三角形全等的证明课件

合集下载

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

三角形全等的判定ppt课件

三角形全等的判定ppt课件


作图区

例题解析
例1 已知:如图,在四边形ABCD中,AB=CD,AD=CB。
求证:∠A=∠C
D
要证明∠A=∠C,需先证明△ABD和△CDB
全等, 然后由全等三角形的性质定理得到结论.A
证明:
在△ABD和△CDB中, AB=CD (已知) AD=CB (已知) BD=DB (公共边)
∴△ABD≌△CDB (SSS)
B E CF
__AC_=DF ( 已知 )
BC=_E_F (已证 ) ∴△ABC≌△DEFS(SS )
新知探究
如图,在∠CAB中,AF=DE, DF=DE. 求证:AD是∠CAB的角平分线.
C
1 2
A
D B
例题解析
已知∠BAC,用直尺和圆规∠BAC的角平分线AD
C
C
作法:
A
D
B
A
B
1、以点A为圆心,适当的长为半径,与角的两边分别交于E、F两点;
注意几何语言规范
2.三角形具有稳定性。房屋的人字架、大桥的钢梁、 起重机的支架、自行车的车座等,采用三角形结构, 起到稳固的作用。
课堂小结
内容
有三边对应相等的 两个三角形全等
边 边边
应用
思路分析
结合图形找隐含条件和 现有条件,证准备条件
书写步骤 四个步骤
注意
1. 说明两三角形全等所需的条 件应按对应边的顺序书写. 2. 结论中所出现的边必须在所 证明的两个三角形中.
A
D
C
B
E
图1
图2
新知探究
如图 ,把两根木条的一端用螺栓固定在一起,木条可以自由转动.在转 动过程中,连结另两个端点所成的三角形的形状、大小随之改变.如 果把另两个端点用螺栓固定在第三根木条上,那么构成的三角形的形 状、大小就完全确定.

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

三角形全等的判定ppt课件

三角形全等的判定ppt课件

知4-讲
1. 基本事实:两角和它们的夹边分别相等的两个三角形全 等(可以简写成“角边角”或“ASA”).
感悟新知
2. 书写格式:如图12 . 2-8, 在△ ABC 和△ A′B′C′ 中, ∠ B= ∠ B′, BC=B′C′, ∠ C= ∠ C′, ∴△ ABC ≌△ A′B′C′( ASA).
第十二章 全等三角形
12.2 三角形全等的判定
感悟新知
知识点 1 基本事实“边边边”或“SSS”
知1-讲
1. 基本事实:三边分别相等的两个三角形全等(可以简写成 “边边边”或“SSS”). 这个基本事实告诉我们:当三角形的三边确定后, 其形状、大小也随之确定. 这是说明三角形具有稳定性的 依据.
感悟新知
感悟新知
知5-练
例5 如图12.2-11,AB=AE,∠ 1= ∠ 2,∠ C= ∠ D. 求证:△ ABC ≌△ AED.
感悟新知
思路引导:
知5-练
感悟新知
知5-练
技巧点拨:判定两个三角形全等,可采用执果 索因的方法,即根据结论反推需要的条件. 如本 题还缺少∠ BAC= ∠ EAD,需利用已知条件∠ 1= ∠ 2 进行推导.
感悟新知
知2-练
③以点M′为圆心,以MN 长为半径作弧,在∠ BAC 内 部交②中所画的弧于点N′; ④过点N′作射线DN′交BC 于点E. 若∠ B=52°,∠C=83°,则∠ BDE= ___4_5_°__.
感悟新知
知识点 3 基本事实“边角边”或“SAS”
知3-讲
1. 基本事实:两边和它们的夹角分别相等的两个三角形全 等(可以简写成“边角边”或“SAS”).
感悟新知
解:∵∠BAD=∠EAC, ∴∠BAD+∠CAD=∠EAC+∠CAD, 即∠BAC=∠EAD.

