;但,01 ni i A 外外力对系统作功,机械能不守恒。

动量守恒定律: )121(22ml ml l m v ,三 简答1、什么是保守力?举例说明你已学习过的保守力。

你能否用数学语言表示出保守力的特征?答:做功与路径无关的力,称为保守力;重力,弹力,静电力;0LF dl vv Ñ2、两个物体接触面间摩擦力的方向与物体间的相对运动速度方向之间有什么关系?摩擦力的方向与物体加速度的方向又有什么关系?答:两个物体接触面间摩擦力的方向与物体间的相对运动速度方向相反,加速度方向是物体所受合力的方向。

摩擦力的方向与加速度方向无关。

3、请分别写出质点系的动量守恒、动能守恒和机械能守恒的条件 答:动量守恒条件:质点系所受的合外力为零.动能守恒条件:外力和内力对质点系的各质点做的功之和为零.机械能守恒条件:外力对质点系做的功和系统内非保守内力做的功分别为零或其和为零. 4.用细线把球挂起来,球下系一同样的细线,拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线先断,为什么?答:拉球下细线逐渐加大力量时,上面那段细线先断;突然拉球下细线时,下面那段细线先断。

因为,两种情况都应引起系统动量改变,但前一种情况作用时间长,冲量较大(t F),引起系统动量变化大,故细线和球同时被拉下;后一种情况由于作用时间短,故冲力很大,冲力大于绳子张力,故细线立即被拉断。

5、质点运动时,作用于质点的某力一直没有作功,这是否表示该力在这一过程中对质点的运动没有任何影响参考解答:在牛顿第二定律F=ma 中,F 为质点所受的合力,所以凡质点所受的力,多要对质点的运动产生影响。

相关文档
最新文档