2019年广东省中考数学模拟试卷含复习资料
2019广东省中考数学模拟试卷(含答案版)
2019广东省中考数学模拟试卷一、选择题(本大题 10小题,每小题 3分,共30分)1. 的倒数的相反数是( )A .— 5B .丄 C.— —1D. 55 52.新建成的港珠澳大桥主体工程 "海中桥隧"全长约35578米,用科学记数法表示应为()A . 35.578 X 10 3B . 3.5578 X 104C . 3.5578 X 105D . 0.35578 X 1053 .下列四边形中,是中心对称而不是轴对称图形的是()4.如图,直线 m//n ,/仁70,/ 2=30。
,贝V / A 等于(F 列计算中,正确的是(A.平行四边形B.矩形 C .菱形 D .正方形 A. 30 ° B . 35 ° C .40°50A. 3)(a 4=a 7 B . a 4+a 3=a 7C.(-a ) 4. ( — a ) 3=a 7 D. a 5* a 3=a23)在?ABCD中,E为AD的三等分点,AE= AD,连接BE交AC于点F,AC=12,贝U AF 如图,) 为A. 4B. 4.8C. 5.2D. 62、3、6、8、x 的众数是 x ,其中x 又是不等式组一 J * ■的整数解,则这x-7<C0组数据的中位数可能是()A. 3B. 4C. 6D. 3 或 6A .第一象限 B.第二象限 C.第三象限 D .第四象限9 .如图,△ ABC 内接于半径为 5的O O,圆心 0到弦BC 的距离等于 3,则/ A 的正切值等于A. B. C. D.于同一条直线 I 上,开始时,点 C 与B 重合,△ ABC 固定不动,然后把△ A B f C 自左向 右沿直线l 平移,移出△ ABC 夕卜(点B '与C 重合)停止,设△ A B C 平移的距离为 x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是(BC) J~C C7 .一组数据 &若关于x 的一元二次方程 nx函数 y= ( n+1)x-n 的图象不经过()2- 2x -仁0无实数根,则一次10 .如图,边长为2的等边△ ABC 和边长为1的等边△ A B f C ,它们的边 B‘ C , BC 位( )211 .分解因式: mx - 2mx+m= m ( x — 1)4• IjjriDR、4BC=2,贝V △ ABE 和厶BC'F 的周长之和是AB 于点E ,以点 B 为圆心,BC 的长为半径作 1交AB 于点A.B.c.D ._JZi oTi6小题,每小题4分,共24分) 12 .一个多边形的每个外角都是 60° ,则这个多边形边数为13 •如图,将一副直角二角板 (含45 °角的直角三角板 ABC 及含30 角的直角三角板 DCB )按图示方式叠放,斜边交点为0,则厶 AOB 与厶COD 的面积之比等于14 .如图,将矩形纸片 ABCD 折叠,使点 D 与点B 重合,点 C 落在 C'处,折痕为 EF ,若AB=1 ,15 .如图,在 Rt △ ABC 中,/ ACB=90,AC=BC=2,以点A 为圆心,AC 的长为半径作 D ,则阴影部分的面积为D16 .如图,边长为1的正方形ABCD绕点A逆时针旋转45后得到正方形AB1C1D1,边B1C1与CD 交于点 O,则四边形 AB i OD 的周长是二、解答题(本大题 3小题,每小题 6分,共18分)2019J_0 17 •计算:(—1)- | - 3| X ++ n• •■18 .先化简,再求值: (--」—)一 ,其中实数 a , b 满足(a - 2) 2+|ba+b a-b a 2*2ab+b z-2a|=0 •19 .在平行四边形 ABCD 中,AB=2AD •(1 )作 AE 平分/ BAD 交DC 于E (尺规作图,保留作图痕迹);(2)在(1 )的条件下,连接 BE ,判定△ ABE 的形状.(不要求证明)三、解答题(本大题 3小题,每小题 7分,共21分)5月份该公司销售该型汽车达4月份和5月份的平均增长率;9万元,该公司的该型车售价为8辆,由于该型汽车的优越的 18辆.20 •海德汽车销售公司 3月份销售新上市一种新型低能耗汽车经济适用性,销量快速上升,(1 )求该公司销售该型汽车9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆•若使6月份每辆车盈利不低于 1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)21.某学校举行了 保护环境,从我做起”为主题的演讲比赛.赛后组委整参赛同学的 成绩,并制作了如下不完整的频数分布表和频数分布直 方图.请根据图表提供的信息,解答下列问题:(1) 表中的 a= , b= ;(2) 请补全频数分布直方图;(3 )若用扇形统计图来描述成绩分布情况(4)竞赛成绩不低于90分的4名同学中正好有 2名男同学,2名女同学.学校从这4名同学中随机抽取 2名同学接受电视台记者采况 请用列表或画树状图的方法求正好抽到一名男 同学和一名女同学的概率.22 . ( 1)如图1,纸片ABCD 中,AD=5 , S ABCD =15,过点 A 作 AE 1BC ,垂足为 E,沿 AE 剪下 △ABE ,将它平移至△ DCE 的位置,拼成四边形AEE D 则四边形 AEE 'D 的形状为 _____________A.平行四边形 B .菱形 C .矩形 D .正方形(2)如图2,在(1 )中的四边形纸片XEE 'D 中,在EE 上取一点 F ,使EF=4,剪下△ AEF , 将它平移至△ DE 'F 的位置,拼成四边形AFF D分数段 (分数为x 分)频数 百分比60 < x V 708 20%70 < x V 80a30%80 w x V 9016 b%则分数段 70 < x V 80对应的圆心角的度数是90W x V 100410%①求证:四边形AFF 'D是菱形.②求四边形AFF'D的两条对角线的长(1 )求m 的值和反比例函数的解析式;(2) 当x > 0时,根据图象直接写出不等式 > kx+b 的解集;X|(3) 若经迪 B 的抛物线的顶点为 求该抛物线的解析式.24 .如图,AB 是O O 的直径,弦 CD ±AB 于H ,过D 延长线上一点E 作O O 的切线交 AB 的延长线于F .切点为,连接AG 交CD 于K. (1 )求证:KE=GE ;(2)若KG 2=KD?G E 试判断C 与EF 的位置关系,并说明理由;(3 )在(2 )的条件下,若 sinE= , AK=2 •,求FG 的长.彳扒 ---------- *四、 解答题(本大题3小题,每小题23 .如图,在平面直角坐标系中,一次函数的图象点 A ( 1,5)和点 B ( m, 1).9分,共27分) y 1=kx+b 与反比例函数 y 2= 的图象交于25 .如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A 点出发,以每秒1个单位的速度沿着A- C-G的路线向G点匀速运动(M不与A, G重合),设运动时间为t秒,连接BM并延长AG于N.(1 )是否存在点皿,使厶ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN丄HN , NH交/ CDG的平分线于H,求证:BN=HN ;(3)过点M分别作AB , AD的垂线,垂足分别为E, F,矩形AEMF与厶ACG重叠部分的面积为S,求S的最大值.B CIL2019广东省中考数学仿真模拟试卷一•选择题(本大题10小题,每小题3分,共30分)11. 的倒数的相反数是()1A.—5B.【考点】倒数,相反数L 【解答】解:I- 的倒数为-5, - 5的相反数为5,•••!的倒数的相反数是」5・[故选:D.2. 新建成的港珠澳大桥主体工程"海中桥隧"全长约35578米,用科学记数法表示应为()A. 35.578 X 103 B. 3.5578 X 104 C. 3.5578 X 105 D . 0.35578 X 105【考点】科学计数法4【解答】解:35578米,用科学记数法表示应为 3.5578 X 10■故选:B.3 .下列四边形中,是中心对称而不是轴对称图形的是()A、平行四边形B.矩形C .菱形D .正方形【考点】中心对称图形;轴对称图形.【解答】解:A、平行四边形是中心对称图形,不是轴对称图形,故选项正确;B、矩形既是轴对称图形,又是中心对称图形,故选项错误;C、菱形既是轴对称图形,又是中心对称图形,故选项错误;D正方形,矩形既是轴对称图形,又是中心对称图形,故选项错误.故选A.4 .如图,直线mil n,/仁70 ° ,/ 2=30 °,则/ A等于()* ■育書匕rnr> Y *111 \丄、___ 科------------- T A--------------------- flc\A. 30 ° B . 35 ° C . 40° D . 50 °【考点】平行线的性质.【解答】解:如图,•••直线mil n,•••/ 仁/ 3,VZ 仁70 ° ,•••/ 3=70 ° ,VZ 3= / 2+ / A, / 2=30 ° ,•••/ A=40 ° ,故选C.5. 下列计算中,正确的是()A. (a 4=a7B. a4+a3=a7C. (- a) 4. ( —a) 3=a7D. a5* a3=a23)3)【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【解答】解:A应为(a4=a34=a12,故本选解:A应力(a项错误;),故本选项错误;4 B、a和3a不是同类项,不能合并,故本选项错误;4? (- a) 3= (- a) 7= —a7 ,故本选项错误;C、应为(-a)53=a5 3=a2D a * a,正确. 故选D.为()6.如图,在 ?ABCD 中,E 为AD 的三等分点, AE= AD ,连接 BE 交 AC 于点 F , AC=12,贝U AFA. 4B. 4.8C. 5.2D. 6【考点】 平行线分线段成比例; L5 :平行四边形的性质.【解答】 解:在?ABCD 中,AD=BC ,AD // BC ,••• E 为AD 的三等分点,9 9 二 AE= - AD= - BC ,33v AD // BC ,.AF_AE_2…阮=ic "y ,v AC=12 ,c Jr••• AF= X 12=4.8 .2+3故选B.f2x-4>07 .一组数据 2、3、6、8、x 的众数是 x ,其中x 又是不等式组的整数解,则这(|组数据的中位数可能是( )A. 3B. 4C. 6D. 3 或 6解不等式①得x > 2,解不等式②得x V 7,【考点】 中位数;一元一次不等式组的整数解;众数.【解答】解:[2x-4>0不等式组的解为2 V x V 7,f2x-4>0故不等式组.一的整数解为3, 4, 5, 6.•••一组数据2、3、6、8、x的众数是x,二x=3 或 6.如果x=3,排序后该组数据为2, 3, 3, 6 , 8,则中位数为3;如果x=6,排序后该组数据为2,3,6,6,8,则中位数为 6.故选D.&若关于x的一元二次方程nx 2- 2x -仁0无实数根,则一次函数y= ( n+1) x-n的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一元二次方程根的判别式,函数的图像【解答】解:一元二次方程n x2- 2x -仁0无实数根,说明△ =b2- 4ac v 0,即(-2- 4 x n X (- 1) v 0 ,2)解得n v- 1,所以n+1 v 0 , - n> 0,故一次函数y= ( n+1) x- n的图象不经过第三象限.故选:C.49 .如图,△ ABC内接于半径为5的O O,圆心0到弦BC的距离等于3,则/ A的正切值等于()•1, Jr \.1------------------------- 耳小7c.jiIV 4 31554J A. B. C. D.【考点】垂径定理;圆周角定理;解直角三角形.【解答】 解:过点 O 作OD 1BC ,垂足为,••OB=5 , OD=3 ,••BD=4 ,Vz A= ZBOC ,/.zA= /BOD故选:D.10 .如图,边创2的等边△ ABC 和边长1的等边△A'BC ,它们的边 BC , BC 位于同一条直线上,开始时,点 C 与B 重合, MBC 固定不动,然后把△ A'BC 自左向 右沿直线平移,移出△ ABC 外(点B 与C 重合)停止,设△ ABC 平移的距离为, 两个三角形重合部分的面积为y ,则关于x 的函数图象是()1 A .4 V ■ ■ \ *1B. -nxzx.VJ3 1C4s増 - MA y D. 2 / \| Op 2 3>J !0 | 1 2 i杠■ _ ■ L 冷o|l2 3 "【考点】 动点问题的函数图象.【解答】 解:如图1所示:当 O v x < 1时,过点 D 作DE _LBC ,.•'tanA=ta n ZBOD=X B(C)C C/ Y D\/ /|\ \/厶\\B 3 ECC•/△\BC 和AkBC 均为等边三角形A If "••DE= BC '二 x .99.cl —i••y= BC '?DE= x2 「4当x=1时,y= ,且抛物线的开口向上.叹\/ /T\ \B B* EC C團3如图3所示:2 v x w 3时,迦作DE IB'C ,垂足为 E .y=l B 'C ?DE= 2_( x &) 2,函数图象为抛物线的一部分,且抛物线开口向上.2 ' 4故选:B ..填空题(本大S 6小题,每小题 4分,共24 分)如图2所示:1 v x < 2时,过V 作A'EIBC ,垂足为 E .••函数图象是一条平行与x 轴的线11 .分解因式:mx2- 2mx+m= ~m (x - 1) 2【考点】提公因式法与公式法的综合运用.2 2 2【解答】解:mx - 2mx+m=m ( x - 2x+1 ) =m (x - 1)2故答案为:m ( x - 1)12 .一个多边形的每个外角都是60° ,则这个多边形边数为【考点】多边形内角与外角.【解答】解:360 一60=6.故这个多边形边数为6.故答案为:6.13 .如图,将一副直角三角板(含45 °角的直角三角板ABC及含30 °角的直角三角板DCB) I ---------------------- ./J]按图示方式叠放,斜边交点为0,则厶AOB与厶COD的面积之比等于A JA jf■【考点】相似三角形的判定与性质;解直角三角形.DCB)【解答】解:T直角三角板(含45 °角的直角三角板ABC及含30 °角的直角三角板按图示方式叠放•••/ D=30 ° , / A=45 ° , AB // CD•••/ A= / OCD , / D= / OBA.•.△\OB s©OD®C=a-CD= a/S^AOB : S A COD=1 : 3故答案为1 : 314 .如图,将矩形纸片BCD折叠,使点D与点B重合,点C落在C'处,折痕为EF ,若AB=1 ,BC=2,贝U △ABE和厶BC'F的周长之和是_____【考点】翻折变换(折叠问);矩形的性质.【解答】解:••矩形纸片BCD折叠,点D与点B重合,点C落在C'处,••BE=ED , BC 丄CD , C'F=CF ,•••△KBE 的周长=AB+AE+BE=AB+AE+ED=AB+ ,AD△BC 'F 的周长=BF+C 'F BC =BE+CF+CD=BC+C ,D/.△\BE和Z13C ' F的周长之和=AB+AD+BC+CD 矩形ABCD的周长,••AB=1 , BC=2 ,/.△\BE 和Z13C ' F 的周长之和=2 X ( 1+2 ) =2 X3=6 .故答案为:6.J 15 .如图,在Rt A ABC中,Z ACB=90 ° AC=BC=2,以点A为圆心AC的长为半彳作交CEAB于点E,以点B为圆心,BC的长为半径作;交AB于点D,则阴影部分的面积为【考点】扇形面积的计算;等腰直角三角形.【解答】解:vZ ACB=90 ° , AC=BC=2/. S A ABC= X 2 x 2=2 ,45兀>2丄S 扇形BCD= = nS 空白=2 X (2 -丄n )=4 - n ,S 阴影=S △ ABC—S 空白=2 - 4+ n = n - 2,16 .如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形ABCD i,边BQ i 与CD交于点O,则四边形AB i OD的周长是【考点】旋转的性质;等腰直角三角形;正方形的性质.连接AC i ,v 四边形 AB i C i D 是正方形,1•••/ CAB i == X 90° =45 ° =Z AC i B i ,V 边长为i 的正方形 ABCD 绕点A 逆时针旋转 45 °后得到正方形•••/ BAB=45 ° ,•••/ DAB i =90 ° - 45° =45 ° ,二AC i 过D 点,即A 、D C i 三点共线,v 正方形 ABCD 的边长是 i ,二四边形 AB i C i D 的边长是i ,在Rt △ CiDA 中,由勾股定理得: AC i ==,■ JU-鼻则 DC i = - i ,vZ AC i B i =45 ° , / C i DO=90 ° ,•••/ COD=45 ° = Z DC i O,二 DC i =OD= - i ,【解答】解:.ABiOD ,同理求出A、B i、C三点共线,求出OB i= - i,二四边形AB i OD 的周长是AD+OD+O i+BAB i=i^2 - i+l - i+i=2故答案为 2 '.三•解答题(本大题 3小题,每小题 6分,共18分)【考点】 实数的运算;零指数幂.2019 —亍 ・上 0【解答】解:(T ) - | - 3| X + + n=-1 - +2 +11 1 b2 218 .先化简,再求值: (•- ) ',其中实数 a , b 满足(a -2a|=0【考点】 分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方. 1 1 b【解答】解:(-')+a-fc-(a+b ) (a-b )― PF . - - |T ___ . F(a+b)(a-b) ba-b"a~b (a-b )'(a+b)(a-b) b-2b (a~b )*(a+b)(a-b) ” b-2a+ 2ba+b17 .计算:2) 2+|b(a- 2) [a-2=0-2a=02+|b - 2a|=0 ,f a=2lb^4,得Word 文档可以编辑DBDS △ ABE 为直角三角形理由 AE / DAE= / BAE/ DAE= / DEA是/ BAD 的平分线(2) (2 )在 / BAE= / DEA ,/ D= / ECF四边形 ABCD 是平行四边形【考点】 作图一基本作图;平行四边形的性质【解答】解 (1 )作 AE 平分/ BAD 交DC 于E (尺规作图,保留作图痕迹)延长 AE 交BC 的延长线于点 F1 )如图,AE 为所求19 .在平行四边形 ABCD 中,AB=2AD1 )的条件下,连接 BE ,判定△ ABE 的形状.(不要求证明)^ZD=ZECFDE^E ,二ZCEF•••△\DE ^△FCE ( ASA ),••AD=CF , AE=EF ,•••△\BF是等腰三角形,••BE丄AF,即△ ABE是直角三角形.四•解答题(本大S 3小题,每小题7分,共21分)20 .海德汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的优的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.(1 )求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的爛9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆.若使月份每辆车盈利不低于 1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润返利)【考点】一元二次方程的应用;一元一次不等式的应用.【解答】解:(1 )设该公司销售该型汽车4月份和5月份的平均增长率为x,根据题意得:8 ( 1+x) 2=18,解得:X1=2-.50 (不合题意,舍去),X2=0.5=50% .答:该公司销售该型汽车4月份和5月份的平均增长率为50% .(2)根据题意得:9.8 9+0.04m > 1.7,解得:m> 22.5,••m为正整数,••该公司6月份至少需要销售该型汽车23辆.22.某学校举行了 保护环境,从我做起”为主题的演讲比赛.赛后组委整赛同学勺成绩,并制作了如下不完整的频数分布表和频数分布直方图.(1) 表中的 a= , b= ;(2) 请补全频数分布直方图;(3)若用扇形统计图来描述成绩分布情况 则分数段70 w x V 80对应的圆心角的度数是 (4) 竞赛成绩不低于90分的4名同学中正好有 2名男同学,2名女同学.学校从这4名同学中随机抽取 2名同学接受电视台记者采访 请用列表或画树状图的方法求正好抽到一名男 同学和一名女同学的概率.【考点】 列表法与树状图法;频数(率)分布表;频数(率)分布直方图;扇形统计图. 