全等三角形的判定H.L.ppt课件

全等三角形的判定H.L.ppt课件
S.S.S S.A.S A.S.A A.A.S H.L S.A.S A.S.A A.A.S
灵活运用各种方法证明直角三角形全等
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
再见
△ABC≌△BAD.
D
C
A
B
例2. 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去
如图,AC=AD,∠C,∠D
是直角,将上述条件标注在图中,
你能说明BC与BD相等吗?
C A
解:在Rt△ACB和 Rt△ADB 中,有
AB=AB,
B AC=AD.
会不会有自身独特的判定方法呢 ?
动动手 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去
做一做
画一个Rt△ABC,使得 ∠C=90°,一直角边CA= 8cm,斜边AB=10cm.
B
10cm
A
8cm
C
动动手 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边” 或“HL”
ห้องสมุดไป่ตู้
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
斜边、直角边公理
(HL)推理格式
∵∠C=∠C′=90° ∴在Rt△ABC和Rt△A´B´C´中

完整版三角形全等的判定ppt课件

完整版三角形全等的判定ppt课件
12.5 三角形全等的判定
初二(5、6)班
1
1、 什么叫全等三角形?
能够重合的两个三角形叫 全等三角形。
2、 已知△ABC ≌△ DEF,找出其中相等的边与角
A
D
①AB=DE ④ ∠A= ∠D
② BC=EF ⑤ ∠B=∠E
③ CA=FD ⑥ ∠C= ∠F
B
CE
F
全等三角形性质:
全等三角形的对应边相等,对应角相等。
40
例 如图,有一池塘,要测池塘两端A、B的距离,
可先在平地上取一个不经过池塘可以直接到达点A 和B
的点C,连接AC并延长至D,使CD =CA,连接BC 并延
长至E,使CE =CB,连接ED,那么量出DE的长就是A,
B的距离.为什么?
A
B
1
C
2
E
D
41
证明:在△ABC 和△DEC 中,
AC = DC(已知),
(4) 两角一边 ?
27
3.角边角公理(ASA):
两角和它们的夹边分别相等的两个三角形全等.简 写成“角边角”或“ASA ”
A
几何语言:
在△ABC 和△ A′B′ C′中,
B
∠A =∠A′
AB = A′B′
∠B =∠B′
∴ △ABC ≌△ A′B′ C′(ASA). B′
C A′
C′
28
4.角角边公理(AAS):
AB =AC ,
∵ BD =CD , B
D
C
AD =AD ,
∴ △ABD ≌ △ACD ( SSS ).
32
证明的书写步骤:
①准备条件:证全等时要用的条件要先证好; ②三角形全等书写三步骤:

17.4 直角三角形全等的判定课件(共18张PPT)

17.4 直角三角形全等的判定课件(共18张PPT)
复习引入
1.全等三角形的性质:
对应角相等,对应边相等.
2.判别两个三角形全等的方法:
SSS SAS ASA AAS
知识点1 直角三角形全等的判定定理
新知探究
我们已经知道,三边对应相等的两个三角形全等.由勾股定理可知,两边对应相等的两个直角三角形,其第三边一定相等.从而,这两个直角三角形一定全等.因此,斜边和一条直角边对应相等的两个直角三角形全等.
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 角平分线性质定理的逆定理
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.
归纳:
随堂练习
1.判断下列命题的真假,并说说你的理由.(1)两个锐角分别相等的两个直角三角形全等;(2)斜边及一锐角分别相等的两个直角三角形全等;(3)两条直角边分别相等的两个直角三角形全等;(4)一条直角边相等且另一条直角边上的中线也相等的两个直角三角形全等.
2.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F. 求证:CE=DF.
证明:∵ AC⊥BC,AD⊥BD,∴∠ ACB= ∠ BDA=90°.在Rt △ ABC 和Rt △ BAD 中,AB=BA,BC=AD,∴ Rt △ ABC ≌ Rt △ BAD(HL).∴∠ CBE= ∠ DAF.∵ CE⊥AB,DF⊥AB,∴∠ CEB=∠ DFA=90°.
在△ BCE 和△ ADF 中, ∠ CEB= ∠ DFA, ∠ CBE= ∠ DAF, BC=AD,∴△ BCE ≌△ ADF(AAS). ∴ CE=DF.
归纳小结
直角三角形全等的判定定理:
斜边和直角边对应相等的两个直角三角形全等.
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.

