信号与线性系统分析 (吴大正 第四版)第六章习题答案之令狐文艳创作
(NEW)吴大正《信号与线性系统分析》(第4版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】上册
二、判断题
任何系统的全响应必为零状态响应与零输入响应之和。( )[北京 邮电大学2012研]
【答案】×
【解析】零输入响应为仅由起始状态所产生的响应。零状态响应是系统 的初始状态为零时,仅由输入信号引起的响应。由此可知仅当系统满足 线性时,其全响应必为零状态响应与零输入响应之和。
三、分析计算题
1.已知某系统的转移函数 ,求系统的零状态响应
【答案】
【解析】设f1(t)=ε(t)由LTI系统的线性和时不变性得(由于该题 没有给出系统的初始状态,所以这里不考虑)
f(t)=ε(t-1)-ε(t-2)=f1(t-1)-f1(t-2)
3.已知某LTI系统,当t>0时有: 当输入f(t)=(e-t+2e-2t)ε(t)时,输出响应为(e-t+5e-2t) ε(t); 当输入f(t)=(2e-t+e-2t)ε(t)时,输出响应为(5e-t+e-2t) ε(t); 当输入f(t)=(e-t+e-2t)ε(t)时,输出响应为(e-t+e-2t) ε(t); 则当输入为f(t)=(e-t-e-2t)ε(t)时,系统的输出响应为 ______。[长沙理工大学2006研]
整理得:
则
关) 取其逆变换得:
(仅与输入有关) (仅与系统的初始状态有
第3章 离散系统的时域分析 一、选择题
1.有限长序列 的长度为4,欲使 与 的圆卷积和线卷积相同, 则长度L的最小值为( )。[中国科学院研究生院2012研] A.5 B.6 C.7 D.8 【答案】C
【解析】 的长度为4,则其线卷积的长度为4+4-1=7。当 与 的圆卷积 时, 与 的圆卷积和线卷积相同,可知L的最小
【答案】
;
;稳定
【解析】由
可知,该系统任意两个相邻的输出值之差就是该
信号与线性系统分析_(吴大正_第四版)习题答案12264精编版
第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
吴大正《信号与线性系统分析》(第4版)笔记和课后习题考研真题详解
吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解
更多资料请在薇♥号精研学习网查找下载
本书是吴大正主编的《信号与线性系统分析》(第4版)的学习辅导书,主要包括以下内容:
(1)整理教材笔记,浓缩内容精华。
本书每章的复习笔记均对该章的知识点进行了整理,突出重点和考点。
(2)解析课后习题,提供详尽答案。
本书参考相关辅导资料,对教材的课后习题进行了详细的解答。
(3)精选考研真题,巩固重难点知识。
本书精选了多所名校近年的考研真题,并提供了详细的解答。
本书提供电子书及打印版,方便对照复习。
第1章信号与系统
1.1复习笔记
1.2课后习题详解
1.3名校考研真题详解
第2章连续系统的时域分析
2.1复习笔记
2.2课后习题详解
2.3名校考研真题详解
第3章离散系统的时域分析
3.1复习笔记
3.2课后习题详解
3.3名校考研真题详解
第4章傅里叶变换和系统的频域分析4.1复习笔记
4.2课后习题详解
4.3名校考研真题详解
第5章连续系统的s域分析
5.1复习笔记
5.2课后习题详解
5.3名校考研真题详解
第6章离散系统的z域分析
6.1复习笔记
6.2课后习题详解
6.3名校考研真题详解
第7章系统函数
7.1复习笔记
7.2课后习题详解
7.3名校考研真题详解
第8章系统的状态变量分析
8.1复习笔记
8.2课后习题详解8.3名校考研真题详解。
信与线性系统分析吴大正第四版习题答案
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))rt f=)(t(sin(7))(t f kε)(k2=(10))(])1kf kε(k)(1[=-+1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
信号与线性系统分析_(吴大正_第四版)习题答案
1-1绘出下列各旗号的波形【式中)()(t t t r ε=】为斜降函数.之阳早格格创做(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=解:各旗号波形为(2)∞<<-∞=-t e t f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+= 1-2 绘出下列各旗号的波形[式中)()(t t t r ε=为斜降函数].(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε解:各旗号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 1-3 写出图1-3所示各波形的表白式.1-4 写出图1-4所示各序列的关合形式表白式.1-5 判别下列各序列是可为周期性的.如果是,决定其周期.(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知旗号)(t f 的波形如图1-5所示,绘出下列各函数的波形. (1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6))25.0(-t f(7)dt t df )( (8)dx x f t⎰∞-)(解:各旗号波形为(1))()1(t t f ε-(2))1()1(--t t f ε(5))21(t f -(6))25.0(-t f(7)dt t df )((8)dx x f t ⎰∞-)(1-7 已知序列)(k f 的图形如图1-7所示,绘出下列各序列的图形.