分数段 (分数为x 分)频数 百分比60 w x V 70820% 70 w x V 80 a 30%80 w x V 90 16b% 90 w x V 1004 10%请根据图表提供的信息,解答下列问题:【解答】 解:(1) V 60 w x V 70小组的频数为 8,占20% ,••8 一20%=40 人,/a=40 8-1-64=12,故答案为:12 , 40 ;(2)根据(1)求出a=12,补图如下:(3) V 70 w x v 80小组所占的百分比为 30% ,•••70 w x v 80对应扇形的圆心角的度数360 ° 30%=108 ° 故答案为:108 °;(4 )用 A 、B 表示男生,用 a 、b 表示女生,列表得: A B a bA \ ------------------AB Aa AbB BABa Bba aA aBabb bA bB ba••共有12种等可能的结果,其中一男一女的有 8种情况,16 b%= X 1OO%=4O%,即 b=40 ;•-P (一男一女) ==■.22 .( 1)如图,纸片ABCD中,AD=5 , S? ABCD=15,过点A作AE 1BC ,垂足为E,沿AE剪下△ABE,将它平移至△ DCE的位置,拼成四边形AEE D贝廿四边形AEE'D的形状为C—A.平行四边形 B .菱形C .矩形D .正方形(2)如凰在(1)中的四边形纸片XEE'D中,在EE 上取一点F,使EF=4,剪下△ AEF ,将它平移至△ DE'F的位置,拼成四边形AFF D①求证:四边形AFF 'D是菱形.②求四边形AFF'D的两条对角线的长【考点】 平行四边形的性质;菱形的判定与性质;矩形的判定;勾股定理;平移的性质.【解答】 解:(1 )如图1,纸片?ABCD 中,AD=5,S ABCD =15,过点 A 作AE 丄BC ,垂足为 沿AE 剪下△ ABE ,将它平移至△ DCE '的位置,拼成四边形 AEE ' D,则四边形 AEE 'D 状为矩形,故选: C;(2)①证明:•••纸片 ?ABCD 中,AD=5 , S ?ABCD =15,过点 A 作 AE 丄BC ,垂足为 E ,二 AE=3 .如图2:•/△ AEF ,将它平移至 △ DE ' F ,二 AF // DF ' , AF=DF ',二四边形 AFF 'D 是平行四边形.在Rt △ AEF 中,由勾股定理,得AF= = =5,二 AF=AD=5 ,二四边形AFF 'D 是菱形;E , 的形②连接AF;DF,如图3:在Rt QE 'F 中E'F=FF E'F'=54=1 , DE 丄3 ,在Rt △AEF中EF 丄EF+FF 丄4+5=9 , AE=3 ,五•解答题(本大题3小题,每小题9分,共27分)23 .如图,在平面直角坐标系中,一次函数的图象y i=kx+b与反比例函数y2= 的图象交于点A( 1,5)和点 B ( m, 1)•(1 )求m的值和反比例函数的解析式;(2)当x> 0时,根据图象直接写出不等式> kx+b的解集;V【考点】反比例函数与一次函数的交点问题;待定系数法求二次函数解析式.【解答】解:(1 ) ••反比例函数"广,的图象交于点 A ( 1 , 5), •'5=n,即n=5,•反比例函数的解析式是y ,••点B( m 1)在双曲线上.二1=二it5=5 ,•B ( 5, 1);—> kx+b的解集为v x < 1或x > 5;(3) ••抛物线的顶点为(1, 5),••设抛物线的解析式为/=a (x1-) 2+5,/.1=a ( 5—) 2+5,解得a=424 .如图,AB是O O的直径,弦CD ±AB于H,过D延长线上一点E作O O的切线交AB的延长线于F.切点为,连接G交CD于K.(1 )求证:KE=GE ;(2)若KG 2=KD?G E试判断C与EF的位置关系,并说明理由;(2)不等式••抛物线经B(5, 1),••二次函数的解析式是y= —x —) 2+5.(3 )在(2 )的条件下,若sinE= , AK=2 •,求FG的长.r * —【考点】切线的性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形.【解答】 解:(1)如答图,连接G .••EG 为切线,•••/ KGE+ /OGA=9 0 ,••CD 1AB , /./AKH+ ZOAG=9 0 ,又 OA=OG , /.zOGA h OAG ,•••zKGE= Z AKH= Z GKE ,••KE=GE .(2) AC //EF ,理由为:/.△3KD s 征GK ,/•左=ZAGD ,又/ C= ZAGD ,/•左=/C,••AC /EF ;(3)连接G , OC ,如答图所示.sinE=sin ZACH=,设 AH=3t ,则C=5t , CH=4t , •水E=GE , AC /EF , •••CK=AC=5t , /HK=CK G H=t .在Rt ^AHK 中,根据勾股定理得即(3t ) 2+t 2= (2 ) 2,解得 V —AH OC=r, OH=r3^ , CH=4t , Z _ 亠-- F G普图32+HK 2=AK 2,连接D ,如答图所示.即(r - 3t ) 2+ ( 4t ) 2=r 2,解得 r= '' t=T EF 为切线,•••△ OGF 为直角三角形,25 .如图,在边长为 2的正方形 ABCD 中,G 是AD 延长线上的一点,且 DG=AD ,动点 M 从A点出发,以每秒1个单位的速度沿着A - C -G 的路线向 G 点匀速运动(M 不与A , G 重合),设运动时间为 t 秒,连接 BM 并延长 AG 于N .(1 )是否存在点 皿,使厶ABM 为等腰三角形?若存在,分析点 M 的位置;若不存在,请说明理由;(2) 当点 N 在AD 边上时,若 BN 丄HN , NH 交/ CDG 的平分线于 H,求证: BN=HN ;(3) 过点 M 分别作 AB , AD 的垂线,垂足分别为 E , F ,矩形 AEMF 与厶ACG 重叠部分的面积 为S ,求S 的最大值.【考点】四边形综合题.由勾股定理得: OH2+CH 2=OC 2,在 Rt △ OGF 中,OG=r=,tan / OFG=tan / CAH= =I: { □nJ! JL W【解答】(1)解:存在;当点M为AC的中点时,AM=BM,则△ ABM为等腰三角形;当点M与点C重合时,AB=BM,则△ ABM为等腰三角形;当点M在AC上,且AM=2时,AM=AB,则△ ABM为等腰三角形;当点M在AC上,且AM=BM 时,AM= AC= X 2 = 时,则△ ABM为等腰三角形;MI,- i I »■ 1 f~1 耳当点M为CG的中点时,AM=BM,则△ ABM为等腰三角形;(2)证明:在AB上截取AK=AN,连接KN ;如图1所示:v四边形ABCD是正方形,W Jr•••/ ADC=9 0 , AB=AD , \ / \F \ / \Jta. Jrr \Jr-w匸* ■Tit•••/ CDG=9 ° ,二X厂/ \I ___ \A F.V D G•/ BK=AB - AK , ND=AD - AN , 釦••• BK=DN ,•/ DH 平分 / CDG ,•••/ CDH=4 5 ,•••/ NDH=9 0 +45 ° =135 ° ,•••/ BKN=18 0 - / AKN=13 5 ,•••/ BKN= / NDH ,在Rt △ ABN 中,/ ABN+ / ANB=90 ° ,又v BN丄NH ,即/ BNH=9 0 ,•••/ ANB+ / DNH=18 0 - Z BNH=9 0 ,•••/ ABN= Z DNH ,在厶BNK和厶NHD中,•••ZBNK ^△NHD ( ASA ),••BN=NH ;••AM=t ,••AF=FM 二 t ,bi••S= AF?FM= x t x t= t2;?977 d当t=2 时,S 的最大值 x ( 2)2=2;ifITf②当M 在CG 上时,即v t v 4 时,X ifvLf _jrCM=t - AC=t - 2 -, MG=4 - - t ,Y 4V在 △ACD 和 △GCD 中,fAD=DG |CD=CD.•.△\CD ^△GCD ( SAS ),/.zACD= ZGCD=4 5 ,/.zACM= ZACD+ ZGCD=9 0 ,(3)解:①当 M 在AC 上时,即v t w 2时,△ AMF 为等腰直角三角形,。
广东省珠海市2019-2020学年中考数学仿真第四次备考试题含解析
广东省珠海市2019-2020学年中考数学仿真第四次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若函数2y x =与y=﹣2x ﹣4的图象的交点坐标为(a ,b ),则12a b+的值是( ) A .﹣4B .﹣2C .1D .22.在平面直角坐标系内,点P (a ,a+3)的位置一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列实数中,有理数是( ) A .2B .2.1&C .πD .534.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .125.下列事件是必然事件的是( )A .任意作一个平行四边形其对角线互相垂直B .任意作一个矩形其对角线相等C .任意作一个三角形其内角和为360︒D .任意作一个菱形其对角线相等且互相垂直平分6.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定7.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy-+- D .236212x x -+8.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC 的周长为()A.16 B.14 C.12 D.109.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<210.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.511.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.201912.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A.3B.3C.3 1 D.3+1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F ,连接AP 并延长,交射线BC 于点H ,交射线DC 于点M ,连接EF 交AH 于点G ,当点P 在BD 上运动时(不包括B 、D 两点),以下结论:①MF=MC ;②AH ⊥EF ;③AP 2=PM•PH ; ④EF 的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)14.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下: 评价条数 等级餐厅 五星四星三星二星一星合计甲 538 210 96 129 27 1000 乙 460 187 154 169 30 1000 丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大. 16.反比例函数y=2mx-的图象是双曲线,在每一个象限内,y 随x 的增大而减小,若点A (–3,y 1),B (–1,y 2),C (2,y 3)都在该双曲线上,则y 1、y 2、y 3的大小关系为__________.(用“<”连接) 17.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.18.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB =1.25 m ,已知李明直立时的身高为1.75 m ,求路灯的高CD 的长.(结果精确到0.1 m)20.(6分)已知:二次函数2y ax bx =+满足下列条件:①抛物线y=ax 2+bx 与直线y=x 只有一个交点;②对于任意实数x ,a (-x+5)2+b (-x+5)=a (x-3)2+b (x-3)都成立. (1)求二次函数y=ax 2+bx 的解析式;(2)若当-2≤x≤r (r≠0)时,恰有t ≤y≤1.5r 成立,求t 和r 的值. 21.(6分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212-- =2,第三个等式:224312--=3… 请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的. 22.(8分)计算:201()(π7)3---+3〡-2〡+6tan30︒23.(8分)在平面直角坐标系xOy 中,二次函数y =ax 2+bx+c (a≠0)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B . ①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.24.(10分)如图1,在矩形ABCD 中,AD=4,AB=23,将矩形ABCD 绕点A 逆时针旋转α(0<α<90°)得到矩形AEFG .延长CB 与EF 交于点H .(1)求证:BH=EH ;(2)如图2,当点G 落在线段BC 上时,求点B 经过的路径长.25.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作∠ABD=∠ADE,交AC于点E.(1)求证:DE为⊙O的切线.(2)若⊙O的半径为256,AD=203,求CE的长.26.(12分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.(1)二月份冰箱每台售价为多少元?(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?27.(12分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.(1)若3sin4A ,DC=4,求AB的长;(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再代入12a b+求值即可. 【详解】解方程组224y xy x ⎧=⎪⎨⎪=--⎩①②, 把①代入②得:2x=﹣2x ﹣4, 整理得:x 2+2x+1=0, 解得:x=﹣1, ∴y=﹣2,交点坐标是(﹣1,﹣2), ∴a=﹣1,b=﹣2, ∴12a b+=﹣1﹣1=﹣2, 故选B . 【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a 、b 的值. 2.D 【解析】 【分析】判断出P 的横纵坐标的符号,即可判断出点P 所在的相应象限. 【详解】当a 为正数的时候,a+3一定为正数,所以点P 可能在第一象限,一定不在第四象限, 当a 为负数的时候,a+3可能为正数,也可能为负数,所以点P 可能在第二象限,也可能在第三象限, 故选D. 【点睛】本题考查了点的坐标的知识点,解题的关键是由a 的取值判断出相应的象限. 3.B 【解析】 【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择. 【详解】A 、二次根2不能正好开方,即为无理数,故本选项错误,B 、无限循环小数为有理数,符合;C、π为无理数,故本选项错误;D、53不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有π、根式下开不尽的从而得到了答案.4.A【解析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴2222534BH AB AH-=-=,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.5.B【解析】【分析】必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.【详解】解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;C、三角形的内角和为180°,所以任意作一个三角形其内角和为360 是不可能事件,故本选项错误;D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.6.C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.7.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.8.B【解析】【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键. 9.B【解析】【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.10.A【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.11.C【解析】【分析】+x2+…+x7;经过观察分析可得每4个数的和为2,把2019个根据各点横坐标数据得出规律,进而得出x1数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故选C.【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律12.D【解析】【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x1-,解得.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.②③④【解析】【分析】①可用特殊值法证明,当P 为BD 的中点时,0MC =,可见MF MC ≠.②可连接PC ,交EF 于点O ,先根据SAS 证明ADP CDP ≅V V ,得到DAP DCP ∠=∠,根据矩形的性质可得DCP CFE ∠=∠,故DAP CFE ∠=∠,又因为90DAP AMD ∠+∠=︒,故90CFE AMD ∠+∠=︒,故AH EF ⊥.③先证明CPM HPC V :V ,得到PC PM HP PC=,再根据ADP CDP ≅V V ,得到AP PC =,代换可得. ④根据EF PC AP ==,可知当AP 取最小值时,EF 也取最小值,根据点到直线的距离也就是垂线段最短可得,当AP BD ⊥时,EF 取最小值,再通过计算可得.【详解】解:①错误.当P 为BD 的中点时,0MC =,可见MF MC ≠;②正确.如图,连接PC ,交EF 于点O ,Q 45AD CD ADP CDP DP DP =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≅V V∴DAP DCP ∠=∠,Q PF CD ⊥,PE BC ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴OF OC =,∴DCP CFE ∠=∠,∴DAP CFE ∠=∠,Q 90DAP AMD ∠+∠=︒,∴90CFE AMD ∠+∠=︒,∴90FGM ∠=︒,∴AH EF ⊥.③正确.Q //AD BH ,∴H DAP ∠=∠,Q ADP CDP ≅V V ,∴DAP DCP ∠=∠,∴H DCP ∠=∠,又Q CPH MPC ∠=∠,∴CPM HPC V :V , ∴PC PM HP PC=, Q AP PC =, ∴AP PM HP AP=, ∴2AP PM PH =g .④正确.Q ()ADP CDP SAS ≅V V 且四边形PECF 为矩形,∴EF PC AP ==,∴当AP BD ⊥时,EF 取最小值,此时sin 452AP AB =︒==g故EF .故答案为:②③④.【点睛】本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.14.1或1【解析】【分析】由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可求得另一个圆的半径.【详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【点睛】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.15.丙【解析】【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.16.y2<y1<y1.【解析】【分析】先根据反比例函数的增减性判断出2-m的符号,再根据反比例函数的性质判断出此函数图象所在的象限,由各点横坐标的值进行判断即可.【详解】∵反比例函数y=2-mx的图象是双曲线,在每一个象限内,y随x的增大而减小,∴2−m>0,∴此函数的图象在一、三象限,∵−1<−1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案为y2<y1<y1.【点睛】本题考查的知识点是反比例函数图像上点的坐标特征,解题的关键是熟练的掌握列反比例函数图像上点的坐标特征.17.2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.18.1【解析】试题分析:由m 与n 为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即2m ﹣mn+2n =()2m n +﹣3mn=16+9=1.