《三角形全等的判定》全等三角形PPT课件

《三角形全等的判定》全等三角形PPT课件
好的△ ′′′剪下来,放到△ 上,它们全等吗?
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

直角三角形全等的判定ppt课件

直角三角形全等的判定ppt课件

析 锐角和任意一边对应相等判断两个直角三角形全等的方法
是“AAS”或“ASA”.
相等,故只需找另外两个条件即可.
17.4 直角三角形全等的判定
返回目录
对点典例剖析


典例
如图,四边形 ABCD 是一条河堤坝的横截面,


解 AE=BF,且 AE⊥CD,BF⊥CD,垂足分别为 E,F,AD=BC,求
读 证:∠C=∠D.
17.4 直角三角形全等的判定






返回目录
[解题思路]

破 过点 A 且垂直于 AC 的射线 AQ上运动,问点 P 运动到 AC
上什么位置时,△ABC 才能和△APQ 全等.
17.4 直角三角形全等的判定
返回目录


[答案] 解:①当点 P 运动到 AC 中点时,AP=


题 AC=5=BC,∵∠C=∠QAP=90°,在 Rt△ABC 和 Rt△QPA 中
型 ∵DF=DB,DC=DE,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB;


(2)设 CF=BE=x,则 AE=AB-BE=12-x,∵AD 平分∠BAC
,DE⊥AB,∠C=90°,∴CD=DE.在 Rt△ACD 和 Rt△AED
中,∵AD=AD,CD=ED,∴Rt△ACD≌Rt△AED(HL),

突 , CB=AP,BA=PQ ,∴Rt△ABC≌Rt△QPA(HL),即

AP=BC=5 cm,此时点 P 是 AC 的中点;②当点 P 运动到
与点 C 重合时,AP=AC,在 Rt△ABC 和 Rt△PQA 中,

2.8 直角三角形全等的判定 课件(共16张PPT)

2.8 直角三角形全等的判定 课件(共16张PPT)

DA
证明: 作射线OP ∵ PD⊥OA, PE⊥OB(已知)
P
O
1 2
∴ ∠PDO=∠PEO=Rt∠ 又∵ OP=OP(公共边),PD=PE(已知) ∴ Rt△PDO≌Rt△PEO( HL )
EB
∴ ∠1=∠2,即点P在∠AOB的平分线上
讲授新课
角平分线的性质定理的逆定理: 角的内部,到角两边距离相等的点,在这个角的平分线上。
如图所示:
(1)作出△ABC两内角的平分线,其交
点为O1;
(2)分别作出△ABC两外角平分线,其
L1 交点分别为O2,O3,O4,
L3
L2
故满足条件的修建点有四处,即O1,O2,
O3,O4.
总结归纳
1.直角三角形全等的判定定理(HL) 斜边和一条直角边对应相等的两个直角三角形全等. 2.角平分线的性质定理的逆定理: 角的内部,到角两边距离相等的点,在这个角的平分线上。
(3)一个锐角和斜边对应相等;
( AAS )
(4)两直角边对应相等;
( SAS )
(5)一条直角边和斜边对应相等.
( HL )
举一反三
2. 如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证: AB//ED.
证明:∵C为AD的中点, ∴ AC=DC. ∵ BE⊥AD, ∴ △ACB和△DCB都是直角三角形. 又AB=DE, ∴ Rt△ACB≌Rt△DCE(HL). ∴ ∠A=∠D. ∴ AB // ED(内错角相等,两直线平行).
如果两个直角三角形的斜边和一条直角边对应相等, 那么这两个直角三角形全等。
问题2: 证明一个命题是真命题, 有哪几个步骤呢?
1.由题意作图形,标字母或符号;