(1))()2(k k f ε- (2))2()2(--k k f ε(3))]4()()[2(---k k k f εε (4))2(--k f(5))1()2(+-+-k k f ε (6))3()(--k f k f解:1-9 已知旗号的波形如图1-11所示,分别绘出)(t f 战dt t df )(的波形. 解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对于)23(t f -的波形展宽为本去的二倍而得).将)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示.再将)3(+t f 的波形左移3个单位,便得到了)(t f ,如图1-12(c)所示.dt t df )(的波形如图1-12(d)所示.1-10 估计下列各题.(1)[]{})()2sin(cos 22t t t dt d ε+ (2))]([)1(t e dt d t t δ--(5)dt t t t )2()]4sin([2++⎰∞∞-δπ (8)dx x x t)(')1(δ⎰∞--1-12 如图1-13所示的电路,写出(1)以)(t u C 为赞同的微分圆程.(2)以)(t i L 为赞同的微分圆程.1-20 写出图1-18各系统的微分或者好分圆程.1-23 设系统的初初状态为)0(x ,激励为)(⋅f ,各系统的齐赞同)(⋅y 与激励战初初状态的关系如下,试分解各系统是可是线性的.(1)⎰+=-tt dx x xf x e t y 0)(sin )0()( (2)⎰+=tdx x f x t f t y 0)()0()()((3)⎰+=tdx x f t x t y 0)(])0(sin[)( (4))2()()0()5.0()(-+=k f k f x k y k(5)∑=+=kj j f kx k y 0)()0()(1-25 设激励为)(⋅f ,下列是各系统的整状态赞同)(⋅zs y .推断各系统是可是线性的、时没有变的、果果的、宁静的?(1)dt t df t y zs )()(= (2))()(t f t y zs = (3))2cos()()(t t f t y zs π=(4))()(t f t y zs -= (5))1()()(-=k f k f k y zs (6))()2()(k f k k y zs -=(7)∑==kj zs j f k y 0)()( (8))1()(k f k y zs -=1-28 某一阶LTI 得集系统,其初初状态为)0(x .已知当激励为)()(1k k y ε=时,其齐赞同为若初初状态没有变,当激励为)(k f -时,其齐赞同为)(]1)5.0(2[)(2k k y k ε-=若初初状态为)0(2x ,当激励为)(4k f 时,供其齐赞同.第二章2-1 已知形貌系统的微分圆程战初初状态如下,试供其整输进赞同.(1)1)0(',1)0(),()(6)('5)(''-===++-y y t f t y t y t y(4)0)0(',2)0(),()()(''===+-y y t f t y t y2-2 已知形貌系统的微分圆程战初初状态如下,试供其+0值)0(+y 战)0('+y .(2))()(,1)0(',1)0(),('')(8)('6)(''t t f y y t f t y t y t y δ====++--(4))()(,2)0(',1)0(),(')(5)('4)(''2t e t f y y t f t y t y t y t ε====++-- 解:2-4 已知形貌系统的微分圆程战初初状态如下,试供其整输进赞同、整状态赞同战齐赞同.(2))()(,2)0(',1)0(),(3)(')(4)('4)(''t e t f y y t f t f t y t y t y t ε---===+=++ 解:2-8 如图2-4所示的电路,若以)(t i S 为输进,)(t u R 为输出,试列出其微分圆程,并供出冲激赞同战阶跃赞同.2-12 如图2-6所示的电路,以电容电压)(t u C 为赞同,试供其冲激赞同战阶跃赞同.2-16 各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试供下列卷积,并绘出波形图.(1))(*)(21t f t f (2))(*)(31t f t f (3))(*)(41t f t f(4))(*)(*)(221t f t f t f (5))3()(2[*)(341--t f t f t f波形图如图2-9(a)所示.波形图如图2-9(b)所示.波形图如图2-9(c)所示.波形图如图2-9(d)所示.波形图如图2-9(e)所示.2-20 已知)()(1t t t f ε=,)2()()(2--=t t t f εε,供)2('*)1(*)()(21--=t t f t f t y δ2-22 某LTI 系统,其输进)(t f 与输出)(t y 的关系为dx x f e t y t x t )2()(1)(2-=⎰∞--- 供该系统的冲激赞同)(t h .2-28 如图2-19所示的系统,试供输进)()(ttfε=时,系统的整状态赞同.2-29 如图2-20所示的系统,它由几身材系统推拢而成,各子系统的冲激赞同分别为供复合系统的冲激赞同.第三章习题、试供序列的好分、战.、供下列好分圆程所形貌的LTI得集系统的整输进相映、整状态赞同战齐赞同.1)3)5)、供下列好分圆程所形貌的得集系统的单位序列赞同. 2)5)、供图所示各系统的单位序列赞同.(a)(c)、供图所示系统的单位序列赞同.、各序列的图形如图所示,供下列卷积战.(1)(2)(3)(4)、供题图所示各系统的阶跃赞同.、供图所示系统的单位序列赞同战阶跃赞同.、若LTI得集系统的阶跃赞同,供其单位序列赞同.、如图所示系统,试供当激励分别为(1)(2)时的整状态赞同.、如图所示的得集系统由二身材系统级联组成,已知,,激励,供该系统的整状态赞同.(提示:利用卷积战的分离律战接换律,不妨简化运算.) 、如图所示的复合系统有三身材系统组成,它们的单位序列赞同分别为,,供复合系统的单位序列赞同.第四章习题4.6 供下列周期旗号的基波角频次Ω战周期T.