故答案为1.考点:根与系数的关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.路灯的高CD 的长约为6.1 m.【解析】设路灯的高CD 为xm ,∵CD ⊥EC ,BN ⊥EC ,∴CD ∥BN ,∴△ABN ∽△ACD ,∴BN AB CD AC=, 同理,△EAM ∽△ECD ,又∵EA =MA ,∵EC =DC =xm , ∴1.75 1.251.75x x =-,解得x =6.125≈6.1. ∴路灯的高CD 约为6.1m .20.(1)y=12-x 2+x ;(2)t=-4,r=-1. 【解析】【分析】(1)由①联立方程组,根据抛物线y=ax 2+bx 与直线y=x 只有一个交点可以求出b 的值,由②可得对称轴为x=1,从而得a 的值,进而得出结论;(2)进行分类讨论,分别求出t 和r 的值.【详解】(1)y=ax 2+bx 和y=x 联立得:ax 2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1, ∵对称轴为532x x -++-=1, ∴2b a-=1, ∴a=12-, ∴y=12-x 2+x. (2)因为y=12-x 2+x=12-(x-1)2+12,所以顶点(1,12)当-2<r<1,且r≠0时,当x=r时,y最大=12-r2+r=1.5r,得r=-1,当x=-2时,y最小=-4,所以,这时t=-4,r=-1. 当r≥1时,y最大=12,所以1.5r=12,所以r=13,不合题意,舍去,综上可得,t=-4,r=-1.【点睛】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.21.(1)225412--=4;(2)22(1)12n n+--=n.【解析】【详解】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:225412--=4;(2)第n个等式是:22(1)12n n+--=n.证明如下:∵22(1)12n n+--=[(1)][(1)]12n n n n+++--=2112n+-=n∴第n个等式是:22(1)12n n+--=n.点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.22.10【解析】【分析】根据实数的性质进行化简即可计算.【详解】原式=10【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.23.(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】【分析】(1)待定系数法即可解题,(2)①求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;②AB扫过的面积是平行四边形ABGE,根据S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出点B(2,0),G (7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函数的图象的顶点为A(0,4),∴设二次函数表达式为y=ax2+4,将B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函数表达式y=﹣x2+4;(2)①设直线DA:y=kx+b(k≠0),将A(0,4),D(﹣4,0)代入,得440bk b=⎧⎨-+=⎩,解得,14kb=⎧⎨=⎩,∴直线DA:y=x+4,由题意可知,平移后的抛物线的顶点E在直线DA上,∴设顶点E(m,m+4),∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,又∵平移后的抛物线过点B(2,0),∴将其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合题意,舍去),∴顶点E(5,9),②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣12×2×4﹣12×5×5﹣12×2×4﹣12×5×5=63﹣8﹣25=1答:图象A,B两点间的部分扫过的面积为1.【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.24.(1)见解析;(2)B 23π.【解析】【分析】(1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH 和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.【详解】(1)、证明:如图1中,连接AH,由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=23,∴cos∠BAG=32ABAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的长为6023180π⋅⋅=233π,即B点经过的路径长为233π.【点睛】本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.25.(1)证明见解析;(2)CE=1.【解析】【分析】(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根据切线的判定推出即可;(2)求出CD,AC的长,证△CDE∽△CAD,得出比例式,求出结果即可.【详解】(1)连接OD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD为半径,∴DE为⊙O的切线;(2)∵⊙O的半径为,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,解得:CE=1.【点睛】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定. 26.(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.【解析】【分析】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.【详解】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据题意,得:90000500x=80000x,解得:x=4000,经检验,x=4000是原方程的根.答:二月份冰箱每台售价为4000元.(2)根据题意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y为整数,∴y=3,9,10,11,2.∴洗衣机的台数为:2,11,10,9,3.∴有五种购货方案.(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,∵(2)中的各方案利润相同,∴1﹣a=0,∴a=1.答:a的值为1.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.27.(1)372;(2)30°【解析】【分析】(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=34,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.【详解】解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=3sin4A=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=227DC EC-=,∴AC=6,∴AB:6=7:4,∴AB=37;(2)连接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切线,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中点,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等边三角形,∴∠EDC=60°,∴∠C=30°.【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.。
2019广东省中考数学模拟试卷(含答案版)(2020年7月整理).pdf
1
学海无涯
A.4 B.4.8 C.5.2 D.6
7.一组数据 2、3、6、8、x 的众数是 x,其中 x 又是不等式组
的整数解,则这
组数据的中位数可能是( )
A.3 B.4 C.6 D.3 或 6
8.若关于 x 的一元二次方程 nx2﹣2x﹣1=0 无实数根,则一次函数 y=(n+1)x ﹣n 的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.下列四边形中,是中心对称而不是轴对称图形的是( ) A.平行四边形 B.矩形 C.菱形 D.正方形 4.如图,直线 m∥n,∠1=70°,∠2=30°,则∠A 等于( )
A.30° B.35° C.40° D.50° 5.下列计算中,正确的是( ) A.(a3)4=a7 B.a4+a3=a7 C.(﹣a)4.(﹣a)3=a7 D.a5÷a3=a2 6.如图,在▱ABCD 中,E 为 AD 的三等分点,AE= AD,连接 BE 交 AC 于点 F,AC=12,则 AF 为( )
学海无涯
2019 广东省中考数学模拟试卷 一、选择题(本大题 10 小题,每小题 3 分,共 30 分)
广东省深圳市2019-2020学年中考数学模拟试题(1)含解析
广东省深圳市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A .B .C .D .2.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( )A .B .C .D .3.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为24.如图,已知直线 PQ ⊥MN 于点 O ,点 A ,B 分别在 MN ,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C ,使△ABC 是等腰三角形,则这样的 C 点有( )A .3 个B .4 个C .7 个D .8 个5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户)30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是216.2(3)-的化简结果为()A.3 B.3-C.3±D.97.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.下列各式计算正确的是()A.a4•a3=a12B.3a•4a=12a C.(a3)4=a12D.a12÷a3=a49.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+162B.16+82C.24+162D.4+4210.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π11.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.12.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm宽为bcm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A .4acmB .4()a b cm -C .2()a b cm +D .4bcm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.14.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,OA=OC ,OB=OD ,添加一个条件使四边形ABCD 是菱形,那么所添加的条件可以是___________(写出一个即可).15.如图,在平行四边形ABCD 中,E 为边BC 上一点,AC 与DE 相交于点F ,若CE=2EB ,S △AFD =9,则S △EFC 等于_____.16.分解因式2222x y z yz ---=______.17.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.18.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在自动向西的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,检查站一工作人员家住在与观测点B 的距离为7132km ,位于点B 南偏西76°方向的点C 处,求工作人员家到检查站的距离AC .(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)20.(6分)(1)|﹣2|+327•tan30°+(2018﹣π)0-(15)-1(2)先化简,再求值:(2xx x +﹣1)÷22121xx x-++,其中x的值从不等式组23241xx-≤⎧⎨-⎩<的整数解中选取.21.(6分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.22.(8分)如图,一次函数y=ax﹣1的图象与反比例函数kyx=的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=10,tan∠AOC=1 3(1)求a,k的值及点B的坐标;(2)观察图象,请直接写出不等式ax﹣1≥kx的解集;(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.23.(8分)对x,y定义一种新运算T,规定T(x,y)=22ax byx y++(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=22319314a b a b⨯+⨯+=+,T(m,﹣2)=242am bm+-.填空:T(4,﹣1)=(用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.24.(10分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.25.(10分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.26.(12分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.27.(12分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据俯视图可确定主视图的列数和每列小正方体的个数.【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图.2.D【解析】【分析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.3.A【解析】【分析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.4.D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.5.C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为110(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为110[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故选C.考点:1.方差;2.中位数;3.众数;4.极差.6.A【解析】2(3)93-==.故选A.考点:二次根式的化简7.D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2019年广东省中考数学学业模拟试卷(一)及参考答案
2019年广东省中考数学学业模拟试卷(一)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列实数中的无理数是()A.B.πC.0D.2.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨3.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.4.(3分)数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.45.(3分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根6.(3分)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm7.(3分)不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<28.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.29.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°10.(3分)下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)比较大小:3.(填“>”、“=”或“<”)12.(4分)正五边形的一个外角等于°.13.(4分)分解因式:a2﹣4a=.14.(4分)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.15.(4分)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).16.(4分)为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.18.(6分)先化简,再求值:()•(x2﹣1),其中x=.19.(6分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?21.(7分)新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频数2025301510(1)王刚同学抽取样本的容量是多少?(2)请你根据表中数据补全图中的频数分布直方图;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?22.(7分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知一次函数y=﹣2x+3与反比例函数的图象相交于A(﹣1,m)、B (n,﹣2)两点.(1)求反比例函数解析式及m、n的值;(2)求△AOB的面积;(3)观察图象,直接写出反比例函数值大于一次函数值时自变量x的取值范围.24.(9分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.25.(9分)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA 向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)2019年广东省中考数学学业模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列实数中的无理数是()A.B.πC.0D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,0,是有理数,π是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.4【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据1,2,3,4,4,5中,4出现的次数最多,∴这组数据的众数是:4.故选:D.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【分析】代入一元二次方程中的系数求出根的判别式△=﹣8<0,由此即可得出结论.【解答】解:在方程x2﹣2x+3=0中,△=(﹣2)2﹣4×1×3=﹣8<0,∴该方程没有实数根.故选:D.【点评】本题考查了根的判别式,解题的关键是代入数据求出△的值.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号判断出方程根的个数是关键.6.