三角形全等的判定ppt课件

三角形全等的判定ppt课件
追问1:这个尺规作图的方法利用了上节课中的哪个知识点?
追问2:根据前面的操作,你能探究到什么结论?
例1. 如图,有一池塘,要测池塘两端A、B的距离,可先在平 Nhomakorabea上取一个可以
直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两
个木桩上,两个木桩离旗杆底部的距离相等吗?
解:BD=CD
在Rt△ABD 和 Rt△ACD 中,
AB=AC
AD=AD

∴Rt△ABD≌Rt△ACD(HL)
∴ BD=CD
例1.如图,AC⊥BC,BD⊥AD,AC =BD.求证:BC =AD.
(1)
AD = BC
( HL );
(2)
AC = BD
( HL );
(3) ∠DAB = ∠CBA
( AAS );
(4) ∠DBA = ∠CAB
( AAS ).
D
A
C
B
对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个三
特殊方法
角形就全等了?
HL定理
SSS




SAS
AAS
AAS
直角三角形全等
问题:三角分别相等的两个三角形全等吗?
追问:证明两个三角形全等的方法有哪些?
评价3.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.
求证:AB=AD.
∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
在△ABC和△ADC中,

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)
使用几何拼接条探究三个元素相等的三角形是否全等?1.用绿色、蓝色、橙色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?2.用红色、蓝色、黄色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?
三角相等:
三边相等:
基本事实一
如果两个三角形的三边对应相等,那么这两个三角形全等.
基本事实一可简记为“边边边”或“SSS”.
拓展提升
1.如图,已知AB=AE,AD=AC,BC=ED,BC,DE交于点O.求证:∠BAD=∠EAC.
证明:在△BAC和△EAD中,AB=AE,AC=AD,BC=ED.∴△BAC≌△EAD(SSS).∴∠BAC=∠EAD.∴∠BAC-∠DAC=∠EAD-∠DAC,即∠BAD=∠EAC.
归纳小结
能够完全重合的两个三角形叫做全等三角形.
全等三角形的性质:全等三角形的对应边相等,对应角相等.
探究一
新知探究
知识点1 边边边
通过作图探究一个元素相等能否判定两个三角形全等?
一条边相等:
一个角相等:
探究二
通过几何拼接条探究两个元素相等的三角形是否全等?
两条边相等:
两个角相等:
一边一角相等:
探究三
探究四
知识点2 三角形的稳定性
用拼接条制作三角形和四边形框架,并拉动它们,你发现了什么?
三角形的形状和大小是固定不变的,而四边形的会改变.
三角形所具有的这一性质叫做三角形的稳定性.四边形具有不稳定性.
在生活中,我们经常会看到应用三角形稳定性的例子.
在生活中,我们也经常会看到应用四边形不稳定性的例子.
随堂练习
1.已知:如图,AB=EF,AC=ED,BF=CD.求证:∠A=∠E.
证明:∵BF=CD,∴BF+FC=CD+FC∴BC=FD∵AB=EF,AC=ED∴△ABC≌△EFD(SSS)∴∠A=∠E.

《三角形全等的判定》课件

《三角形全等的判定》课件
《三角形全等的判定》
知识回顾
1.什么叫全等三角形?
能够完全重合的两个三角形叫做全等三角形.
A
2.三边分别相等的两个三角形全等(可以
简写成“边边边”或“SSS”).
符号语言表示:在△ABC和△A'B'C'中,B
C
AB=A'B',
A'
AC=A'C',
BC=B'C',
∴△ABC≌△A'B'C' (SSS). B'
C'
3.两边和它们的夹角分别相等的两个三角形全等(可以
简写成“边角边”或“SAS”).
A
符号语言表示:在△ABC和△A′B′C′中,
AB=A′B′, ∠B=∠B′, BC=B′C′,
B
C
A'
∴△ABC≌△A′B′C′(SAS). B'
C'
4.两角和它们的夹边分别相等的两个三角形全等(可以
简写成“角边角”或者“ASA”).
FE
BE=CF,
A
B
∴Rt△ABE≌Rt△DCF(HL). ∴AE=DF.
随堂练习
1.已知,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90〫,
有如下几个条件:①AC=A′C′,∠A=∠A′;②AC=A′C′, AB=A′B′;③AC=A′C′,BC=B′C′;④ AB=A′B′,
∠A=∠A′.其中,能判定Rt△ABC≌Rt△A′B′C′的条件的
需寻找的条件
可证直角与已知锐角的夹边对 应相等或者与锐角(或直角)
的对边对应相等
可证一直角边对应相等或证一 锐角对应相等