(1)t j e 100 (2))]3(2cos[-t π(3))4sin()2cos(t t + (4))5cos()3cos()2cos(t t t πππ++(5))4sin()2cos(t t ππ+ (6))5cos()3cos()2cos(t t t πππ++ 4.7 用间接估计傅里叶系数的要领,供图4-15所示周期函数的傅里叶系数(三角形式或者指数形式).图4-154.10 利用奇奇性推断图4-18示各周期旗号的傅里叶系数中所含有的频次分量.图4-184-11 某1Ω电阻二端的电压)(t u 如图4-19所示,(1)供)(t u 的三角形式傅里叶系数.(2)利用(1)的停止战1)21(=u ,供下列无贫级数之战(3)供1Ω电阻上的仄衡功率战电压灵验值.(4)利用(3)的停止供下列无贫级数之战图4-194.17 根据傅里叶变更对于称性供下列函数的傅里叶变更(1)∞<<-∞--=t t t t f ,)2()]2(2sin[)(ππ (2)∞<<-∞+=t t t f ,2)(22αα (3)∞<<-∞⎥⎦⎤⎢⎣⎡=t t t t f ,2)2sin()(2ππ4.18 供下列旗号的傅里叶变更(1))2()(-=-t e t f jt δ (2))1(')()1(3-=--t e t f t δ(3))9sgn()(2-=t t f (4))1()(2+=-t e t f t ε (5))12()(-=t t f ε4.19 试用时域微积分本量,供图4-23示旗号的频谱.图4-234.20 若已知)(j ])([ωF t f F =,试供下列函数的频谱:(1))2(t tf (3)dt t df t )( (5))-1(t)-(1t f (8))2-3(t f e jt (9)t dt t df π1*)(4.21 供下列函数的傅里叶变更(1)⎩⎨⎧><=000,1,)(j ωωωωωF (3))(3cos 2)(j ωω=F(5)ωωωω1)(2n -20sin 2)(j +=∑=j n e F4.23 试用下列办法供图4-25示旗号的频谱函数(1)利用延时战线性本量(门函数的频谱可利用已知停止).(2)利用时域的积分定理.(3)将)(t f 瞅做门函数)(2t g 与冲激函数)2(+t δ、)2(-t δ的卷积之战.图4-254.25 试供图4-27示周期旗号的频谱函数.图(b )中冲激函数的强度均为1.图4-274.27 如图4-29所示旗号)(t f 的频谱为)(ωj F ,供下列各值[没有必供出)(ωj F ](1)0|)()0(==ωωj F F (2)ωωd j F ⎰∞∞-)( (3)ωωd j F 2)(⎰∞∞-图4-294.28 利用能量等式估计下列积分的值.(1)dt t t 2])sin([⎰∞∞- (2)⎰∞∞-+22)1(x dx4.29 一周期为T 的周期旗号)(t f ,已知其指数形式的傅里叶系数为n F ,供下列周期旗号的傅里叶系数(1))()(01t t f t f -= (2))()(2t f t f -=(3)dt t df t f )()(3= (4)0),()(4>=a at f t f4.31 供图4-30示电路中,输出电压电路中,输出电压)(2t u 对于输进电流)(t i S 的频次赞同)()()(2ωωωj I j U j H S =,为了能无得果然传输,试决定R 1、R 2的值.图4-304.33 某LTI 系统,其输进为)(t f ,输出为式中a 为常数,且已知)()(ωj S t s ↔,供该系统的频次赞同)(ωj H .4.34 某LTI 系统的频次赞同ωωωj j j H +-=22)(,若系统输进)2cos()(t t f =,供该系统的输出)(t y . 4.35 一理念矮通滤波器的频次赞同4.36 一个LTI 系统的频次赞同 若输进)5cos()3sin()(t t t t f =,供该系统的输出)(t y .4.39 如图4-35的系统,其输出是输进的仄圆,即)()(2t f t y =(设)(t f 为真函数).该系统是线性的吗? (1)如t t t f sin )(=,供)(t y 的频谱函数(或者绘出频谱图). (2)如)2cos(cos 21)1(t t f ++=,供)(t y 的频谱函数(或者绘出频谱图).4.45 如图4-42(a)的系统,戴通滤波器的频次赞同如图(b)所示,其相频个性0)(=ωϕ,若输进 供输出旗号)(t y .图4-424.48 有限频戴旗号)(t f 的最下频次为100Hz ,若对于下列旗号举止时域与样,供最小与样频次s f .(1))3(t f (2))(2t f (3))2(*)(t f t f (4))()(2t f t f +4.50 有限频戴旗号)4cos()2cos(25)(11t f t f t f ππ++=,其中kHz f 11=,供Hz f s 800=的冲激函数序列)(t T δ举止与样(请注意1f f s <).(1)绘出)(t f 及与样旗号)(t f s 正在频次区间(-2kHz ,2kHz )的频谱图.(2)若将与样旗号)(t f s 输进到停止频次Hz f c 500=,幅度为的理念矮通滤波器,即其频次赞同绘出滤波器的输出旗号的频谱,并供出输出旗号)(t y .图4-47图4-48图4-494.53 供下列得集周期旗号的傅里叶系数.(2))4)(30()21()(=≤≤=N k k f k第五章5-2 供图5-1所示各旗号推普推斯变更,并证明支敛域. 5-3 利用时常使用函数(比圆)(t ε,)(t e at ε-,)()sin(t t εβ,)()cos(t t εβ等)的象函数及推普推斯变更的本量,供下列函数)(t f 的推普推斯变更)(s F .(1))2()()2(-----t e t e t t εε (3))]1()()[sin(--t t t εεπ(5))24(-t δ(7))()42sin(t t επ- (9)⎰tdx t 0)sin(π(11))]()[sin(22t t dt d επ (13))(22t e t tε-(15))1()3(---t te t ε1235-4 如已知果果函数)(tf的象函数11)(2+-=sssF,供下列函数)(ty的象函数)(sY.