(3分)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm【分析】根据三角函数的定义求得BC和AB的比值,设出BC、AB,然后利用勾股定理即可求解.【解答】解:∵sin A==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,故选:C.【点评】本题考查了三角函数与勾股定理,正确理解三角函数的定义是关键.7.(3分)不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<2【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:∵解不等式①得:x<2,解不等式②得:x>1,∴不等式组的解集为1<x<2,故选:D.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.8.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.9.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④【分析】首先根据各图形的函数解析式求出函数与坐标轴交点的坐标,进而可求得各个阴影部分的面积,进而可比较出个阴影部分面积的大小关系.【解答】解:①:图中的函数为正比例函数,与坐标轴只有一个交点(0,0),由于缺少条件,无法求出阴影部分的面积;②:直线y=﹣x+2与坐标轴的交点坐标为:(2,0),(0,2),故S=×2×2阴影=2;③:此函数是反比例函数,那么阴影部分的面积为:S=xy=×4=2;④:该抛物线与坐标轴交于:(﹣1,0),(1,0),(0,﹣1),故阴影部分的三角形是等腰直角三角形,其面积S=×2×1=1;②③的面积相等,故选:A.【点评】此题主要考查了函数图象与坐标轴交点坐标的求法以及图形面积的求法,是基础题,熟练掌握各函数的图象特点是解决问题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.12.(4分)正五边形的一个外角等于72°.【分析】根据多边形的外角和是360°,即可求解.【解答】解:正五边形的一个外角==72°,故答案为:72.【点评】本题考查多边形的内角与外角,正确理解多边形的外角和是360°是关键.13.(4分)分解因式:a2﹣4a=a(a﹣4).【分析】由于原式子中含有公因式a,可用提取公因式法求解.【解答】解:a2﹣4a=a(a﹣4).故答案为:a(a﹣4).【点评】主要考查提公因式法分解因式,是基础题.14.(4分)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90度.【分析】如图2,AB∥CD,∠AEC=90°,作EF∥AB,根据平行线的传递性得到EF∥CD,则根据平行线的性质得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90°【解答】解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.15.(4分)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是2π(结果保留π).【分析】根据题意有S阴影部分=S扇形BAD﹣S半圆BA,然后根据扇形的面积公式:S=和圆的面积公式分别计算扇形和半圆的面积即可.【解答】解:根据题意得,S阴影部分=S扇形BAD﹣S半圆BA,∵S扇形BAD==4π,S半圆BA=•π•22=2π,∴S阴影部分=4π﹣2π=2π.故答案为2π.【点评】此题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R 为圆的半径),或S=lR,l为扇形的弧长,R为半径.16.(4分)为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是1024.【分析】根据题意可得每次挑选都是去掉奇数,进而得出需要挑选的总次数进而得出答案.【解答】解:∵将这些金蛋按1﹣2018的顺序进行标号,第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,∴剩余的数字都是偶数,是2的倍数,;∵他将剩下的金蛋在原来的位置上又按1﹣1009编了号,又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋,∴剩余的数字为4的倍数,以此类推:2018→1009→504→252→126→63→31→15→7→3→1共经历10次重新编号,故最后剩余的数字为:210=1024.故答案为:1024.【点评】此题主要考查了推理与论证,正确得出挑选金蛋的规律进而得出挑选的次数是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣1+=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.18.(6分)先化简,再求值:()•(x2﹣1),其中x=.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【分析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.【解答】解:(1)如图,(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.【点评】本题考查了基本作图﹣作一个角等于已知角,同时还考查了全等三角形的性质和判定;熟练掌握五种基本作图:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?【分析】(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,根据题意可得,第一次比第二次单价低30元,据此列方程求解;(2)分别求出两次的盈利,然后求和.【解答】解:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,由题意得,=150+30,解得:x=60,经检验:x=60是原分式方程的解,且符合题意,则x﹣10=60﹣10=50,答:第一次购买了60台电风扇,则第二次购买了50台电风扇;(2)两次获利:(250﹣150)×60+(250﹣150﹣30)×50=6000+3500=9500(元).答:商场获利9500元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.21.(7分)新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频数2025301510(1)王刚同学抽取样本的容量是多少?(2)请你根据表中数据补全图中的频数分布直方图;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?【分析】(1)求得各组的频数的和即可求得样本容量;(2)根据(1)即可直接补全直方图;(3)用总人数乘以对应的比例即可求解.【解答】解:(1)样本容量是20+25+30+15+10=100;(2);(3)样本中,暑假做家务的时间在40.5~100.5小时之间的人数为55人,∴该校有人在暑假做家务的时间在40.5~100.5小时之间.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(7分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.【解答】解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∴△AED≌△CGD(AAS),∴AE=CG.(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,∴∠BAE=∠DCG.在△AEB和△CGD中,∴△AEB≌△CGD(SAS),∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴BE∥DF.解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴BE∥DF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知一次函数y=﹣2x+3与反比例函数的图象相交于A(﹣1,m)、B (n,﹣2)两点.(1)求反比例函数解析式及m、n的值;(2)求△AOB的面积;(3)观察图象,直接写出反比例函数值大于一次函数值时自变量x的取值范围.【分析】(1)把A (﹣1,m )、B (n ,﹣2)代入一次函数y =﹣2x +3,可求m 、n 的值,再根据待定系数法求出反比例函数的解析式;(2)求出直线AB 与x 轴的交点的坐标,根据三角形的面积公式求出即可; (3)利用函数图象求出使反比例函数值大于一次函数值时自变量x 的取值范围. 【解答】解:(1)把A (﹣1,m )、B (n ,﹣2)代入一次函数y =﹣2x +3,得 m =2+3=5,﹣2=﹣2n +3,解得n =2.5, 设反比例函数解析式为y =,把A (﹣1,5)代入反比例函数得:k =﹣1×5=﹣5, 故反比例函数为y =﹣;(2)设直线AB 和x 轴的交点为C , 令y =0,则0=﹣2x +3, ∴x =1.5, ∴C (1.5,0), ∴OC =1.5,∴S △AOB =S △AOC +S △BOC =×1.5×5+×1.5×2=5.25;(3)反比例函数值大于一次函数值时自变量x 的取值范围为﹣1<x <0或x >.【点评】本题主要考查对一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解一元一次方程等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.24.(9分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.【分析】(1)利用角平分线的性质得出∠CBD=∠DBA,进而得出∠DAC=∠DBA;(2)利用圆周角定理得出∠ADB=90°,进而求出∠PDF=∠PFD,则PD=PF,求出PA=PF,即可得出答案;(3)利用勾股定理得出AB的长,再利用三角形面积求出DE即可.【解答】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2,∴PD=PA,∵∠4+∠2=∠1+∠3=90°,且∠ADB=90°,∴∠3=∠4,∴PD=PF,∴PA=PF,即P是线段AF的中点;(3)解:连接CD,∵∠CBD=∠DBA,∴CD=AD,∵CD=3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.【点评】此题主要考查了圆的综合以及圆周角定理和勾股定理以及三角形面积等知识,熟练利用圆周角定理得出各等量关系是解题关键.25.(9分)如图,Rt △ABC 中,∠C =90°,BC =8cm ,AC =6cm .点P 从B 出发沿BA 向A 运动,速度为每秒1cm ,点E 是点B 以P 为对称中心的对称点,点P 运动的同时,点Q 从A 出发沿AC 向C 运动,速度为每秒2cm ,当点Q 到达顶点C 时,P ,Q 同时停止运动,设P ,Q 两点运动时间为t 秒.(1)当t 为何值时,PQ ∥BC ?(2)设四边形PQCB 的面积为y ,求y 关于t 的函数关系式;(3)四边形PQCB 面积能否是△ABC 面积的?若能,求出此时t 的值;若不能,请说明理由;(4)当t 为何值时,△AEQ 为等腰三角形?(直接写出结果)【分析】(1)先在Rt △ABC 中,由勾股定理求出AB =10,再由BP =t ,AQ =2t ,得出AP =10﹣t ,然后由PQ ∥BC ,根据平行线分线段成比例定理得出=,列出比例式=,求解即可; (2)根据S 四边形PQCB =S △ACB ﹣S △APQ =AC •BC ﹣AP •AQ •sin A ,即可得出y 关于t 的函数关系式;(3)根据四边形PQCB 面积是△ABC 面积的,列出方程t 2﹣8t +24=×24,解方程即可;(4)△AEQ 为等腰三角形时,分三种情况讨论:①AE =AQ ;②EA =EQ ;③QA =QE ,每一种情况都可以列出关于t 的方程,解方程即可.【解答】解:(1)Rt △ABC 中,∵∠C =90°,BC =8cm ,AC =6cm ,∴AB =10cm .∵BP =t ,AQ =2t ,∴AP =AB ﹣BP =10﹣t .∵PQ ∥BC ,∴=,∴=,解得t=;(2)∵S四边形PQCB =S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sin A∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【点评】本题考查了勾股定理,平行线的判定,四边形的面积,等腰三角形的判定,中心对称的性质,综合性较强,难度适中.运用分类讨论、方程思想是解题的关键.。
2019年最新广东省中考数学模拟试卷及答案解析
2019年最新广东省中考数学模拟试卷及答案解析广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.数字1的倒数是()。
A。
-2.B。
2.C。
1.D。
-12.下列图案中既是中心对称图形,又是轴对称图形的是()。
A。
B。
C。
D。
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为xxxxxxxx00人,这个数用科学记数法表示为()。
A。
44×10^8.B。
4.4×10^9.C。
4.4×10^8.D。
4.4×10^104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()。
A。
32,31.B。
31,32.C。
31,31.D。
32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()。
A。
35°。
B。
45°。
C。
50°。
D。
55°6.下列运算正确的是()。
A。
2a+3b=5ab。
B。
a^2·a^3=a^5.C。
(2a)^3=6a^3.D。
a^6+a^3=a^97.一元二次方程x^2-4x+2=0的根的情况是()。
A。
有两个不相等的实数根。
B。
有两个相等的实数根C。
只有一个实数根。
D。
没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()。
A。
10.B。
13.C。
17.D。
13或179.不等式组的解集在数轴上表示正确的是()。
A。
B。
C。
D。
10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC-CD-DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm^2),则y关于x的函数图象是()。
2019年广东初中中考数学试卷习题模拟卷.doc
2019 年广东中考数学模拟试题(一)一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.11.在实数π、 3 、 2、sin30 °,无理数的个数为 ( )A.1B.2C.3D.42.据有关部门《报告》显示,粤港澳大湾区经济总量实现“四连增”, 2017 年的 GDP 达 101843 亿元;该湾区有望建成全球第四大湾区。
101843 亿元用科学计数法表示为A . 0.101843× 105 元B .1.01843 ×1012 元C .1.01843 × 1013 元D . 1.01843× 105 元3.如图是某几何体的三视图,则该几何体的侧面展开图是()A .B .C .D .4.今年某市有近 4 万名考生参加中考, 为了解这些考生的数学成绩, 从中抽取 1000 名考生的数学成绩进行统计分 析,以下说法正确的是()A .这 1000 名考生是总体的一个样本B .近 4 万名考生是总体C .每位考生的数学成绩是个体D .1000 名学生是样本容量5.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A .B .C .D .6.已知关于 x 的一元二次方程( k-1 ) x 2-2x+1=0 有两个不相等的实数根,则k 的取值范围是()A . k <-2B . k < 2C . k >2D .k < 2 且 k ≠17.如图,菱形 ABCD 中,∠ B=60°, AB=4 ,则以 AC 为边长的正方形 ACEF 的周长为( )A . 14B . 15C . 16D . 178.如图,直线 AB 、CD 相交于点 O ,若∠ BOD=40°, OA 平分∠ COE ,则∠ DOE 等于( )A . 100 °B . 40 °C . 140 °D . 80 °9.已知实数 a 、 b ,若 a > b ,则下列结论正确的是( )A . a-5 < b-5B . 2+a < 2+bC .ab D . 3a >3b3 310.二次函数 y=ax 2+bx+c ( a ≠0)的图象如图所示,给出下列结论:① b 2-4ac > 0;② 2a+b < 0;③ 4a-2b+c=0;④ a :b : c=-1: 2: 3.其中正确的是()A .①②B .②③C .③④D .①④二、填空题(本大题 6 小题,每小题 4 分,共24 分)请将下列各题的正确答案填写在答题卡相应位置上.11.如图,在半径为 5 的⊙ O 中,弦AB=6 ,点 C 是优弧上一点(不与 A , B 重合),则cosC 的值为 ____________12.分解因式:a3b ab =_____________13.3x 14和 x 6,是a的两个不同的平方根,则a=_______14.等腰三角形中两条边长分别为3、 4,则三角形的周长是 _________.15.如图, AB ,CD 是⊙ O 的两条互相垂直的直径,点 O1,O 2, O3, O4分别是 OA 、 OB 、 OC 、 OD 的中点,若⊙ O 的半径为 2 ,则阴影部分的面积为 _______。
2019年广东省中考数学最后一卷模拟试题及参考答案