三角形全等的判定ppt课件

三角形全等的判定ppt课件
∴△ABC≌△A1B1C1(AAS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
D
B
E
C
F
△ABC≌△DEF
由前边的作图比较过程,我们可以得出什么结论?
两边和它们的夹角对应相等的两个三角
形全等。简写成“边角边”或“SAS”
A
用符号语言表达为:
B
C
在△ABC与 △DEF中
AB=DE ∠A=∠D
D
AC=DF E
F
∴△ABC≌△DEF(SAS)
例题讲解
例1 已知:如图1,AC=AD,∠CAB=∠DAB
画法:1. 画∠MAN= 45°
2. 在射线AM上截取AB= 3cm
3. 在射线AN上截取AC=4cm 4.连接BC 则△ABC就是所求的三角形 把你们所画的三角形剪下来与同桌所画的三角形进行 比较,它们能互相重合吗?
再 任 意 画 一 个 △ ABC 和 △ DEF , 使 AB=DE ,
AC=DF , ∠A=∠D , 把画好的△ABC和△DEF比较, 它们全等吗?
3.“全等”用符号≌“ ”来表示,读全作等“于
4.全等三角形的对应边 对应角和

5.书写全等式时要求把对应字母放在对应 的位置上
全等三角形的判定(一)
SAS(边角边定理)
画△ABC,使AB=3cm,AC=4cm。
这样画出来的三角形与同桌所画的三角形进 行比较,它们互相重合吗?
若再加一个条件,使∠A=45°,画出△ABC
问:通过实验可以发现什么事实?
引入新课:
作图:已知:△ABC,(让同学 们自己画)再画一个三角形A/B/C/,使 B/C/=BC, ∠ B/= ∠ B, ∠ C/= ∠ C.
1、画线段A/B/=AB 2、在A/B/的同旁,分别以A/、B/为顶点画 ∠D A/B/=∠A, ∠E B/A/=∠B , A/D 、B/E交于点C/, 得△ A/B/C/
的原貌吗?
A D
C
E
B
探究1:
先任意画出一个△ABC, 再画一个△A/B/C/,使A/B/=AB,
∠A/ =∠A, ∠B/ =∠B 。把画好 的△A/B/C/剪下,放到△ABC上, 它们全等吗?
已知:任意 △ ABC,画一个△ A/B/C/,
使A/B/=AB, ∠A/ =∠A, ∠B/ =∠B : 画法: 1、画A/B/=AB; 2、在 A/B/的同旁画∠DA/ B/ =∠A , ∠EB/A/ =∠B, A/ D,B/E交于点C/。 △A/B/C/就是所要画的三角形。
总结概括,知识拓宽
1.在证明三角形全等时,要善于观察图形, 运用已学知识挖出隐含条件。 2.明确全等三角形“边角边”公理的运用方法。全等三角形的判定(二)
ASA(角边角定理)
创设情景,实例引入
怎么办?可以
帮帮我吗?
一张教学用的三角形硬纸板不小心
被撕坏了,如图,你能制作一张与原来
同样大小的新教具?能恢复原来三角形
讲解新课:
现在同学们把我们所画的两个三角形重合在
一起,你发现了什么?
完全重合
角边角公理:
有两角和它们的夹边对应相等的两个三角形全等(简 写为“ASA”)
问:若求证∠D=∠B ,
如何证明?
∠A=∠C(已证)
AF=CE(已证)
∴△AFD≌△CEB(SAS)
动态演示
A
D
1
B
2C