(1))2(tfe t-(4))12(-ttf5-6 供下列象函数)(sF的本函数的初值)0(+f战末值)(∞f.(1)2)1(32)(++=sssF(2))1(13)(++=ssssF5-7 供图5-2所示正在=t时接进的有初周期旗号)(tf的象函数)(sF.图5-25-8 供下列各象函数)(sF的推普推斯变更)(tf.(1))4)(2(1++ss(3)235422++++ssss(5))4(422++sss(7)2)1(1-ss(9))52(52+++ssss5-9 供下列象函数)(sF的推普推斯变更)(tf,并大略绘出它们的波形图.(1)11+--s e Ts (3)3)3(2++-s e s (6)222)1(ππ+--s e s其波形如下图所示:其波形如下图所示:其波形如下图所示:5-10 下列象函数)(s F 的本函数)(t f 是0=t 接进的有初周期旗号,供周期T 并写出其第一个周期(T t <<0)的时间函数表白式)(t f o .(1)s e -+11(2))1(12s e s -+5-12 用推普推斯变更法解微分圆程)(3)(6)('5)(''t f t y t y t y =++的整输进赞同战整状态赞同.(1)已知2)0(',1)0(),()(===--y y t t f ε. (2)已知1)0(',0)0(),()(===---y y t e t f t ε.5-13 形貌某系统的输出)(1t y 战)(2t y 的联坐微分圆程为 (1)已知0)(=t f ,1)0(1=-y ,2)0(2=-y ,供整状态赞同)(1t y zs ,)(2t y zs . 5-15 形貌某LTI 系统的微分圆程为)(4)(')(2)('3)(''t f t f t y t y t y +=++供正在下列条件下的整输进赞同战整状态赞同.(1)1)0(',0)0(),()(===--y y t t f ε.(2)1)0(',1)0(),()(2===---y y t e t f t ε. 5-16 形貌形貌某LTI 系统的微分圆程为)(4)(')(2)('3)(''t f t f t y t y t y +=++ 供正在下列条件下的整输进赞同战整状态赞同.(1)3)0(',1)0(),()(===++y y t t f ε.(2)2)0(',1)0(),()(2===++-y y t e t f t ε. 5-17 供下列圆程所形貌的LTI 系统的冲激赞同)(t h 战阶跃赞同)(t g .(1))(3)(')(3)('4)(''t f t f t y t y t y -=++5-18 已知系统函数战初初状态如下,供系统的整输进赞同)(t y zi .(1)656)(2+++=s s s s H ,1)0(')0(==-y y(3))23(4)(2+++=s s s s s H ,1)0('')0(')0(===--y y y5-22 如图5-5所示的复合系统,由4身材系统对接组成,若各子系统的系统函数或者冲激赞同分别为11)(1+=s s H ,21)(2+=s s H ,)()(3t t h ε=,)()(24t e t h t ε-=,供复合系统的冲激赞同)(t h .5-26 如图5-7所示系统,已知当)()(t t f ε=时,系统的整状态赞同)()551()(32t e e t y t t zs ε--+-=,供系数a 、b 、c.5-28 某LTI 系统,正在以下百般情况下起初初状态相共.已知当激励)()(1t t f δ=时,其齐赞同)()()(1t e t t y t εδ-+=;当激励)()(2t t f ε=时,其齐赞同)(3)(2t e t y t ε-=.(1)若)()(23t e t f tε-=,供系统的齐赞同.5-29 如图5-8所示电路,其输进均为单位阶跃函数)(t ε,供电压)(t u 的整状态赞同. 5-42 某系统的频次赞同ωωωj j j H +-=11)(,供当输进)(t f 为下列函数时的整状态赞同)(t y zs .(1))()(t t f ε= (2))(sin )(t t t f ε=5-50 供下列象函数的单边推普推斯变更.(1)3]Re[1,)3)(1(2<<---s s s (2)1]Re[3,)3)(1(2-<<-++s s s4 2<+ss(4)]Re[1,)1)(4(42<<-+++-ssss(3)] Re[,4。
信号与系统第六章习题答案
第六章 离散系统的Z域分析 6.1学习重点 1、离散信号z 域分析法—z变换,深刻理解其定义、收敛域以及基本性质;会根据z变换的定义以及性质求常用序列的z变换;理解z变换与拉普拉斯变换的关系。
2、熟练应用幂级数展开法、部分分式法及留数法,求z 反变换。
3、离散系统z 域分析法,求解零输入响应、零状态响应以及全响应。
4、z 域系统函数()z H 及其应用。
5、离散系统的稳定性。
6、离散时间系统的z 域模拟图。
7、用MATLAB 进行离散系统的Z 域分析。
6.2 教材习题同步解析 6.1 求下列序列的z 变换,并说明其收敛域。