2019年广东省中考数学最后一卷模拟试题一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2019的相反数是()A.2019B.﹣2019C.D.﹣2.将数据219 000 000用科学记数法表示为()A.0.219×109B.2.19×109C.2.19×108D.21.9×1073.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.4.下列运算正确的是()A.3a+4b=7ab B.a3•a2=a6C.2a3÷a2=2a D.(﹣3a)3=﹣9a35.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.6.抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码)码号3334353637人数761511这组数据的中位数和众数分别是()A.35,37B.15,15C.35,35D.15,357.如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.78.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.2cm C.8cm D.4cm9.如图,△ABD是⊙O的内接三角形,AB是直径,点C在⊙O上,且∠ABD=56°,则∠BCD等于()A.32°B.34°C.56°D.66°10.如图,△ABC中,AB=6,BC=8,tan∠B=,点D是边BC上的一个动点(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF 的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y 与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题有6小题,第小题4分,共24分)11.分解因式:3x2﹣12y2=.12.已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=.13.一个多边形的内角和是它的外角和的3倍,则这个多边形是边形.14.已知:如图,∠1=∠2=∠3=55°,则∠4的度数是.15.如图,在菱形ABCD中,∠B=60°,AB=2,把菱形ABCD绕BC的中点E顺时针旋转60°得到菱形A'B'C'D',其中点D的运动路径为,则图中阴影部分的面积为.16.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是.三、填空题(本题有3小题,第小题6分,共18分)17.计算()﹣1﹣(π﹣2019)0+tan60°+18.先化简代数式(﹣)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.19.如图,A是∠MON边OM上一点,AE∥ON.(1)尺规作图,作∠MON的角平分线OB,交AE于点B;(保留作图痕迹,不写作法)(2)过点B画OB的垂线,分别交OM,ON于点C,D,求证:AB=OC.四、填空题(本题有3小题,第小题7分,共21分)20.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了名购买者:(2)请补全条形统计图:在扇形统计图中A种支付方式所对应的圆心角为108度;(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?21.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.(1)求第一次每个足球的进价是多少元?(2)若第二次进货后按150元/个的价格销售,当售出10个后,根据市场情况,商店决定对剩余的足球全部按同一标准一次性打折售完,但要求这次的利润不少于450元,问该商店最低可打几折销售?22.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图2.(1)求证:EG=CH;(2)已知AF=,求AD和AB的长.五、填空题(本题有3小题,第小题9分,共27分)23.如图,抛物线y=x2+bx﹣3过点A(1,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P是线段AD上的动点.(1)b=,抛物线的顶点坐标为;(2)求直线AD的解析式;(3)过点P的直线垂直于x轴,交抛物线于点Q,连接AQ,DQ,当△ADQ的面积等于△ABD的面积的一半时,求点Q的坐标.24.如图,△ABC是⊙O的内接三角形,直径AB=10.sin A=,点D为线段AC上一动点(不运动至端点A、C),作DF⊥AB于F,连结BD,井延长BD交⊙O于点H,连结CF.(1)当DF经过圆心O时,求AD的长;(2)求证:△ACF∽△ABD;(3)求CF・DH的最大值.25.有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC 平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为;(2)在运动过程中,当时,MN垂直平分AB;(3)当0<t<6时,求直角三角板OMN与等边△ABC重叠部分的面积S与时间t之间的函数关系式.2019年广东省中考数学最后一卷模拟试题一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2019的相反数是()A.2019B.﹣2019C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.【点评】本题考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键.2.将数据219 000 000用科学记数法表示为()A.0.219×109B.2.19×109C.2.19×108D.21.9×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据219 000 000用科学记数法表示为2.19×108,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.【分析】用黄球的个数除以球的总个数即可得到答案.【解答】解:∵一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是=,故选:A.【点评】此题主要考查了概率公式的应用,关键是掌握概率公式:概率=所求情况数与总情况数之比.4.下列运算正确的是()A.3a+4b=7ab B.a3•a2=a6C.2a3÷a2=2a D.(﹣3a)3=﹣9a3【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=2a,符合题意;D、原式=﹣27a3,不符合题意,故选:C.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.5.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.6.抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码)码号3334353637人数761511这组数据的中位数和众数分别是()A.35,37B.15,15C.35,35D.15,35【分析】根据众数与中位数的意义分别进行解答即可.【解答】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是地15、16个数的平均数,∴这组数据的中位数是35;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:C.【点评】此题考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.7.如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.7【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【解答】解:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选:C.【点评】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.8.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.2cm C.8cm D.4cm【分析】根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=2,由勾股定理求出CE,即可得出AC的长.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=4cm,∴BC=8cm,∵AB=AC,四边形DEFG是正方形,∴DG=EF,BD=CE,在Rt△BDG和Rt△CEF,,∴Rt△BDG≌Rt△CEF(HL),∴BG=CF=2,∴EC=2,∴AC=4cm.故选:D.【点评】本题考查了正方形的性质、相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.9.如图,△ABD是⊙O的内接三角形,AB是直径,点C在⊙O上,且∠ABD=56°,则∠BCD等于()A.32°B.34°C.56°D.66°【分析】根据圆周角定理得到∠ADB=90°,利用互余计算出∠A=34°,然后根据圆周角定理得到∠BCD的度数.【解答】解:∵AB是直径,∴∠ADB=90°,∴∠A=90°﹣∠ABD=90°﹣56°=34°,∴∠BCD=∠A=34°.故选:B.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.10.如图,△ABC中,AB=6,BC=8,tan∠B=,点D是边BC上的一个动点(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF 的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y 与x的函数关系的图象大致是()A.B.C.D.【分析】由tan∠B==,设DE=4m,BE=3m,则BD=5m=x,然后将AE与DE都用含有x的代数式表示,再计算出△AEF的面积即可得到y与x的函数关系,由此对照图形即可.【解答】解:∵DE⊥AB,垂足为E,∴tan∠B==,设DE=4m,BE=3m,则BD=5m=x,∴m=,DE=,BE=,∴AE=6﹣=(6﹣)•∴y=S△AEF化简得:y=﹣+x,又∵0<x≤8∴该函数图象是在区间0<x≤8的抛物线的一部分.故选:B.【点评】本题考查了动点问题的函数图象,解题的关键是设法将AE与DE都用含有x的代数式表示二、填空题(本题有6小题,第小题4分,共24分)11.(4分)分解因式:3x2﹣12y2=.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣12y2,=3(x2﹣4y2),=3(x+2y)(x﹣2y).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后,可以利用平方差公式进行二次分解.12.已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=.【分析】利用判别式的意义得到△=32﹣4m=0,然后解关于m的方程即可,【解答】解:根据题意得△=32﹣4m=0,解得m=.故答案为.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13.一个多边形的内角和是它的外角和的3倍,则这个多边形是边形.【分析】根据多边形的内角和定理,多边形的内角和等于(n﹣2)•180°,外角和等于360°,然后列方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.14.已知:如图,∠1=∠2=∠3=55°,则∠4的度数是.【分析】根据对顶角相等以及平行线的判定与性质求出∠3+∠6=180°,即可得出∠4的度数.【解答】解:如图,∵∠1=∠2=∠5∴a ∥b∴∠3+∠6=180°,且∠3=55°∴∠6=125°∴∠4=∠6=125°故答案为:125°【点评】本题主要考查了平行线的判定与性质,熟练掌握相关的定理是解题关键. 15.如图,在菱形ABCD 中,∠B =60°,AB =2,把菱形ABCD 绕BC 的中点E 顺时针旋转60°得到菱形A 'B 'C 'D ',其中点D 的运动路径为,则图中阴影部分的面积为 .【分析】先通过已知条件求出△EA 'D 与△EA 'D '以及扇形EDD '的面积,然后根据S 阴影部分=S 扇形EDD '﹣S △EA 'D ﹣S △EA 'D 求出阴影部分面积.【解答】解:如图连接AE 、DE 、A 'E 、DE ,∵菱形ABCD 中,∠B =60°,E 为BC 中点,∴BE =AB =1,∠BAE =30°,∠EAD =90°,∴∠EA 'D =90°,A 'E =AE =,DE ==,DE '=∵旋转角为60°,∴∠DED '=60°,BEB '=60°,BB '=BE =B 'E =1,∴CE =CA '=A 'D =1∴S △EA 'D =S △ECD =CE •AE ==, S △EA 'D '=EA '•A 'D '=××2=, S 扇形EDD '==,∴S 阴影部分=S 扇形EDD '﹣S △EA 'D ﹣S △EA 'D =﹣﹣=, 故答案为,【点评】本题考查了扇形的面积,熟练运用割补法是解题的关键.16.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣(x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是 .【分析】先求出A 点坐标,再根据图形平移的性质得出A 1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.三、填空题(本题有3小题,第小题6分,共18分)17.计算()﹣1﹣(π﹣2019)0+tan60°+【分析】直接利用负指数幂的性质以及二次根式的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣1+×+2=2﹣1+3+2=4+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.先化简代数式(﹣)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x≠±3且x≠1,∴在0≤x≤3可取x=0或x=2,当x=0时,原式=﹣1.当x=2时,原式=1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.19.如图,A是∠MON边OM上一点,AE∥ON.(1)尺规作图,作∠MON的角平分线OB,交AE于点B;(保留作图痕迹,不写作法)(2)过点B画OB的垂线,分别交OM,ON于点C,D,求证:AB=OC.【分析】(1)根据角平分线的尺规作图即可得;(2)过点B作直线的垂线,由AE∥ON知∠2=∠5,根据角平分线知∠1=∠5,从而得∠1=∠2,再由OB⊥CD可得∠3=∠4,从而得出答案.【解答】解:(1)如图所示,射线OB即为所求;(2)如图,∵AE∥ON,∴∠2=∠5,∵∠1=∠5,∴∠1=∠2,∵CD⊥OB,∴∠2+∠3=∠1+∠4=90°,∴∠3=∠4,∴AB=OC.【点评】本题主要考查作图﹣基本作图,熟练掌握角平分线和过直线上一点作已知直线的垂线及平行线的性质是解题的关键.四、填空题(本题有3小题,第小题7分,共21分)20.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了名购买者:(2)请补全条形统计图:在扇形统计图中A种支付方式所对应的圆心角为108度;(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【分析】(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.【解答】解:(1)56÷28%=200,即本次一共调查了200名购买者;故答案为:200;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.(1)求第一次每个足球的进价是多少元?(2)若第二次进货后按150元/个的价格销售,当售出10个后,根据市场情况,商店决定对剩余的足球全部按同一标准一次性打折售完,但要求这次的利润不少于450元,问该商店最低可打几折销售?【分析】(1)设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据数量关系:第一次购进足球的数量﹣10个=第二次购进足球的数量,可得分式方程,然后求解即可;(2)设商店对剩余的足球按同一标准一次性打a折销售时,可使利润不少于450元.先根据(1)中求得的数得到第二次购进足球的数量和价格,再根据数量关系:第一次销售完10个获得的利润+第二次打折销售完足球获得的利润≥450元,列出不等式,然后求解即可得出答案.【解答】解:(1)设第一次每个足球的进价是x元,则第二次每个足球的进价是 1.2x 元,根据题意得,﹣=10,解得:x=100,经检验:x=100是原方程的根,答:第一次每个足球的进价是100元;(2)设该商店最低可打a折销售,根据题意得,150×10+(﹣10)×150×﹣3600≥450,解得:a=7.5答:该商店最低可打7.5折销售.【点评】本题考查分式方程及一元一次不等式的应用,关键是理解题意,第一问以数量作为等量关系列方程求解,第二问以利润作为不等量关系列不等式求解.22.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图2.(1)求证:EG=CH;(2)已知AF=,求AD和AB的长.【分析】(1)由折叠的性质及矩形的性质可知AE=AD=EG,BC=CH,再根据四边形ABCD是矩形,可得EG=CH;(2)由折叠的性质可知∠ADE=45°,∠FGE=∠A=90°,AF=,那么DG=,利用勾股定理求出DF=2,于是可得AD=AF+DF=+2;再利用AAS证明△AEF≌△BCE,得到AF=BE,于是AB=AE+BE=+2+=2+2.【解答】(1)证明:由折叠可得:AE=A'E=BC=CH=GE,∵四边形ABCD是矩形,∴EG=CH;(2)解:∵∠ADE=45°,∠FGE=∠A=90°,AF=,∴DG=,DF=2,∴AD=AF+DF=+2;由折叠知∠AEF=∠GEF,∠BEC=∠HEC,∴∠GEF+∠HEC=90°,∠AEF+∠BEC=90°,∵∠AEF+∠AFE=90°,∴∠BEC=∠AFE,在△AEF与△BCE中,,∴△AEF≌△BCE(AAS),∴AF=BE,∴AB=AE+BE=+2+=2+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了全等三角形的判定与性质,矩形的性质,勾股定理等知识.五、填空题(本题有3小题,第小题9分,共27分)23.如图,抛物线y=x2+bx﹣3过点A(1,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P是线段AD上的动点.(1)b=2,抛物线的顶点坐标为(﹣1,﹣4);(2)求直线AD的解析式;(3)过点P的直线垂直于x轴,交抛物线于点Q,连接AQ,DQ,当△ADQ的面积等于△ABD的面积的一半时,求点Q的坐标.【分析】(1)将点A 的坐标代入函数解析式求得b 的值,然后利用配方法将函数解析式转化为顶点式,可以直接求得顶点坐标;(2)结合(1)中抛物线解析式求得点D 的坐标,利用点A 、D 的坐标来求直线AD 解析式;(3)由二次函数图象上点的坐标特征求得点B 的坐标,易得AB =4.结合三角形面积公式求得S △ABD =6.设P (m ,m ﹣1),Q (m ,m 2+2m ﹣3).则PQ =﹣m 2﹣m +2.利用分割法得到:S △ADQ =S △APQ +S △DPQ =PQ =(﹣m 2﹣m +2).根据已知条件列出方程(﹣m 2﹣m +2)=3.通过解方程求得m 的值,即可求得点Q 的坐标.【解答】解:(1)把A (1,0)代入y =x 2+bx ﹣3,得12+b ﹣3=0.解得b =2.故该抛物线解析式为:y =x 2+2x ﹣3=(x +1)2﹣4,即y =(x +1)2﹣4.故顶点坐标是(﹣1,﹣4).故答案是:2;(﹣1,﹣4).(2)由(1)知,抛物线解析式为:y =x 2+2x ﹣3.当x =﹣2,则y =(﹣2)2+2×(﹣2)﹣3=﹣3,∴点D 的坐标是(﹣2,﹣3).设直线AD 的解析式为:y =kx +t (k ≠0).把A (1,0),D (﹣2,﹣3)分别代入,得. 解得. ∴直线AD 的解析式为:y =x ﹣1;(3)当y =0时,x 2+2x ﹣3=0,解得x 1=1,x 2=﹣3,∴B (﹣3,0),∴AB =4.∴S △ABD =×4×3=6.设P (m ,m ﹣1),Q (m ,m 2+2m ﹣3).则PQ =(m ﹣1)﹣(m 2+2m ﹣3)=﹣m 2﹣m +2.∴S △ADQ =S △APQ +S △DPQ =PQ •(1﹣m )+PQ •(m +2)=PQ =(﹣m 2﹣m +2).当△ADQ 的面积等于△ABD 的面积的一半时,(﹣m 2﹣m +2)=3.解得m 1=0,m 2=﹣1.∴Q (0,﹣3)或(﹣1,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.24.如图,△ABC 是⊙O 的内接三角形,直径AB =10.sin A =,点D 为线段AC 上一动点(不运动至端点A 、C ),作DF ⊥AB 于F ,连结BD ,井延长BD 交⊙O 于点H ,连结CF .(1)当DF 经过圆心O 时,求AD 的长;(2)求证:△ACF ∽△ABD ;(3)求CF ・DH 的最大值.【分析】(1)由AB是直径知∠ACB=90°,依据三角函数求出BC=6,由勾股定理求出AC=8,由AB⊥DE知∠AFD=∠ACB=90°,结合∠A为公共角可证△ADF∽△ABC,得出对应边成比例,即可求出AD的长;(2)由△ADF∽△ABC知=,结合∠A为△ACF和△ABD的公共角可证△ACF ∽△ABD;(3)连接CH,先证△ACH∽△HCD得出比例式,即CF•DH=CD•AF,再设AD=x,则CD=8﹣x,AF=x,从而得出CF•DH=﹣(x﹣4)2+,利用二次函数的性质求解可得.【解答】(1)解:当DF经过圆心O时,AF=OA=5,∵AB为直径,AB=10,∴∠ACB=90°,∴sin A==,∴BC=6,由勾股定理得:AC==8,∵AB⊥DE,∴∠AFD=∠ACB=90°,∵∠A=∠A,∴△ADF∽△ABC,∴=,∴AD===;(2)证明:由(1)得:△ADF∽△ABC,∴=,即=,又∵∠A为△ACF和△ABD的公共角,∴△ACF∽△ABD;(3)解:连接CH,如图所示:由(2)知△ACF∽△ABD,∴∠ABD=∠ACF,∵∠ABD=∠ACH,∴∠ACH=∠ACF,又∵∠CAF=∠H,∴△ACH∽△HCD,∴=,即CF•DH=CD•AF,设AD=x,则CD=8﹣x,AF=x,∴CF•DH=x(8﹣x)=﹣x2+x=﹣(x﹣4)2+,∴当x=4时,CF•DH的最大值为.【点评】本题是圆的综合问题,考查了圆周角定理、勾股定理、相似三角形的判定与性质、二次函数的性质等知识;半圆综合性强,熟练掌握圆周角定理,证明三角形相似是解题的关键.25.有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC 平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为3;(2)在运动过程中,当3时,MN垂直平分AB;(3)当0<t <6时,求直角三角板OMN 与等边△ABC 重叠部分的面积S 与时间t 之间的函数关系式.【分析】(1)根据,∠OMN =30°和△ABC 为等边三角形,求证△OAM 为直角三角形,然后即可得出答案.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,由此即可解决问题;(3)分两种情形分别求解:当0<t ≤3时,作CD ⊥FM 于D .根据S =S △MEB ﹣2S △MDC ,计算即可.②当3<t <6时,S =S △MEB .【解答】解:(1)在Rt △MON 中,∵∠MON =90°,ON =2,∠M =30°∴OM =ON =6, ∵△ABC 为等边三角形∴∠AOC =60°,∴∠OAM =90°∴OA ⊥MN ,即△OAM 为直角三角形,∴OA =OM =×6=3.故答案为3.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,所以t =3. 故答案为3.(3)易知:OM =6,MN =4,S △OMN =××6=6,∵∠M =30°,∠MBA =60°,∴∠BEM =90°.①当0<t ≤3时,作CD ⊥FM 于D .∵∠ACB =60°,∠M =30°,∠FCB =∠M +∠CFM ,∴∠CFM =∠M =30°,∴CF =CM ,∵CD ⊥FM ,∴DF =DM ,∴S △CMF =2S △CDM ,∵△MEB ∽△MON , ∴=()2,∴S △MEB =t 2﹣t +,∵△MDC ∽△MON , ∴=()2,∴S △MDC =t 2﹣t +,∴S =S △MEB ﹣2S △MDC =﹣t 2+. ②当3<t <6时,S =S △MEB =t 2﹣t +, 综上所述,S =.【点评】本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