练习:已知:如图4,点A、B、C、D在同一条直线 上,AC=DB,求A证E=:DF(,1E)A⊥△AEDA,B≌BC△⊥FADCC,、垂(足2)分D别F=为AAE、D
E
CD
A
B
公共部分,可得:∠CAE=∠BAD。
A
21
证明:∵∠1=∠2(已知)
B
D
∴∠1+∠BAE = ∠2+∠BAE(等式性质) 即 ∠CAE= ∠BAD
图5
E
在△CAE和△BAD 中
AC=AB(已知) ∠CAE=∠BAD(已证) AE=AD ∴△ABD≌△ACE(SAS)
变式训练2:拓 展
已知:如图5:AB=AC,AD=AE,∠1=∠2 (1)求证:∠E=∠D
求证:△ACB≌△ADB
证明:在△ACB和△ADB中 AC=AD(已知)
∠CAB=∠DAB(已知) A AB=AB(公共边) ∴△ACB≌△ADB(SAS)
C B
图 1D
例2 已知:如图2,AD∥BC,AD=CB
求证:△ADC≌△CBA
分析:观察图形,结合已知条件,知, A 1
D
AD=CB,AC=CA,但没有给出两组对
(2)若△ACE绕点A逆时针旋转,使∠1=900时,直线EC,
BD的位置关系如何?给出证明。
当∠EAD 为平角时呢?
C
2
A
1
A
C
B
D
图5 E
M
FB
D
解 题 小 结: 解题思路
1、根据“边角边(SAS)”条件,可证明两个 三角形全等;
2、再由“全等”作为过渡的条件,得到对应边 等或对应角等;
3、由“边”等,再根据等式性质得到其它线段相等; 由“角”等,再证明两直线平行、两直线垂直或延 伸的外角和等变换。
三角形全等的判定
一、边角边 (SAS) 二、角边角 (ASA) 三、角角边 (AAS) 四、边边边 (SSS) 五、综合练习
制作人:王一豹
复习提问
1.能够重合的两个图形叫做全等形

互相重合的顶点叫做对应顶点 。
其中 互相重合的边叫做对应边 。
互相重合的角叫做 对应角 。
2. 能够重合的两个三角形叫做全等三角形。
应边的夹角(∠1,∠2)相等。
所以,应设法先证明∠1=∠2,才能使
全等条件充足。
B
2C 图2
证明:∵AD∥BC
∴∠1=∠2(两直线平行,内错角相
等)
AD=C在B(△已DA知C和)△BCA中
∠1=∠2(已知)
AC=CA (公共边)
∴△ADC≌△CBA(SAS)
动态演示
A
D
1
B
2C
变式训练1.已知:如图3 ,AD∥BC,AD=CB,AE=CF 求证:AFD≌△CEB
分析:本题已知中的前两个条件,与例
A
D
2相同,但是没有另一组夹边对应相等
E
的条件,不难发现图3是由图2平移而得。 利用AE=CF,可得:AF=CE
证明:∵AD∥BC(已知)
F
B
C
图3
∴∠A=∠C(两直线平行,内错角相
等)
又 AE=CF
∴AE+EF=CF+EF(等式性质)
即AF=CE AD=CB(在已△知AF)D 和△CEB 中
图4
F
解 题 小 结: 解题思路
1、根据“边角边(SAS)”条件,可 证明两个三角形全等; 2、再由“全等”作为过渡的条件, 得到对应边等或对应角等;
变式训练2 已知:如图5:AB=AC,AD=AE,∠1=∠2
求证:△ABD≌△ACE
分析:两组对应夹边已知,缺少
对应夹角相等的条件。
C
由∠BAE 是两个三角形的
相关文档
最新文档