(1)n 31,0≥n (2)n−−31,0≥n(3)nn−+ 3121,0≥n (4)4cos πn ,0≥n(5)+42sin ππn ,0≥n 【知识点窍】本题考察z 变换的定义式 【逻辑推理】对于有始序列离散信号[]n f 其z 变换的定义式为()[]∑∞=−=0n nzn f z F解:(1)该序列可看作[]n nε31()[][]∑∑∞=−∞=− == =010313131n n n nn n z z n n Z z F εε对该级数,当1311<−z ,即31>z 时,级数收敛,并有 ()13331111−=−=−z zz z F其收敛域为z 平面上半经31=z 的圆外区域 (2)该序列可看作[]()[]n n nnεε331−=−−()()[][]()[]()∑∑∞=−∞=−−=−=−=010333n nn nnnzzn n Z z F εε对该级数,当131<−−z ,即3>z 时,级数收敛,并有()()33111+=−−=−z zz z F 其收敛域为z 平面上半经3=z 的圆外区域(3)该序列可看作[][]n n nn n n εε+ = + −3213121()[][]()∑∑∑∞=−∞=−∞=−+ =+ = + =01010*********n nn n n nn n n n z z z n n Z z F εε对该级数,当1211<−z 且131<−z ,即3>z 时,级数收敛,并有 ()3122311211111−+−=−+−=−−z zz z z zz F 其收敛域为z 平面上半经3=z 的圆外区域(4)该序列可看作[]n n επ4cos()[]∑∑∑∑∞=−−∞=−−∞=−∞=−+=+== =0140140440*******cos 4cos n nj n nj nn j j n n z e z e z e e z n n n Z z F πππππεπ对该级数,当114<−ze j π且114<−−zejπ,即1>z 时,级数收敛,并有()122214cos 24cos 21112111212222441414+−−=+−−=−+−=−×+−×=−−−−z z zz z z z z e z z e z z z eze z F j j j j ππππππ其收敛域为z 平面上半经1=z 的圆外区域 (5)该序列可看作[][][]n n n n n n n n εππεππππεππ+=+= +2cos 2sin 222sin 4cos 2cos 4sin 42sin()[]()122212212212cos 22cos 2212cos 22sin 222cos 222sin 222cos 2sin 222222222200++=+++=+−−++−=+=+=∑∑∞=−∞=−z z z z z z z z z z z z z z z n z n n n n Z z F n nn n ππππππεππ 其收敛域为z 平面上半经1=z 的圆外区域 6.2 已知[]1↔n δ,[]a z z n a n −↔ε,[]()21−↔z z n n ε, 试利用z 变换的性质求下列序列的z 变换。
(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解
目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。
根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。
二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。
2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。
图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。
图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。
这里雷达接收到的目标回波信号就是延时信号。
3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。
信号与线性系统分析课后答案_吴大正
信号与线性系统分析课后答案_吴大正第一章r(t),t,(t)1-1画出下列各信号的波形(式中)为斜升函数。
解:各信号波形为,t (2)f(t),e,,,,t,,(3) f(t),sin(,t),(t)(4) f(t),,(sint)(5) f(t),r(sint)k(7) f(t),2,(k)k(10) f(k),[1,(,1)],(k)r(t),t,(t)1-2 画出下列各信号的波形[为斜升函数]。
f(t),r(t),2r(t,1),r(t,2)f(t),2,(t,1),3,(t,1),,(t,2) (1) (2) f(k),k[,(k),,(k,5)]f(t),r(2t),(2,t) (5) (8),kkf(k),sin()[,(k),,(k,7)]f(k),2[,(3,k),,(,k)](11) (12) 6解:各信号波形为f(t),2,(t,1),3,(t,1),,(t,2) (1)f(t),r(t),2r(t,1),r(t,2) (2)f(t),r(2t),(2,t) (5)f(k),k[,(k),,(k,5)] (8),kf(k),sin()[,(k),,(k,7)](11) 6kf(k),2[,(3,k),,(,k)](12)1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
3,,,,f(t),3cost,2sin(,t)f(k),cos(k,),cos(k,) (2) (5) 524436 解:f(t)1-6 已知信号的波形如图1-5所示,画出下列各函数的波形。
f(0.5t,2)f(1,2t)f(t,1),(t)f(t,1),(t,1) (1) (2) (5) (6) tdf(t)f(x)dx (7) (8) ,,,dt解:各信号波形为f(t,1),(t) (1)f(t,1),(t,1) (2)f(1,2t) (5) f(0.5t,2) (6)df(t)(7) dttf(x)dx (8) ,,,f(k)1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。
信号与系统第6章习题解答
d ( z 1) 2 X ( z ) z n 1 ] dz z 1 zn z 1 ( z 2) 2
z 1
d zn nz n1 )] z 1 [ ( dz z 2 z2 x(n) (2 n n 1)u (n)
( n 1)u (n)
⑵ X ( z)
X 1 ( z)
n
1 ( 2 ) u (n)z
n
n
1 ( ) n z n n 0 2
1 1 1 2z