精编2019级深圳市中考数学模拟试卷(有标准答案)(2)(Word版)
广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B. C.D.62.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)图中立体图形的主视图是()A.B.C.D.4.(3.00分)观察下列图形,是中心对称图形的是()A.B. C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,106.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.B.C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9= .14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B. C.D.6【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)图中立体图形的主视图是()A.B.C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)观察下列图形,是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.B.C.D.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn|∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP =S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP =OA×PF,S△BOP=OB×PE,∵S△AOP =S△BOP,∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO =S△BNO=6,∵S△BOP=4,∴S△PMO =S△PNO=2,∴S矩形OMPN=4,∴mn=4,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=,∴S△APB=AP×BP=×2|n|×=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9= (a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【分析】根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×++1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
2019年广东省九年级数学中考模拟卷含解析
2019年某某省九年级数学中考模拟卷含解析数学试卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分) 1.-2的绝对值是() A .-2 B .-12C .12D .2 2.保护水资源人人有责,据调查统计,我市地下调蓄设施的蓄水能力达到140000立方米. 将140000用科学记数法表示应为()A .14×104B .×105C .×106D .×106 3.如图1所示的几何体的主视图是()4.下列运算正确的是( )A. B. C. (-2x 2y)3=-8 x 6y 3 D.5.在一次体育考试中,有六个男生引体向上的成绩分别是:11、10、13、17、10、23,对于这组数据,下列说法不正确的是()A.平均数是14B.众数是10C.中位数是15D.方差是22 6.如图所示,直线21//l l ,三角尺的一个顶点在2l 上,若∠2=40°,则∠1=()A.︒70B.︒60C.︒40D.︒307.若一元二次方程x 2﹣2x+m=0有两个实数根,则实数m 的取值X 围是( )A .m ≥1B .m ≤1C .m >1D .m <18.如图,在半径为5的⊙O 中,弦AB ,CD 所对的圆心角分别是∠AOB ,COD ,若∠AOB 与∠COD 互补,弦CD=6,则弦AB 的长为( )A .6B .8C .D .9.不等式组2131x x -<⎧⎨-⎩≥,的解集是()A .2x <B .1x -≥C .12x -<≤D .无解10.如图,在△ABC 中,BC=12,BC 边上的高h=6,D 在BC 边上运动,点E 点F 分别在AB 和AC 上运动,并始终保持EF ∥BC ,设点E 到边BC 的距离为x .则△DEF 的面积y 关于x 的函数图象大致为( )A .B .C .D .二、填空题(每小题4分,共24分) 11.分解因式:x 3﹣xy 2=.12.如图,在等边三角形ABC 中,点D 是边BC 的中点,则tan ∠BAD=.13.用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为. 14.一个正多边形的每个外角为30°,那么这个正多边形的内角和是度. 15.如图,在矩形ABCD 中,AB=6,AD=4,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是(结果保留π).16.如图,在平面直角坐标系中,点A 1,A 2,A 3,和B 1,B 2,B 3,分别在直线y=51x+b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,都是等腰直角三角形.如果点A 1(1,1),那么点A 3的纵坐标是.三、解答题(每小题6分,共18分)17.计算:|2﹣3|+(2+1)0﹣3tan30°+(﹣1)2018﹣(21)﹣1;632x x x =⋅()235x x =23x x x -+=-253518.先化简,再求值:(1﹣11+a )÷122-a a,其中a=﹣2.19.在Rt △ABC 中,∠C=90°.(1)过点C 作斜边AB 边上的高CD ,垂足为D (不写作法,只保留作图痕迹); (2)在(1)的条件下,图中有对相似三角形并选择一对证明。
2019年广东省中考数学模拟试卷及答案两套
2019年广东省初中毕业生学业考试数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是() A.|-2|=2 B.|+2|=|-2| C.-|+2|=±|-2| D.-|-3|=+(-3)2.下列各实数中,最小的是() A.-π B.(-1)0 C.3-1 D.|-2|3.如图M1-1,AB∥CD,∠C=32°,∠E=48°,则∠B的度数为() A.120°B.128°C.110°D.100°图M1-1 图M1-2 图M1-3图M1-44.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()5.下列计算正确的是() A.2a+3b=5abB.(a2)4=a8C.a3·a2=a6D.(a-b)2=a2-b26.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为()A.73×102B.7.3×103C.0.73×104D.7.3×1027.如图M1-2是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为() A.9,8 B.8,9 C.8,8.5 D.19,178.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是()A.m<-1 B.m>1 C.m<1,且m≠0 D.m>-1,且m≠09.如图M1-3,在矩形ABCD中,AB=1,AD=2,将AD边绕点A顺时针旋转,使点D恰好落在BC边上的点D′处,则阴影部分的扇形面积为() A.π B.π2C.π3D.π410.如图M1-4,已知在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是边AC上一动点,过点E作EF ∥BC,交AB边于点F,点D为BC上任一点,连接DE,DF.设EC的长为x,则△DEF的面积y关于x 的函数关系大致为()A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分) 图M1-511.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为________.12.分式方程1x=32x+3的解为________.13.如图M1-5,自行车的链条每节长为 2.5 cm,每两节链条相连接部分重叠的圆的直径为0.8 cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为________cm.14.如图M1-6,菱形ABCD的边长为15,sin∠BAC=35,则对角线AC的长为________.图M1-6图M1-7图M1-8 图M1-915.如图M1-7,△ABC与△DEF是位似图形,位似比为2∶3,若AB=6,那么DE=________. 16.如图M1-8,已知S△ABC=8 m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC=________ m2.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2-2x-4=0. 18.先化简,再求值:2xx+1-2x+6x2-1÷x+3x2-2x+1.其中x= 3.19.如图M1-9,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法) (2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.。
2019年广东省中考数学模拟试题(含答案)
解得 , 为整数, 的最大整数值为8。
答:完成这项工程,甲队最多施工8个月。……………………………………7分
22.(1)证明:过点F作FH⊥BC于点H.
∵∠AEF=∠B=∠90°,
∴∠AEB+∠1=∠AEB+∠2=∠90°
∴∠1=∠2.…………………1分
在△ABE和△EHF中,
2019年广东省初中毕业生学业考试模拟试卷
九年级数学
说明:1.全卷共2页,考试用时100分钟,满分为120分.
2.答案必须写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效.
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列图案中,不是中心对称图形的是()
A .B. C. D.
2.初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为( )元.
A.9×1011B.9×104C.9×1012D.9×1010
3.下列说法正确的是( )
A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是2
(1)求甲、乙两队单独完成这项工程各需几个月?
(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1 500万元?(甲、乙两队的施工时间按月取整数)
∴sin∠BDC =sin60°=
∴ ………………………………………………5分
∴S阴影=S扇形FDH-S△FDH= ……………………………………6分
【附5套中考模拟试卷】广东省东莞市2019-2020学年中考数学仿真第一次备考试题含解析
广东省东莞市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是()A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)2.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.(2,2) C.(1,3) D.(1,2)3.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A.116B.18C.316D.144.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x +c的图象可能是()A. B.C.D.5.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为()A.50°B.55°C.60°D.65°6.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个7.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤3a b2 .你认为其中正确信息的个数有A.2个B.3个C.4个D.5个8.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.29.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A.B.C.D.10.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h11.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( ) A .12B .23C .25D .71012.下列方程中是一元二次方程的是( ) A .20ax bx c ++= B .2211x x+= C .(1)(2)1x x -+=D .223250x xy y --=二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:x 2﹣4=_____.14.已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.则图中阴影部分的面积是____________.15.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.16.计算:2633⨯+=________. 17.如图,点G 是△ABC 的重心,CG 的延长线交AB 于D ,GA=5cm ,GC=4cm ,GB=3cm ,将△ADG 绕点D 旋转180°得到△BDE ,△ABC 的面积=_____cm 1.18.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知平行四边形ABCD ,将这个四边形折叠,使得点A 和点C 重合,请你用尺规做出折痕所在的直线。
2019年广东省深圳市盐港中学中考数学模拟试卷(4月份)(解析版)
2019年广东省深圳市盐港中学中考数学模拟试卷(4月份)一.选择题(共10小题,满分30分,每小题3分)1.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A.B.C.D.2.已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A.第一、二象B.第一、三象限C.第二、四象限D.第三、四象限3.在一个有10 万人的小镇,随机调查了1000 人,其中有120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A.B.C.D.4.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y1=y2>y3B.y1>y2>y3C.y3>y2>y1D.y3>y1=y2 5.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°6.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.7.函数y=kx+1与y=﹣在同一坐标系中的大致图象是()A.B.C.D.8.下列性质中,直角三角形具有而等腰三角形不一定具有的是()A.两边之和大于第三边B.内角和等于180°C.有两个锐角的和等于90°D.有一个角的平分线垂直于这个角的对边9.下列语句中,正确的是()A.长度相等的弧是等弧B.在同一平面上的三点确定一个圆C.三角形的内心是三角形三边垂直平分线的交点D.三角形的外心到三角形三个顶点的距离相等10.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④二.填空题(共8小题,满分24分,每小题3分)11.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.12.如图所示,一根水平放置的圆柱形输水管道横截面,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是.13.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为.14.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数解析式是(不写定义域).15.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.16.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是.17.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为cm.18.如图,△ABC中,∠C=90°,AC=6,AB=10,D为BC边的中点,以AD上一点O 为圆心的⊙O和AB、BC均相切,则OD的长为.三.解答题(共9小题,满分76分)19.(8分)如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).20.(6分)为了测量一棵大树的高度,准备了如下测量工具:①镜子;②皮尺;③长为2m的标杆;④高为1.5m的测角仪(能测量仰角和俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案上,选用的测量工具是;(2)在下图中画出你的测量方案示意图;(3)你需要测量示意图中的哪些数据,并用a,b,c,α等字母表示测得的数据;(4)写出求树高的算式:AB=m.21.(6分)如图所示,五边形ABCDE是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图所示的形状,但承包土地与开垦荒地的分界小路(即图中折线CDE)还保留着,张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)(1)写出设计方案,并在图中画出相应的图形;(2)说明方案设计理由.22.(8分)已知,如图,EB是⊙O的直径,且EB=6,在BE的延长线上取点P,使EP =EB,A是EP上一点,过A作⊙O的切线,切点为D,过D作DF⊥AB于F,过B作AD的垂线BH,交AD的延长线于H.当点A在EP上运动,不与E重合时:(1)是否总有,试证明你的结论;(2)设ED=x,BH=y,求y和x的函数关系,并写出x的取值范围.23.(9分)抛掷红、蓝两枚四面编号分别为1﹣4(整数)的质地均匀、大小相同的正四面体,将红色和蓝色四面体一面朝下的编号分别作为二次函数y=x2+mx+n的一次项系数m 和常数项n的值.(1)一共可以得到个不同形式的二次函数;(直接写出结果)(2)抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是多少?并说明理由.24.(8分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长25.(7分)阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图,矩形A1B1C1D1是矩形ABCD的“减半”矩形.请你解决下列问题:(1)当矩形的长和宽分别为1,2时,它是否存在“减半”矩形?请作出判断,并请说明理由;(2)边长为a的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,说明理由.26.(12分)如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.①求证:△CQD∽△APD;②连接PQ,设AP=x,求面积S关于x的函数关系式;△PCQ(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;②连接MN,求面积S关于t的函数关系式;△MCN等于平移所得S (3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ的最大值?说明你的理由.△MCN27.(12分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.2019年广东省深圳市盐港中学中考数学模拟试卷(4月份)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】先画树状图展示所有12种等可能的结果数,再找出其中两次摸出的小球的标号的和为奇数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,所以两次摸出的小球的标号的和为奇数的概率为=,故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.2.【分析】先根据反比例函数的图象过点P(1,3)求出k的值,进而可得出结论.【解答】解:∵反比例函数的图象过点P(1,3),∴k=1×3=3>0,∴此函数的图象在一、三象限.故选:B.【点评】本题考查的是反比例函数图象上点的坐标特点,根据反比例函数中k=xy的特点求出k的值是解答此题的关键.3.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是=.故选:C.【点评】本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.【分析】先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较三个点到对称轴的距离大小可得到y1,y2,y3的大小关系.【解答】解:二次函数y=﹣x2+2x+c的图象的对称轴为直线x=﹣=1,而P1(﹣1,y1)和P2(3,y2)到直线x=1的距离都为2,P3(5,y3)到直线x=1的距离为4,所以y1=y2>y3.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:熟练掌握二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.5.【分析】作出图形,求出一条边所对的圆心角的度数,再根据圆周角和圆心角的关系解答.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.【点评】本题考查学生对正多边形的概念掌握和计算的能力,属于基础题,要注意分两种情况讨论.6.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7.【分析】先利用一次函数的性质对B、C进行判断;然后利用反比例函数的性质对A、D 进行判断.【解答】解:直线y=kx+1与y轴的交点坐标为(0,1),所以B、C选项错误;当k>0时,﹣k<0,反比例函数图象分布在第二、四象限,所以A选项错误,D选项正确.故选:D.【点评】本题考查了反比例函数的图象:利用反比例函数解析式,运用反比例函数的性质对反比例函数图象的位置进行判断.8.【分析】根据等腰三角形与直角三角形的性质作答.【解答】解:A、两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,不符合题意.故选:C.【点评】本题主要考查了三角形的性质,等腰三角形与直角三角形的性质的区别.9.【分析】根据圆的有关概念、确定圆的条件及三角形与其外心和内心之间的关系解得即可.【解答】解:A、能完全重合的弧才是等弧,故错误;B、不在同一直线上的三点确定一个圆,故错误;C、三角形的内心到三边的距离相等,是三条角平分线的交点,故错误;D、三角形的外心是外接圆的圆心,到三顶点的距离相等,故正确;故选:D.【点评】本题考查了圆的有关的概念,属于基础知识,必须掌握.10.【分析】根据抛物线与x轴的交点坐标为(1,0)对①进行判断;根据对称轴方程为x =﹣=﹣1对②进行判断;根据抛物线的对称性得到抛物线与x轴的交点坐标为(﹣3,0)和(1,0),由此对③进行判断;根据抛物线与y轴的交点在x轴下方,得到c <0,而a+b+c=0,则a﹣2b+c=﹣3b,由b>0,于是可对④进行判断.【解答】解:∵x=1时,y=0,∴a+b+c=0,所以①正确;∵x=﹣=﹣1,∴b=2a,所以②错误;∵点(1,0)关于直线x=﹣1对称的点的坐标为(﹣3,0),∴抛物线与x轴的交点坐标为(﹣3,0)和(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,所以③正确;∵抛物线与y轴的交点在x轴下方,∴c<0,而a+b+c=0,b=2a,∴c=﹣3a,∴a﹣2b+c=﹣3b,∵b>0,∴﹣3b<0,所以④错误.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).二.填空题(共8小题,满分24分,每小题3分)11.【分析】根据坡比的定义得到tan∠A==,∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m 的形式.12.【分析】设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,由垂径定理得出AD的长,在Rt△AOD中利用勾股定理即可求出OA的长.【解答】解:设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,∵AB=0.8m,OD⊥AB,∴AD==0.4m,∵CD=0.2m,∴OD=R﹣CD=R﹣0.2,在Rt△OAD中,OD2+AD2=OA2,即(R﹣0.2)2+0.42=R2,解得R=0.5m.∴2R=2×0.5=1米.故答案为:1米.【点评】本题考查的是垂径定理在实际生活中的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(﹣2,﹣3),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移3个单位得到对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y =(x+2)2﹣3.故答案为y=(x+2)2﹣3.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.【分析】根据题意列出S与x的二次函数解析式即可.【解答】解:设平行于墙的一边为(10﹣2x)米,则垂直于墙的一边为x米,根据题意得:S=x(10﹣2x)=﹣2x2+10x,故答案为:S=﹣2x2+10x【点评】此题考查了根据实际问题列二次函数关系式,弄清题意是解本题的关键.15.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.16.【分析】观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地砖比白色地砖多1个,求出第n个图案中的黑色与白色地砖的和,然后求出黑色地砖的块数,再把n=14代入进行计算即可.【解答】解:第1个图案只有1块黑色地砖,第2个图案有黑色与白色地砖共32=9,其中黑色的有5块,第3个图案有黑色与白色地砖共52=25,其中黑色的有13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有[(2n﹣1)2+1],当n=14时,黑色地砖的块数有[(2×14﹣1)2+1]=×730=365.故答案为:365.【点评】本题是对图形变化规律的考查,观察图形找出黑色与白色地砖的总块数与图案序号之间的关系是解题的关键.17.【分析】A点滚动到D点其圆心所经过的路线在点B处少走了一段,在点C处又多求了一段弧长,所以A点滚动到D点其圆心所经过的路线=(60+40+40)﹣+=cm.【解答】解:A点滚动到D点其圆心所经过的路线=(60+40+40)﹣+=cm.【点评】本题的关键是弄明白圆中心所走的路线是由哪几段组成的.18.【分析】过点O 作OE ⊥AB 于点E ,OF ⊥BC 于点F .根据切线的性质,知OE 、OF 是⊙O 的半径;然后由三角形的面积间的关系(S △ABO +S △BOD =S △ABD =S △ACD )列出关于圆的半径的等式,求得圆的半径,然后根据相似三角形的性质即可得到结论.【解答】解:过点O 作OE ⊥AB 于点E ,OF ⊥BC 于点F .∵AB 、BC 是⊙O 的切线,∴点E 、F 是切点,∴OE 、OF 是⊙O 的半径;∴OE =OF ;在△ABC 中,∠C =90°,AC =6,AB =10,∴由勾股定理,得BC =8;又∵D 是BC 边的中点,∴S △ABD =S △ACD ,又∵S △ABD =S △ABO +S △BOD ,∴AB •OE +BD •OF =CD •AC ,即10×OE +4×OE =4×6,解得OE =,∴⊙O 的半径是.由勾股定理得AD =2, ∵△DOH ∽△DAC ,∴,∴OD ==.故答案为:.【点评】本题考查了切线的性质与三角形的面积.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.三.解答题(共9小题,满分76分)19.【分析】(1)由题意可知:经过30分钟后到达乙地,从而可知m=30,由于甲地到乙地是匀速运动,所以利用路程除以时间即可求出速度;(2)由于潮头的速度为0.4千米/分钟,所以到11:59时,潮头已前进19×0.4=7.6千米,设小红出发x分钟,根据题意列出方程即可求出x的值,(3)先求出s的解析式,根据潮水加速阶段的关系式,求出潮头的速度达到单车最高速度0.48千米/分钟时所对应的时间t,从而可知潮头与乙地之间的距离s,设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),当t=35时,s1=s=,从而可求出h的值,最后潮头与小红相距1.8千米时,即s﹣s1=1.8,从而可求出t的值,由于小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,共需要时间为6+50﹣30=26分钟,【解答】解:(1)由题意可知:m=30;∴B(30,0),潮头从甲地到乙地的速度为:千米/分钟;(2)∵潮头的速度为0.4千米/分钟,∴到11:59时,潮头已前进19×0.4=7.6千米,设小红出发x分钟与潮头相遇,∴0.4x+0.48x=12﹣7.6,∴x=5∴小红5分钟与潮头相遇,(3)把B(30,0),C(55,15)代入s=t2+bt+c,解得:b=﹣,c=﹣,∴s=t2﹣﹣∵v0=0.4,∴v=(t﹣30)+,当潮头的速度达到单车最高速度0.48千米/分钟,此时v=0.48,∴0.48=(t﹣30)+,∴t=35,当t=35时,s=t2﹣﹣=,∴从t=35分(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48千米/分的速度匀速追赶潮头.设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),当t=35时,s1=s=,代入可得:h=﹣,∴s1=﹣最后潮头与小红相距1.8千米时,即s﹣s1=1.8,∴t2﹣﹣﹣+=1.8解得:t=50或t=20(不符合题意,舍去),∴t=50,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,∴共需要时间为6+50﹣30=26分钟,∴小红与潮头相遇到潮头离她1.8千米外共需要26分钟,【点评】本题考查二次函数的实际应用,涉及一次函数的应用,一元二次方程的解法,待定系数法求解析式等知识,综合程度较高,属于中等题型.20.【分析】此题要求学生根据题意,自己设计方案,答案不唯一;可借助相似三角形的对应边成比例的性质进行设计测量方法,先测得CE,EA与CD的大小,根据相似三角形的性质;可得:=;即AB=.【解答】解:(1)镜子,皮尺;(2)测量方案示意图;(3)EA(镜子离树的距离)=a,EC(人离镜子的距离)=b,DC(目高)=c;(4)根据相似三角形的性质;可得:=;即AB=.【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.【分析】利用尺规作图做EC∥DF,两条平行线之间的垂线段相等,可得S△ECF=S△ECD.【解答】解:(1)画法如图所示.连接EC,过点D作DF∥EC,交CM于点F,连接EF,EF即为所求直路的位置;(2)∵EC∥DF,∴D和F点到EC的距离相等(平行线间的距离处处相等),又∵EC为公共边,∴S△ECF=S△ECD(同底等高的两三角形面积相等),∴S四边形ABFE=S五边形AEDCB,S五边形EDCMN=S四边形EFMN.即:EF为直路的位置可以保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多【点评】考查通过尺规作图作出相等面积来彼此替换以保持总面积不变.22.【分析】①欲证所求的比例式,只需证得DE∥FH即可.连接BD,设BD与FH的交点为G,由于HD切⊙O于D,根据弦切角定理知∠HDB=∠DEB,在Rt△DEB中,易证得∠DEB=∠FDB,则∠FDB=∠HDB,即可证得△DFB≌△DHB,由此可得BH=BF,即△BFH是等腰三角形,根据等腰三角形三线合一的性质可证得BD⊥FH,而BD⊥DE,则FH∥DE,由此得证.②由于BH=BF,根据EB的长,可用y表示出EF的值,进而在Rt△DEB中,根据射影定理得到y、x的函数关系式;求x的取值范围时,只需考虑x的最大值即可,当A、P 重合时,若连接OD,则OD⊥PH,根据平行线分线段成比例定理,可求得BH的长,进而可得到BF、EF的值,然后根据射影定理即可求得DE的长,由此求得x的取值范围.【解答】解:①无论点A在EP上怎么移动(点A不与点E重合),总有证明:连接DB,交FH于G.∵AH是⊙O的切线,∴∠HDB=∠DEB.又∵BH⊥AH,BE为直径,∴∠BDE=90°.有∠DBE=90°﹣∠DEB=90°﹣∠HDB=∠DBH.在△DFB和△DHB中,DF⊥AB,∠DFB=∠DHB=90°,DB=DB,∠DBE=∠DBH,∴△DFB≌△DHB.(4分)∴BH=BF.∴△BHF是等腰三角形.∴BG⊥FH,即BD⊥FH.∴ED∥FH,∴(5分)②∵ED=x,BH=y,BE=6,BF=BH,∴EF=6﹣y,又∵DF是Rt△BDE斜边上的高,∴△DFE∽△BDE,∴即ED2=EF•EB.∴x2=6(6﹣y)即y=﹣x2+6(7分)∴ED=x>0,当A从E向左移动,ED逐渐增大,当A和P重合时,ED最大,这时,连接OD,则OD⊥PH,∴OD∥BH.又PO=PE+EO=6+3=9,PB=12,,BH=∴BF=BH=4,EF=EB﹣BF=6﹣4=2.由ED2=EF•EB,得:x2=2×6=12,∵x>0,∴x=2,∴0<x≤2,[或由BH=4=y,代入y=﹣x2+6中,得x=2]故所求函数关系式为y=﹣x2+6(0<x≤2).【点评】此题主要考查了切线的性质、圆周角定理、全等三角形及相似三角形的判定和性质、平行线的判定等知识;(2)①中,能够构造出与所求相关的全等三角形是解决问题的关键.23.【分析】(1)直接求算出两个骰子总共出现的点数和有16种;(2)由于二次项系数是1>0,根据二次函数图象顶点在x轴上方时,△<0,求算出n,m的值,再求满足条件的m,n的值的概率是多少即可.【解答】解:(1)根据题意知,m的值有4个,n的值有4个,所以可以得到4×4=16个不同形式的二次函数.故答案为16;(2)∵y=x2+mx+n,∴△=m2﹣4n.∵二次函数图象顶点在x轴上方,∴△=m2﹣4n<0,通过计算可知,m=1,n=1,2,3,4;或m=2,n=2,3,4;或m=3,n=3,4时满足△=m2﹣4n<0,由此可知,抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是.【点评】本题是二次函数与统计初步中的综合题型,要熟悉二次函数的性质,并会根据条件求出字母系数的值.掌握求算概率的基本方法.24.【分析】(1)通过证明∠BED=∠DBE得到DB=DE;(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;(3)证明△DBF∽△ADB,然后利用相似比求AD的长.【解答】(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=90°,∴BC为直径,∴∠BDC=90°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=9.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.25.【分析】(1)假设存在,不妨设“减半”矩形的长和宽分别为x、y,根据如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,可列出方程组求解.(2)正方形和其他的正方形是相似图形,周长比是2,面积比就应该是4,所以不存在“减半”正方形.【解答】解:(1)不存在.(1分)假设存在,不妨设“减半”矩形的长和宽分别为x、y,则,由①得:y=﹣x③,把③代入②得:x2﹣x+1=0,b2﹣4ac=﹣4<0,(5分)所以不存在;(2)不存在.(6分)因为两个正方形是相似图形,当它们的周长比为时,面积比必定是,所以正方形不存在“减半”正方形.(10分)【点评】本题考查反证法和相似图形的性质,关键知道相似图形的面积比,周长比的关系.26.【分析】(1)①易得∠BCD=∠A=60°,∠ADP=∠CDE,那么可得△CQD∽△APD②利用相似可得CQ=x,那么PC=6﹣x.可表示出S△PCQ(2)①由外角∠FEN=60°,∠B=30°,可得∠BNE=30°,∴NE=BN,那么△BEN是等腰三角形.易得AD=t,AB=12,那么BE=12﹣AD﹣DE=6﹣t.过E作EG⊥BN于点G.利用30°的三角函数可求得BG,进而求得BN②容易利用t表示出MC、CN,即可表示出所求面积(3)利用二次函数的最值表示出S△MCN的最大值,让前面所求的面积的代数式等于即可.【解答】解:(1)①证明:∵∠F=∠B=30°,∠ACB=∠BDF=90°∴∠BCD=∠A =60°,∵∠ADP+∠PDC=90°,∠CDE+∠PDC=90°∴△CQD∽△APD②∵在Rt△ADC中,AD=3,DC=3又∵△CQD∽△APD,CQ=x.∴S△PCQ=﹣x2+3x(2)①△BEN是等腰三角形.BE=6﹣t,BN=(6﹣t).②S△MCN=(6﹣t)×t=﹣[(t﹣3)2﹣9](3)存在.由题意建立方程﹣x2+3x=解得X=或即当AP=或AP=时,S△PCQ 等于S△MCN的最大值.【点评】用到的知识点为:两角对应相等,两三角形相似;相似三角形的对应边成比例.27.【分析】(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐。
2019年广东省中考数学模拟试卷
A. a
1 B. a 8
1 C. a 8
1 且 a 1 D. a 8
1且 a 1 8
1/8
9、如图 5,已知点 A( - 1,0) 和点 B(1 , 2) ,在坐.标.轴.上确定点 P,使得△ ABP为直角三角形,那么满足条 件的点 P 共有
A. 2 个
B. 4 个
C. 6 个
D. 7 个
10、如图 6,等腰直角三角形 ABC位于第一象限, AB=AC2=,直角顶点 A 在直线 y=x 上,其中 A点的横坐标
k 3, 4
得:
2k m 0, 解得:
m
3 ,
………………………………
5分
2
7/8
33
∴直线 PE的函数表达式为 y
x
. ………………………………………………… 6 分
42
( 3)如图,设对称轴 x=1 与 x 轴的交点为 F,过 P 作 PH垂直对称轴 x=1 于点 H,………………… 7 分
∵对称轴 x=1 与 x 轴垂直,
∴四边形 ABED 是菱形.