2z 2z 1
1 1, 2z
z 1/ 2
3
1 1 1 x 2 n u n 10 2 2 2
m
z zm
z n
z a
a n
Z Z 1 a n u (n 1) Z a
6-7 (1) , X (z)
1 0.5 z 1 1 0.5 z 1
z 0.5
5
X ( z)
1 0.5 z 1 X 1 ( z) X 2 ( z) 1 (0.5 z 1 ) 1 (0.5 z 1 )
x 2 (n) 5 3 n u ( n 1) x(n) x1 n x 2 n 5u (n) 5 3 n u ( n 1)
3、留数法:因为 1<lzl<3,故是双边序列,需要分别考虑 n 0和n 0 的情况。
z 1 ,右边序列, n 0 ,在此逆时针围线内 X z z n1 有一阶极点 z=1,
1
1 1 z 2
1 1 1 2z
,
z 1, 2
1 1 2z
信号与线性系统分析_(吴大正_第四版)习题答案第六章
. 学习参考. 第六章6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。
(1)1)(=z F ,全z 平面(2)∞<=z z z F ,)(3(3)0,)(1>=-z z z F(4)∞<<-+=-z z z z F 0,12)(2(5)a z az z F >-=-,11)(1(6)a z az z F <-=-,11)(1. 学习参考.6.5 已知1)(↔k δ,az z k a k -↔)(ε,2)1()(-↔z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。
. 学习参考 .(1))(])1(1[21k k ε-+ (3))()1(k k k ε-(5))1()1(--k k k ε (7))]4()([--k k k εε(9))()2cos()21(k k k επ. 学习参考.6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞→。
(1))31)(21(1)(2+-+=z z z z F (3))2)(1()(2--=z z z z F. 学习参考.6.10 求下列象函数的双边逆z 变换。
(1)31,)31)(21(1)(2<--+=z z z z z F (2)21,)31)(21()(2>--=z z z z z F (3)21,)1()21()(23<--=z z z z z F. 学习参考 .(4)2131,)1()21()(23<<--=z z z z z F. 学习参考.. 学习参考.. 学习参考.. 学习参考.6.11 求下列象函数的逆z 变换。
(1)1,11)(2>+=z z z F (2)1,)1)(1()(22>+--+=z z z z z z z F (5)1,)1)(1()(2>--=z z z z z F (6)a z a z az z z F >-+=,)()(32. 学习参考.. 学习参考.. 学习参考.6.13 如因果序列)()(z F k f ,试求下列序列的z 变换。
(NEW)吴大正《信号与线性系统分析》(第4版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】上册
【答案】
【解析】设f1(t)=ε(t)由LTI系统的线性和时不变性得(由于该题 没有给出系统的初始状态,所以这里不考虑)
f(t)=ε(t-1)-ε(t-2)=f1(t-1)-f1(t-2)
3.已知某LTI系统,当t>0时有: 当输入f(t)=(e-t+2e-2t)ε(t)时,输出响应为(e-t+5e-2t) ε(t); 当输入f(t)=(2e-t+e-2t)ε(t)时,输出响应为(5e-t+e-2t) ε(t); 当输入f(t)=(e-t+e-2t)ε(t)时,输出响应为(e-t+e-2t) ε(t); 则当输入为f(t)=(e-t-e-2t)ε(t)时,系统的输出响应为 ______。[长沙理工大学2006研]
【答案】
;
;稳定
【解析】由
可知,该系统任意两个相邻的输出值之差就是该
系统的输入值,即
,因此其逆系统的方程是
。
又因为
可知该逆系统的单位冲激响应为
为有限长序列,则其收敛域包含整个坐标平面。可见包含单位圆,则稳 定。
二、选择题 1.用下列差分方程描述的系统为线性系统的是( )。[西安电子科 技大学研] A.y(k)+y(k-1)=2f(k)+3 B.y(k)+y(k-1)y(k-2)=2f(k) C.y(k)+ky(k-2)=f(1-k)+2f(k-1) D.y(k)+2y(k-2)=2|f(k)| 【答案】C
图2-3 解:由框图可知,系统函数
令 因输入
,由于两共轭零点实部为1,可以求得 ,故 。
,即
时,系统全响应
,即
① 由此可知 的三个一阶极点分别为 , , ,分别代入传 递函数特征方程式
,从而可得
根据
可写出系统微分方程为
对方程两边取单边拉氏变换,将 由式①=②,可求得
信号与线性系统分析_(吴大正_第四版)习题答案
第一章 信号与系统1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (4)k j k f 34e )(π= (5))sin(2cos 3)(5t t t f π+=1-6 已知信号)(t f 的波形如图1-6所示,画出下列各函数的波形。
(5))21(t f - (7)dtt df )( (8)dx x f t⎰∞-)(解:1-7 已知序列)(k f 的图形如图1-7所示,画出下列各序列的图形。
(1))()2(k k f ε- (3))]4()()[2(---k k k f εε1-10 计算下列各题。
(5)dt t tt )2()]4sin([2++⎰∞∞-δπ(6)dt t )2()2t (2δ⎰∞∞-+(7)dt t t t )1()12t 2('23-+-+⎰∞∞-δ1-23 设系统的初始状态为)0(x ,激励为)(⋅f ,各系统的全响应)(⋅y 与激励和初始状态的关系如下,试分析各系统是否是线性的。