( 2)联结 BD ,与 AE 交于点 H . ∵四边形 ABED 是菱形,∴ EH 1 AE , BD ⊥ AE . 2 得 DHE 90o .同理 AFE 90o .
∴ DHE= AFE .又∵ AED 是公共角,∴△ DHE ∽△ AFE .
EH ∴
DE .∴ 1 AE2 EF gED .
∵由 A(2,2)和 B,(-1 , 0) 确定的直线为 y
2 x
2
,
3
3
2 ∴所求点 P 的坐标为 ( 0, ) .
3
1
21、( 1) 20, 2,2,( 2)图略;( 3)树状图或表格略; , P (女生辅导男生) = .
【数学中考】2019年广东省广州初中中考数学总复习模拟试卷
A.
B.
C.
D.
14.(4 分)下列方程中,没有实数根的方程是( )
A.(x﹣3)2+2=x2
B.x2﹣x+2=0
C.
=0
D.
=﹣x
15.(4 分)如图,a<0,b>0,c<0,那么二次函数 y=ax2+bx+c 的图象可能是( )
18.(9 分)解不等式组:
A.
B.
第 1页 共 6页
◎
第 2页 共 6页
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
三、(本题共 5 题,第 17、18 题每题 9 分,第 19、20、21 题每题 10 分,满分 48 分)
17.(9 分)化简:
.
cm.
9.(3 分)在△ABC 中,边 BC 上的中线 AD 等于 9cm,那么这个三角形的重心 G 到顶点 A 的距离是
cm.
10.(3 分)若正多边形的一个内角等于 140°,则这个正多边形的边数是
.
11.(3 分)已知 D、E 分别在△ABC 的边 AB、AC 上,DE∥BC,BD=2AD,DE=3,那么 BC=
.
12.(3 分)一个正方形的内切圆半径,外接圆半径与这个正方形边长的比为
.
二、选择题:(本题共 4 题,每题 4 分,满分 16 分)
13.(4 分)下列根式中与 是同类二次根式的是( )
.
5.(3 分)抛物线 y=x2﹣6x+4 的顶点坐标为
.
6.(3 分)已知:一次函数 y=kx+b 的图象与直线 y=﹣2x+1 平行,并且经过点(0,4),那么这个一次函
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.如图所示,a及b的大小关系是()A.a<b B.a>b C.D.2a3.下列所述图形中,是中心对称图形的是()A.直角三角形 B.平行四边形 C.正五边形D.正三角形4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107 B.0.277×108 C.2.77×107D.2.77×1085.如图,正方形的面积为1,则以相邻两边中点连线为边正方形的周长为()A. B.2C.+1 D.2+16.某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元 B.5000元 C.7000元D.10000元7.在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限 B.第二象限 C.第三象限D.第四象限8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么α的值是()A. B.C. D.9.已知方程x﹣23=8,则整式x﹣2y的值为()A.5 B.10 C.12 D.15 10.如图,在正方形中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△的面积y及点P运动的路程x之间形成的函数关系图象大致是()A. B.C.D.二、填空题(共6小题,每小题4分,满分24分)11. 9的算术平方根是.12.分解因式:m2﹣4= .13.不等式组的解集是.14.如图,把一个圆锥沿母线剪开,展开后得到扇形,已知圆锥的高h为12,13,则扇形中的长是(计算结果保留π).15.如图,矩形中,对角线2,E为边上一点,3,将矩形沿所在的直线折叠,B点恰好落在对角线上的B′处,则.16.如图,点P是四边形外接圆上任意一点,且不及四边形顶点重合,若是⊙O的直径,.连接、、,若,则点A到和的距离之和.三、解答题(共3小题,每小题6分,满分18分)17.(6分)计算:|﹣3|﹣(201630°)0﹣(﹣)﹣1.18.(6分)先化简,再求值:•+,其中﹣1.19.(6分)如图,已知△中,D为的中点.(1)请用尺规作图法作边的中点E,并连结(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若4,求的长.四、解答题(共3小题,每小题7分,满分21分)20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.(7分)如图,△中,∠30°,∠90°,⊥交于D,以为较短的直角边向△的同侧作△,满足∠30°,∠90°,再用同样的方法作△,∠90°,继续用同样的方法作△,∠90°.若,求的长.22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(共3小题,每小题9分,满分27分)23.(9分)如图,在直角坐标系中,直线1(k≠0)及双曲线(x >0)相交于点P(1,m ).(1)求k的值;(2)若点Q及点P关于直线成轴对称,则点Q的坐标是Q();(3)若过P、Q二点的抛物线及y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.24.(9分)如图,⊙O是△的外接圆,是⊙O的直径,∠30°,过点B作⊙O的切线,及的延长线交于点D,及半径的延长线交于点E,过点A作⊙O的切线,及直径的延长线交于点F.(1)求证:△∽△;(2)若S△,求的长;(3)连接,求证:是⊙O的切线.25.(9分)如图,是正方形的对角线,2,边在其所在的直线上平移,将通过平移得到的线段记为,连接、,并过点Q作⊥,垂足为O,连接、.(1)请直接写出线段在平移过程中,四边形是什么四边形?(2)请判断、之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设△,(0≤x≤2),求y及x之间的函数关系式,并求出y的最大值.2019年广东省中考数学模拟试卷参考答案及试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•黔东南州)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)(2016•广东)如图所示,a及b的大小关系是()A.a<b B.a>b C.D.2a【解答】根据数轴得到a<0,b>0,∴b>a,故选A3.(3分)(2016•广东)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形 D.正三角形【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选B.4.(3分)(2016•广东)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107B.0.277×108C.2.77×107D.2.77×108【解答】解:将27700000用科学记数法表示为2.77×107,故选C.5.(3分)(2016•广东)如图,正方形的面积为1,则以相邻两边中点连线为边正方形的周长为()A. B.2 C.+1D.2+1【解答】解:∵正方形的面积为1,∴1,∠90°,∵E、F分别是、的中点,∴,,∴,∴△是等腰直角三角形,∴,∴正方形的周长=44×=2;故选:B.6.(3分)(2016•广东)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元B.5000元C.7000元D.10000元【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选B.7.(3分)(2016•广东)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选C.8.(3分)(2016•广东)如图,在平面直角坐标系中,点A的坐标为(4,3),那么α的值是()A.B.C.D.【解答】解:由勾股定理得5,所以α=.故选D.9.(3分)(2016•广东)已知方程x﹣23=8,则整式x﹣2y的值为()A.5 B.10 C.12 D.15【解答】解:由x﹣23=8得:x﹣28﹣3=5,故选A10.(3分)(2016•广东)如图,在正方形中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△的面积y及点P运动的路程x之间形成的函数关系图象大致是()A. B.C. D.【解答】解:设正方形的边长为a,当P在边上运动时,;当P在边上运动时,(2a﹣x)=﹣2;当P在边上运动时,(x﹣2a)﹣a2;当P在边上运动时,(4a﹣x)=﹣﹣2a2,大致图象为:故选C.二、填空题(共6小题,每小题4分,满分24分)11.(2016•广东)9的算术平方根是 3 .【解答】解:∵(±3)2=9,∴9的算术平方根是|±33.故答案为:3.12.(4分)(2016•广东)分解因式:m2﹣4= (2)(m﹣2).【解答】解:m2﹣4=(2)(m﹣2).故答案为:(2)(m﹣2).13.(4分)(2016•广东)不等式组的解集是﹣3<x ≤1 .【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.14.(4分)(2016•广东)如图,把一个圆锥沿母线剪开,展开后得到扇形,已知圆锥的高h为12,13,则扇形中的长是10π(计算结果保留π).【解答】解:∵圆锥的高h为12,13,∴圆锥的底面半径为=5,∴圆锥的底面周长为10π,∴扇形中的长是10π,故答案为:10π.15.(4分)(2016•广东)如图,矩形中,对角线2,E为边上一点,3,将矩形沿所在的直线折叠,B点恰好落在对角线上的B′处,则.【解答】解:由折叠得:′E,∠′∠90°,∴∠′90°,∵3,∴22B′E,∴∠30°,在△中,2,∴×2=,故答案为:.16.(4分)(2016•广东)如图,点P是四边形外接圆上任意一点,且不及四边形顶点重合,若是⊙O的直径,.连接、、,若,则点A到和的距离之和 a .【解答】解:如图,连接、.∵是直径,,∴,∴∠∠∠60°,∴∠∠30°,∠∠60°,在△中,∵∠90°,∴•30°,在△中,∵∠90°,∴•60°,∴.故答案为a.三、解答题(共3小题,每小题6分,满分18分)17.(6分)(2016•广东)计算:|﹣3|﹣(201630°)0﹣(﹣)﹣1.【解答】解:|﹣3|﹣(201630°)0﹣(﹣)﹣1=3﹣1+2=2+2=4.18.(6分)(2016•广东)先化简,再求值:•+,其中﹣1.【解答】解:原式=•,当﹣1时,原式1.19.(6分)(2016•广东)如图,已知△中,D为的中点.(1)请用尺规作图法作边的中点E,并连结(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若4,求的长.【解答】解:(1)作线段的垂直平分线交于E,点E就是所求的点.(2)∵,,∴∥,,∵4,∴8.四、解答题(共3小题,每小题7分,满分21分)20.(7分)(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:,解得:100,经检验100是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加,可得:,解得:20,经检验20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.21.(7分)(2016•广东)如图,△中,∠30°,∠90°,⊥交于D,以为较短的直角边向△的同侧作△,满足∠30°,∠90°,再用同样的方法作△,∠90°,继续用同样的方法作△,∠90°.若,求的长.【解答】解:在△中,∠30°,∠90°,∴∠90°﹣30°=60°,∵⊥,∴∠90°,∴∠30°,在△中,,∴,由勾股定理得:,同理得:×=,×=,在△中,∠30°,∴2,由勾股定理得:,答:的长为.22.(7分)(2016•广东)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了250 名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于108 度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是480 人.【解答】解:(1)这次活动一共调查学生:80÷32250(人);(2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人),补全条形图如图:(3)选择篮球项目的人数所在扇形的圆心角为:×360°=108°;(4)估计该学校选择足球项目的学生人数约是:1500×32480(人);故答案为:(1)250;(3)108;(4)480.五、解答题(共3小题,每小题9分,满分27分)23.(9分)(2016•广东)如图,在直角坐标系中,直线1(k≠0)及双曲线(x>0)相交于点P(1,m ).(1)求k的值;(2)若点Q及点P关于直线成轴对称,则点Q的坐标是Q(2,1 );(3)若过P、Q二点的抛物线及y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.【解答】解:(1)∵直线1及双曲线(x>0)交于点A(1,m),∴2,把A(1,2)代入1得:1=2,解得:1;(2)连接,,,作⊥y轴于A,⊥x轴于B,则1,2,∵点Q及点P关于直线成轴对称,∴直线垂直平分,∴,∴∠∠,在△及△中,,∴△≌△,∴1,2,∴Q(2,1);故答案为:2,1;(3)设抛物线的函数解析式为2,∵过P、Q二点的抛物线及y轴的交点为N(0,),∴,解得:,∴抛物线的函数解析式为﹣x2,∴对称轴方程﹣=.24.(9分)(2016•广东)如图,⊙O是△的外接圆,是⊙O的直径,∠30°,过点B作⊙O的切线,及的延长线交于点D,及半径的延长线交于点E,过点A作⊙O的切线,及直径的延长线交于点F.(1)求证:△∽△;(2)若S△,求的长;(3)连接,求证:是⊙O的切线.【解答】(1)证明:∵是⊙O的直径,∴∠90°,∵∠30°,∴∠60°∵,∴∠60°,∵是⊙O的切线,∴∠90°,∴∠30°,∵是⊙O的切线,∴∠90°,∴∠∠30°∴∠∠120°,∴△∽△;(2)∵∠∠∠30°+∠60°,∴∠30°,∴∠∠,∴∴,∵S△,∴S△,∵∠∠30°,∴,∵,∴,∴∠∠30°,∴,∴=,∵△∽△,∴=()2=,∴S△,过A作⊥于H,∴,∴S△•×•2=,∴;(3)∵∠∠120°,在△及△中,,∴△≌△,∴,∴∠(180°﹣∠)=30°,∴∠∠,过O作⊥于G,∴∠∠90°,在△及△中,,∴△≌△,∴,∴是⊙O的切线.25.(9分)(2016•广东)如图,是正方形的对角线,2,边在其所在的直线上平移,将通过平移得到的线段记为,连接、,并过点Q 作⊥,垂足为O,连接、.(1)请直接写出线段在平移过程中,四边形是什么四边形?(2)请判断、之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设△,(0≤x≤2),求y及x之间的函数关系式,并求出y的最大值.【解答】(1)四边形为平行四边形;(2),⊥,理由如下:∵四边形是正方形,∴,∠∠45°,∵⊥,∴∠45°,∴∠∠∠45°,∴,在△和△中,∴△≌△(),∴,∠∠,∴∠∠90°,∴⊥;(3)如图,过O作⊥于E.①如图1,当P点在B点右侧时,则2,,∴וx,即(1)2﹣,又∵0≤x≤2,∴当2时,y有最大值为2;②如图2,当P点在B点左侧时,则2﹣x,,∴וx,即﹣(x﹣1)2+,又∵0≤x≤2,∴当1时,y有最大值为;综上所述,∴当2时,y有最大值为2;。