(1)⎰+=-ttdx x xf x e t y 0)(sin )0()( (2)⎰+=tdx x f x t f t y 0)()0()()(1-23 设系统的初始状态为)0(x ,激励为)(⋅f ,各系统的全响应)(⋅y 与激励和初始状态的关系如下,试分析各系统是否是线性的。
(1)⎰+=-ttdx x xf x e t y 0)(sin )0()( (2)⎰+=tdx x f x t f t y 0)()0()()(1-27 某LTI 连续系统,其初始状态一定。
已知当激励为)t (1y 时,其全响应为0)cos()(1≥+-=t t t e t y π若初始状态不变,当激励为)(2t f 时,其全响应为0)cos(2)(2≥=t t t y π,若初始状态不变,当激励为)(3t f 时,求其全响应。
第二章2-1 已知描述系统的微分方程和初始状态如下,试求其零输入响应。
(完整版)信号与线性系统分析_(吴大正_第四版)习题答案
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t (7))t(k=f kε)(2(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
吴大正《信号与线性系统分析》(第4版)配套题库【名校考研真题+模拟试题】(上册)【圣才出品】
x
t
0.5
t
1 2
2. sin nt dt ______。[天津工业大学 2006 研]
t
1 / 62
圣才电子书 十万种考研考证电子书、题库视频学习平台
【答案】
【解析】
sin nt dt t
sin nt nt
dnt
令t1 nt
Sa
t1 dt1 。
圣才电子书
第一部分 名校考研真题
十万种考研考证电子书、题库视频学习平台
第 1 章 信号与系统
一、填空题
1.设 x(t) et 0.5 (2t 1) ,则 x(t) =______。[华中科技大学 2008 研] 【答案】 x(t) 0.5 (t 0.5)
【解析】根据冲激函数的尺度变换,有
y(2t)
f ( )h(2t )d 21
f
(21)h(2t
21)d 21
2
f
(21)h[2(t
1)]d1
2
f
(2t) h(2t)。
另解:此题也可以使用傅里叶变换性质得到:
设 f t F ,ht H , yt Y
则Y F H ,由尺度变换特性得
y
2t
1 2
Y
1 2
函数。
四、画图题
信号
x(t)如图
1-1
所示,画出信号
y(t
)
2
x
1 3
t
2 3
的图形。[北京邮电大学
2012
研]
图 1-1
解:
yt
2x
1 3
t
2
如图
1-2(d)所示:
(a)
(b)
吴大正《信号与线性系统分析》(第4版)笔记和课后习题考研真题详解
第 7 章 系统函数 7.1 复习笔记 7.2 课后习题详解 7.3 名校考研真题详解
第 8 章 系统的状态变量分析 8.1 复习笔记 8.2 课后习题详解 8.3 名校考研真题详解
吴大正《信号与线性系统分பைடு நூலகம்》(第 4 版)笔记和课后习题(含考研真题)详
解完整版>精研学习 wang>无偿试用 20%资料
全国 547 所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
第 1 章 信号与系统 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解
第 2 章 连续系统的时域分析 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解
第 3 章 离散系统的时域分析 3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解
第 4 章 傅里叶变换和系统的频域分析 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解
第 5 章 连续系统的 s 域分析 5.1 复习笔记 5.2 课后习题详解 5.3 名校考研真题详解
吴大正《信号与线性系统分析》(第4版)配套题库【章节题库】(下册)第6章 离散系统的z域分析【圣才出
i0
0
k为奇数 2k1 2k1 ,又 ak z ,所以
k为偶数
za
2k 1
2 k1
z 1
z
z
2
z 1
z
z
2
2z z2
4
,故原式=
2z z2
4
。
3.对某线性时不变离散时间系统,若其单位阶跃响应为 数为 H(z)=_____。
,则该系统的系统函
【答案】
【解析】当输入为 (k) ,对应输出为单位阶跃响应,所以有
a z
),
X
(z)
az2 1 az1
故
(z)
X
( z )
az 1 1 az1
a(a)
n1u(n
1)
所以
x(n) (1)n1 an u(n 1) n
5.序列
的单边 z 变换 F(z)等于( )。
【答案】C
2 / 58
圣才电子书 十万种考研考证电子书、题库视频学习平台
)]
z2
d
2X( z dz 2
)
z
dX ( z dz
)
, n2u( n )
z( z 1) ( z 1)3
,位移性
(n-1)2u(n-1)
z 1
z( z 1) ( z 1)3
【解析】z 变换性质的位移性 x( n m ) z mX ( z ) 。
11.f(n)=(n-1)2u(n-1)的 z 变换式 F(z)=______。
【答案】
【解析】由 z 变换性质序列线性加权可知 nx( n ) z d X ( z ) , dx
n2x( n )
z
d dz
检出限、测定限、最佳测定范围区别之令狐文艳创作
检出限、测定限、最佳测定范围区别令狐文艳检出限检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。
在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。
显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:D = 2N / S式中:N——噪声(mV或A);S——检测器灵敏度;D——检出限,其单位随S不同也有三种:Dg=2N / Sg, 单位为mg/mlDv=2N / Sv, 单位为ml/mlDt=2N / St, 单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。
它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。
不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。
他是分析方法的一个综合性的重要计量参数。
检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。
这里的零浓度样品是不含待测物质的样品。
D.L = 4.6σ式中:σ—空白平行测定(批内)标准偏差(重复测定20次以上)。
2) 国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
算出空白观测值的平均值X b和标准偏差S b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。
令狐文艳
(1)1)(=z F ,全z 平面
(2)
∞<=z z z F ,)(3 (3)
0,)(1>=-z z z F (4)
∞<<-+=-z z z z F 0,12)(2 (5)
a z az z F >-=-,11)(1 (6)a z az z F <-=-,11)(1
6.5 已知1)(↔k δ,a z z k a k -↔)(ε,2)1()(-↔z z k k ε,试利用z 变换
的性质求下列序列的z 变换并注明收敛域。
(1))(])1(1[21k k ε-+ (3))()1(k k k ε-
(5))1()1(--k k k ε (7))]4()([--k k k εε
(9))()2cos()21(k k k επ
6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞→。
(1)
)31)(21(1)(2+-+=z z z z F (3))2)(1()(2--=z z z z F 6.10 求下列象函数的双边逆z 变换。
(1)31,)31)(21(1)(2<--+=z z z z z F
(2)21,)31)(21()(2>--=z z z z z F
(3)
21,)1()2
1()(23
<--=z z z z z F (4)213
1,)1()21()(23<<--=
z z z z z F
6.11 求下列象函数的逆z 变换。
(1)1,11)(2>+=z z z F
(2)1,)1)(1()(22>+--+=z z z z z z z F
(5)1,)1)(1()(2>--=z z z z z F
(6)a z a z az z z F >-+=,)()(32
6.13 如因果序列)()(z F k f ↔,试求下列序列的z 变换。
(1))(0i f a k i i ∑= (2)∑=k i k i f a 0)
(
6.15 用z 变换法解下列齐次差分方程。
(1)1)1(,0)1(9.0)(=-=--y k y k y
(3)3)1(,0)0(,0)(2)1()2(===-+-+y y k y k y k y
6.17 描述某LTI 离散系统的差分方程为
已知)()(,41)2(,1)1(k k f y y ε==--=-,求该系统的零输入响应
)(k y zi ,零状态响应)(k y zs 及全响应)(k y 。
6.19 图6-2为两个LTI 离散系统框图,求各系统的单位序列
响应)(k h 和阶跃响应)(k g 。
6.20 如图6-2的系统,求激励为下列序列时的零状态响应。
(1))()(k k k f ε= (3)
)()31()(k k f k ε=
6.23 如图6-5所示系统。
(1)求该系统的单位序列响应)(k h 。
(2)若输入序列)()21()(k k f k ε=,求零状态响应)(k y zs 。
6.24 图6-6所示系统,
(1)求系统函数)(z H ;
(2)求单位序列响应)(k h ;
(3)列写该系统的输入输出差分方程。
6.26 已知某LTI 因果系统在输入)()21()(k k f k ε=时的零状
态响应为
求该系统的系统函数)(z H ,并画出它的模拟框图。
图6-12
6-29 已知某一阶LTI 系统,当初始状态
1)1(=-y ,输入)()(1k k f ε=时,其全响应
)(2)(1k k y ε=;当初始状态1)1(-=-y ,输入)(21)(2k k k f ε=时,其全响应)()1()(2k k k y ε-=。
求输入)()21()(k k f k ε=时的零状态响应。
6.31 如图6-10所示的复合系统由3个子系统组成,已知子系
统2的单位序列响应)()1()(2k k h k ε-=,子系统3的系统数1)(3+=z z
k H ,当输入)()(k k f ε=时复合系统的零状态响应
)()1(3)(1k k k y ε+=。
求子系统1的单位序列响应)(1k h 。
6.33 设某LTI 系统的阶跃响应为)(k g ,已知当输入为因果序
列)(k f 时,其零状态响应
求输入)(k f 。
6.34 因果序列)(k f 满足方程
求序列)(k f 。
6.37 移动平均是一种用以滤除噪声的简单数据处理方法。
当
接收到输入数据)(k f 后,就将本次输入数据与其前3次的输入数据(共4个数据)进行平均。
求该数据处理系统的频率响应。
6.46 如图6-所示为因果离散系统,)(k f 为输入,)(k y 为输出。
(1)列出该系统的输入输出差分方程。
(2)问该系统存在频率响应否?为什么?
(3)若频响函数存在,求输入
)8.302cos(20)( +=k k f π
时系统的稳态响应)(k y ss 。